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Abstract 

 

With the explosive growth of heterogeneous XML sources, data 

inconsistencies have become a serious problem, resulting in ineffective 

business operations and poor decision-making. XML Functional 

Dependencies (XFDs) are well known as essential semantics to enforce the 

data integrity of a source. However, existing approaches to XFDs have 

insufficiently addressed data inconsistencies arising from both semantic 

and structural inconsistencies inherent in heterogeneous XML data. In this 

thesis, we address such prevalent inconsistencies by proposing XDiscover, 

SCAD and SC2QA approaches.   

 XDiscover is a content-based discovery approach which explores 

the semantics hidden in data to discover a set of minimal XML conditional 

functional dependencies (XCFDs) from a given source to address semantic 

inconsistencies. The XCFD notion is extended from XFDs by incorporating 

conditions into XFD specifications. The experimental results on the 

synthetic and real datasets and the results from the case studies show that 

XDiscover can discover more dependencies and the dependencies found 

convey more meaningful semantics, in terms of capturing data 

inconsistency, than those of the existing XFDs.   

 SCAD is a structured and content-aware approach which explores 

the semantics of data structures and the semantics hidden in the data values 

to discover a set of XML conditional structural functional dependencies 

(XCSDs) from a given source to address the inconsistencies caused by both 
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structural and semantic inconsistencies. XCSDs are path and value-based 

constraints, whereby: (i) the paths in XCSD approximately represent 

groups of similar paths in sources to express constraints on objects with 

diverse structures; while (ii) the values bound to particular elements 

express constraints with conditional semantics. We conduct experiments 

and case studies on synthetic datasets which contain structural diversity and 

constraint variety causing XML data inconsistencies. The experimental 

results show that SCAD can discover more dependencies and the 

dependencies found can capture data inconsistencies disregarded by XFDs.  

 SC2QA utilizes XCSDs to compute customized consistent query 

answers for queries posted to inconsistent data sources to improve 

information quality. The query answer is calculated by qualifying queries 

with appropriate information derived from the interaction between the 

query and the XCSDs. We conduct experiments on synthetic datasets to 

evaluate the effectiveness of SC2QA. 
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Chapter 1 

 

Introduction  

 

The main theme of this thesis is to study XML data consistency. This 

chapter consists of five sections. Section 1.1 highlights the need to 

introduce new types of constraints and proposes approaches to discover 

anomalies in XML data. Requirements to address data inconsistency are 

also discussed in this section as the motivation for this work. Section 1.2 

presents the definitions of the problems which are resolved in this thesis. 

Section 1.3 briefly introduces our approaches to resolve the identified 

problems. Section 1.4 summarizes the main contributions of the thesis. The 

thesis organization is outlined in section 1.5. 

 

1.1 Motivation 

Extensible Markup Language (XML) has emerged as the standard data 

format for storing business information in organizations [6]. Data in these 

environments are rapidly changing and highly heterogeneous. This has 

increasingly led to the critical problem of data inconsistency in XML data 

because the semantics underlying business information, such as business 

rules, are enforced insufficiently [58]. XML itself only support for creating 
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markup languages used as metadata, it does not guarantee how the 

underlying business information must be structured and expressed in 

business processes. Data inconsistency appears as violations of constraints 

defined over a dataset [43, 80] which, in turn, leads to inaccurate data 

interpretation and analysis [47, 68]. Such problems significantly affect the 

ability of the system to provide correct information causing inefficient 

business operations and poor decision making. XML functional 

dependencies (XFDs) [6, 42, 52, 82, 83] have been proposed to increase the 

data integrity of the sources. Unfortunately, existing approaches to XFDs 

are insufficient to completely address the data inconsistency problem to 

ensure that the data is consistent within each XML source or across 

multiple XML sources for three main reasons. First, XFDs are defined to 

represent constraints globally enforced to the entire document [6, 82], 

whereas XML data are often obtained by integrating data from different 

sources constrained by local data rules. Thus, they are unable, in some 

cases, to capture conditional semantics locally expressed in some fragments 

within an XML document.  

