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ABSTRACT

Abstract

With the explosive growth of heterogeneous XML sources, data
inconsistencies have become a serious problem, resulting in ineffective
business operations and poor decision-making. XML Functional
Dependencies (XFDs) are well known as essential semantics to enforce the
data integrity of a source. However, existing approaches to XFDs have
insufficiently addressed data inconsistencies arising from both semantic
and structural inconsistencies inherent in heterogeneous XML data. In this
thesis, we address such prevalent inconsistencies by proposing XDiscover,
SCAD and SC20QA approaches.

XDiscover is a content-based discovery approach which explores
the semantics hidden in data to discover a set of minimal XML conditional
functional dependencies (XCFDs) from a given source to address semantic
inconsistencies. The XCFD notion is extended from XFDs by incorporating
conditions into XFD specifications. The experimental results on the
synthetic and real datasets and the results from the case studies show that
XDiscover can discover more dependencies and the dependencies found
convey more meaningful semantics, in terms of capturing data
inconsistency, than those of the existing XFDs.

SCAD is a structured and content-aware approach which explores
the semantics of data structures and the semantics hidden in the data values
to discover a set of XML conditional structural functional dependencies

(XCSDs) from a given source to address the inconsistencies caused by both

xiil



ABSTRACT

structural and semantic inconsistencies. XCSDs are path and value-based
constraints, whereby: (i) the paths in XCSD approximately represent
groups of similar paths in sources to express constraints on objects with
diverse structures; while (i) the values bound to particular elements
express constraints with conditional semantics. We conduct experiments
and case studies on synthetic datasets which contain structural diversity and
constraint variety causing XML data inconsistencies. The experimental
results show that SCAD can discover more dependencies and the
dependencies found can capture data inconsistencies disregarded by XFDs.

SC2QA utilizes XCSDs to compute customized consistent query
answers for queries posted to inconsistent data sources to improve
information quality. The query answer is calculated by qualifying queries
with appropriate information derived from the interaction between the
query and the XCSDs. We conduct experiments on synthetic datasets to

evaluate the effectiveness of SC2QA.
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1. INTRODUCTION

Chapter 1

Introduction

The main theme of this thesis is to study XML data consistency. This
chapter consists of five sections. Section 1.1 highlights the need to
introduce new types of constraints and proposes approaches to discover
anomalies in XML data. Requirements to address data inconsistency are
also discussed in this section as the motivation for this work. Section 1.2
presents the definitions of the problems which are resolved in this thesis.
Section 1.3 briefly introduces our approaches to resolve the identified
problems. Section 1.4 summarizes the main contributions of the thesis. The

thesis organization is outlined in section 1.5.

1.1 Motivation

Extensible Markup Language (XML) has emerged as the standard data
format for storing business information in organizations [6]. Data in these
environments are rapidly changing and highly heterogeneous. This has
increasingly led to the critical problem of data inconsistency in XML data
because the semantics underlying business information, such as business

rules, are enforced insufficiently [58]. XML itself only support for creating
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markup languages used as metadata, it does not guarantee how the
underlying business information must be structured and expressed in
business processes. Data inconsistency appears as violations of constraints
defined over a dataset [43, 80] which, in turn, leads to inaccurate data
interpretation and analysis [47, 68]. Such problems significantly affect the
ability of the system to provide correct information causing inefficient
business operations and poor decision making. XML functional
dependencies (XFDs) [6, 42, 52, 82, 83] have been proposed to increase the
data integrity of the sources. Unfortunately, existing approaches to XFDs
are insufficient to completely address the data inconsistency problem to
ensure that the data is consistent within each XML source or across
multiple XML sources for three main reasons. First, XFDs are defined to
represent constraints globally enforced to the entire document [6, 82],
whereas XML data are often obtained by integrating data from different
sources constrained by local data rules. Thus, they are unable, in some
cases, to capture conditional semantics locally expressed in some fragments
within an XML document.

Second, the existing XFD notions are incapable of validating data
consistencies in sources with diverse structures. This is because checking
for data consistency against an XFD requires objects to have perfectly
identical structures [82], whereas XML data is organized hierarchically
allowing a certain degree of freedom in the structural definition. Two
structures describing the same object may not be identical [75, 94, 95]. In
such cases, using XFD specifications cannot validate data consistency.
Third, existing approaches to XFD discovery focus on structural validation
rather than semantic validation [11, 42, 82, 91]. Most existing work on
constraint discovery only extracts constraints to solely address data
redundancy and normalization [81, 102]. Such approaches cannot identify

anomalies to discover a proper set of semantic constraints to support data
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inconsistency detection. To the best of our knowledge, there is currently no
existing approach which fully addresses the problems of data inconsistency
in XML data. Such limitations in prior work are addressed in this thesis.

In the next section, we present certain technical terms relating to data

consistency which are necessary to understand the remainder of the thesis.

1.1.1 Data consistency

Consistency is a data quality dimension capturing the violation of semantic
rules defined over a dataset. Integrity constraints are instantiations of such
semantic rules which are dependencies typically defined to ensure schema
quality [15]. They are properties which must be satisfied by all instances of
a database. Data inconsistency describes a source which does not respect
one or more constraints defined over a dataset. For example, a condition

could be that, in every

instance, the customer Cld CName
name (CName) Col Mary
Co01 Bob

functionally depends on

the customer ID (CId),

C02 Clayton

1.e., a customer ID 1is
Fig 1.1 An simplified inconsistent instance

assigned to, at most, one
of Customer relation

customer name. This

integrity constraint is a functional dependency (FD) denoted as Cld —

CName, indicating that this dependency should hold for the attributes of

the Customer relation. The data in Fig 1.1 is inconsistent with respect to the

above FD. This is because the customer ID of "CO1" is assigned to two

different customer names which violates the above functional dependency.
In XML data, the satisfaction of a source to a set of integrity

constraints often cannot be guaranteed, hence, data inconsistency occurs
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[43, 80]. Data inconsistency is often caused by semantic inconsistency and
structural inconsistency. Semantic inconsistencies occur when business
rules on the same data vary across different fragments [79]. Structural
inconsistencies arise when the same real world concept is expressed in
different ways, with different choices of elements and structures, that is, the
same data is organized differently [75, 95]. In this work, we define integrity
constraints for instances calling them constraints. Such constraints are
defined based on either the actual data content or data structures to enhance
the data consistency within an XML data source. By data consistency, we
mean that the source syntactically and semantically satisfies a set of
constraints.

In the next section, we discuss the essential features about which
constraints are required to have so that they can prevent data

inconsistencies in XML.

1.1.2 Requirements of constraint specifications

Constraints are essential parts of data semantics used to define the criteria
that a data source should satisfy. Commonly, the validation of XML data
often focuses on the schema level with respect to predefined constraints
expressed in the form of schema [5, 6, 11, 82]. However, XML data are
often integrated from different data sources, and while there are certain
features shared by all data, each fragment might need to maintain certain
constraints differently to suit its unique requirements [91]. The existence of
various constraints holding on the same object across different fragments
causes inconsistencies at the semantic level. In such cases, an additional
validation from the content view with respect to different constraints

holding conditionally on the data is necessary to maintain data consistency.
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By holding conditionally, we mean that each constraint holds on a subset of
the data specified by an accompanying condition.

In addition to semantic inconsistencies, structural inconsistencies
also pose additional challenges to enhance the data consistency. Structural
inconsistencies are often caused by the existing various data structures
representing the same object. That is, XML data can contain data from
different data sources which might contain either nearly, or exactly the
same information, but they are represented by different structures.
Moreover, even though two objects express similar content, each of them
may contain some extra information. In such cases, constraints on XML
data should be allowed to hold on similar objects. In summary, in order to
ensure the data consistency, constraints not only need to define the data-
value bindings to express conditional semantics, but should also be flexible
enough to describe the similarity of objects. As far as we are concerned,
there is no prior work proposing such constraints to validate data
consistency from both structural and content views. We suggest that such
constraints should be maintained to preserve the data consistency of
applications supported by XML data.

From the requirements of constraint specifications, we now discuss
the requirements that discovery approaches should take into account to
explore a proper set of constraints to address data inconsistency arising

from both semantic and structural inconsistencies in XML data.

1.1.3 Requirements of constraint discovery

As XML data becomes more common and its data structures more
complex, it is desirable to have algorithms to automatically discover
anomalies from XML data sources. Although there is existing work [4,

102] on discovering constraints, there still exist certain limitations and
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problems which remain completely unsolved. Existing work cannot explore
a proper set of constraints to address data inconsistency. The Apriori
algorithm [4] and its variant approaches [13, 61, 71, 84] are well known for
discovering association rules, which are associations amongst sets of items;
however, such rules contain only constants. By contrast, XML functional
dependencies discovered by the work in [102] contain only variables which
are solely defined on a structural level. Existing work cannot detect
constraints occurring in the data which should be maintained to ensure data
consistency. In order to discover such constraints, the discovery process
has to convey semantics from both structures and data content. This thesis
generalizes the existing techniques relating to association rule [4] and
functional dependency discovery [53, 70, 102] to discover the constraints
containing either variables or constants. They are constraints defined on a
data level. We discuss the features which a system should consider to

manage data consistency in XML data in the next section.

1.1.4 Consistent data management

The problem of data consistency management in inconsistent data has been
widely studied in the database community. Consistent data is formally
obtained following two approaches including data repair and consistent
query answers [9]. Data repair is to find consistent parts of an inconsistent
data source with respect to predefined constraints and minimally differs
from the original one [9, 79]. The inconsistent source is often first
transformed, by means of deletions or additions, into a consistent one
which is then used for calculating query answers [25]. However, repairing
data might also result in side effects, for example it could cause incorrect
answers to queries and it does not always remove inconsistencies

completely. Restoring consistency in an inconsistent data might also be a
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computationally complex and non-deterministic process. Moreover, one of
the main goals of a database system is to compute answers to queries [47].
This means that finding consistent query answers is more important than
repairing data. Hence, it is preferable to leave the data inconsistencies to
avoid losing information due to the data repair and instead, manage the
potential inconsistencies in answers to queries posted to that source, that is,
finding the parts of data which are consistent in query answers. The
consistent answer to a query is defined as the common parts of answers to
the query on all possible repairs of the data source [43, 45, 76]. XML data
is often inconsistent with respect to a set of constraints. Therefore,
constraints should be taken into account along with the data source in the
process of computing query answers. This thesis addresses the issue of
computing consistent answers for queries posted to an inconsistent XML
source with respect to a set of constraints.

Focusing on the requirements discussed above, this thesis resolves a
number of issues, which can be grouped into three major problems described
in the following section. The first two problems involve constraint

discovery and the third problem concerns consistent query answers.

1.2 Problem definition

The problems of data consistency in relational databases have been
extensively studied [27, 31, 36, 38, 39, 40]. This thesis extends this work to
XML data. We propose approaches to discover a proper set of constraints
used to ensure data consistency in XML data. Constraint discovery can be
divided into two problems. The first problem is to deal with a case where a
data source conforms to a schema. We only need to discover anomalies
caused by semantic inconsistencies. The second problem is a case where a

given data source does not follow any schema. The data source is designed
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with great flexibility in both data structures and semantics. In such cases,
we focus our attention on anomalies arising from both structural and

semantic inconsistencies. Two problems can be formulated as follows:

Problem 1: "Given an XML data tree T conforming to a schema S, discover
a set of non-redundant XML conditional functional dependencies (XCFDs),
where each XCFD is minimal and contains only a single element in the
consequence". The task of constraint discovery only relates to the data

content referred to as resolving semantic inconsistencies.

Problem 2. "Given an XML data tree T, discover a set of minimal XML
conditional structural functional dependencies (XCSDs), where each XCSD
is minimal and contains only a single element in the consequence". The
task of constraint discovery is based on both data content and data
structures. The discovery approach handles both data structural and
semantic aspects which are referred to as resolving structural and semantic
inconsistencies.

In addition, our proposed constraints are applied to compute
customized consistent query answers for queries posted to inconsistent

XML data. The problem can be formulated as follows:

Problem 3: "Given an XML data tree T and a set of XCSDs, find a
customized consistent answer for query Q posted to tree T". The task is to
find consistent answer for the query posted to an inconsistent data source
with respect to a given set of XCSDs.

The solutions to problems 1, 2 and 3 are in chapter 3, 4, and 5,
respectively. We believe that our research is especially relevant nowadays,

since a huge amount of data is being exchanged between organizations
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using XML data in which it is very difficult to avoid anomalies. In the next

section we present an overview of our approaches.

1.3 Overview of our approaches

We propose three different approaches, called XDiscover, SCAD and
SC2QA to address the three problems defined above, respectively. First, we
propose a new XDiscover approach to discover a set of XML conditional
functional dependencies (XCFDs) from a given XML data source
conforming to a schema. XCFDs are extended from XFDs by incorporating
conditions into XFD specifications. The XDiscover is based on semantics
hidden in the data to discover constraints. It includes three main functions,
named search lattice generation, candidate identification, and validation.
The search lattice generation is used to generate a search lattice
containing all possible combinations of elements in the given schema. The
candidate identification is used to identify possible candidates of XCFDs.
The identified candidates are then validated by the validation function, to
discover satisfied XCFDs. Validation for a satisfied XCFD includes two
steps. First, partitions for node-labels associated with each candidate XCFD
are calculated based on data values coming with that node-label. Then, the
satisfaction of that candidate XCFD is checked, based on the notion of
partition refinement [53]. The number of candidate XCFDs and the
searching lattice are very large. Therefore, we propose five pruning rules
used to remove redundant and trivial candidates from the search lattice in
order to improve the performance of XDiscover. The first three rules are
used to skip the search for XCFDs that are logically implied by the already
found XCFDs. The last two rules are to prune redundant and trivial XCFD
candidates. Adoptions of Armstrong's Axioms and closure set [12] are used

to prove the correctness of our proposed pruning rules and the
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completeness of the set of XCSDs discovered by XDiscover. The
experimental results on synthetic and real datasets, and results from case
studies show that XDiscover can discover more dependencies and the
dependencies found convey more meaningful semantics, in terms of
capturing data inconsistency, than those of the existing XFDs.

Second, we observe that it cannot be an assumption that each XML
document has a schema defining its structure for two main reasons. First,
the flexible nature of XML allows the representation of different kinds of
data from different data sources. Second, if a schema exists, each source
might follow its own structural definitions through multiple modifications.
As a result, the problems of structural inconsistencies cannot be avoided.
Therefore, in our second contribution, we propose a structured and content-
aware approach, called SCAD, to discover XML conditional structural
functional dependencies (XCSDs) from a given data source to address
inconsistencies caused by both structural and semantic inconsistencies in
XML data. The input to SCAD is an XML data source which does not
associate to any schema. XCSDs are path and value-based constraints; the
paths in XCSDs approximately represent groups of similar paths in sources
to express constraints on objects with diverse structures, and the values
bound to particular elements express constraints with conditional
semantics. The SCAD approach consists of two phases: resolving
structural inconsistencies and resolving semantic inconsistencies.

