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Abstract

The classification of animal feed ingredients has become a challenging compu-

tational task since the food crisis that arose in the European Union after the

outbreak of Bovine Spongiform Encephalopathy (BSE). The most interesting

alternative to replace visual observation under classical microscopy is based

on the use of near infrared reflectance microscopy (NIRM). This technique

collects spectral information from a set of microscopic particles of animal

feeds. These spectra can be classified using maximum margin classifiers with

good results. However, it is difficult to interpret the models in terms of the

contribution of features. To gain insight into the interpretability of such

classifications, we propose a method that learns accurate classifiers defined

on a small set of narrow intervals of wavelengths. The proposed method is
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a greedy bipartite procedure that may be successfully compared with other

state-of-the-art feature selectors and can be scaled up efficiently to deal with

other classification tasks of higher dimensionality.
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infrared, Ingredient discrimination

1. Introduction

The ban on the use of by-products of animal-origin such as meat and

bone meal (MBM) in the feeding of farmed animals of the ruminant species

[6] was one of the measures implemented in the European Union to stop

the spread of bovine spongiform encephalopathy (BSE) and to prevent its

reoccurrence. The official analytical method employed for the detection of

banned ingredients in compound feedstuffs is classical microscopy [7]. This

requires visual observation and interpretation by an experienced analyst. It

is thus both tedious and subjective, so a number of different methods have

been proposed to improve productivity and reduce costs.

In this paper we deal with datasets obtained from one of these alterna-

tives, namely near infrared reflectance microscopy (NIRM) [12, 23, 26], which

allows the collection of hundreds or thousands of spectra from a feed sample.

NIRM has been proposed as a new analytical approach for identifying ingre-

dients in animal feed and detecting undesirable substances such as MBM in

feedstuffs.

NIRM is based on the collection of spectra from samples. These spec-

tra can be collected from extremely small areas (<50 micrometers) using a
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Fourier transform near infrared reflectance (FT-NIR) instrument attached

to a microscope with an optical system designed to increase the efficiency of

radiation transmission.

The spectra obtained from samples are used to determine the origin of feed

ingredients in a sample. From a computational point of view, the spectra are

numerical representations of substances, a vector of absorbances in intervals

of wavelengths. Absorbance is a measure of the capacity of a substance to

absorb light of a specified wavelength.

The classification of these spectra has been performed using different Ma-

chine Learning tools. Support Vector Machines (SVM) and other maximum

margin learners have been shown to be valuable techniques for detecting

banned MBM [23, 9]. However, the classifiers learned with these techniques

are difficult to interpret. Although the classifications may be correct, the

underlying causes may not be easily explained, a fact which decreases confi-

dence in the results.

This paper focuses on improving the understandability of spectra classifi-

cations without losing accuracy. A popular approach employed for this pur-

pose is to use Machine Learning tools that provide more explicit knowledge

than hyperplanes, typically classification rules; but in this case, the accuracy

could suffer. If we want to retain the accuracy of maximum margin learners,

we may select a set of features. Then the learner will return a classifier built

on a reduced set of wavelengths. This strategy to explain a classification

procedure has been successfully employed in a number of application fields

[4, 20].

Feature selection problems are NP-hard, so an exhaustive search is only
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possible for datasets with a small number of features. For larger datasets

we have to use approximate algorithms, which usually provide acceptable

solutions at a reasonable computational cost. Sequential forward selection

[31] and sequential backward selection [21] are the two basic approximate

approaches. There are also metaheuristic approaches for feature selection

such as genetic algorithms [34, 14], and methods based on rough set theory

[33, 3, 15, 2, 35] and on Boolean independent component analysis [1].

However, the selection method has to be carefully chosen. Since the set

of features itself will be part of the solution to the classification task, we

shall present a method to produce accurate classifiers defined on a small

set of narrow intervals of wavelengths. In fact, the biochemical meaning

of spectra is attached to intervals of wavelengths that are related to the

molecular structure of the ingredients.