 Second, the existing XFD notions are incapable of validating data 

consistencies in sources with diverse structures. This is because checking 

for data consistency against an XFD requires objects to have perfectly 

identical structures [82], whereas XML data is organized hierarchically 

allowing a certain degree of freedom in the structural definition. Two 

structures describing the same object may not be identical [75, 94, 95]. In 

such cases, using XFD specifications cannot validate data consistency. 

Third, existing approaches to XFD discovery focus on structural validation 

rather than semantic validation [11, 42, 82, 91]. Most existing work on 

constraint discovery only extracts constraints to solely address data 

redundancy and normalization [81, 102]. Such approaches cannot identify 

anomalies to discover a proper set of semantic constraints to support data 
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inconsistency detection. To the best of our knowledge, there is currently no 

existing approach which fully addresses the problems of data inconsistency 

in XML data. Such limitations in prior work are addressed in this thesis. 

In the next section, we present certain technical terms relating to data 

consistency which are necessary to understand the remainder of the thesis.  

 

1.1.1 Data consistency  

Consistency is a data quality dimension capturing the violation of semantic 

rules defined over a dataset. Integrity constraints are instantiations of such 

semantic rules which are dependencies typically defined to ensure schema 

quality [15]. They are properties which must be satisfied by all instances of 

a database. Data inconsistency describes a source which does not respect 

one or more constraints defined over a dataset. For example, a condition 

could be that, in every 

instance, the customer 

name (CName) 

functionally depends on 

the customer ID (CId), 

i.e., a customer ID is 

assigned to, at most, one 

customer name. This 

integrity constraint is a functional dependency (FD) denoted as CId → 

CName, indicating that this dependency should hold for the attributes of 

the Customer relation. The data in Fig 1.1 is inconsistent with respect to the 

above FD. This is because the customer ID of "C01" is assigned to two 

different customer names which violates the above functional dependency.  

 In XML data, the satisfaction of a source to a set of integrity 

constraints often cannot be guaranteed, hence, data inconsistency occurs 

 

Fig 1.1 An simplified inconsistent instance  

of Customer relation 

CId CName 

C01 Mary 

C01 Bob 

C02 Clayton 
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[43, 80]. Data inconsistency is often caused by semantic inconsistency and 

structural inconsistency. Semantic inconsistencies occur when business 

rules on the same data vary across different fragments [79]. Structural 

inconsistencies arise when the same real world concept is expressed in 

different ways, with different choices of elements and structures, that is, the 

same data is organized differently [75, 95]. In this work, we define integrity 

constraints for instances calling them constraints. Such constraints are 

defined based on either the actual data content or data structures to enhance 

the data consistency within an XML data source. By data consistency, we 

mean that the source syntactically and semantically satisfies a set of 

constraints. 

 In the next section, we discuss the essential features about which 

constraints are required to have so that they can prevent data 

inconsistencies in XML. 

 

1.1.2 Requirements of constraint specifications  

Constraints are essential parts of data semantics used to define the criteria 

that a data source should satisfy. Commonly, the validation of XML data 

often focuses on the schema level with respect to predefined constraints 

expressed in the form of schema [5, 6, 11, 82]. However, XML data are 

often integrated from different data sources, and while there are certain 

features shared by all data, each fragment might need to maintain certain 

constraints differently to suit its unique requirements [91]. The existence of 

various constraints holding on the same object across different fragments 

causes inconsistencies at the semantic level. In such cases, an additional 

validation from the content view with respect to different constraints 

holding conditionally on the data is necessary to maintain data consistency. 
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By holding conditionally, we mean that each constraint holds on a subset of 

the data specified by an accompanying condition. 

 In addition to semantic inconsistencies, structural inconsistencies 

also pose additional challenges to enhance the data consistency. Structural 

inconsistencies are often caused by the existing various data structures 

representing the same object. That is, XML data can contain data from 

different data sources which might contain either nearly, or exactly the 

same information, but they are represented by different structures. 

Moreover, even though two objects express similar content, each of them 

may contain some extra information. In such cases, constraints on XML 

data should be allowed to hold on similar objects. In summary, in order to 

ensure the data consistency, constraints not only need to define the data-

value bindings to express conditional semantics, but should also be flexible 

enough to describe the similarity of objects. As far as we are concerned, 

there is no prior work proposing such constraints to validate data 

consistency from both structural and content views. We suggest that such 

constraints should be maintained to preserve the data consistency of 

applications supported by XML data. 