In the first phase, a process, called data summarization, analyses the
data structure to construct a data summary containing only representative
data for the discovery process. This aims to avoid returning redundant data
rules due to structural inconsistencies. In the second phase, the semantics
hidden in the data summary are explored by a process called XCSD
Discovery to discover XCSDs. The XCSD discovery algorithm works in

the same manner as XDiscover. The main difference is that instead of
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discovering constraints from the given data tree as in XDiscover, SCAD
discovers non-trivial XCSDs from the constructed data summary. We
conducted experiments and case studies on synthetic datasets which contain
structural diversity and constraint variation, causing XML data
inconsistencies. The experimental results show that SCAD can discover
more dependencies than XFD approaches. The dependencies found could
capture data inconsistencies disregarded by XFDs.

Third, we show that the answers of queries might be inaccurate
when queries are posted to inconsistent XML data. We utilize our proposed
XCSDs to compute answers for queries posted to inconsistent source to
improve information quality. In particular, we propose an approach called
SC2QA, which integrates the semantics of XCSDs into the query process
to find consistent data in inconsistent data. The answer is calculated by
qualifying a query with appropriate information derived from the
interaction between the query and the XCSDs. Especially, the similarity
threshold in XCSDs is used to specify the similar objects which are
considered to be qualified for queries. Conditions in XCSDs are used to
find candidate objects for calculating query answers. The original data is
evaluated at each constraint to find the consistent data.

A customized consistent query answer (CCQA) is calculated from
true answers in terms of the structural similarity and consistent data with
respect to XCSDs. To evaluate SC2QA, experiments were conducted on
synthetic datasets containing structural diversity and constraint various
causing XML data inconsistencies. The results show SC2QA work more
efficiently for constant XCSDs than variable XCSDs (i.e. XFDs). Query
answers found by utilizing constant XCSDs are more accurate than that of

XFDs. We summarize our main contributions in this thesis in the next section.
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1.4 Contributions

This thesis addresses the problems of data inconsistency in XML data to

improve data consistency. The focus is on discovering constraints from a

given XML data source. The key principle used in our approaches is the

concept of structure and content awareness. Our approaches have been

shown to be superior to other proposed XFD approaches. In addition, we

utilize our proposed constraints to compute query answers for queries

posted to an inconsistent data source. To summarize, the contributions of

this thesis are as follows:

the introduction of XML conditional functional dependencies
(XCFDs);

the proposal of the XDiscover approach to discover XCFDs to
address semantic inconsistencies;

the introduction of XML conditional structural functional
dependencies (XCSDs);

the proposal of a structural similarity technique to measure the
similarity between sub-trees;

the proposal of the SCAD approach to explore XCSDs to
address both semantic and structural inconsistencies;

proposing the SC2QA approach to compute customized
consistent answers for queries posted to inconsistent XML data

with respect to a set of XCSDs.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

e Chapter 2 reviews prior work on constraints. The topics covered are

(i) XML database, (ii) conditional functional dependency, (iii)

association rules, (iv) different proposals of XML functional

12
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dependencies (XFDs) and (v) management of data consistency in

inconsistent data sources.

e Chapter 3 presents our proposed XDiscover approach. XDiscover is
used to discover XML conditional functional dependency from a
given source to address semantic inconsistency in XML data.

e Chapter 4 presents our proposed approach, called SCAD, to discover
XML conditional structural functional dependency from a given
source. This is to address data inconsistency arising from structural
and semantic inconsistencies in XML data.

e Chapter 5 presents our proposed SC2QA approach which is used to
compute customized consistent query answers for queries posted to
an inconsistent XML source with respect to a set of XCSDs.

e Chapter 6 concludes the thesis and describes our immediate future
work.

It is worth mentioning that the results of this thesis appeared in the
following publications: the results of Chapter 3 appeared in [85], the results
of Chapter 4 appeared in [87] and the results of Chapters 5 appeared in
[86].
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Chapter 2

Related work

This chapter reviews existing work relating to the work in this thesis and is
divided into five sections. Section 2.1 presents a brief background on XML
databases. Section 2.2 reviews conditional functional dependency which
has been extensively studied for improving data consistency in relational
databases. Section 2.3 discusses the notion of association rules and its
mining algorithms. The association rules are partially related to the
specification of our proposed constraints. Section 2.4 discusses different
proposals of XML functional dependencies (XFDs) and XFD discovery
approaches. Section 2.5 reviews existing approaches to manage data
consistency in inconsistent data sources. The final section is a summary of
this chapter. Note that additional background specific to each problem is

covered in the relevant chapter.

2.1 XML database

In this section, we present some background information on XML
databases, including definitions of document types and XML data. As in
the case of relational databases, a schema is defined to specify the structure

of a class of XML documents. There are two predominant proposals to
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define the schema: DTD (Document Type Definition) [54] and XML
Schema [88]. Even though DTDs are less expressive than XML Schema
specifications, in general they are expressive enough for a variety of
applications [19]. Therefore, in this thesis, we consider only DTDs. The

specification of a DTD is described in the next section.

2.1.1 Document Type Definition

A Document type definition (DTD) has a start-tag, which is called the root
of the document and is specified by the DOCTYPE declaration. Elements
in XML instances are declared by ELEMENT tags. Each element might be
followed by one element or an arbitrary number of elements. Fig 2.1 is an
example about a DTD for Bookings data, which specifies a nonempty
collection of Bookings. <Booking> is an element since <!ELEMENT
Booking (Carrier, Trip+, Fare, Tax)> (line 3) appears in the DTD.

Each Booking has one Carrier and an arbitrary number of <Trip>,

—

<IDOCTYPE Bookings [

<IELEMENT Bookings (Booking+)>
<IELEMENT Booking (Carrier, Trip+, Fare, Tax)>
<IATTLIST Booking bno CDATA #REQUIRED>
<IELEMENT Carrier (#PCDATA)>

<IELEMENT Trip (Departure, Arrival)>
<IELEMENT Departure (#PCDATA)>
<IELEMENT Arrival (#PCDATA)>

<IELEMENT Fare (#PCDATA)>

10. <!ELEMENT Tax (#PCDATA)>

1. >

A T T o B

Fig 2.1. An example of DTD
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followed by one <Fare> and one <Tax> element. An ELEMENT
declaration also specifies the sub-elements of an element by means of a
regular expression. For instance, <!ELEMENT Trip (Departure,
Arrival)> (line 6) indicates that the sub-elements of <Trip> have other
sub-elements including one <Departure> and one <Arrival> element.
#PCDATA 1is used to indicate elements containing text, such as
<IELEMENT Departure (#PCDATA)> (line7). An ATTLIST declaration
is used to specify the attributes of an element, such as <!ATTLIST
Booking bno CDATA #REQUIRED> (line 4).

2.1.2 XML data

XML documents are widely used to store data [2]. Fig 2.2 is an example of
an XML document storing information about Bookings which is an
instance of the Booking DTD in Fig 2.1. Each <Booking> element has a
Booking number (bno), name of Carrier and information on Trip, Fare,
and Tax. Each Trip contains information on Departure and Arrival.
The document contains two different types of tags: start-tags, such as
<Bookings> and end-tags, such as </Bookings>. These tags must be
balanced and are used to delimit elements, for example, <Carrier> Qantas
</Carrier>. Every element can contain attributes, other elements, text, or a
mixture of them. For instance, <Booking bno="b1">, the <Booking>
element contains attribute bno with a value of "b1"; <Carrier> Qantas
</Carrier> shows that the <Carrier> element contain text of "Qantas";
<Trip> <Departure> BNE </Departure> <Arrival> MEL
</Arrival> </Trip> says that the element <Trip> contains other elements
including Departure and Arrival. An XML DTD or an XML document

can be represented as a schema tree or a data tree, respectively.
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Fig 2.3 is a representation of the Bookings data tree. In the next
section, we discuss conditional functional dependencies (CFDs) which
have been extensively studied to improve data consistency in relational
databases and highlight the challenges associated with employing such
approaches to XML data.

<Bookings>
<Booking bno="b1">
<Carrier> Qantas </Carrier>
<Trip>
<Departure> BNE </Departure>
<Arrival>MEL</Arrival>
</Trip>
<Fare> 200 </Fare>
<Tax> 40 </Tax>
</Booking>
<Booking bno="b2">
<Carrier> Qantas </Carrier>
<Trip>
<Departure> PER </Departure>
<Arrival>MEL</Arrival>
</Trip>
<Trip>
<Departure> MEL </Departure>
<Arrival>BNE</Arrival>
</Trip>
<Fare> 350 </Fare>
<Tax> 80 </Tax>
</Booking>

</Bookings>

Fig 2.2. An example of an XML document
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Bookings
Booking Booking Booking
@bno  Carrier  Trip Fare Tax  @bno  Carrier Trip Flight Fare Tax
Ylbl" "Qalltas"/\ "200" "40" "bz” "Qantas" /\ /\ "350" "80"
Departure  Arrival Departure  Arrival  Departure  Arrival
HBNEH HMELH HPERH VlMELVl VlMELVl HBNEH

Fig 2.3. An example of data tree

2.2 Conditional functional dependency

Traditionally, constraints are introduced to improve the quality of schema,
such as defining normal forms based on functional dependencies [11].
Recently, constraints have been extensively studied to address the problems
of the quality of data, especially data consistency. Conditional Functional
Dependencies (CFDs) [20, 31, 36, 38, 40, 41, 100] have been widely used
as a technique to detect and correct non-compliant data to improve data

consistency while other approaches [27, 39, 48] have been proposed to

CAR DEP ARR FA TA
Virgin MEL SYD 200 50
Virgin BNE SYD 300 50
Qantas MEL SYD 300 50
Qantas MEL BNE 400 100
Qantas MEL DRW 250 100

Fig 2.4. An instance of the Bookings relation
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automatically discover CFDs from data instances. A CFD consists of a
standard functional dependency (FD) and a pattern tableau specifying the
scope of the FD on the data. Given an instance D on a relation schema R, a
CFD 0 on R is represented as 0: (X — Y, T,), where X and Y are attribute
sets in R, X — Y is a standard FD, T, is a pattern tableau of 0 containing all
attributes in X and Y. For each attribute 4 (XU Y'), the value of A for 7, is
either a value in dom(4) or a variable value. For example, considering a
relation Bookings(CAR, DEP, ARR, FA, TA) specifies the Booking
information including Carrier (CAR), Departure (DEP), Arrival
(ARR), Fare (FA) and Tax (TA). Fig 2.4 shows an instance of the
Bookings relation. Data rules on Bookings can be defined in the forms of
CFDs as follows:

01: [ARR="SYD"] —»[TA="50"]

0,: [CAR="Qantas", DEP, ARR] —[TA]

0 states that the functional dependency ARR—TA holds in the context
where the value of ARR is "SYD" and the value of TA is "50". 0, assumes
that the functional dependency DEP, ARR —[TA] only holds in the
context where CAR is "Qantas". This is, the TA is identified by DEP and
ARR whenever the CAR is "Qantas".

Despite facing similar problems of data inconsistencies with
relational counterparts, the existing CFD approaches cannot be applied
easily to XML data for several reasons. Firstly, relational databases and
XML sources are very diverse in data structure and the nature of
constraints. For relational databases, each object is defined by a single row.
Discovering CFDs from data stored in tables has a clearly defined
structure. By contrast, XML data has a hierarchical structure and
constraints often involve elements from multiple hierarchical levels. There

are several challenges in identifying XML constraints which are not
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encountered in discovering CFDs. Secondly, different notions of equality
are used for constraints. Whereas relational equality simply is the equality
of values, the equality of two objects in XML has to be compared
according to both structure and data [101]. Finally, CFD discovery
algorithms cannot scale well when the XML data structure is complex. This
is because applying these algorithms to XML data requires an XML
document be transformed into a single relational table. When the structure
of schema is complex, the number of attributes in the transformed relation
is large. The number of tuples also increases multiplicatively when the
XML document contains data with complex data types (e.g. maxOccurs in
XML Schema). For example, if each Booking contains two Trips (refer to
Fig 2.1), then the number of tuples in the transformed relation would
double. Therefore, generalizing relational approaches to work on XML data

1s nontrivial.

2.3 Association rules

Association rules describing the co-occurrence of data items in a dataset
was first introduced by [4]. Market basket analysis using transaction
databases from supermarkets is a well known application of association
rules. Each transaction contains items bought by a customer. An
association rule represents a relationship between values of elements which
has a form of X— Y (s, ¢), Xc I, Yc I, and X N Y=2, where X and Y, [ are
itemsets, s and ¢ are support and confidence, respectively. Support and
confidence are used to measure the quality of the rule. Support represents

the frequency of XUY in the dataset. Confidence corresponds to the

probability of finding Y, having found X and is given by sup(X'U Y)/ sup(X).

For example, assume that "60% of customers who depart at SYD also

depart at MEL". This can be expressed in the form of rules, SYD — MEL
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(40%, 60%), where 40% 1is the support of the rule indicating how
frequently the customers departure at both SYD and MEL and 60% is the
confidence of the rule. Aprior-like algorithms [13, 14, 61, 62, 71, 84, 92,
93] have been introduced to discover data patterns in large datasets to
address certain data quality issues, such as data anomaly (e.g. outlier) and
to filter out useless data portions. However, association rules are
constraints containing only constants which cannot address data
inconsistency as required in XML data. In our approaches, the Apriori
algorithm is adopted to discover constraints relating to either variables or
constants to improve data consistency in XML data.

In the next section, we discuss the different proposals in relation to
XML functional dependencies and highlight their limitations in addressing

the problems of data inconsistency to further support our motivation.

2.4 XML functional dependency

XML offers a rich set of predefined constraints, such as structural, domain
and cardinality constraints. However, it lacks the full extensibility to
express constraints specifying at an application level in a declarative way
[91]. Schema languages, such as DTD [88], W3C XML schema [90] and
RelaxNG [30] support type and integrity constraints to specify XML
schema. Type constraints only restrict on the element structure of a data
source and do not relate to data values. Integrity constraints are not well
scoped. For example, primary keys and foreign keys are defined by using
ID and IDREF attributes in DTDs. Each ID attribute are unique within the
whole document and each element type is specified by at most one ID
attribute. DTD cannot express constraints specified in the free text parts. A
document validates against DTD also might not conform to the

specification.
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XML Schema and RELAX NG were created to overcome DTD
limitations[57]. Such languages support data types and namespaces which
satisfy critical requirements in XML applications. However, such schema
languages are not sufficient in situations which have complex constraints.
For example, constraints have complicated structural conditions and
express relations between values which cannot be captured in a grammar
based approach. Thus, with the hierarchical nature of XML, inconsistency
in XML data cannot be avoided. To remedy such a problem, XFDs have
been introduced in the literature as an integrity enforcement measure to
improve XML semantic expressiveness [6, 42, 50, 51, 65, 81, 82, 102].
Although different proposals of XFDs are defined by different terms of
expressiveness, in all the proposals presented, data dependencies for XML
are formally defined from two perspectives: tree-tuple-based XFD [6, 101,
102] and path-based XFD [42, 82]. They are constraints on the values

reached by following either regular expressions or paths in XML trees.