The core idea is a feature selection process that prefers intervals instead

of disconnected subsets of features. The proximity of the features in terms

of their wavelength values must be taken into account. Tibshirani et al. [27]

designed a generalization of lasso for regression problems whose features are

ordered in a meaningful way. Their approach, named ‘fused lasso’, is biased

towards sparse solutions and local constancy in the coefficients profile.

There are many application fields in which the contiguous nature of fea-

tures plays an important role. This is the case, for instance, of speech, written

texts, and music. In addition, genomic information is also arranged linearly.

In this field, Kim and Xing [16] proposed a method to identify a small subset

of contiguous blocks of single-nucleotide polymorphisms (SNPs) associated

with a given phenotype. As in [27], the work reported in [16] is devised to
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solve regression problems by forcing the sparsity of the solution. However, in

this case a Laplacian prior is placed on the regression coefficients, instead of

the L1 penalty used in the fused lasso. Furthermore, both approaches were

designed to handle situations with more features than training examples,

which is the typical setting in genetic datasets.

A different approach can be found in paper by Leardi and Nørgaard [18].

Here, the authors propose to obtain a predictive model by first selecting

intervals of features by means of backward interval partial least squares (bi-

PLS) and then a genetic algorithms (GAs) applied on the resulting subset of

features.

The idea of using a two-stage strategy is somewhat similar to the one pre-

sented in this paper. However, our approach is based on making a recursive

bipartition of the input space to check whether any of the halves can be dis-

carded by a learner. In fact, the proposed method is a wrapper which applies

this bipartition greedily. It has a reasonably low time complexity in order

to be scalable and hence useful in high dimensional input spaces. As stated

previously, we have applied our method to classification tasks, although its

adaptation to tackle regression problems is straightforward.

The paper is organized as follows. After presenting the method, we report

a set of experiments carried out to test its benefits. We compare our greedy

method with five other feature selection approaches: a Backward (Back)

selector, a Forward (Fwd) selector, a selector built on the Recursive Feature

Elimination (RFE ) ranker [13], an interval-oriented Relief [17] selector, and

the iPLS method proposed by Leardi and Nørgaard [18]. The results show

that our method yields intervals which allow the learner to be as accurate as
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when classical selectors are used, but it is much faster and produces slightly

less intervals with fewer wavelengths. In other words, the classifiers produced

by the greedy method are scalable and they better explain the underlying

reasons used to discriminate animal feed ingredients.

2. Near Infrared Spectra

A spectral library was built using the most common ingredients included

in feedstuffs together with banned ingredients such as processed animal pro-

teins. The samples were provided by the major feed industries and rendering

plants in the north of Spain from 2005 to 2009, thus representing the variabil-

ity encountered in the actual production process. All the ingredients included

in this study and the numbers of spectra collected are listed in Table 1. The

optimal methodology for sample pre-treatment and the instrumental condi-

tions to collect spectral data in this system were previously investigated by

del Valle Fernández-Ibáñez et al. [28]. In line with their findings, the sam-

ples were ground to a particle size of 1 mm as the sole pre-treatment prior

to NIRM analysis.

The datasets used in this paper were collected using an Auto Image Mi-

croscope connected to a PerkinElmer Spectrum One Fourier Transform Near

Infrared (FT-NIR) Spectrometer in reflectance mode. The spectra were mea-

sured using fields of view of 50× 50 micrometers arranged in a 13× 18 grid

over this area, collecting approximately 200 spectra per sample. This method

avoids any subjective selection.

The spectra were obtained from the ratio between raw spectra and the

background. The spectral information was stored as log(1/R), where R is
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the reflectance, recorded at 4 nm intervals over the range 1112–2492 nm after

conversion from cm−1 using the PerkinElmer software, Spectrum v. 5.01. We

thus have 1 + (2492− 1112)/4 = 346 features per spectrum.

Figure 1 shows the spectra of 3 different animal feed ingredients of: wheat,

soybean meal, and meat and bone meal (MBM).

3. Greedy Bipartition Methods

In this paper we deal with a collection of binary classification tasks, each

consisting of separating spectra from a couple of groups of ingredients. Before

presenting the feature selection tools, let us start by formally defining a

binary classification task in addition to giving a brief description of the base

learner used, a regularized logistic regressor, LibLinear [19, 8].