 From the requirements of constraint specifications, we now discuss 

the requirements that discovery approaches should take into account to 

explore a proper set of constraints to address data inconsistency arising 

from both semantic and structural inconsistencies in XML data.  

 

1.1.3 Requirements of constraint discovery  

As XML data becomes more common and its data structures more 

complex, it is desirable to have algorithms to automatically discover 

anomalies from XML data sources. Although there is existing work [4, 

102] on discovering constraints, there still exist certain limitations and 
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problems which remain completely unsolved. Existing work cannot explore 

a proper set of constraints to address data inconsistency. The Apriori 

algorithm [4] and its variant approaches [13, 61, 71, 84] are well known for 

discovering association rules, which are associations amongst sets of items; 

however, such rules contain only constants. By contrast, XML functional 

dependencies discovered by the work in [102] contain only variables which 

are solely defined on a structural level. Existing work cannot detect 

constraints occurring in the data which should be maintained to ensure data 

consistency. In order to discover such constraints, the discovery process 

has to convey semantics from both structures and data content. This thesis 

generalizes the existing techniques relating to association rule [4] and 

functional dependency discovery [53, 70, 102] to discover the constraints 

containing either variables or constants. They are constraints defined on a 

data level. We discuss the features which a system should consider to 

manage data consistency in XML data in the next section. 

 

1.1.4 Consistent data management 

The problem of data consistency management in inconsistent data has been 

widely studied in the database community. Consistent data is formally 

obtained following two approaches including data repair and consistent 

query answers [9]. Data repair is to find consistent parts of an inconsistent 

data source with respect to predefined constraints and minimally differs 

from the original one [9, 79]. The inconsistent source is often first 

transformed, by means of deletions or additions, into a consistent one 

which is then used for calculating query answers [25]. However, repairing 

data might also result in side effects, for example it could cause incorrect 

answers to queries and it does not always remove inconsistencies 

completely. Restoring consistency in an inconsistent data might also be a 
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computationally complex and non-deterministic process. Moreover, one of 

the main goals of a database system is to compute answers to queries [47]. 

This means that finding consistent query answers is more important than 

repairing data. Hence, it is preferable to leave the data inconsistencies to 

avoid losing information due to the data repair and instead, manage the 

potential inconsistencies in answers to queries posted to that source, that is, 

finding the parts of data which are consistent in query answers. The 

consistent answer to a query is defined as the common parts of answers to 

the query on all possible repairs of the data source [43, 45, 76]. XML data 

is often inconsistent with respect to a set of constraints. Therefore, 

constraints should be taken into account along with the data source in the 

process of computing query answers. This thesis addresses the issue of 

computing consistent answers for queries posted to an inconsistent XML 

source with respect to a set of constraints.  

 Focusing on the requirements discussed above, this thesis resolves a 

number of issues, which can be grouped into three major problems described 

in the following section. The first two problems involve constraint 

discovery and the third problem concerns consistent query answers.   

 

1.2 Problem definition 

The problems of data consistency in relational databases have been 

extensively studied [27, 31, 36, 38, 39, 40]. This thesis extends this work to 

XML data. We propose approaches to discover a proper set of constraints 

used to ensure data consistency in XML data. Constraint discovery can be 

divided into two problems. The first problem is to deal with a case where a 

data source conforms to a schema. We only need to discover anomalies 

caused by semantic inconsistencies. The second problem is a case where a 

given data source does not follow any schema. The data source is designed 
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with great flexibility in both data structures and semantics. In such cases, 

we focus our attention on anomalies arising from both structural and 

semantic inconsistencies. Two problems can be formulated as follows: 

 

Problem 1: "Given an XML data tree T conforming to a schema S, discover 

a set of non-redundant XML conditional functional dependencies (XCFDs), 

where each XCFD is minimal and contains only a single element in the 

consequence". The task of constraint discovery only relates to the data 

content referred to as resolving semantic inconsistencies.  

 

Problem 2: "Given an XML data tree T, discover a set of minimal XML 

conditional structural functional dependencies (XCSDs), where each XCSD 

is minimal and contains only a single element in the consequence". The 

task of constraint discovery is based on both data content and data 

structures. The discovery approach handles both data structural and 

semantic aspects which are referred to as resolving structural and semantic 

inconsistencies. 