2.4.1 Tree-tuple-based functional dependency

The concept of the tree-tuple is similar to the notion of tuple in relational
database. Tree-tuple-based functional dependencies (tFDs) [6, 11] are
proposed by considering a relational representation of XML data, that is,
the XML data is presented as a set of tree-tuples and functional
dependencies are defined on it. A tree-tuple is built as follows: for each
element, exactly one data node from the data tree is selected to construct
the tree-tuple. Fig 2.5 is an example of a Booking tree-tuple constructed
by picking data from the Booking node which has bno of "b2" in the
Booking data tree in Fig 2.3. While the original Booking contains two
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nodes of Trip, the tree-tuple constructed from this Booking only includes

one node of Trip at a time.

The tree-tuple representation allows combining node and value

equality easily. The former corresponds to the equality between vertices

and the latter corresponds to the equality between strings. A tFD over a

DTD D is expressed in a form as X —Y, where X and Y are non-empty

subsets of paths in D [6]. For an XML data tree 7 |= D, t; and ¢, are tree-
tuples in 7, if ;. X= ¢,.X and t;.X # null, implies ¢;. Y= t,.Y, then T |= X—Y.

For example, in the sub-tree rooted at Booking, a functional dependency

such that the Departure and Arrival determines the Tax is expressed by

a tFD as follows:

{ Bookings/Booking/Trip/Departure,

Bookings/Booking/Trip/Arrival} — {Bookings/Booking/Tax}.

2.4.2 Path-based functional dependency

Paths are an essential component which
have been used as one of the basic
primitives  to  define

dependency in XML data [22, 23].

functional

Given a node v of an XML tree 7, a
path p in T is defined to be the set of all
nodes and values reached by following
p from v in T. Path-based XFDs (pFDs)
[42, 60, 82] are functional dependencies
defined based on paths. Similar to the
tree tuple-based functional
dependencies, the notion of pFDs is a

generalization of the definition of
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Bookings
Booking
@bno  Carrier Trip Trip Price  Tax

"h2" "Qantas" /A\ "350" "80"
/\ a
’ \
VN

Departure  Arrival ~ Departure  Arrival
"PER" "MEL" "MEL" "BNE"

— include in the tree-tuple
- - notinclude in the tree-tuple

Fig 2.5. A tree-tuple illustration
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functional dependencies (FDs) in relations. This means there is a
correspondence between functional dependencies in relations and in XML
data. In particular, an XFD is defined in a form of pFD [82] as {p.,
Dx2-Pwmy — Py, Where p,; 1s a set of paths specifying condition elements
and p, 1s the path specifying the implication element. For example, the
XFD "under the sub-tree rooted at Booking, the Departure and Arrival
determine the Tax" 1is expressed by the pFDs as follows:

{//Booking/Departure, /Booking/Arrival}— //Booking/Tax.

Both tFDs and pFDs have the same expressive power of functional
dependencies [64]. The languages for tFDs and pFDs only allow unary
functional dependencies holding in the entire document which cannot
express the semantics of constraints in XML data in some cases, such as
constraints holding conditionally on subset of data, or constraints holding
on similar objects. Certain extended proposals of XML functional
dependencies have been introduced in existing work to cope with the

hierarchical structure of XML data. We review these in the next section.

2.4.3 Extended proposals for XML functional dependency

Sub-graph-based functional dependency: a sub-graph is a set of paths of
XML data. A sub-graph-based functional dependency (gFD) is defined
based on the sub-graphs of an data tree [52]. gFDs have pre-image
semantics which allow the expression of XFDs involving a set of elements
to represent relationships between sub-trees. A gFD has the form {v. X—
Y}, where v is a node of data tree 7, X and Y are v-subgraphs. A gFD holds
on T iff for any two pre-images W; and W; of T,, their projections on X are
equal, then their projections on Y are equal, where 7, is a v-subgraph of T
rooted at v. For example, an pFD {//Booking/Departure,
//Booking/Arrival}— //Booking/Tax can be expressed as a gFD:
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{VBooking® X— Y}, where X 1s the vgoouing Subgraph with leave elements of
Departure and Arrival, and Y is the v, Subgraph with leave element
of Tax. Although gFDs allow the expression of the semantics of
constraints relating to a set of elements, they are constraints on the entire

document which cannot express the semantics of constraints holding

conditionally on

subsets of data. Bookings
Generalized-tree- B;l:,king

tuple-based functional m
dep endency : the work (@bno  Carrier Trip Trip Price Tax

in [102] introduced "b2" "Qantas" A /\ "350"  "g0"
another notion of

Departure ~ Arrival ~ Departure  Arrival
XFDS Called "PER" "MEL" "MEL" llBNE"
b

Generalized-tree-

tuple-based FD

Fig 2.6. A sub-tree represents a generalized-tree-tuple-based FD

(gtFD) by extending the notion of tree-tuple functional dependencies. A
gtFD has a form of <C,, LHS, RHS> which is expressed as {P;;, Pp,...P,}
— P, w.r.t C,, where P (i=1..n ) and P, are paths relating to the path p, and
C, 1s a tuple-class. gtFDs allow capturing constraints with a set of
elements. A gtFD holds on an XML data tree 7 if for any two tree-tuples ¢,
tyin C, (i) 3i,i €[l.n], tt.P;= L or 4,.P;= L, or (i) Vi e[l..n], t,.Py
=,y ty.Pj; then t,.P,=,, t,.P,. For example, Fig 2.6 shows a Booking contains
two complex nodes of Trip, and each Trip includes Departure and
Arrival. The constraint "under the sub-tree rooted at Booking, the value
of Tax is identified by Carrier and Trip" can be expressed as follows:
gtFD:{Carrier, Trip/Departure, Trip/Arrival}— {Tax} w.r.t Cg,oking.
gtFDs have the same express power as gFDs. Each generalized-tree-

tuple used in the gtFD is equal to a v-subgraph used in the gFD. For a gtFD
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{Pu, Pp,..Pny — P.wrt C,, it can be expressed by a gFD {v: X — Y},
where v is the root of the path p, X is a v-subgraph consists of path {P;,,
Pp,.., P} and Y is a v-subgraph including path P,. gtFDs can be used to
express XFDs involving a set of elements as gFDs. gtFDs consider equality
between two XML elements as equality between sub-trees. However, either
gFDs or gFDs cannot express constraints holding either on subsets of a data

tree or similar sub-trees.

Local functional dependency (IFD): to cope with the hierachical structure
of XML data, one needs not only the absolute constraints holding on the
whole document such as tFDs and pFDs, but also relative constraints
holding on subsets of data [21]. Liu et al. [63] introduced the notion of
local functional dependencies which are functional dependencies holding
on sub-documents. A local functional dependency is defined as X
functionally determines ¥ under a path p, denoted by X p Y, where X and ¥
are two sets of paths in a DTD D and p is a prefix of every path in X and Y.
The determinant of the 1FD is a path terminated by a label for internal
nodes. The scope of IFD is a particular sub-tree and not on the whole tree
as in either tFDs or pFDs. For example, Fig 2.7 shows a Bookings data
tree including a number of Agents which are distinct by the Agent Id (i.e.
@id). For each Agent, the values of bno are distinct. These constraints

can be represented as follows:
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IFD;: @id
Bookings
Bookings.Agent Agent /\
Agent Agent
IFD;: @bno %\1 m
Bookings.A Booki %lld Booking @id Booking
ookings.Agent.Booking @d /\
Bookin
g (@bno  Carrier Trip Fare Tax @;);? -
Constraint [FD, cannot be bI" "Qantas /\ 200" 40

represented by either tFDs or

Departure  Arrival
"BNE" "MEL"

pFDs. For example, it is

represented by a pFD as Fig 2.7. A sub-tree represents a local functional dependency
{Bookings/Agent/Booking/
@bno}— Bookings/ Agent/Booking}. It is clear that /FD, is violated
due to the same bno of "bl" being used to identify more than one
Booking.

Despite the IFD notion being more expressive than common XFDs,
it is still not sufficient to express the semantics of some applications. That
is, IFDs cannot capture the semantics of constraints accurately in situations
where constraints hold conditionally on the source. For example, the
semantics of a constraint is that 'any Booking with Carrier of "Qantas"

having the same Fare should have the same Tax'. This constraint is

expressed in the form of IFD as Fare Bookings.Booking Tax which only

expresses that the Fare identifies the Tax under the sub-tree specified by
the path "Bookings.Booking". Such IFD is impossible to represent the
conditional expression Carrier of "Qantas". It is clear that the concept of
IFDs 1is still too strong which cannot express constraints having scope
specified by a particular condition.

Although different XFD proposals have different expressiveness
terms and their justification is based on their natural occurencies in XML

data, existing XFD proposals are insufficient to capture data inconsistency.
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The reason is that XFDs cannot express the semantics of constraints related
to conditions. Moreover, existing proposals of XFDs [6, 82] treat the
equality between two elements as the equality between their identifiers and
they do not consider sub-tree comparisons. Such XFDs may work well for
redundancy detection and normalization; however, they work improperly in
cases where constraints are unknown and required to be extracted from a
given source. According to existing approaches, two sub-trees satisfy an
XFD if they are equal with respect to the left part of that XFD and they also
equal with respect to the right part.

In order to address the limitations in prior work, we first propose a
new type of constraint, called XCFD, which is a value-based constraints
which allow the expression of constraints with conditions [85]. Then, we
introduce XCSDs as path and value-based constraints [87], which are
different from XFDs in two aspects. The first difference is that each path p
in XCSDs represents a group of similar paths to p. The second difference is
that XCSDs allow binding values to particular elements to express
constraints with conditions. XCSDs are constraints with conditional
semantics, holding on data with diverse structures which cover both
structural and semantic aspects. We introduce an approach based on the
similarity of sub-trees to evaluate the satisfaction of a constraint. Our idea
is that if two sub-trees are similar with respect to the left part of the
constraint, and they are also similar with respect to the right part, then they
satisfy the constraint. The similarity of sub-trees is measured by our
established measurement, called "sub-tree similarity". Existing work [81,
102] introduced algorithms to discover XFDs. However, such XFD
approaches cannot detect proper sets of constraints to address data
inconsistency. This thesis proposes new approaches, named XDiscover and
SCAD, which generalize existing techniques relating to association rules

[4] and functional dependency discovery [53, 70, 102] to discover
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constraints containing either variables or constants which can be used to

constrain data consistency.

2.5 Managing data consistency in inconsistent data sources

In this section, we review existing work commonly used to manage
consistent data in inconsistent sources. In particular, we consider data
repair and consistent query answer approaches in relational databases and
XML data.

Relational database: the management of consistent data in inconsistent data
has been extensively studied in relational databases [3, 16, 18, 28].
Consistent data is formally obtained following two directions including
data repair and consistent query answers. Data repair aims to find
consistent parts from inconsistent data which differs from a given
inconsistent database in a minimal way [9]. A database D is consistent with
respect to a set of integrity constraints /Cs if D satisfies /Cs. Otherwise, D
is inconsistent with respect to /Cs. R is a repair of D if R satisfies /C and
A(D, R= (D\R) U(R | D) minimal under set inclusion. Computing data
consistency with respect to /Cs can be achieved only through tuple
deletions. That is, R is obtained from D by eliminating tuples. R is
considered to be a minimal repair of D if R satisfies /Cs and is maximally

contained in D, i.e. there R’ does not exist such that R’ satisfies /Cs and

RCR'" C D. For example, given inconsistent data D= {(a, b, ¢),(a, ¢, d), (a,

¢ e), (b, g h)}, D has two repairs R= {(a, b, ¢), (b, g, h)} and R= {(a, c,
d), (a, c, e), (b, g h)}. A(D, R;) and A(D, R,) are minimal under set
inclusion.

Since a large number of repairs might exist for an inconsistent

database, most existing work has only focused on computational
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methodologies to retrieve consistent answers for a query posed on an
inconsistent database, regardless of its inconsistency [9, 29]. A consistent
query answer is defined to be the common part of answers to the query on
all possible repairs of the source. Arenas et al. [9] introduce a query
rewriting algorithm to compute consistent query answers based on query
rewriting. The basic idea is to enforce constraints locally, at the level of
data which appears in the query to avoid the explicit computation of data
repairs. In particular, the original query Q posted to D is rewritten into a
new query Q' such that the answers to Q'1in D are the consistent answers to
Q from D. Q'1is constructed by adding conditions from /Cs to Q to enforce
the satisfaction of constraints in /Cs. However, the work in [9] has a very
limited applicability since it applies first order queries and does not include
disjunction or quantification, or binary universal integrity constraints. The
first order query rewriting technique only works appropriately for a certain
types of queries and constraints, which are universal queries and
constraints. There does not exist first order rewriting for queries and
constraints relating to conjunctive queries with projection and referential
constraints; and the problem cannot be solved in a polynomial time. [17].
Chomicki [29] presents a framework for computing consistent query
answers based on a graph-theoretic representation of repairs. It considers
relational algebra queries without projection and denial constraints. This
work handles union queries which can extract indefinite disjunctive
information from an inconsistent database. Arenas et al. [8] apply logic
programming based on answer sets to retrieve consistent information from
an inconsistent database. This work concentrates mainly on logic programs
for binary integrity constraints. The work in [7] studies the decidability
status of consistent query answering by combining instances, /Cs and query
as input. The notion of consistent query answers are also extended to the

case of aggregate queries [10, 46]. Arenas et al. [10] investigate the
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problem of consistent answers of aggregate queries in the presence of
functional dependencies. The work in [46] provides data violating a set of
aggregate constraints. These constraints are defined on numerical attributes
(such as Sale Price, Tax, etc.) and are not intrinsically involved in other
forms of constraints. Deker [32] introduces a concept, called cause, to
specify query answers having integrity in data sources which might violate
their integrity constraints. A cause of an answer is a minimal excerpt of the
data explaining the reasons why an answer is give to a query. An answer
has integrity if one of its causes does not overlap with any cause of
integrity violation. Most above cited approaches suppose that tuple
insertions and deletions are the basic primitives for repairing inconsistent
data. Recently, database repairs and consistent query answering have been
considered in the context of conditional functional dependencies [36, 55,
56]. However, due to the different structure of data and the different nature
of constraints, existing techniques in relational databases cannot easily be

applied to XML data [44].