Formally, a binary classification task is represented as a set D = {(xi, yi) :

i = 1, . . . , l}, where inputs xi ∈ Rn are real vectors of dimension n represent-

ing spectra, and yi ∈ {1,−1} stand for the classes.

From the dataset D, LibLinear induces a probability model

Pr(y = ±1|x) =
1

1 + e−y(wTx+b)
, (1)

where w and b are learning parameters. The classifier learned is then given

by

sign(Pr(class = +1|x)− 0.5). (2)

The parameters w ∈ Rn, and b ∈ R, are learned by minimizing the negative

log-likelihood

min
w,b

l∑
i=1

log
(

1 + e−yi(w
Txi+b)

)
. (3)
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To obtain good generalization abilities, the authors of LibLinear added a

regularization term, 1
2
[w; b]T [w; b], used in the formulation of SVM to incor-

porate the maximum margin principle. LibLinear thus solves the following

convex optimization problem

min
w,b

1

2
[w; b]T [w; b]+C

l∑
i=1

log
(
1+e−yi(w

Txi+b)
)
. (4)

The value of the regularization parameter, C, is decided by users so that

both terms in (4) are balanced.

Using LibLinear as the base learner, greedy bipartite methods proceed as

follows. The range of wavelengths is split into two parts of equal size, left

and right. An estimation of the accuracy with and without each part then

decides if it is possible to get rid of one of the parts. The method proceeds

recursively with each retained part until the size of the intervals falls below

a threshold, ε. A description of the method is detailed in Algorithm 1. A

sketch of the procedure is shown in Figure 2.

Notice that the roles of left and right may be changed. The method that

start from left to right will be called Left-Right (LR), while Right-Left (RL)

will stand for the method that proceeds in the opposite way.

The implementation of the algorithm requires the specification of a pro-

cedure for searching for the best regularization parameter C, and a way to

estimate the accuracy achieved with a subset of features, in the algorithm

Test In. We employed a simple hold-out method in the experiments re-

ported in the next section. Training sets were split into proper training sets

plus a validation set for searching for the best value for C and to estimate

the accuracy of a subset of features.
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Finally, the algorithm returns the best set of intervals found together

with a predictive model learned using only the selected features and the best

estimation for C. This model is, of course, obtained from the whole training

set, combining the corresponding training and validation sets.

4. Experimental Results

In this section we report an experimental comparison of the previously

described methods. A total of 217 samples from 23 ingredients were analyzed.

These ingredients were categorized in 7 groups. About 200 spectra were

collected from each sample, giving a total of 46278 spectra. Each spectrum

is described by 346 features, the values of absorbance for wavelengths in

the interval [1112, 2492] nm obtained each 4 nm, and belongs to one of the 7

groups of ingredients, which will be the target class to be predicted. We built

21 binary classification tasks with these data (combinations of 7 elements

taken two by two).

All spectra were smoothed out using a moving average filter applied 10

times. The value of each original feature was thus transformed using the

following function

f j
i =



2f j−1
i + f j−1

i+1

3
if i = 1 (first) (5a)

f j−1
i−1 + 2f j−1

i

3
if i = 346 (last) (5b)

f j−1
i−1 + 2f j−1

i + f j−1
i+1

4
otherwise, (5c)

where i = 1, . . . , 346, j = 1, . . . , 10 and f j
i is the i-th feature after j applica-

tions of the smoothing filter.
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The greedy bipartite methods presented in Section 3 were implemented

using ε = 10; i.e., only intervals containing more than 10 wavelengths will

be split. To test the convenience of skipping an interval of features in Al-

gorithm (1), we separated training sets into validation (40% of the input

examples) and proper training (the remaining 60%). This split was also

used to tune the regularization parameter, C, with an internal grid search in

{0.01, 1, 100}.

We compared the LR and RL versions or our approach with several stan-

dard selection procedures, as well as with a state-of-the-art native interval

selector.