 In addition, our proposed constraints are applied to compute 

customized consistent query answers for queries posted to inconsistent 

XML data. The problem can be formulated as follows: 

 

Problem 3: "Given an XML data tree T and a set of XCSDs, find a 

customized consistent answer for query Q posted to tree T". The task is to 

find consistent answer for the query posted to an inconsistent data source 

with respect to a given set of XCSDs. 

 The solutions to problems 1, 2 and 3 are in chapter 3, 4, and 5, 

respectively. We believe that our research is especially relevant nowadays, 

since a huge amount of data is being exchanged between organizations 
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using XML data in which it is very difficult to avoid anomalies. In the next 

section we present an overview of our approaches. 

 

1.3 Overview of our approaches  

We propose three different approaches, called XDiscover, SCAD and 

SC2QA to address the three problems defined above, respectively. First, we 

propose a new XDiscover approach to discover a set of XML conditional 

functional dependencies (XCFDs) from a given XML data source 

conforming to a schema. XCFDs are extended from XFDs by incorporating 

conditions into XFD specifications. The XDiscover is based on semantics 

hidden in the data to discover constraints. It includes three main functions, 

named search lattice generation, candidate identification, and validation.  

The search lattice generation is used to generate a search lattice 

containing all possible combinations of elements in the given schema. The 

candidate identification is used to identify possible candidates of XCFDs. 

The identified candidates are then validated by the validation function, to 

discover satisfied XCFDs. Validation for a satisfied XCFD includes two 

steps. First, partitions for node-labels associated with each candidate XCFD 

are calculated based on data values coming with that node-label. Then, the 

satisfaction of that candidate XCFD is checked, based on the notion of 

partition refinement [53]. The number of candidate XCFDs and the 

searching lattice are very large. Therefore, we propose five pruning rules 

used to remove redundant and trivial candidates from the search lattice in 

order to improve the performance of XDiscover. The first three rules are 

used to skip the search for XCFDs that are logically implied by the already 

found XCFDs. The last two rules are to prune redundant and trivial XCFD 

candidates. Adoptions of Armstrong's Axioms and closure set [12] are used 

to prove the correctness of our proposed pruning rules and the 
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completeness of the set of XCSDs discovered by XDiscover. The 

experimental results on synthetic and real datasets, and results from case 

studies show that XDiscover can discover more dependencies and the 

dependencies found convey more meaningful semantics, in terms of 

capturing data inconsistency, than those of the existing XFDs.  

 Second, we observe that it cannot be an assumption that each XML 

document has a schema defining its structure for two main reasons. First, 

the flexible nature of XML allows the representation of different kinds of 

data from different data sources. Second, if a schema exists, each source 

might follow its own structural definitions through multiple modifications. 

As a result, the problems of structural inconsistencies cannot be avoided. 

Therefore, in our second contribution, we propose a structured and content-

aware approach, called SCAD, to discover XML conditional structural 

functional dependencies (XCSDs) from a given data source to address 

inconsistencies caused by both structural and semantic inconsistencies in 

XML data. The input to SCAD is an XML data source which does not 

associate to any schema. XCSDs are path and value-based constraints; the 

paths in XCSDs approximately represent groups of similar paths in sources 

to express constraints on objects with diverse structures, and the values 

bound to particular elements express constraints with conditional 

semantics. The SCAD approach consists of two phases: resolving 

structural inconsistencies and resolving semantic inconsistencies.  

 In the first phase, a process, called data summarization, analyses the 

data structure to construct a data summary containing only representative 

data for the discovery process. This aims to avoid returning redundant data 

rules due to structural inconsistencies. In the second phase, the semantics 

hidden in the data summary are explored by a process called XCSD 

Discovery to discover XCSDs. The XCSD discovery algorithm works in 

the same manner as XDiscover. The main difference is that instead of 
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discovering constraints from the given data tree as in XDiscover, SCAD 

discovers non-trivial XCSDs from the constructed data summary. We 

conducted experiments and case studies on synthetic datasets which contain 

structural diversity and constraint variation, causing XML data 

inconsistencies. The experimental results show that SCAD can discover 

more dependencies than XFD approaches. The dependencies found could 

capture data inconsistencies disregarded by XFDs.  