XML data: the notions of repair and consistent query answers have been
generalized to the context of XML data. The work in [44, 45, 78] find
inconsistent data with respect to a set of XML functional dependencies.
The data repair in [45] is found based on replacing node values and
introducing functions, indicating the reliability of node information. Tan et
al. [78] study the problem of data repair by making the smallest
modifications in terms of repair cost. Flesca et al. [43] study the existence
of repairs with respect to a set of integrity constraints and a DTD. The
existence of repairs using minimal sets of update operations is investigated.
The work in [69] considers the problem of data repair with respect to a set
of functional dependencies in the merged format of XML data. This work

extends the XFDs to be satisfied by comparing sub-trees in a specified
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context of the data. Yakout et al. [99] present an approach using machine
learning as a guide for repairing data. However, such approaches may
correct data improperly, and worse, might result in other inconsistencies
when repairing the data. Moreover, the concept of data repair is often used
as an auxiliary notion to define consistent query answers and existing
approaches do not give any algorithms to compute data consistency.
Second, the problem of finding consistent query answers can be
considered as a principled way to manage data inconsistency [9, 74, 76,
103]. The work in [74] studies the problem of computing query answers
with respect to a given DTD. This work presents a validity-sensitive
method of querying XML data, which extracts more information from
invalid data sources than the standard query evaluation. Tan et al. [76]
propose an approach to compute consistent query answers from virtually
integrated data with respect to a set of constraints. However, they do not
take into account constraints which hold conditionally on similar objects, as
in our work. Query rewriting techniques have been widely used as
powerful methods to calculate query answers [33, 34, 66, 103]. The work
in [33, 34, 103] introduces techniques for query rewriting in the
represention of constraints. Yu et al. [103] propose a technique
incorporating target constraints into query rewiring to calculate query
answers through target schemas. However, we found that such work is
inapplicable for the scenarios which we consider. To the best of our
knowledge, none of the existing work on finding query answers properly
combines both structural and data semantics to calculate query answers, as

in our approach.

2.6 Summary

In this chapter, we first presented background information on XML

databases including DTD schema, XML documents and data trees. Second,
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we reviewed conditional functional dependency and show that CFD
approaches intended to address data inconsistency in relational databases
do not work well in XML data. Third, we discussed association rules and
pointed out that they cannot properly express semantic constraints in XML
data as constraints contain only constants. Fourth, we reviewed several
proposals for XML functional dependencies including tree-tuple-based
FDs, path-based FDs, sub-graph-based FDs, generalized-tree-tuple-based
FDs and XML local functional dependencies. We provided a justification
of XFD approaches and pointed out that XFD specifications are constraints
containing only variables which, in some cases, cannot target data
inconsistency in XML data.

This thesis introduces new notions of constraints based on the idea
of conditions in CFDs and a new concept of structural similarity. Such
constraints contain either constants or variables which are suitable for
capturing the semantics of constraints in heterogeneous XML data sources.
Existing XFD approaches cannot detect proper sets of constraints to
address data inconsistency since they do not consider constraints with
conditions. This thesis presents new approaches which generalize existing
techniques of association rule mining and functional dependency discovery
to discover constraints containing either variables or constants. Finally, we
review existing approaches relating to data repairs and consistent query
answers. Computing consistent query answers can be considered as a
principled way to manage data consistency. However, none of the existing
work on consistent query answers properly calculates answers for queries
posted to an inconsistent XML data source caused by both semantic and
structural inconsistencies. This thesis proposes a new approach combining
both structural and data semantics to calculate customized consistent query

answers for queries posted to inconsistent XML data.
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Chapter 3

Content-based discovery

for improving XML data consistency

This chapter introduces a novel approach, called XDiscover, which is a
content-based discovery approach to discover XML conditional functional
dependencies (XCFDs) from a given data source conforming to a given
schema. This is to resolve data inconsistency caused by semantic
inconsistency. The XCFD notion is extended from XFDs by incorporating
conditions into XFD specifications. The rest of chapter is organized as
follows: Section 3.1 presents the introduction to the problem, including our
motivation and the summary of our approach; Section 3.2 presents the
preliminaries consisting of the notations used in this chapter; Section 3.3
presents our proposed XCFD specification; Section 3.4 describes the detail
of XDiscover; Section 3.5 details the experiment results of XDiscover;

Ssection 3.6 presents case studies; and Section 3.7 summarises the chapter.
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3.1 Introduction

The Extensible Markup Language (XML) has become a standard for
representing data on the web. XML-based standards, such as OASIS, xCBL
and xBRL have been introduced for reporting and exchanging business and
financial information [1, 59, 67]. However, such standards only provide
schema document frameworks for preparing reports and exchanging data.
Most XML-based standards do not address the semantics of underlying
business information. This leads to constraints on the underlying data from
different organizations satisfied by an individual data source which may
not be applicable in the federated data. Although XML functional
dependency (XFD) is one type of semantic constraint, existing notions of
XFD [6, 37, 82] are not sufficient for capturing data inconsistency. This is
because XFDs globally express constraints over the whole document; thus,
they are unable to capture conditional semantics partially expressed in
some fragments of the document.

Fig 3.2 shows an example of a simplified instance of a Flight
Bookings data tree D constrained by the schema Flight Bookings S in
Fig 3.1. D contains data of Flight Bookings. Each Booking includes
information on the Carrier, Trip, Fare and Tax. For each Trip,
information on Departure
and Arrival are maintained. (1,0)Bookings
Values of elements are
recorded under the node names (2,1)Booking+
(in bold). We assign a pair

(Ol’del" depl‘h) to each node in (3,2)Carrier  (4,2)Trip+ (7,2) Fare (8,2)Tax

& ™
schema tree S and data tree D (5,3)Departure (6,3)Arrival
as a key to identify that node in
the tree. This notion will be Fig 3.1 A Flight Bookings schema tree
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further described in definition 3.1 (section 3.2). Constraints on D have
different specifications. We classify them into two types: constraints
without condition and constraints with conditions.

Type 1: constraints without conditions are constraints containing only
variables. They are constraints holding over the whole document and are
commonly known as XML functional dependencies (XFDs). For example,
Constraint 1. Any Booking with the same Trip including Departure and
Arrival should have the same Tax. This is an example of a functional

dependency holding for all Bookings in D.

Type 2: Constraints with conditions include constraints which either
contain constants only or both constants and variables. Such constraints
hold conditionally on the document. They are not standard XFDs. For
example,

Constraint 2a: Any Booking with Carrier of "Tiger Airways" with the
same Fare should have the same Tax.

Constraint 2b: Any Booking with Carrier of "Virgin" and Arrival of
"BNE" has a Tax of "20".

Constraints 2a and 2b are supposed to hold for Bookings with
Carrier of "Tiger Airways" or for Bookings with Carrier of "Virgin"
and Arrival of "BNE", respectively. They refine constraint 1 by binding
particular values to elements in the constraints e.g. "Qantas" or "Virgin",
"BNE" and "20" for Carrier, Arrival, and Tax, respectively. Constraints
of type 2 are very common in real data, especially for data from multiple
sources that use XML-based standards. Each constraint holds only on a
particular fragment containing data from one particular source. Thus, we

need to enforce constraints of type 2 to capture data inconsistency.
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When constraints with conditional semantics are not enforced
explicitly, data inconsistency in some parts of the document cannot be
detected. For example, Bookings data in D (Fig 3.2) do not satisfy all the
above constraints. The Bookings of nodes (12, 1) and (22, 1) contain the
same values of Trip including Departure of "DRW" and Arrival of
"BNE" and have the same Tax of "30". They satisfy constraint 1 but
violate either constraint 2a or constraint 2b. For constraint 2a, if Carrier is
"Tiger Airways", the Fare determines the Tax. Node (12, 1) and node (2,
1) have the same Fare of "200" but they contain different values of Tax,
which are "30" and "40" respectively, which violates constraint 2a.
According to constraint 2b, for a Booking with Carrier of "Virgin" and
Departure of "BNE", Tax should be "20" but node (22, 1) contains Tax
of "30" which violates constraint 2b. We can see that if constraint 2a and
2b are not enforced, the inconsistency of node (12, 1) and node (22, 1)
cannot be identified. Under such circumstances, deriving a complete set of

constraints from a given data instance to constrain the heterogeneous data

(1,0)
Bookings
@1

Booking

(22,1)

32.1)

Booking Booking

A o
(3,2) 4,2) (7,2) (8.2) Booking
Carrier Trip Fare Tax

Tiger Airways 200 40
(23,2) (24,2) (22,2) (28,2) (33,2) (34,2)
(13,2) (14,2) (17,2) (18,2) Carrier Trip Fare Tax Carrier Trip

(5,3) 6,3) Carrier Trip Fare Tax Virgin 200 30 Virgin
Departure Arrival ~ Tiger Airways 200 30
MEL BNE /\‘

(25,3) (26,3) (35,3) (36,3)
Déézfzre 21’61’321)1 Departure Arrival Departure Arrival
DRW BNE DRW BNE MEL BNE

Fig 3.2. A simplified Flight Bookings data tree containing semantic inconsistencies
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(37,2) (38,2)
Fare Tax
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sources is necessary to improve data consistency.

In this chapter, we propose a novel approach, called XDiscover, to
discover a set of minimal XML conditional functional dependencies
(XCFDs) from a given XML instance to address semantic inconstency. The
XCFD notion as constraints of type 2 is extended from XFDs by
incorporating conditions into XFD specifications. This overcomes the
limitations of the previous work in two aspects: (i) XCFDs can express
constraints in the hierarchical structure in XML data, as opposed to
conditional functional dependencies (CFDs) in relational databases; (ii)
XCFDs are more powerful than XFDs in term of capturing data
inconsistency. This is because XCFDs allow binding specific constants to
particular elements which can cover more situations of dependencies under
some conditions. XDiscover conveys the semantics hidden in data to
discover a set of minimal XCFDs from a given instance. A set of our
proposed pruning rules is incorporated in the discovery process to reduce
the number of XCFD candidates to be checked on the dataset to improve
the search performance. Experiments on synthetic and real datasets, and
case studies are used to demonstrate the correctness of our approach.

We present preliminary definitions which are necessary for introducing

XCFDs in the next section.

3.2 Preliminaries

In this section, we present the background and definitions used in our work,
such as the XML schema tree, data tree, data—schema conformation and
node-value equality.

We use XPath expression [89] to form a relative path; “.” (self):
select the context node. “.//”: select the descendants of the context node,

"[1":qualifier and "*": wildcards. For example, .//Carrier: select Carrier
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descendants of the context node; .//Trip/Departure: select all Departure
elements which are children of Trip. We consider an XML schema or an
instance as rooted-unordered-labelled trees, referred to as a schema tree or
a data tree, respectively. Each element node is followed by a set of element
nodes or a set of attribute nodes. For the instance, the element node can be
terminated by a text node. We give formal definitions for an XML schema

tree and an XML data tree as follows:

Definition 3.1. (XML schema tree)
An XML schema tree is defined as S= (E, 4, T, root), where:

e I =FE,u E,is a finite set of element nodes in S in which each node is
associated with a frequency label of ?, +, *, 1; For every node ¢; in E, the
number of nodes from an instance mapped to e; is at most one if node e; has
frequency label ?; exactly one if e; has a frequency either label 1 or no label
at all; at least one if node e; has frequency label +; and unlimited
occurrences 1f e; has a frequency label *. E; 1s a set of complex nodes; E is

the set of simple nodes.

e A is a finite set of attribute nodes; attribute nodes only appear as leaf

nodes.

e 7 is a finite set of node types; for each node ec E,u E, U A4 is
associated with a data type ¢ €T; ¢ can be a simple data type (e.g. string,
int, float) or a complex data type (e.g., the data type represents for the
maxQOccurs, “choice” and “all” model groups) in XML Schema Language
[90]. An element node is called a simple element node if it is defined with a
simple data type. Otherwise, it is called a complex node. An attribute node

is considered as a simple element node.

e root 1s the root of the schema tree.
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For example, the schema tree in Fig 3.1 is defined as S= (E, 4, T, root);
where:

E=E,u E,; E; = {Booking, Trip}

E, = {Carrier, Departure, Arrival, Fare, Tax}

A= {@}; roor= Bookings; T = {String, int, Booking, Trip}; Booking
and Trip are complex data types.

We assign a path-ID to each node in the XML schema tree as shown
in Fig 3.1 in a pre-order traversal. Each path-ID is a pair (order, depth);
where order is an increasing integer (e.g. 1, 2, 3...) which is used as a key
to identify the path from the root to a particular node and depth label is the
number of edges traversing from the root to the node in the schema tree.
The depth of the root is 0; e.g. assigning 0 for /Bookings; 1 for
/Bookings/Booking

Definition 3.2. (XML data tree constrained by a schema tree)
An XML data tree constrained by an XML schema tree S= (E, 4, T, root) is
defined as D= (V, lab, ele, att, val, r), where:

e Jis a set of nodes in D; each v €V consists of a label e and a node-ID

that uniquely identify node v in D.

e /ab is a labelling function which maps the set V' to the set £uU A. Each
v eV, vis called an element node if lab(v) € E; v is called an attribute node

if lab(v) € A.

e cle is a partial function from V to a sequence of V' nodes; for each
complex element node v eV, the function ele(v) maps v to a list of element
nodes {v;, v,,...,v,} in V; att(v) maps v to a list of attribute nodes {v;’,

vy',...v,, }in V with distinct labels.

e val is a function that assigns values to simple element nodes and

attribute nodes. Each node v € V; val(v) is the content of attribute if lab(v)
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e A or the content of simple node if lab(v) eEl ; val(v) = v if lab(v) e
E2.

o r eV, lab(r) = root that is the unique root node and is labeled with
complex data types.

The node-ID in the XML data tree is assigned the same ordering as
the path-ID in the XML schema tree. Each node-ID(order, depth) contains
values uniquely identifying its position in the data tree.

For example, from Fig 3.2, we have V' a set of nodes from node (1, 0)
through node (38, 2).

lab((1,0)Bookings)="Bookings", lab((3,2)Carrier)="“Carrier”;

val((2,1)Booking)= Booking; val((3,2)Carrier)="Tiger Airways”;

ele((2,1 )Booking)={Carrier, Trip, Fare, Tax}.

From definition 2, we have the following properties:

i) if v, € ele(v;) then v, is called a child node of v;.

ii) {v[P]} 1s a set of direct nodes that can be reached following path P
from v, where P is the path from the root to node v. The path P can be a
single node, e.g. root[root] = {all direct children nodes of root}. If there is
only one node in {Vv[P]}, we write v[P].

In this chapter, we assume that the XML data tree is required to
conform to the associated XML schema tree. The conformation is defined
as follows:

Definition 3.3. (XML data —schema tree conformation)
An XML data tree D= (V, lab, ele, att, val, r) is said to conform to a
schema tree S= (E, 4, T, root) denoted as D |= S if and only if (iff):

e lab(r) = root.

e Every node v €V, lab(v)e EU A. There is a homomorphism from V' to

E U A such that for every pair of mapping nodes (v;, ¢;), the node name and

44



3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

the data type are preserved. Fig 3.2 is an example of the Bookings data
tree which conforms to the Bookings schema tree in Fig 3.1.
Now we introduce a notion of node-value equality which is an

essential feature in our proposed constraints.