The standard procedures include a Backward (Back) and a Forward

(Fwd) approach, which have been previously used in the field of chemomet-

rics as greedy subset selectors [5, 24, 25]; a Recursive Feature Elimination

(RFE ) ranker proposed by Guyon et al. [13], which has proven very effective

for sorting attributes according to their relevance in classification tasks; and,

finally, the well-known Relief algorithm proposed by Kira and Rendell [17].

These selectors were adapted for interval selection since they were originally

conceived to deal with individual features. To have comparable selections of

intervals, the set of 346 features was packed into 34 intervals of 10 contiguous

wavelengths and a final interval including the last 6 features to allow these

methods to remove intervals of features. The final step of these approaches

consists in joining contiguous intervals in order for them to be considered as

a single wider interval.

The Back method starts with all attributes and searches for the interval

that yields the highest estimated accuracy when discarded. That interval
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is removed and the process is repeated with the remaining intervals until

the method comes across a subset that cannot be reduced without a loss

in accuracy. Conversely, the Fwd method starts with no features and pro-

gressively joins intervals until the estimated accuracy stops increasing. The

interval added in each step is the one that yields the subset with the highest

estimated accuracy.

The RFE and the Relief selectors start by constructing a ranking of

intervals sorted by relevance. They then select the subset of top ranked

intervals yielding the best estimated accuracy. The difference between the

two approaches lies in the way they compute the ranking of intervals.

The general RFE procedure to build the ranking proceeds as follows

a) RFE constructs a predictive model, like the one in (1),

b) It removes the feature whose squared coefficient, w2
i , is the lowest,

c) It applies RFE to the remaining features until all but one are removed.

We used an alternative criterion for step b) to allow the algorithm to

consider intervals of features instead of individual features. Thus, RFE will

remove the k-th interval of features whose sum of squared coefficients is the

lowest, i.e.,

arg min
n=1,...,|I|

∑
i∈In

w2
i

where I is the set of 35 intervals of features that make up the datasets.

We used the implementation of RFE provided in The Spider [29] toolbox,

which supports this removing criterion for groups of variables, although it is

not documented in the paper by Guyon et al. [13].

The adaptation made to Relief in order to select intervals instead of single

features is similar to the one made for RFE. The score for each interval of
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variables is thus computed as the sum of scores of their variables. In turn,

the score for each variable is computed using the classical Relief as follows.

For each training example, the algorithm finds the k nearest neighbors of

its same class (hit examples) and the k nearest neighbors of the opposite

class (miss examples) and computes the corresponding distance vectors. All

distance vectors to the hit examples are averaged, as well as the distance

vectors to the miss examples. Then, the score for each input variable xi is

the ratio between the average distance to the miss examples and the average

distance to the hit examples projected on each variable xi.

Furthermore, we also included a native interval selector, the biPLS pro-

cedure proposed by Leardi and Nørgaard [18]. The implementation does not

allow the user to configure the intervals, but allows their minimum size to be

defined, so we applied the algorithm guaranteeing that the intervals had at

least 10 features. This partition practically yielded the same intervals used

by the previously cited standard feature selectors.

In addition to the aforementioned selectors, we also considered a null

selector, i.e., a learner that used all available features, All.

4.1. Estimation of performance by cross-validation

The estimation of accuracy was carried out using a 4-fold cross-validation

procedure. We thus made four random splits, each one taking 75% of the

data for training. As we have already explained, the training data is in turn

split into two blocks (60%/40%) for parameter tuning purposes; see Figure 3.

Once a combination of parameters is selected, we obtain a model using all

the training data (the 75% mentioned above) and the resulting classification

model is applied to the remaining 25% reserved for testing. The scores are
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reported in Table 2. Note that the spectra of any sample were never split

in different folds. The idea is to avoid spectra from the same sample split

appearing in both the training and test set. Moreover, the folds built for this

purpose had a balanced distribution of classes similar to that of the original

classification task. This is the reason for using a cross-validation procedure

with only 4 folds.

Although the computational complexity is not of core importance in this

case, it is useful to analyze it in order to evaluate the scalability of the

methods. Table 3 accordingly shows the running time in seconds needed

to obtain a classification model after the feature selection on each dataset.

The times were taken on a dedicated computer to avoid delays due to other

users’ processes. We also guaranteed enough memory for the experiments to

prevent delays due to memory swapping to disk.