 Third, we show that the answers of queries might be inaccurate 

when queries are posted to inconsistent XML data. We utilize our proposed 

XCSDs to compute answers for queries posted to inconsistent source to 

improve information quality. In particular, we propose an approach called 

SC2QA, which integrates the semantics of XCSDs into the query process 

to find consistent data in inconsistent data. The answer is calculated by 

qualifying a query with appropriate information derived from the 

interaction between the query and the XCSDs. Especially, the similarity 

threshold in XCSDs is used to specify the similar objects which are 

considered to be qualified for queries. Conditions in XCSDs are used to 

find candidate objects for calculating query answers. The original data is 

evaluated at each constraint to find the consistent data.  

A customized consistent query answer (CCQA) is calculated from 

true answers in terms of the structural similarity and consistent data with 

respect to XCSDs. To evaluate SC2QA, experiments were conducted on 

synthetic datasets containing structural diversity and constraint various 

causing XML data inconsistencies. The results show SC2QA work more 

efficiently for constant XCSDs than variable XCSDs (i.e. XFDs). Query 

answers found by utilizing constant XCSDs are more accurate than that of 

XFDs. We summarize our main contributions in this thesis in the next section. 
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1.4 Contributions 

This thesis addresses the problems of data inconsistency in XML data to 

improve data consistency. The focus is on discovering constraints from a 

given XML data source. The key principle used in our approaches is the 

concept of structure and content awareness. Our approaches have been 

shown to be superior to other proposed XFD approaches. In addition, we 

utilize our proposed constraints to compute query answers for queries 

posted to an inconsistent data source. To summarize, the contributions of 

this thesis are as follows: 

• the introduction of XML conditional functional dependencies 

(XCFDs); 

• the proposal of the XDiscover approach to discover XCFDs to 

address semantic inconsistencies;  

• the introduction of XML conditional structural functional 

dependencies (XCSDs); 

• the proposal of a structural similarity technique to measure the 

similarity between sub-trees;   

• the proposal of the SCAD approach to explore XCSDs to 

address both semantic and structural inconsistencies; 

• proposing the SC2QA approach to compute customized 

consistent answers for queries posted to inconsistent XML data 

with respect to a set of XCSDs. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows:  

• Chapter 2 reviews prior work on constraints. The topics covered are 

(i) XML database, (ii) conditional functional dependency, (iii) 

association rules, (iv) different proposals of XML functional 
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dependencies (XFDs) and (v) management of data consistency in 

inconsistent data sources. 

• Chapter 3 presents our proposed XDiscover approach. XDiscover is 

used to discover XML conditional functional dependency from a 

given source to address semantic inconsistency in XML data.  

• Chapter 4 presents our proposed approach, called SCAD, to discover 

XML conditional structural functional dependency from a given 

source. This is to address data inconsistency arising from structural 

and semantic inconsistencies in XML data. 

• Chapter 5 presents our proposed SC2QA approach which is used to 

compute customized consistent query answers for queries posted to 

an inconsistent XML source with respect to a set of XCSDs. 

• Chapter 6 concludes the thesis and describes our immediate future 

work. 

 It is worth mentioning that the results of this thesis appeared in the 

following publications: the results of Chapter 3 appeared in [85], the results 

of Chapter 4 appeared in [87] and the results of Chapters 5 appeared in 

[86]. 
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2.  

 

  

Chapter 2 

 

Related work 

 

This chapter reviews existing work relating to the work in this thesis and is 

divided into five sections. Section 2.1 presents a brief background on XML 

databases. Section 2.2 reviews conditional functional dependency which 

has been extensively studied for improving data consistency in relational 

databases. Section 2.3 discusses the notion of association rules and its 

mining algorithms. The association rules are partially related to the 

specification of our proposed constraints. Section 2.4 discusses different 

proposals of XML functional dependencies (XFDs) and XFD discovery 

approaches. Section 2.5 reviews existing approaches to manage data 

consistency in inconsistent data sources. The final section is a summary of 

this chapter. Note that additional background specific to each problem is 

covered in the relevant chapter.  