Definition 3.4. (Node-value equality)
Two nodes v; and v; in an XML data tree D= (V, lab, ele, att, val, r) are
node-value equality, denoted by v; =, v;, iff:
e v;and v; have the same label, i.e., lab(v;) = lab(v)),
e v; and v; have the same values:
([ val(v) = val(v;, if v; and v; are both simple nodes or attribute
nodes.

val(vig)=val(vy) for all k, where 1<k < n, if v; and v; are both

L complex nodes with ele(v;) = [vi, ...,viy] and ele(v)) =[vjs, ..., Vj,]

lab is a function returning label of a node, val is a function returning values
of a node. If v; is a simple node or an attribute node, then val(v;) is the
content of that node, otherwise val(vy)=v; and ele(v;) returns a set of
children nodes of v,.

For example, Trip(14, 2) and Trip(24, 2) (in Fig 3.2) are node-value
equality with

lab((14, 2) Trip)= lab((24, 2) Trip)="Trip”;

ele((14,2) Trip)= {(15,3) Departure, (16,3) Arrival };

ele((24,2) Trip)= {(25,3) Departure, (26,3) Arrival };

node(15, 3) Departure =, node(25, 3) Departure = “DRW” and

node(16, 3) Arrival =, node(26, 3) Arrival = “BNE”.

Based on the above basic concepts, we introduce a new type of

constraint in the next section.
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3.3 XML conditional functional dependency

As our proposed conditional functional dependency notion (XCFD) is
defined on the basis of XFDs used by Fan et al. [42], we discuss XFDs
before presenting the XCFD definition. In order to avoid returning an
unnecessarily large number of constraints, we are interested in exploring
minimal XCFDs existing in a given data source. Thus, we also include a

notion of minimal XCFDs in this section.

Definition 3.5. (XML functional dependency)

Given an XML data tree D= (V, lab, ele, att, val, r) conforming to an XML
schema tree S= (E, 4, T, root), an XML functional dependency over D is
defined as:

¢ =P, (X2 7Y);, where:

e P, is a downward context path starting from the root to a considered
node with label /, called root path. The scope of ¢is the sub-tree
rooted at the node-label /;

e X and Y are non-empty sets of nodes under sub-trees rooted at node-
label /. X and Y are exclusive.

e XY indicates a relationship between nodes in X and Y, such that two
sub-trees sharing the same values for X also share the same values for
Y, that is, the values of nodes in X uniquely identify the values of

nodes in Y. We refer to X as the antecedent and Y as the consequence.

Satisfaction of an XFD: A data tree D=(V, lab, ele, att, val, r)
conforming to S, D|=S, is said to satisfy ¢ = P;: X2 Y denoted D|= ¢S
iff for every two sub-trees rooted at v; and v; in D, if v,[X]=, v/[X] then

vilY]=, v{Y1,
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Let us consider an example, supposing Ppg,uing 15 the path from the
root to the Booking nodes in the Bookings data tree in Fig 3.2.
X= (./Departure, ./Arrival) and Y = (./Tax) then we have an XFD:
@ =PBooking: (/Departure *./Arrival)> (./Tax) holds on the whole

Bookings data tree.

We now introduce our proposed XCFD. The most important
features of XCFDs are path and value-based constraints. The XCFD
specification includes two parts: a functional dependency and a Boolean
expression. The function dependency in the XCFD is basically defined as
in a normal XFD. The only difference is that instead of only representing
the relationship between nodes as in XFDs, the functional dependency in
an XCFD incorporates with the Boolean expression to specify portions of

data on which the functional dependency holds.

Definition 3.6. (XML conditional functional dependency - XCFD)
Given an XML data tree D=(V, lab, ele, att, val, r) conforming to a schema
tree S =(E, 4, T, root); an XML conditional functional dependency holding
on D is defined as:

w=P:[C], X 2Y, where:

e P, is a downward context path starting from the root to a considered
node with label /, called root path. The scope of ¢is the sub-tree
rooted at the node-label /;

e (C is a condition for the XFD X Y holds on D. The condition €

has the form: € = ex;0ex,0...0ex,; ex; 1S an atomic Boolean
expression associated to a particular data node. That is, there does

not exist any connections in ex;. “6” is an operator either AND (")

or OR (V).
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e X and Y are non-empty sets of nodes under sub-trees rooted at node-
label /. X and Y are exclusive.

e XY indicates a relationship between nodes in X and Y, such that two

sub-trees sharing the same values for X also share the same values for

Y, that is, the values of nodes in X uniquely identify the values of
nodes in Y. We refer to X as the antecedent and Y as the consequence.

For example, suppose that PBooking 1S the context path from the root

to the Booking nodes in the Bookings data tree (Fig 3.2); if there exists

an XFD (./Fare)->(./Tax) holding on the Bookings data tree under
condition € = (./Carrier = “Tiger Airways”), then we have an XCFD:

¥ =PBooking: (./Carrier= “Tiger Airways”, ./Fare)>( ./Tax).

Satisfaction of an XCFD: the consistency of an XML data tree with
respect to a set of XCFDs is verified by checking for the satisfaction of the
data to every XCFD. A data tree D=(V, lab, ele, att, val, r) conforming to
S, D|=S, is said to satisfy y = P [€], (X 2 Y) denoted D|= y S iff for
every two sub-trees rooted at n; and n; in D, if n,[X]=, n[X] then n[Y]=,
n[ Y] under the condition C, where n; and n; have the same root node-label /.

XDiscover returns minimal XCFDs. The concept of minimal XCSD

1s defined as follows.

Definition 3.7. (Minimal XCFDs)

Given an XML data tree D= (V, lab, ele, att, val, r) conforms to the XML
schema S= (E, 4, T, root), an XCFD y = P;: [C], (X 2 Y) on D is minimal
if C is minimal and X - Y is minimal.

e (C is minimal if the number of expressions in € (|€|) cannot be
reduced, i.e.,, V€', |C| <|C, P [C'],(X - Y).
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e X2 Yis minimal if none of the nodes in X can be eliminated, which
means every element in X is necessary for the functional dependency
holding on D. In other words, Y cannot be identified by any proper
subset of X, 1.e., vX' X, P [€C], (X'» Y).

For example, we assume that the XCFDy holds on D
W= Ppooking: (/Type="Airline" » ./Carrier="Tiger Airways"),

(./Departure, ./Arrival > ./Tax)

We have € = (./Type="Airline"  ./Carrier="Tiger Airways")
and X 2 Y= (./Departure , ./Arrival > ./Tax)

We assume that:
o IfC’=(./Type="Airline"),
e’

={./Type=“Airline”}=1<2={./Type="Airline", ./Carrier= "Tiger
Airways"} = |C|
then Ppooking:(-/Type="Airline"), (/Departure * ./Arrival -> ./Tax)
does not hold properly on D.

e If X=/Departure, | X'|={Departure} c {Departure, Arrival}=|X|,
then Ppooking: (/Type="Airline"" ./Carrier="Tiger Airways"),
(./Departure - ./Tax) does not hold on D.

In the next section, we present our proposed approach, XDiscover,
for discovering XCFDs from a given XML source associated with a

schema.

3.4 XDiscover: XML conditional functional dependency

discovery

Given an XML data tree D= (V, lab, ele, att, val, r) conforming to a

schema S= (E, A, T, root); the goal of XDiscover is to discover a set of
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non-redundant XCFDs in the form y = P;: [€], X2 Y; where each XCFD

is minimal and contains only a single path in consequence Y.

XDiscover aims to discover all non-trivial XCFDs from the data
source. Our algorithm works in the same manner as candidate generating
and testing approaches [53, 70, 102]. That is, the algorithms traverse the
search lattice in a level-wise manner and start finding candidates with small
antecedents. The results in the current level are used to generate candidates
in the next level. Pruning rules are employed to reduce the search lattice as
soon as possible. Supersets of nodes associated with the left-hand side of
already discovered XCFDs are pruned from the search lattice. Our
approach identifies more pruning rules (section 3.4.4) than the existing
approaches. In particular, we include rules to: (i) prune equivalent sets
relating to already discovered candidates; (ii) eliminate trivial candidates;
and (iii) remove supersets of nodes related to antecedents of already found
XCFDs and ignore subsets of nodes associated with conditions of already
discovered XCFDs.

The XDiscover algorithm includes three main functions. The first
function named search lattice generation, generates a search lattice
containing all possible combinations of elements in the schema data tree.
The second function named candidate identification is used to identify
possible candidates of XCFDs. The last function is called validation and is
used to validate the identified XCFD candidates to find satisfied XCFDs.

The detail of each function is described as follows.

3.4.1 Search lattice generation

We adopt the Apriori-Gen algorithm [4] to generate a search lattice
containing all possible combinations of node-labels. The process starts

from nodes with a single label in level d= 1. Nodes in level d with d >2 are
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obtained by merging pairs of node-labels in level (d-7). Fig 3.3 is an
example of a search lattice of node-labels: A, B and C. Node AC in level 2
is generated from nodes A and C in level 1. The number of occurrences of
each node is counted. Nodes with occurrences less than a given threshold
7 are discarded to limit the discovery to only the frequency portions of

data.

3.4.2 Candidate identification

The link between any two direct nodes in the search lattice is a
representation of a possible candidate XCFD. Assume that W & Z are two
nodes directly linked in the search lattice. Each edge(W, Z) represents a
candidate XCFD: y =P;:[C],(X 2 Y), where W= X U Cand Z=WAY}, X
1s a set of variable elements, and € i1s a set of conditional elements. For
example, for edge(W, Z)= edge(AC, ABC) in Fig 3.3, we assume A is the
condition, then we have an XCFD w=P;: {A}, {C} > {B}.

If the condition A is empty, then  becomes a constraint on the

whole document as an XFD. This means an XFD is a special case of an

XCFD. To check for the availability of a candidate XCFD represented by

Level

1 A/BT\AC
<

2 AB\EE/BC
3 ABC

Fig 3.3. A set of containment lattice of A, B and C
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an edge between W and Z, we examine the set of node-labels in Z to see
whether it contains one more node-label than W. After identifying a
candidate XCFD, a validation process is performed to check whether this

candidate holds on the data.

3.4.3 Validation

Validation for a satisfied XCFD includes two steps. We first calculate
partitions for node-labels associated with each candidate XCFD, then we
check for the satisfaction of that candidate XCFD, based on the notion of
partition refinement [53]. From a general point of view, generating a
partition for a node-label classifies a dataset into classes based on data
values coming with that node-label. Each class contains all elements with

the same value. A partition is defined and calculated as follows:

Definition 3.8. (Partition) A partition /7y, of W on D under the sub-tree
rooted at node-label / is a set of disjoint equivalence classes w;. Each class
w; in Iy, contains all nodes with the same value. The number of classes in
a partition is called the cardinality of the partition, denoted by [I7yy]. [wi is
the number of nodes in the class w;.

For example, from schema tree Bookings S in Fig 3.1, we have:

E={[(1, 0)Bookings] ,[( 2, 1)Booking],[( 3, 2) Carrier], [(4,2) Trip], [(5,
3) Departure], [(6, 3) Arrival], [(7, 2) Fare], [(8, 2)Tax]}
From the searching lattice, suppose we consider a partition identifier W=
“Carrier” which corresponds to the node [(3, 2) Carrier] in schema tree
S. Traversing data tree Bookings D in Fig 3.4 finds all data nodes which
have the node name Carrier and depth of 2.

The found nodes are grouped into two classes:
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Class;= { [(23, 2) Carrier= “Tiger Airways”], [(33, 2) Carrier= “Tiger
Airways”] , [(53, 2)Carrier= “Tiger Airways”], [(63, 2) Carrier=
“Tiger Airways”]}

Class, ={[(43, 2) Carrier= “Virgin”], [(73, 2) Carrier= “Virgin”]}

The partition I1carrier| Booking t0 the value of node Carrier with respect to

sub-tree rooted at Booking is represented as /1carrier | Booking = {W;, W>}

w;= {[(22,1) Booking], [(32, 1) Booking], [(52, 1) Booking], [(62, 1)

Booking]}

w,={[(42, 1) Booking], [(72, 1)Booking]}

[[Icarrier | Booking| = 2; [wy| = 4; [w,| = 2.

To simplify the presentation, we omit the node-ID and path-ID associated

with each node in the following sections to avoid cluttering. The validation

process for a satisfied XCFD is performed follow the following theorem.

(1,0)
Bookings

2,1
Booking
(72,1)

Booking

e m
Carrier (24,2)
. ; (27.2) (28.2)
Tiger Tip Fare  Tax
Airways 200 40 (73.2)  (742) (77.2) (78.2)
B<621’{‘_) Carrier  Trip  Fare  Tax
(32.1) 00KINg Virgin 200 20
Booking
(25.3) (26,3)
Departure  Arrival (753)  (76.3)
MEL BNE (63.2) Departure Arrival
Ca'rncr (642)  (672) (682) MEL SYD
(33,2) Tiger T F T
o) (342)  (372) (38,2) @“2,1) Alroays rip  Fare Tax
ATt prp Fare  Tax Bogking (52.1) ’ 300 60
Tiger 200 40 Booking
Airways
(65.3) (66,3)
(35,3) (36,3) Departure Arrival
Departure Arrival (432)  (442) (472) (48.2) (53,2) BNE DRW

BNE DRW Carrier  Trip Fare  Tax

prie Camier  (542) (57.2) (582)
v 7 ! - - :
rain 30070 Tiger  Trip  Fare Tax
Airways 300 60
(453)  (463) l/\l
Departure Arrival

MEL BNE (553)  (56,3)
Departure  Aurival
DRW  BNE

Fig 3.4. A simplified Bookings data tree: each Booking contains only one Trip
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Theorem 3.1. Let W= {X}U{€}, Z=WA{Y} be two sets of nodes in the
search lattice, and /7y and I1; be two partitions of W and Z. An XCFD, y =

P:[C],(X 2 Y) holds on data tree D if either of the below conditions is
satisfied:
e There exists at least one equivalent pair (w;, z;) between /1y and 11,
or
e There exists a class ¢, in I/e that contains all elements of a certain pair
(w;, zj) iIn Ilyand 11
Proof: the first condition: according to [102], a functional dependency holds on D
if every node in a class w; of Il is also in a class z; of /1. In our case, the
satisfied XCFD does not require every class w; in Il to be a class z; in /1
because an XCFD can be true on a portion of D. This means if there exists at least
one equivalent pair (w;, z;) between I1y and /I then we conclude that ¢ holds
conditionally on data tree D.
The second condition: if there exists a class ¢; in /le containing
exactly all elements in pair (w; z;), this means under condition ¢, all
elements in w;, and z; share the same data rules. Then we conclude that the

XCSD: w =Py {¢; },(X=2Y) holds on data tree D. O

The number of candidate XCFDs and the searching lattice are very
large. In order to improve the performance of XDiscover, we introduce five
pruning rules used in our approach to remove redundant and trivial

candidates from the search lattice.