Obviously, the fastest method is the one that makes no selection at all.

It was included just to show how long it takes to learn a model for each

problem in the comparison. Among the techniques that make some feature

selection, our greedy methods are the fastest in all but 4 problems, where

they ranked in second position. Their average times were below 225 seconds.

RFE and Relief have higher average times than our approaches, taking up

to more than 350 seconds in the case of Relief.

The times taken for the remaining methods confirm that none of them

are scalable solutions, so they can hardly be applied to datasets of moderate

or large size. The case of biPLS is noteworthy on account of being extremely

slow. We wish to emphasize that we did not implement this method; in-

stead, we used the original source code provided by the authors, so the poor
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performance cannot be imputed to incorrect implementation of the method.

However, the most important measures to evaluate the understandability

of the hypotheses learned are those that deal with the number and distribu-

tion of features selected. Table 4 shows the number of discarded features and

the number of intervals in which the selected features are grouped. These

scores were computed by each method when they are applied to the whole

dataset.

With the aim of summarizing in a single number how explicative a set of

selected features is, we define the quality of the selection as follows

quality =
#features excluded

#intervals

=
346−#features selected

#intervals
. (6)

We chose this measure because the quality of the selection must be propor-

tional to the number of features excluded and inversely proportional to the

amount of intervals selected. Thus, for a given number of features excluded

by two selection procedures, we will prefer the selection with a lower num-

ber of intervals. In turn, for a given number of intervals, we will prefer the

selection method which yields smaller intervals, i.e., the one with a higher

number of features excluded. The scores for this measure are also shown in

Table 4.

4.2. Discussion

Following the recommendations of [11], we performed a two-step com-

parison for each of the considered measures: a Friedman test followed by a

post-hoc pairwise comparison, namely a Bergmann-Hommel procedure. This
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is a non-parametric test that starts computing the average ranking positions

of each method across the datasets considered.

Table 5 shows the average ranking positions for the different selection

approaches. The best approach for each performance measure is the one

with the average ranking position closest to 1 and is highlighted in bold.

Considering a level of significance α = 0.05, the difference in accuracy

is statistically significant between the worst (biPLS ) and the rest of the ap-

proaches except for Fwd, which is the last but one in the ranking of accuracy.

If we raise this level up to α = 0.1, then the difference between Back and

Fwd is also significant. We have also included in the comparison the re-

sults obtained with no selection method, i.e. when using All features, which

occupies the second position in the accuracy ranking.

As can be seen in Table 2, one of the most successful results is the dis-

crimination between cereals, which are the most usual ingredients in animal

feeds, and banned ingredients (1 vs 7). The accuracy obtained in the distinc-

tion between groups 4 and 7 is also worth noting. In fact, the most important

confusion in classification procedures previously reported was between soy-

bean meal (included in group 4), of vegetable origin, and MBM (included

in group 7), of animal origin [10]. Confusion may arise due to the high pro-

tein levels in both ingredients. On the other hand, the accuracy decreases

between vegetable ingredients (2 vs 6), which could be due to the fact that

they have similar cell wall structures.

In terms of quality, our proposed approaches, LR and RL, are top ranked,

closely followed by Fwd. The differences in terms of quality between any of

these three approaches and the remaining selection methods are statistically
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significant for both α = 0.05 and α = 0.1. The quality measure proposed

in (6) depends on the number of features discarded by an algorithm and the

number of intervals selected, so we also analyzed these measures separately.

The Fwd approach is the one that discards most features, though the

difference is only significant with respect to the worst approaches, Back, RFE

and Relief. Thus, our approaches are not significantly worse than the best,

Fwd, when discarding features. Moreover, LR and RL are also significantly

better than Back, RFE and Relief at α = 0.05.

Furthermore, we are not only interested in discarding as many features as

possible, but also in selecting few and small (if possible) intervals or regions

of the spectrum in order to gain insight into the process of discriminating

between ingredients. As regards the number of intervals selected, biPLS

is the worst approach, followed by Fwd. Note, however, that Fwd is the

approach which, on average, discards the largest number of features. This

means that, in general, Fwd selects less features than the other approaches,

but its selection is more fragmented over the spectrum. In terms of number

of intervals, Relief is ranked best in the comparison, closely followed by our

greedy bipartite methods. There are no significant differences among them

and they select a significantly lower number of intervals than Fwd and biPLS

at α = 0.05.