 

2.1 XML database 

In this section, we present some background information on XML 

databases, including definitions of document types and XML data. As in 

the case of relational databases, a schema is defined to specify the structure 

of a class of XML documents. There are two predominant proposals to 
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define the schema: DTD (Document Type Definition) [54] and XML 

Schema [88]. Even though DTDs are less expressive than XML Schema 

specifications, in general they are expressive enough for a variety of 

applications [19]. Therefore, in this thesis, we consider only DTDs. The 

specification of a DTD is described in the next section.   

 

2.1.1 Document Type Definition  

A Document type definition (DTD) has a start-tag, which is called the root 

of the document and is specified by the DOCTYPE declaration. Elements 

in XML instances are declared by ELEMENT tags. Each element might be 

followed by one element or an arbitrary number of elements. Fig 2.1 is an 

example about a DTD for Bookings data, which specifies a nonempty 

collection of Bookings. <Booking> is an element since <!ELEMENT 

Booking (Carrier, Trip+, Fare, Tax)> (line 3) appears in the DTD. 

Each Booking has one Carrier and an arbitrary number of <Trip>, 

 
1. <!DOCTYPE Bookings [ 

2. <!ELEMENT Bookings (Booking+)> 

3. <!ELEMENT Booking (Carrier, Trip+, Fare, Tax)> 

4. <!ATTLIST Booking bno CDATA #REQUIRED> 

5. <!ELEMENT Carrier (#PCDATA)> 

6. <!ELEMENT Trip (Departure, Arrival)> 

7. <!ELEMENT Departure (#PCDATA)> 

8. <!ELEMENT Arrival (#PCDATA)> 

9. <!ELEMENT Fare (#PCDATA)> 

10. <!ELEMENT Tax (#PCDATA)> 

11. ]> 

Fig 2.1. An example of DTD  
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followed by one <Fare> and one <Tax> element. An ELEMENT 

declaration also specifies the sub-elements of an element by means of a 

regular expression. For instance, <!ELEMENT Trip (Departure, 

Arrival)> (line 6) indicates that the  sub-elements of <Trip> have other 

sub-elements including one <Departure> and one <Arrival> element. 

#PCDATA is used to indicate elements containing text, such as 

<!ELEMENT Departure (#PCDATA)> (line7). An ATTLIST declaration 

is used to specify the attributes of an element, such as <!ATTLIST 

Booking bno CDATA #REQUIRED> (line 4).  

 

2.1.2 XML data  

XML documents are widely used to store data [2]. Fig 2.2 is an example of 

an XML document storing information about Bookings which is an 

instance of the Booking DTD in Fig 2.1. Each <Booking> element has a 

Booking number (bno), name of Carrier and information on Trip, Fare, 

and Tax. Each Trip contains information on Departure and Arrival. 

The document contains two different types of tags: start-tags, such as 

<Bookings> and end-tags, such as </Bookings>. These tags must be 

balanced and are used to delimit elements, for example, <Carrier> Qantas 

</Carrier>. Every element can contain attributes, other elements, text, or a 

mixture of them. For instance, <Booking bno="b1">, the <Booking> 

element contains attribute bno with a value of "b1"; <Carrier> Qantas 

</Carrier> shows that the <Carrier> element contain text of "Qantas"; 

<Trip> <Departure> BNE </Departure> <Arrival> MEL 

</Arrival> </Trip> says that the element <Trip> contains other elements 

including Departure and Arrival. An XML DTD or an XML document 

can be represented as a schema tree or a data tree, respectively. 
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 Fig 2.3 is a representation of the Bookings data tree. In the next 

section, we discuss conditional functional dependencies (CFDs) which 

have been extensively studied to improve data consistency in relational 

databases and highlight the challenges associated with employing such 

approaches to XML data. 

 

Fig 2.2. An example of an XML document 

<Bookings> 

  <Booking bno="b1"> 

  <Carrier> Qantas </Carrier> 

 <Trip> 

  <Departure> BNE </Departure> 

  <Arrival>MEL</Arrival> 

 </Trip> 

 <Fare> 200 </Fare> 

 <Tax> 40 </Tax> 

 </Booking> 

<Booking bno="b2"> 

  <Carrier> Qantas </Carrier> 

 <Trip> 

  <Departure> PER </Departure> 

  <Arrival>MEL</Arrival> 

 </Trip> 

 <Trip> 

  <Departure> MEL </Departure> 

  <Arrival>BNE</Arrival> 

 </Trip> 

 <Fare> 350 </Fare> 

 <Tax> 80 </Tax> 

</Booking> 

</Bookings> 
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2.2 Conditional functional dependency 

Traditionally, constraints are introduced to improve the quality of schema, 

such as defining normal forms based on functional dependencies [11]. 