3.4.4 Pruning rules

We start this section by presenting the theoretical foundation including
concepts, lemmas and theorems to support our proposed pruning rules.
Theoretical foundation: we introduce a concept of equivalent sets and

four lemmas, which are necessary to justify our proposed pruning rules.
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This is to prove that the pruning rules do not eliminate any valid
information when nodes are pruned from the search lattice. We employ the
following rules which are similar to the well-known Armstrong's Axioms
[12] for functional dependencies in the relational database to prove the
correctness of the defined lemmas.
Let X, Y, Z be a set of elements of a given XML data D. These rules
are obtained from adoptions of Armstrong's Axioms [12]. This is, we adapt
the notation of exiting rules to conform to the notation of our work.
Reflexivity IfY < X, then P X2Y
Augmentation If P X2 Y, then P XZ2>YZ
Transitivity IfP: X22Y,P:Y2>Z then P. X2>Z

The following two inference rules can be derived from above three rules
Union If P X2Y and P Y2 Z, then P;: X2 YZ.
Decomposition If P X2 YZ then P XY and P X2 Z.

Definition 3.9. (Equivalent sets)

Given W= X and Z=WU{Y}, if w= P (X= “a”)>(Y= “b”) and w ' = P;:
(Y= “b”) 2 (X= “a”) hold on D, where a, b are constants; X and Y contain
only a single data node, then X and Y are called equivalent sets, denoted

XY

Lemma 3.1. Given W= Xu C and Z=W(/{Y}, X= XU{A}, if w= P;:[€C],
(X 2 Y) then y’=Pi[C], (X2 7).

Proof: Wehave y=P;: [C], (X 2Y),

Applying augmentation rule, P;: [€], (XU{A} 2 YU{A})

Applying decomposition rule, P, [€], (XU{A} 2 Y) and P;: [€], (XU{A} >

{A})
Therefore, P;: [€], (X' Y).O
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Lemma 3.2. Given W= Xu C and Z=W{Y}, if w=P; [€], (X 2 Y)
associated to a class w; holds on T then v '= P;: [€’],(X = Y) holds on D
where @’ c C.

Proof: 1If w=P;: [€], (X 2 Y) associated to a class w; holds on D,

Assume that C = €’ U €7,

Applying decomposition rule: P;:[€’],(X 2 Y) and P, [C”],(X 2 Y)
Therefore, P;: [€'],(X = Y) holds on D including elements from class w;. O

Lemma 3.3. Given W= X and Z=W{Y}, if w= P (X= “a”)>(Y= “b")
holds, and the number of actual occurrences of expression ¥ = “b” in T,
called o , 1s equal to the size of |z,| then X<Y.

Proof: w=P;: (X= “a”)>(Y= “b”) means |w,| =|z,| (1)

Since

we have |z,|]= 05, Y="b"" does not occur with any other antecedence (2)
From (1) & (2) indicate that Y="b" only occurs with the value of X="a".
Therefore, (Y= “b")2>(X=“a”) holds. X<>Y is proven. O

Lemma 3.4. Let E be a set of distinct nodes in the D, the XCFD y = P;:
[€C],(X 2 Y) is minimal if for all 4 € X, where Y e R(X\ {4}) UR(C), R(X)=
{YeE| VAeX: P:[ClL(X\ {4, Y} » Y)}.

Proof: 1f Y ¢ R(X\ {A}) U R(C) for a given set X, then Y has been found in
a discovered XCSD where either the antecedent is a proper subset of X or
the condition is a proper subset of €. In such cases, w = P:[C],(X 2 V) is

not minimal. O

Pruning rules: we introduce five pruning rules used in our approach to

remove redundant and trivial candidates from the search lattice.

56



3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

Particularly, these rules are used to delete candidates at level d-I for
generating candidates at level d. Pruning rules 3.1-3.4 are justified by
Lemmas 3.1-3.4, respectively. Rule 3.5 is relevant to the cardinality
threshold. The first three rules are used to skip the search for XCFDs that
are logically implied by the already found XCFDs. The last two rules are
used to prune redundant and trivial XCFD candidates.

Pruning rule 3.1. Pruning supersets of nodes associated with the
antecedent of already discovered XCFDs. If w= P;: [€], (X =2 Y) holds,
then candidate y = P, [C], (X' Y) can be deleted where X’ is a superset
of X.

Pruning rule 3.2. Pruning subsets of the condition associated with already

discovered XCFDs. If w = P;;[€C], (X = ¥) holds on a sub-tree specified by
a class w;, then candidate y '= P;: [C'], (X =2 ¥) related to w; is ignored,

where C’ < C.

Pruning rule 3.3. Pruning equivalent sets associated with discovered
XCFDs. If w= P.:(X= “a”)=>(Y= “b”) corresponding to edge(W, Z) holds

on data tree D, and X< Y then Y can be deleted.

Pruning rule 3.4. Pruning XCFDs which are potentially redundant. If for
any AeX, Y ¢ G(X\{A})u G(C), then skip checking the candidate y = P;:
[Cl, X=27).

Pruning rule 3.5. Pruning XCFD candidates considered to be trivial.

Given a cardinality thresholdz, 7>=2, we do not consider class w;

containing less than 7 elements i.e. |w;|<z. XCFDs associated with such
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classes are not interesting. In other words, we only discover XCFDs

holding for at least 7 sub-trees.

3.4.5 XDiscover Algorithm

We first introduce the concept and the theorem on the Closure set of
XCFDs, which is used for completeness of the set of XCFDs discovered by
XDiscover. Then, we present the detail of XDiscover. Finally, we also give
a theorem (Theorem 3.2) to specify that the set of XCFDs discovered by
XDiscover from a given source is greater than or equal to the set of XFDs

which hold on that source.

Definition 3.10. (Closure set of XCFDs) Let G be a set of XCFDs. The
closure of G, denoted by G, is the set of all XCFDs which can be deduced

from G using the above Armstrong's Axioms.

Theorem 3.2. Let G be the set of XCFDs that are discovered by XDiscover
from D and G be the closure of G. Then, an XCFD w =P, [C], (X 2 Y)

holds on T'iff w € G".
Proof: For a candidate X and Y, we first prove that if a constraint XCFD
holds on D then the constraint y isin G After this, we prove that if y is
in G" then y holds on D.

(i) Provingif w =P, [€], (X =Y )holdson D then y e G*

Suppose constraint y holds on D, w may be directly discovered by
XDiscover.

o If y is discovered by XDiscover, then y e G. Therefore, e G"
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o If y is not discovered by XDiscover, this means either X is pruned by
pruning rule 1 or condition € is pruned by pruning rule 3.2 or Y is
pruned by pruning rule 3.3 and 3.4. Hence, y € G .

ii) Proving if v e G then w holds on D.

Suppose that = P,: [€], (X 2Y) isin G but y does not hold in D
Since € G, this means, it can be logically derived from G. That is, there
exists at least a set of elements Z associated to two constraints in G, such
that w’= P [C, (X 2> Z) and v = P;: [€], (Z > Y ) to derive

transitively y . Therefore, y is satisfied by D. o

XDiscover algorithm. Listing 3.1 presents our proposed XDiscover
algorithm to find XCFDs from a given data tree D. Our algorithm traverses

the searching lattice following a breadth-first search manner combining

Algorithm: XDiscover
Input: XML data tree D=(V, lab, ele, att, val, r) schema tree S=(E, 4, T, root)
Output: a minimal set of XCFDs

1. DF—{@};
2. Leveld«1;
3. Pl E,

4. GP, < generatePartition(D, Pl);

5. While |PL; £ { @} do

6. d++;
7. PI,— generatePartitionldentifier(GP,);
8. GP,; < generatePartition(D, Pl,);

9. DF+— DF U discoverXCFD(GP,, GP,));
10. Prune(GP,.));

11. Return (DF).

Listing 3.1: The XDiscover algorithm

59



3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

with pruning rules. The searching process starts from level 1 (d=1); all
nodes from £ are stored in Partition Identifier PI,= {v;, v, ... v,} (line 3).
Each node in E is a partition identifier with a single label associated with
some candidate XCFDs. Partitions of Partition identifiers are generated and
stored in GP; - Generated Partition (line 4). At level d > 1, node labels are
generated from P/, ; and stored in Pl; (line 7) in the form v;v;; where vi£v;;
Vi, Vi€ Plyy; Ply; contains node labels at level (d-1); all partitions of v,y

nodes at level d are generated and stored in GP,,.

Algorithm: discoverXCFD
Input: GP;, GP,.;// partitions at level [ and [-/
Output: satisfied XCFDs
1. DF— {@};
2. For each partition of W € GP.; do
3. For each partition of Z € GP,do
4. IfZ=W U {Y}) then

5. Qw<«— subsumed w;;

6. While Qyw <> {d} do

7. For each class w; € Iy do

8. For each class z; € I1,do

9. If (jw/> 7 ) and (lwj] = |z;])) then
10. DF—DF U (6X 2Y);

11. Qwe— Qw\(w; (X 2Y));

12. If not found XCFD then

13. generate AdditionPartition;

14. For each ¢; in € do

15. If ¢; contains values only from Qy then
16. DF—DF U (6X 2Y);

17. Qwe— Qw\(w; €(G X 2Y));

18. Return(DF).

Listing 3.2: The discoverXCFD algorithm
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All candidates in the form c;,w; = z; are checked; where vi= wc,
vi=wiciz; and z; €PI; \ (w; Y ¢;). The validation for a satisfied XCFD
follows the approach described in Section 3.4.3 (line 9: function
discoverXCFD in Listing 3.2). The found XCFDs are stored in DF - the
discovered set of XCFDs. Then the Prune function containing the pruning
rules is performed to prune redundant nodes and edges from the searching
lattice for the next level (line 10). The searching process is repeated until
no more partition identifiers are considered (line 5). The output of
XDiscover is a set of minimal XCFDs.

The function of discoverXCFD depicted in Listing 3.2 searches for
XCFDs at each level d. If there still exists classes in /7 which do not
belong to any discovered XCFD, then we continue to consider such classes
with  additional  condition nodes. discoverXCFD  calls the
generateAdditionPartition function to calculate partitions with additional
condition nodes. The discoverXCFD returns XCFDs to XDiscover.

The following theorem 1is to specify that the set of XCFDs
discovered by XDiscover from a given source is greater than or equal to the

set of XFDs which hold on that source.

Theorem 3.3. Let G be the set of XCFDs obtained from D by applying
XDiscover and F be a set of possible XFDs hold on D, then |G|> |F].

Proof: we refer to the source instance as D= (V, lab, ele, att, val, r)
conforming to a schema S= (E, 4, T, root. G is a set of discovered XCFDs.
The expression form of XCFD is = P;: [C], (X 2 Y).

Let N be a set of elements in S, N={e,, e,,..,e,!. The domain of e; is
denoted as dom(e;). dom(e;)= {e{',e;,..,e}; }, k >1. Assume that F= {¢,,
®,,..,¢, } 1s a set of traditional XFDs on D, where ¢, = W; — e, W;,cN, e;

W, i=1..m.
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Suppose that there exist dependencies capturing relationships among
data values in ¢,. This means V e/ edom(e;), 3 y,, v,= €, — e, where Ve,
c €@, e, is related to a value in dom(e.), C; = W;, y, is an extension
of ¢, where each element in either the antecedent or consequence of ¢, is a

value in its domain. We do not consider an element which has the same
value on the whole document. This means the number of distinguished
values associated with e; is greater than 1( |dom(e;)| >1 ). Therefore, ¢; is

identified by a set of dependencies G; extended from ¢, instead of only one
functional dependency ¢, . In other words, we have

GI>1=l{p}l (D

Suppose that semantic inconsistencies appear in D. This means

different dependencies exist to identify the value of the consequence e; in

@, , denoted (C(¢,)).
Let p.=W;,— e, W.cN, e, W, i=1..m.
Veic C(g,), 3y, v,
y,=[C], (Xi—e)
v, =€, (X—e),
where y, £y, ,i#),Cu Xi=W,C L X;=W.
Ve.c € U €, e isrelated to a value in dom(e,),
Ve, X; U X, e, is either a value in dom(e,) or a variable.

We can see that e; is identified by a set G'; of conditional

dependencies instead of only one functional dependency ¢,. Hence,
G >=2> {9} (2)

Without loss of generality, from (1) & (2), we have |G|= |U.

i=l.m

{G}] >
I{ @, }i=1.m| = |F]- In other words, the number of discovered XCFDs is much

greater than the number of XFDs. Each consequence e; of a dependency is
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identified by a set of XCFDs which include traditional XFDs and its
extensions. O
In the following section, we present a summary of the experiments

and comparisons between XDiscover and a related approach.
3.5 Experimental analysis

We evaluate the performance of our XDiscover using a comprehensive set

of experiments on synthetic and real datasets.

3.5.1 Synthetic data

Datasets: our dataset is on Flight Bookings, which is an extension of the
"Flight Bookings" data shown in Fig 3.2. The dataset contains 150
Bookings. All data represents real relationships between elements with
inconsistent data rules. Such specifications are needed to verify the
existence of constraints holding conditionally on XML data.

Parameters: The cardinality threshold 7 determining a minimum number
of classes associated with interesting XCFDs was set from 2 to 4 with
every step of 1.

System: we ran experiments on a PC with an Intel i5, 3.2GHz CPU and
8GB RAM. The implementation was in Java and data was stored in
MySQL.

Comparative evaluation: to the best of our knowledge, there are no similar
techniques for discovering constraints which are equivalent to XCFDs.
There is only one algorithm which is close to our work, denoted Yu08,
introduced by Yu et al. [102], for discovering XFDs. Such XFDs are
considered as XCFDs containing only variables. Both approaches use
partitioning techniques with respect to data values to identify dependencies
from a given data source. Therefore, we choose Yu08 to draw comparisons

with our approach on the number and the semantics of discovered
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constraints. Our purpose is to evaluate the correctness of XDiscover in
discovering constraints. We ran experiments on the Flight Bookings
datasets as described above. The comparisons relate to: (i) the number of

discovered constraints; and (ii) the specifications of the discovered

constraints.
XDiscover Yu08
v # discovered constraints # discovered constraints
7=2 23 7
=3 16 7
=4 13 7

Table 3.1. XDiscover vs Yu08 on the number of discovered constraints

XDiscover Yu08

PBooking: (./CaITieI‘Z “Tiger PBooking: J/Fare —. /Tax

Airways”, ./Fare) 2>./Tax

PBooking: (./Carrier = “Virgin” » Prooking: [/Trip/Departure,
JTrip/Arrival = “BNE”) > (/Tax= | ./Trip/Arrival —./Tax
5620”)

Table 3.2. Samples of constraints discovered by XDiscover vs that of Yu08

The results in Table 3.1 show that while our approach returns from 13 to 23
constraints, Yu0O8 discovers only 7 constraints. This is because Yu08 does
not consider conditional constraints holding on a subset of Flight Bookings
as XDiscover does.
Table 3.2 represents the certain number of constraints discovered by
XDiscover and Yu08. YuOS8 returns inaccurate rules like

Ppooking: -/Fare —. /Tax,

Ppooking: -/'Trip/Departure, ./Trip/Arrival —./Tax

while DisX discovers more specific and accurate dependencies
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PBooking: (./Carrier = “Virgin” ~ ./Trip/Arrival = “BNE”) - (./Tax =
“207).