Figure 4(a) depicts an example of interval selection by our greedy bipartite

methods in the problem of discriminating between by-products (class 5) and

banned ingredients (class 7). It also shows a random sample of 5 spectra of

each class taken for the training data.

The main characteristic bands differentiating the two classes of spectra
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(permitted and banned) are clearly visible, and there are considerable differ-

ences in the location and shape of the bands, in the region characteristic of

fat absorption (1724–1760 nm). According to Murray et al. [22], this band

is related to the content in polyunsaturated fatty acids. On the other hand,

in [32] protein absorption was related to band (2054-2274 nm). In the field

of animal nutrition, it is well known that most of the banned ingredients are

derived from terrestrial animal tissues and they have relatively high fat and

protein contents. This means that differences occur at specific wavelength

ranges. Carbohydrates in general may have a free OH stretch absorption

near 1440 nm [30]; in this regard, Williams [32] reported an important band

correlated with cellulose carbohydrate (fiber content) 1490 nm.

In this application, the classifications of spectra may be similar using

both strategies, as the principal intervals selected when processing the data

from the left to right of the spectral data and vice versa are mainly related

to protein content.

In this particular example, and contrary to its usual behavior, Fwd dis-

cards only a few features, giving only 2 large intervals which are not very

informative, since they cover almost the entire spectrum. In turn, the RFE

procedure selects 6 intervals, one of which is rather broad, so it is also barely

informative. These results are depicted in Figures 4(c) and 4(b), respectively.

The Back approach also selects 6 intervals, although they are more compact

than those selected by RFE, as can be seen in Figure 4(d). The Relief ap-

proach made a similar selection to that made by RFE, except for the band

in the lowest wavelengths, which was discarded by Relief. Finally, biPLS se-

lected 7 wide intervals, discarding few features, thus being as uninformative
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as Fwd in this particular example.

Finally, we also compared the selection approaches with respect to their

running time. Our approaches significantly outperform all the other selectors

at α = 0.1, although the difference with RFE is not significant at α = 0.05.

In fact, differences are very important in most of the absolute scores (Table 3)

and hence in the average ranking positions (Table 5).

5. Conclusion

The classification of spectra of animal feed ingredients has to be accurate,

but it also should be understandable. In this context, the chemical or biolog-

ical explanation is related to the identification of a reduced set of contiguous

features grouped in few intervals (spectral bands).

On the other hand, it has been shown that the combination of NIRM

spectroscopy and a maximum margin classifier should allow a regulatory

laboratory to certify and quantify the presence of meat and bone meal in

common samples of processed animal feed [23, 9]. However, the classifiers

obtained are difficult to understand.

In this paper we have presented some methods to make the classifiers

learned by maximum margin classifiers from binary classification tasks more

explicative. Using this criterion, the greedy bipartite methods (LR, RL) sig-

nificantly outperform the other feature selection strategies compared in the

paper in terms of quality. They are closely followed by Fwd, though this

method is much worse in terms of computational complexity. Furthermore,

neither LR nor RL presents significant differences in accuracy with respect to

the most accurate method found in the comparison. In addition, LR and RL
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identify few and very compact intervals of features. Thus, the classifiers ob-

tained by LR and RL enable the explanation of accurate classifications when

dealing with animal feed ingredients. Moreover, this methodology opens up

other alternative methods for checking feed composition.

Finally, we have shown that implementing a feature selector for interval

selection is not a straightforward task, especially if the aim is to produce

scalable methods able to deal, eventually, with datasets of very high dimen-

sionality.
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Figure 1: Spectra of 3 different types of animal feed ingredients: wheat, soybean meal, and

MBM (meat and bone meal).

[1, 346]

[88, 173] [261, 346]

[1, 173] [174, 346]

! !