Recently, constraints have been extensively studied to address the problems 

of the quality of data, especially data consistency. Conditional Functional 

Dependencies (CFDs) [20, 31, 36, 38, 40, 41, 100] have been widely used 

as a technique to detect and correct non-compliant data to improve data 

consistency while other approaches [27, 39, 48] have been proposed to 

 

   CAR DEP ARR FA TA 

Virgin MEL SYD 200 50 

Virgin BNE SYD 300 50 

Qantas MEL SYD 300 50 

Qantas MEL  BNE 400 100 

Qantas MEL DRW 250 100 

 

Fig 2.4. An instance of the Bookings relation 

Fig 2.3.  An example of data tree  
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automatically discover CFDs from data instances. A CFD consists of a 

standard functional dependency (FD) and a pattern tableau specifying the 

scope of the FD on the data. Given an instance D on a relation schema R,  a 

CFD ∂ on R is represented as ∂: (X → Y, Tp), where X and Y are attribute 

sets in R, X → Y  is a standard FD, Tp is a pattern tableau of ∂ containing all 

attributes in X and Y. For each attribute A ∈(X∪Y ), the value of A for Tp is 

either a value in dom(A) or  a variable value. For example, considering a 

relation Bookings(CAR, DEP, ARR, FA, TA) specifies the Booking 

information including Carrier (CAR), Departure (DEP), Arrival 

(ARR), Fare (FA) and Tax (TA).  Fig 2.4 shows an instance of the 

Bookings relation. Data rules on Bookings can be defined in the forms of 

CFDs as follows: 

  ∂1: [ARR= "SYD"] →[TA="50"] 

 ∂2: [CAR= "Qantas", DEP, ARR] →[TA] 

∂1 states that the functional dependency ARR→TA holds in the context 

where the value of ARR is "SYD" and the value of TA is "50". ∂2 assumes 

that the functional dependency DEP, ARR →[TA] only holds in the 

context where CAR is "Qantas". This is, the TA is identified by DEP and 

ARR whenever the CAR is "Qantas". 

 Despite facing similar problems of data inconsistencies with 

relational counterparts, the existing CFD approaches cannot be applied 

easily to XML data for several reasons. Firstly, relational databases and 

XML sources are very diverse in data structure and the nature of 

constraints. For relational databases, each object is defined by a single row. 

Discovering CFDs from data stored in tables has a clearly defined 

structure. By contrast, XML data has a hierarchical structure and 

constraints often involve elements from multiple hierarchical levels. There 

are several challenges in identifying XML constraints which are not 
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encountered in discovering CFDs. Secondly, different notions of equality 

are used for constraints. Whereas relational equality simply is the equality 

of values, the equality of two objects in XML has to be compared 

according to both structure and data [101]. Finally, CFD discovery 

algorithms cannot scale well when the XML data structure is complex. This 

is because applying these algorithms to XML data requires an XML 

document be transformed into a single relational table. When the structure 

of schema is complex, the number of attributes in the transformed relation 

is large. The number of tuples also increases multiplicatively when the 

XML document contains data with complex data types (e.g. maxOccurs in 

XML Schema). For example, if each Booking contains two Trips (refer to 

Fig 2.1), then the number of tuples in the transformed relation would 

double. Therefore, generalizing relational approaches to work on XML data 

is nontrivial.  

 

2.3 Association rules  

Association rules describing the co-occurrence of data items in a dataset 

was first introduced by [4]. Market basket analysis using transaction 

databases from supermarkets is a well known application of association 

rules. Each transaction contains items bought by a customer. An 

association rule represents a relationship between values of elements which 

has a form of X→ Y (s, c), X⊆ I, Y⊆ I, and X ∩ Y=∅, where X and Y, I are 

itemsets, s and c are support and confidence, respectively. Support and 

confidence are used to measure the quality of the rule. Support represents 

the frequency of X∪Y in the dataset. Confidence corresponds to the 

probability of finding Y, having found X and is given by sup(X∪Y)/ sup(X). 