In general, the set of constraints discovered by XDiscover is much
more numerous than Yu08. This is because XDiscover considers
conditional constraints. YuO8 returns inaccurate rules since Yu08 does not
consider conditional semantics as XDiscover does. Constraints returned by
XDiscover are more specific and accurate than constraints returned by
Yu08. The existing algorithm discovers XFDs containing only variables
(e.g. ./Fare and ./Tax) and can not detect dependencies which hold
partially on documents with conditions. Our approach discovers constraints
containing both variables and constants (e.g. ./Carrier= "Virgin" and
JTrip/Arrival="BNE"), or either variables or constants that allow the
detection of more interesting semantic constraints than algorithms to

discover XFDs.

3.5.2 Real life data

Although synthetic dataset can help us analyze the real potential of the
approach, experiments on real datasets are necessary to test its practicality.
We ran experiments on two available real life datasets including:
wikibooks from Wikimedia [96] and the CD dataset as used in [95].
wikibooks consist of about 19 schema elements, the max schema depth
being 5. It contains 900 pages (14200 data elements). The CD dataset
contains 9763 CDs which is randomly extracted from FreeDB database. It
includes 21 schema elements and the max schema depth is 4. The CD
dataset contains 298 duplicate objects. We ran XDiscover on these datasets
to find the number of checked candidates, the discovery time and the
number of discovered constraints in each case. The results summarized in

Table 3.3 show that the cardinality threshold influences to the time
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consuming and the number constraints discovered by XDiscover.
XDiscover works more effectively, in terms of consuming time, when the
cardinality threshold is higher. This means XDiscover deals effectively on

data sources with constraints holding on a large number of objects.

Datasets wikibooks CD Datasets

Cardinality threshold 7 =2 =3 =4 =2 =3 =4

#Candidate checked 221 108 88 427 248 195
#Discovery time(seconds) | 106 95 88 334 258 226
#discovered constraints 15 13 8 61 44 21

Table 3.3. Analyzing real life datasets

We present case studies to further demonstrate the effectiveness of the

proposed approach in the next section.

3.6 Case studies

We use the Flight Booking XML data for our case studies. From schema
Bookings S in Fig 3.1, we have E={Bookings, Booking, Carrier, Trip,
Departure, Arrival, Fare, Tax}. The cardinality threshold z determines
the classes associated with interesting XCFDs. 7z affects the results of
XDiscover due to changes in the number of classes which need to be
checked. If the value of zis too large, then only a small number of
equivalent classes is satisfied, which might result in a loss of interesting
XCFDs. Therefore, in our case studies, we fix the value of 7 at 2, which
means we only consider classes with cardinality equal to or greater than 2.
We do not consider constraints holding for only one specific sub-tree, as

such constraints are considered trivial.

66



3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

Case 3.1. XCFDs contain only constants.
Suppose data tree D in Fig 3.4 conforms to schema Bookings S and each
Booking only contains one Trip as shown in D.

Consider edge(W, Z)= (Carrier-Arrival, Carrier-Arrival-Tax).
Follow the process described in section 3.4.1 to generate two partitions of
Carrier-Arrival and Carrier-Arrival-Tax with respect to the sub-tree
rooted at Booking. To simplify the presentation, we omit the node label
(e.g. Booking) associated to each node in the classes.

Icarrier, Trip/Arrival | Booking = { Wy, W2, W3, Wy}

={{(22,1)}, {(32,1), (52,1)}, {(42,1), (72, 1)}, {(62, 1)} }
Icarrier, Trip/Arrival, Tax | Booking = { Z7, Z2, 23 24 Z5}
={{(22,1)},{(32,1)}, {(42,1), (72,1)}, {(52,1)}, {(62,1)}}

We can see that w; in Ilcarrier, Trip/Arrival | Booking 18 equivalent to z3 in
Icarrier, Flight/Arrival, Tax|Booking . 1hat is, wsy = z3 ={(42,1), (72,1)}. Nodes in
w; have the same value of Carrier= “Virgin” and Arrival= “BNE”.
Nodes in z; share the same value of Tax = “20”. An XCFD is discovered:
¥ 1= PBooking: (.//Carrier = “Virgin” ~ ./Trip/Arrival = “BNE”) - (./Tax
=20").

This case demonstrates the XCFD contains only constants. For each
XFD, there might exist a number of conditional dependency XCFDs which
refine this XFD by binding particular values to elements in its
specification. Such constraints cannot be expressed by using the XFD

notion.

Case 3.2. XCFDs contain both variables and constants.
Using the same assumption in case 1, considering edge (W, Z)= edge
(Fare, Fare-Tax), two partitions of Fare and Fare-Tax with respect to

the sub-tree rooted at Booking:
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HFare | Booking = {wy, w2}={{(22, 1), (32, 1), (72, 1)}, {(42, 1), (52, 1), (62,
D}

Mrare, Tax| Booking = { 21, 22, 23 24} ={{(22,1), (32,1)}, {(42,1)}, {(52, 1), (62,
Dy, 172, D}

There does not exist any equivalent pair between the two partitions
IlFrare | Booking and Ilrare, Tax|Booking. We need to add more data nodes from
the remaining set of E\{W Z}. For example, the node of Carrier can be
added to edge(Fare, Fare-Tax) as a conditional data node. We now consider
edge(W’, Z’)= (Carrier-Fare, Carrier-Fare-Tax). Partitions of
Carrier-Fare and Carrier-Fare-Tax with respect to the sub-tree rooted
at Booking are as follows:
carrier, Fare | Booking = {W’1, W', w’3, w'yi={{(22,1), (32, 1)}, {(42,1)},{(52,
1), (62, 1)}, {(72, 1)} }

Icarrier, Fare, Tax|Booking = { 2’1, 2 2 2’3 2 4}={{(22, 1), (32, 1)}, {(42, 1)},
{52, 1), (62, 1)}, {(72, 1)}}

The partition of the condition node Carrier:

Hcarrier|Booking = { €1, ¢, ¢33={{(22, 1), (32, 1), (52, 1), (62, 1)}, {(42,
D}, {(72, 1)} }

We have two equivalent pairs (w’;, z’;) and (w’;, z’;) between
Ilcarrier, Fare|Booking & IICarrier, Fare, Tax|Booking With |w;|=2>7 and |w;|=2
>7 . Furthermore, there exists a class ¢; in IcamieriBooking CONtaining exactly
all elements in w’; y w’;. All elements in class ¢; have the same value for
Carrier = “Tiger Airways”. This means the nodes in classes w’; and w’;
share the same condition (./Carrier = “Tiger Airways”). Therefore, an
XCFD = PBooking: (/Carrier= “Tiger Airways”, ./Fare) ->./Tax is

discovered.
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Case 2 illustrates techniques to find an XCFD with extra data nodes
which are referred to as the condition of the XCFD. Such XCFDs contain

both variables and constants.

Case 3.3. Partition identifiers contain a set of complex nodes.
Suppose data tree D in Fig 3.5 conforms to schema Bookings S in Fig 3.1.
Each Booking contains multiple complex nodes Trip. For partition
identifiers containing a set of complex data nodes, the calculating partitions
are processed in a bottom-up fashion. We first consider the sub-tree rooted
at the bottom level in the data tree (e.g Trip) to calculate partitions. Then,
we convert all classes in each generated partition into the corresponding
parent of this complex node (i.e., the parent of Trip is Booking) to find
the refinement. We repeat converting the found partition to obtain its
refinement until reaching the sub-tree rooted at the considered nodes (i.e.,
Booking). The validation for a satisfied XCFD is similar to the cases
which deal with the partition identifier which contain single data nodes.
Consider edge(Trip, Tax) with respect to the sub-tree rooted at
Booking. We start generating partitions under the sub-tree rooted at Trip.
Following the process described in section 3.4.1, we partition the nodes
according to each Trip (including Departure and Arrival) under the sub-
tree rooted at Trip:
IITvip/Departure, Trip/Arrival | Trip = {{(104, 2), (124, 2)}, {(107, 2), (127, 2)} }
Then, converting these classes into the Booking sub-tree, we have a
refinement:  I11vip|Booking = {{(102, 1), (122, 1)}}. Validating for a
satisfied XCFD is done similarly to a case which partition identifiers
contain only single data nodes. The discovered XCFD is represented in the

form:
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(1,0)
Bookings
(122,1)
ook Booking
Booking
11y U282 (1242) (1272)  (1302) (312
(103,2)  (104,2) (107,2)  (110,2) (T aX,) Carrier Trip RO T;‘OXO

Carrier Trip Trip Fare Virgin 0

(1253)  (1263) (1283) (1293

(1053)  (106,3) D(108=3) (109,3) Departure ~ Arrival ~ DEParture Ao o)
Departure  Arrival eparture Arrival CGK SIN SIN MEL
CGK SIN SIN MEL

Fig 3.5. A simplified Bookings data tree: each Booking contains a set of complex element Trip

¥ 7=PBooking:(./Carrier="Virgin”,{./Trip})>(./Tax); where
{./Trip} represents a set of complex data nodes Trip including
Departure and Arrival.

In a case where there is only one Trip node in the constraint, the XCFD

can be represented as:

¥ ’»= PBooking: (/Carrier = “Virgin”, ./Trip)> (./Tax),
w’, 1s a special case of y,. Generally, a partition identifier containing
simple nodes is a special case of the partition identifier containing complex
nodes. Therefore, we apply the same process to deal with the partition

identifiers which contain complex nodes for both cases.
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3.7 Summary

This chapter addressed the issues of data inconsistency caused by semantic
inconsistencies. Specifically, we introduced the notion of XML conditional
functional dependency which incorporates conditions into dependencies to
express constraints with conditional semantics. We proposed the
XDiscover algorithm based on semantics hidden in the data to discover a
set of possible XCFDs from a given XML data instance. We proposed a set
of pruning rules incorporated into the discovery process to improve the
performance of XDiscover. Experiments on synthetic and real life datasets,
and case studies were used to evaluate XDiscover. In our experiments, we
show that XDiscover can discover more situations of dependencies than the
XFD approach. XCFDs also have more expressive power, in term of
constraining data consistency, than that of XFDs. Our approach can be
used to enhance data quality management by suggesting possible rules and
identifying non-compliant data. Discovered XCFDs also can also be
embedded into an enterprise’s systems as an integral part to support the
manipulation of data. Data inconsistency can be caused by structural
inconsistencies inherent in heterogeneous XML data sources. Therefore,
our work will be further extended to address such problems in the next

chapter.
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Chapter 4

Structured content-aware discovery

for improving XML data consistency

The goal of this thesis is to find principles for improving XML data
consistency. The previous chapter introduced a content-based discovery
approach to discover XML conditional functional dependencies from a
given data source conforming to a given schema. This is to resolve the data
inconsistency caused by semantic inconsistencies. Our intention is to
extend this approach to deal with data inconsistency caused by either
structural or semantic inconsistencies. This chapter introduces a structured
and content-based approach to discover anomalies where a data tree does
not follow any schema. Our work includes the concept of conditions as in

XCFDs and adds a new notion of similarity to work properly in XML data.

4.1 Introduction

One of the main features of XML is that it can represent different kinds of
data from different data sources. Two predominant proposals exist, namely

DTD (Document Type Definition) [49, 54] and XML Schema [90] to
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specify the structure of a class of XML documents. However, such
proposals have not yet emerged as a standard. In addition, XML documents
are flexible which can represent different kinds of data from different data
sources. Each source might have its own structural definitions by
modifying the original schema [88]. Thus, we cannot assume that each
XML document always has a schema defining its structure. In such cases,
data inconsistencies often arise from both structural and semantic
inconsistencies inherent in the heterogeneous XML data sources.

Structural inconsistencies arise when the same real world concept is
expressed in different ways, with different choices of elements and
structures, that is, the same data is organized differently [35, 75, 95]. This
is because XML data is integrated from different data sources which might
have nearly or exactly the same information but are constructed using
different structures. Even though two objects express similar information,
each of them may have some extra information with respect to the other.
Semantic inconsistencies occur when business rules on the same data vary
across different fragments [79]. To the best of our knowledge, there is
currently no existing approach which fully addresses the problems of data
inconsistencies in XML. In the previous chapter, we propose an approach
to discover a set of XML conditional functional dependencies (XCFDs)
that targets semantic inconsistencies.

This chapter addresses the problem of data inconsistencies caused
by both semantic and structural inconsistencies. We assume that XML data
are integrated from multiple sources in the context of data integration, in
which labeling syntax is standardized and data structures are flexible. We
first introduce a novel constraint type, called XML conditional structural
functional dependencies (XCSDs), which represent relationships between

groups of similar real-world objects under particular conditions. They are
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constraints in which functional dependencies are incorporated, not only
with conditions as in XCFDs to specify the scope of constraints but also
with a similarity threshold. The similarity threshold here is used to specify
similar objects on which the XCSD holds. The similarity between objects is
measured based on their structural properties using our newly proposed
structural similarity measurement. Thus, XCSDs are able to validate data
consistency on the identified similar, instead of identical, objects in data
sources with structural inconsistencies.

In addition, we propose an approach, named SCAD, to discover
XCSDs from a given data source. SCAD exploits semantics explicitly
observed from data structures and those hidden in the data to detect a
minimal set of XCSDs. Structural semantics are derived by our proposed
method, called data summarization, which constructs a data summary
containing only representative data for the discovery process. The rationale
behind this is to resolve structural inconsistencies. Semantics hidden in the
data are explored in the process of discovering XCSDs. Experiments and
case studies on synthetic data were used to evaluate the feasibility of
SCAD. The concept of minimal XCSD is the same as that of XCFD
(Definition 3.7).

The remainder of this chapter is organized into eight sections.
Section 4.2 presents preliminaries. Section 4.3 presents a new
measurement, called the structural similarity measurement, which is
necessary to introduce the XCSDs described in Section 4.4. Our proposed
approach, SCAD, is described in Section 4.5. The complexity analysis of
SCAD is presented in Section 4.6. Section 4.7 covers the experiment
results. Case studies are presented in Section 4.8. Finally, Section 4.9

concludes the chapter.

75



4. STUCTURED CONTENT-AWARE DISCOVERY
FOR IMPROVING XML DATA CONSISTENCY

4.2 Preliminaries

In this section, we give some preliminaries including: (i) considering a
variety of examples of constraints to further illustrate the anomalies
existing in XML data, and discussing the limitations of the existing work in
expressing such constraints. This is to emphasize the needs to propose a
new type of constraint to capture data inconsistency in XML data; and (i7)

presenting the definition of a data tree used in this chapter.

4.2.1 Constraints

Fig 4.1 is a simplified instance of data tree 7 for Bookings. Each
Booking in T contains information on Type, Carrier, Departure,
Arrival, Fare and Tax. Values of elements are recorded under the
element names. We give examples to demonstrate anomalies in XML data.

All examples are based on the data tree in Fig 4.1.