[1, 87] [174, 260]

Figure 2: Search tree used by one of the greedy bipartite methods for feature selection.
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Algorithm 1 Greedy bipartition algorithm to select a set of intervals of

features. As it starts testing left and then right parts, it is the LR version.

Changing the roles of left and right, we obtain the RL version.

Input: Interval

Open ← [Interval]; {list of intervals}

best.interval ← Interval;

best.accuracy ← Test In(Interval);

repeat

Interval ← First(Open);

Open ← Rest(Open);

(left, right) ← Bipartite (Interval);

but left ← Test In(best.interval - left);

if (but left > best.accuracy) then

best.interval ← best.interval - left;

best.accuracy ← but left;

Open ← Open + [right];

else

Open ← Open + [left];

but right = Test In(best.interval - right);

if (but right > best.accuracy) then

best.interval ← best.interval - right;

best.accuracy ← but right;

else

Open ← Open + [right];

end if

end if

until (length(left) < ε or length(right) < ε)

return best.interval;
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Group Ingredients Samples Spectra

Group 1 Oats 4 847
Cereals Rye 5 1146

Barley 20 4216
Wheat 15 3210
Maize 21 4826

Total 65 14245
Group 2 Dehydrated lucerne 24 5109
Forages Cereal straw 27 5644

Grass hay 2 421
Fababean silage 2 450
Grass silage 13 2713

Total 68 14337
Group 3 Cotton seed 7 1016
Fat concent. Sunflower seed 7 1578

Total 14 2594
Group 4 Peas 2 427
Protein concent. Soybean meal 14 3120

Total 16 3547
Group 5 Corn flakes 1 210
By-products DDGS Barley 1 202

Bran 2 419
Beet pulp 14 3039

Total 18 3870
Group 6 Maize silage 23 4836

Maize silage Total 23 4836
Group 7 Meat and bone meal 10 2146
Banned Blood meal 1 235
ingredients Hemoglobin 1 234

Animal plasma 1 234

Total 13 2849

Table 1: Groups of animal feed ingredients. For each group, we report the number of
samples and spectra.
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Figure 3: Graphical representation of the accuracy estimation for each fold in the cross-

validation.
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Dataset LR RL Back Fwd RFE Relief biPLS All

1 vs 2 98.06 98.09 98.01 97.84 97.97 97.91 97.09 98.07

1 vs 3 97.56 98.63 98.80 98.10 98.00 97.83 96.74 98.67

1 vs 4 96.87 96.95 96.88 96.80 96.95 96.86 96.75 96.90

1 vs 5 95.33 95.36 95.45 95.18 95.37 95.28 94.08 95.30

1 vs 6 96.80 95.70 96.90 97.49 96.51 96.47 95.48 95.89

1 vs 7 99.86 99.75 99.92 99.97 99.94 99.91 99.79 99.94

2 vs 3 94.49 94.40 94.53 93.95 94.51 94.47 91.99 94.50

2 vs 4 98.53 98.69 98.58 98.64 98.73 98.60 97.33 98.62

2 vs 5 93.68 93.47 93.67 93.27 93.71 93.84 91.10 93.74

2 vs 6 87.00 86.51 86.82 87.68 86.93 86.73 86.47 86.75

2 vs 7 97.97 99.42 99.32 99.25 99.34 99.37 99.42 99.49

3 vs 4 97.21 96.93 97.41 96.33 97.11 97.21 94.40 97.18

3 vs 5 94.02 95.25 94.59 92.12 94.42 94.51 90.52 94.79

3 vs 6 94.03 95.18 94.52 93.85 94.36 94.52 90.15 94.41

3 vs 7 98.80 91.62 99.14 96.10 97.13 96.81 98.48 96.49

4 vs 5 96.09 96.72 96.56 94.72 96.20 95.65 94.94 95.79

4 vs 6 95.41 95.15 97.11 96.95 96.56 96.45 96.72 96.76

4 vs 7 98.60 98.40 98.92 95.40 98.99 98.35 97.97 98.88

5 vs 6 94.67 94.24 94.39 94.38 94.12 94.52 91.99 94.36

5 vs 7 99.49 99.54 99.71 99.88 99.66 99.77 99.50 99.84

6 vs 7 99.75 99.66 97.42 96.49 99.32 99.56 99.61 99.27

Average 96.39 96.17 96.60 95.92 96.47 96.41 95.26 96.46

Std. Dev. 2.86 3.10 2.89 2.81 2.88 2.87 3.61 2.92

Table 2: Percentages of Accuracy estimated using a 4-fold cross-validation procedure.
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Dataset LR RL Back Fwd RFE Relief biPLS All

1 vs 2 752.65 759.81 1729.15 741.04 770.18 1227.11 67912.28 22.57

1 vs 3 270.30 270.21 1811.58 496.27 366.82 495.38 39436.95 10.73

1 vs 4 281.43 323.26 920.03 1124.01 418.00 577.88 43381.10 11.80

1 vs 5 285.05 237.76 700.37 560.24 219.91 339.85 40846.62 12.41

1 vs 6 274.96 280.79 505.70 578.01 423.58 617.76 46180.82 11.97

1 vs 7 37.37 43.90 2074.44 884.15 315.38 458.88 40571.56 9.77

2 vs 3 317.67 398.95 1444.33 839.40 465.47 547.45 41187.64 11.55

2 vs 4 273.57 397.29 502.19 615.86 392.42 521.64 44000.70 13.27

2 vs 5 461.43 465.87 1363.58 766.46 468.65 578.78 39899.70 16.15

2 vs 6 547.67 558.44 613.07 990.51 477.52 620.56 46737.50 17.17

2 vs 7 314.29 335.55 1319.40 410.63 377.78 511.38 42215.36 10.06

3 vs 4 104.36 81.01 456.31 146.06 130.23 94.57 14441.13 3.91

3 vs 5 106.84 95.77 524.48 442.30 142.92 105.45 15102.25 4.23

3 vs 6 80.69 79.66 475.69 145.75 147.48 114.58 17108.40 4.83

3 vs 7 28.44 21.81 678.55 282.76 113.89 68.33 12438.09 3.21

4 vs 5 113.57 82.90 245.55 244.06 148.51 100.07 17686.72 4.53

4 vs 6 68.94 53.74 647.78 211.31 165.03 137.97 20051.43 5.35

4 vs 7 31.92 55.11 717.20 439.78 135.28 82.00 15430.84 4.26

5 vs 6 131.31 107.46 539.97 516.27 133.21 100.48 18713.01 5.66

5 vs 7 17.86 20.72 878.70 454.85 125.51 94.07 14804.12 3.32

6 vs 7 31.12 47.09 900.21 17.88 144.14 121.91 14210.64 4.09

Average 215.78 224.62 907.06 519.41 289.61 357.91 31064.61 9.09

Std. Dev. 189.41 200.07 499.64 287.32 172.28 289.79 15477.36 5.27

Table 3: Running time in seconds needed by each algorithm to obtain a single model from

the full dataset.
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Method Accuracy #Disc. feat. #Intervals Quality Running time

LR 4.48 3.07 2.81 1.95 1.81

RL 4.33 2.81 3.43 2.57 1.86

Back 3.05 5.10 3.98 5.38 5.67

Fwd 5.29 2.29 5.38 2.62 4.67

RFE 3.71 5.57 3.74 5.76 3.38

Relief 4.62 5.57 2.69 5.00 3.62

biPLS 6.90 3.60 5.98 4.71 7.00

All 3.62 – – – –

Table 5: Average ranking positions for accuracy, number of discarded features, number

of selected intervals, quality, and running time in seconds. The ranking position was

computed from the results of the cross-validation, except for the running time, which was

computed on a single training experiment with all data. The best result, i.e., the lowest

in each column, is highlighted.
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Figure 4: An example of intervals selected for discriminating by-products (class 5, blue

spectra) and banned ingredients (class 7, red spectra). For the same training data,

graph (a) depicts the intervals selected by RL (green) and by LR (purple); the rest of

the graphs show the selection made by: (b) RFE, (c) Fwd, (d) Back, (e) Relief and

(f) biPLS. These graphs also show 5 randomly-selected spectra of each class.
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