(1,0)
Bookings

@0
Booking )
Bool ’ing

(3,2 4,2 (5,2)  (6,2) (7,2) (8,2)
Type  Carrier Departure Arrival  Fare Tax (12,1)

"Airline" "Qantas” "MEL" "SYD" "200" "40" Booking
632 (42 612 (82

Type Trip Fare Tax
(23,2) "Coach"” 00" "
Type (24,2) (25,2) (28,2) (29.,2)
"dirline” Carrier  Trip Fare Tax
(3.2 "Tiger "250"  "40" (35,3) 36.3)
Tye  (42) (152 (82 (9,2 A D;%"})““’e Arrival
"Airline" Carrier  Trip Fare Tax (26,3)  (27,3) -ovam "6:00pm"
"Qantas" "250"  "40" Departure Arrival
"WEL"  "SYD"
(16,3) (17,3)
Departure Arrival
WMEL"  "SYD"

Fig 4.1. A simplified Bookings data tree contains structural and semantic inconsistencies
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Constraint 1: For any Booking having the same Fare should have the
same Tax.

Constraint 2a: For any Booking of "Airline” having Carrier of
"Qantas", the Departure and Arrival determines the Tax.

Constrain 2b:  Any Booking of "Airline"” having Carrier of "Tiger

Airways", the Fare identifies the Tax.

Constraint 1 holds for all Bookings in 7. Such a constraint contains only
variables (e.g. Fare and Tax), commonly known as an XFD. Constraints
2a and 2b are only true under given contexts. For instance, constraint 2a
holds for Bookings with Type of "Airline" and Carrier of "Qantas".
Constraint 2b holds for Bookings with Type of "Airline" and Carrier of
"Tiger Airways". These are examples of constraints holding locally on a
subset of data. Conditional semantics are common in real data, especially if
a data tree contains integrated data from multiple sources, then a constraint
may hold only on a portion of the data obtained from one particular source
[48]. Constraints 2a and 2b are examples of semantic inconsistencies, that
is, for Bookings of “Airline”, values of Tax might be determined by
different business rules. Tax is determined by Departure and Arrival for
Carrier of "Qantas" (e.g. Constraint 2a). Tax is however identified by
Fare for Carrier of "Tiger Airways" (e.g. Constraint 2b). We can see that
while Bookings of node (2, 1) and node (12, 1) describe the data which
have the same semantics, they employ different structures: Departure is a
direct child of the former Booking, whereas it is a grandchild of the latter
Booking with an extra parent node, Trip. This is an example of structural
inconsistencies. Detecting data inconsistencies as violations of XFDs fails

due to the existence of such constraints.
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We now consider the different expression forms of XFDs under the
Path-based approach [82] and the Generalized tree tuple-based approach
[102] presented in Table 4.1. It is possible to see that both notions
effectively capture the constraints holding on the overall document. For
example, Constraint 1 can be expressed in the form of P1 under the Path-
based approach and G1 under the Generalized tree tuple-based approach.
The semantics of P1 is as follows: "For any two distinct Tax nodes in the
data tree, if the Fare nodes with which they are associated have the same
value, then the Tax nodes themselves have the same value". The semantics
of G1 is, "For any two generalized tree tuples CBooking, if they have the
same values at the Fare nodes, they will share the same value at the Tax
nodes". The semantics of either P1 or G1 are exactly as in the original

constraint 1.

Constraint Path-based approach [82] Generalized tree tuple-based
approach [102]
{Py1,..Pun} > P, LHS-> RHS w.r.t C,,

where P,; are the paths specifying | where LHS is a set of paths
General antecedent elements, P,: is the | relative to p, and RHS is a single

form path specifying a consequent | path relative to p, C, is a tuple
element. class that is a set of generalized

tree tuples.

P1: Gl:

1 {Bookings/Booking/Fare} - | {./Fare}=> ./Tax w.r.t Cgooking
{Bookings/Booking/Tax}
P2a: QG2a:

{Booings/Booking/Departure, | {./Departure,./Arrival}>
2a
Bookings/Booking/Arrival} = | ./Tax w.r.t Cgeoking

{Bookings/Booking/Tax}

Table 4.1. Expression forms of XML functional dependencies.
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However, neither of the two existing notions can capture a constraint
with conditions. For example, the closest forms to which constraint 2a can
be expressed under [82] and [102] are P2a and G2a, respectively. The
semantics of such expressions is only: "Any two Bookings having the
same Departure and Arrival should have the same Tax". Such
semantics is different from the semantics of the original Constraint 2a
which includes conditions: Booking of "Airline" and Carrier of "Qantas".
Moreover, neither existing notions can capture the semantics of constraints
holding on similar objects. For example, neither P2a nor G2a can capture
the semantic similarity of Booking(2, 1) and Booking(12, 1) (refer to
Figure 1). Under such circumstances, these two Bookings are considered
inconsistent because Departure and Arrival in Booking(2, 1) and
Booking(12, 1) belong to different parents. Departure and Arrival are
direct children of the former Booking and are grandchildren of the latter
Booking. Our proposed XCSDs address such semantic limitations in

expressing the constraints in previous work.

4.2.2 XML Data tree

An XML instance is considered as a rooted-unordered-labeled tree. Each
element node is followed by a set of element nodes or a set of attribute
nodes. An attribute node is considered a simple element node. An element
node can be terminated by a text node. An XML data tree is formally

defined as follows.

Definition 4.1. (XML data tree)
An XML data tree is defined as 7= (V, E, F, root), where
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V' is a finite set of nodes in 7, each node v € V' consists of a label / and
an id that uniquely identify v in 7. The id assigned to each node in the
XML data tree, as shown in Figure 1, is in a pre-order traversal. Each
id 1s a pair (order, depth), where order is an increasing integer (e.g. 1,
2, 3...) used as a key to identify a node in the tree; depth label is the
number of edges traversing from the root to that node in the tree, e.g.

1 assigning for /Bookings/Booking. The depth of the root is 0.

e £ < Vx Visthe set of edges.

e F'is a set of value assignments, each f(v)=s € F is to assign a string s

to each node v e V. If v is a simple node or an attribute node, then s is
the content of node v, otherwise if v has multiple descendant nodes,
then s 1s a concatenation of all descendants' content.

root is a distinguished node called the root of the data tree.

An XML data tree defined as above possesses the following properties:

For any nodes v;, v; € V-

If there exists an edge(v;, v;) €E, then v; is the parent node of v;,
denoted as parent(v;), and v; is a child node of v, denoted as
child(v;).

If there exists a set of nodes {vy;,..,vi,} such that v; = parent(vy;),.., Vi,
= parent(v;), then v; is called an ancestor of v;, denoted as ancestor(v;)
and v; 1s called a descendant of v;, denoted as descendant(v;).

If v; and v; have the same parent, then v; and v; are called sibling
nodes.

Given a path p= {v;v,...v,}, a path expression is denoted as path(p)=
/1;/../1,, where [, s the label of node v, for all k €[1,.., n].

Let v=(/, id, c) be a node of data tree T, where c is the content of v. If

there exists a path p’ extending a path p by adding content ¢ into the
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path expression of p such that p'= /I/../l; /c, then p' is called a text
path.

o {V[X]} is a set of nodes under the subtree rooted at v. If {v[X]}
contains only one node,-it 1s simply written as v[.X].

An XCSD might hold on an object represented by variable
structures. In such cases, checking for similar structures is necessary to
validate the conformation of the object to that XCSD. To do this, in the
next section, we propose a method to measure the structural similarity

between two sub-trees.

4.3 Structural similarity measurement

The similarity between sub-trees is in general independent of the particular
technique adopted to measure the semantics between two XML elements.
Any technique which aims to assess whether two elements refer to the
same object can be used. Our method follows the idea of structure-only
XML similarity [24, 73]. That is, the similarity between sub-trees is
evaluated, based on their structural properties, and data values are
disregarded. We consider that each sub-tree is a set of paths, and each path
starts from the root node and ends at the leaf nodes of the sub-tree.
Subsequently, the similarity between two sub-trees is evaluated, based on
the similarity of two corresponding sets of paths. The more similar paths

the two sub-trees have, the more similar the two sub-trees are.

4.3.1 Sub-tree Similarity

Given two sub-trees R and R’ rooted at nodes having the same node-label /

in 7. R and R’ contain m and » paths, respectively: R =(p;,..,p,) and R’ =
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(g1,--.9,), where each path starts from the root node of the sub-tree. The
similarity between two sub-trees R and R’ is denoted by d{R, R"). Both
Cosine [98] and Jaccard [97] functions can be easily adopted to calculate
the similarity between two sub-trees. The Cosine function is used to
measure the similarity of two non-binary vectors. The Jaccard function is
often used to measure the similarity of two objects consisting of
asymmetric binary attributes (e.g. 1 and 0). Obviously, the choice of the
similarity function is highly dependent on the representation used to
describe the two sub-trees. In this work, the similarity between two sub-
trees R and R’ is evaluated, based on two sets of weights (w,,..,w,,) and
(wy,..,w,), where w; and w'; are the path similarity weights of two paths p;
and p; in the corresponding sub-trees R and R'. The values of w; and w'; are
real numbers in a range of [0, 1]. Therefore, we used the Cosine similarity
formula to compute the similarity between sub-trees.

In our adopted formula, each set of weight can be considered a non-
binary vector where each dimension corresponds to a path similarity
weight. Consequently, the similarity between two sub-trees is measured

based on two non-binary vectors of weights and it is computed as:

o

are the path similarity weights of p; and ¢; in the

dn(R, R")=
where w; and w,’
corresponding sub-trees R and R’, and the value of d{R, R")e [0, 1]
represents that the similarity of two sub-trees changes from a dissimilar to
similar status. By defining dp(p;, q;) as the path similarity of two paths p;
and g;, the weight w; of path p; in R to R’ is calculated as the maximum of
all dp(p; ,q;), where 1< j <n. The term of path similarity dp(p; ,q;) 1s

described in the next subsection.
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1.

$ ®©® N n kv

Algorithm: subtree_Similarity
Input: Two sub-trees R and R’ contain paths (p,,..., p,) and (q,,..,q,) respectively.
Output. d(R, R")

Process:

—_ = =
A

13.

14.

15.

16.

//calculating the weight vector of R
For each path p; in R do
w; < max ;- , {dp(p:i» q)}
//calculating the weight vector of R’
For each path g; in R’ do
W' = max =, 1dp(pir q;)}
If m# n then
If m<n then
For /= (m +1) to ndo wy < 0,
else if m> n then
For k= (n +1) to mdo w', « 0;

t— max(m, n);

t
N ZWi w;
i=l
t t
2
N
i=1 i=1

dr— Sl/(Szl/2 . S31/2);

Return(dy).

List 4.1. The subtree_Similarity algorithm

List 4.1 represents the subtree Similarity algorithm to calculate the

similarity between two sub-trees. The algorithm first calculates the weight

w; of each path p; in R to R'for all / <i <m (line 2-3). Then the weight w’;

of each path ¢; in R' to R is calculated for all /<j <n (line 5- 6). This

means two sets of weights (w;,..,w,, ) and (w;,..,w,) are computed. If the

cardinalities of the two sets are not equal, then the weights of 0 are added

to the smaller set to ensure the two sets have the same cardinality (line 7-
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11). The similarity of R and R'is calculated based on these two sets of
weights using a Cosine similarity formula (line 13-15). In the following

subsection, we describe how to measure the similarity between paths.

4.3.2 Path Similarity

Path similarity is used to measure the similarity of two paths, where each
path is considered a set of nodes. Consequently, the similarity of two paths
is evaluated based on the information from two sets of nodes, which
includes common-nodes, gap and length difference. The common-nodes
refer to a set of nodes shared by two paths. The number of common-nodes
indicates the level of relevance between two paths. The gap denotes that
pairs of adjacent nodes in one path appear in the other path in a relative
order but there exist a number of intermediate nodes between two nodes of
each pair. The numbers of gaps and the lengths of gaps have a significant
impact on the similarity between two paths. A longer gap length or a larger
number of gaps will result in less similarity between two paths.

Finally, the length difference indicates the difference in the number
of nodes in two paths, which in turn, indicates the level of dissimilarity
between two paths. We also take into account the node's positions in
measuring the similarity between paths. Nodes located at different
positions in a path have different influence-scopes to that path. We suppose
that a node in a higher level is more important in terms of semantic
meaning and hence, it is assigned more weight than a node in a lower level.
The weight of a node v having the depth of d is calculated as u(v)= (1),
where 2 is a coefficient factor and 0<1<=1. The value of 1 depends on the

length of paths.
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List 4.2 represents the pathSimilarity algorithm to calculate the
similarity of two paths p= (v,;,..,v,) and ¢g= (wy,..,w,), where v, and w;,
have the same node-label /, and m and n are the numbers of nodes in p and
g, respectively. The similarity of two paths p and ¢, dp(p, g), 1s calculated
from three metrics, common-node weight, average-gap weight and length
difference reflecting the above factors: common-nodes, gap and length
difference (line 1). The common-node weight, /., is calculated as the weight
of nodes with the same node-labels from two paths. The set of nodes with
the same node-label between p and ¢, called common node-labels, is the
intersection of two node-label sets of p and ¢ (line 3). Assuming that there
exist k labels in common, the common-node weight can be calculated as:

D u(v,).u(w;)

-1

,/Zﬂ(vi)z -\/Zﬂ(wi )’

where u(v;) and u(w;) are the weights of two nodes v; and w; in p and ¢,

JSep.q)=

respectively. v; and w; have the same node-label. The coefficient factor 1=
min(|p|,|q|)/max(|p,|q|) (line 3). The average-gap weight, f,, is calculated as
the average weight of gaps in two paths. The calculation of f, comprises
three steps. First, the algorithm finds the longest gap and the number of
gaps between two paths (line 7-9). Second, the gap's weights from one path
against the other path and vice versa are calculated. Each gap's weight is
calculated based on the total weights of nodes and the number of nodes in
the longest gap in that path. The gap's weight of p against g is calculated
by:

where g is the length of the longest gap of p and ¢, and the coefficient

factor 2= g|/|q|. The same process is applied to calculate the gap's weight
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Algorithm: path_Similarity
Input. two paths p= (v;,..,v,) and g= (w;,..w,)
Output: dp(p, q)
Function dp(p, q)

L dp=[fdp, ) - (o, @) + filp. ) max(lpl, |q))
Return (dp).

Function f; (p, g) //calculate common node weights of p; and ¢,
2. 17 —{lab(v)),...lab(v,) }; 19 «{ lab(w)),...lab(w,)};

3. comlab < [" N 17; k — |comlabl;

k k k
b S U8 s e Y s S )
i=1 i=1 i=1

5.8 « SIS, . 8",
6. Return S;
Function f,(p, q) //calculate average gap weight of p; and g;
7.  FindGap(p, g, gapl); FindGap(q, p, gap2);
8. noGl«|gapl|; noG2« |gap2|;

9. gap]max(_ max ;=; noG1 {gapl,}, gap2max(_ max i=1unoG2{gap2i}
gaplyq| 18aP2 e
10, gwi— D (V) /|gap sl gwa— D 4V, )/|2aD2umasl;

J=1 i=l
11. S (gw;. noG;+ gw,. noG,)/