For example, assume that "60% of customers who depart at SYD also 

depart at MEL". This can be expressed in the form of rules, SYD → MEL 
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(40%, 60%), where 40% is the support of the rule indicating how 

frequently the customers departure at both SYD and MEL and 60% is the 

confidence of the rule. Aprior-like algorithms [13, 14, 61, 62, 71, 84, 92, 

93] have been introduced to discover data patterns in large datasets to 

address certain data quality issues, such as data anomaly (e.g. outlier) and 

to filter out useless data portions. However, association rules are 

constraints containing only constants which cannot address data 

inconsistency as required in XML data. In our approaches, the Apriori 

algorithm is adopted to discover constraints relating to either variables or 

constants to improve data consistency in XML data.  

 In the next section, we discuss the different proposals in relation to 

XML functional dependencies and highlight their limitations in addressing 

the problems of data inconsistency to further support our motivation.   

 

2.4 XML functional dependency 

XML offers a rich set of predefined constraints, such as structural, domain 

and cardinality constraints. However, it lacks the full extensibility to 

express constraints specifying at an application level in a declarative way 

[91]. Schema languages,  such as DTD [88], W3C XML schema [90] and 

RelaxNG [30] support type and integrity constraints to specify XML 

schema. Type constraints only restrict on the element structure of a data 

source and do not relate to data values. Integrity constraints are not well 

scoped. For example, primary keys and foreign keys are defined by using 

ID and IDREF attributes in DTDs.  Each ID attribute are unique within the 

whole document and each element type is specified by at most one ID 

attribute. DTD cannot express constraints specified in the free text parts. A 

document validates against DTD also might not conform to the 

specification. 
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XML Schema and RELAX NG were created to overcome DTD 

limitations[57]. Such languages support data types and namespaces which 

satisfy critical requirements in XML applications. However, such schema 

languages are not sufficient in situations which have complex constraints. 

For example, constraints have complicated structural conditions and 

express relations between values which cannot be captured in a grammar 

based approach. Thus, with the hierarchical nature of XML, inconsistency 

in XML data cannot be avoided. To remedy such a problem, XFDs have 

been introduced in the literature as an integrity enforcement measure to 

improve XML semantic expressiveness [6, 42, 50, 51, 65, 81, 82, 102]. 

Although different proposals of XFDs are defined by different terms of 

expressiveness, in all the proposals presented, data dependencies for XML 

are formally defined from two perspectives: tree-tuple-based XFD [6, 101, 

102] and path-based XFD [42, 82]. They are constraints on the values 

reached by following either regular expressions or paths in XML trees.  

 

2.4.1  Tree-tuple-based functional dependency  

The concept of the tree-tuple is similar to the notion of tuple in relational 

database. Tree-tuple-based functional dependencies (tFDs) [6, 11] are 

proposed by considering a relational representation of XML data, that is, 

the XML data is presented as a set of tree-tuples and functional 

dependencies are defined on it. A tree-tuple is built as follows: for each 

element, exactly one data node from the data tree is selected to construct 

the tree-tuple. Fig 2.5 is an example of a Booking tree-tuple constructed 

by picking data from the Booking node which has bno of "b2" in the 

Booking data tree in Fig 2.3. While the original Booking contains two 
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nodes of Trip, the tree-tuple constructed from this Booking only includes 

one node of Trip at a time.  

 The tree-tuple representation allows combining node and value 

equality easily. The former corresponds to the equality between vertices 

and the latter corresponds to the equality between strings. A tFD  over a 

DTD D is expressed in a form as X →Y, where X and Y are non-empty 

subsets of paths in D [6]. For an XML data tree T |= D, t1 and t2 are tree-

tuples in T, if t1.X= t2.X and t1.X ≠ null, implies t1.Y= t2.Y, then T |= X→Y. 

For example, in the sub-tree rooted at Booking, a functional dependency 

such that the Departure and Arrival determines the Tax is expressed by 

a tFD as follows: 

{ Bookings/Booking/Trip/Departure, 

Bookings/Booking/Trip/Arrival} → {Bookings/Booking/Tax}. 

 

2.4.2  Path-based functional dependency 

Paths are an essential component which 

have been used as one of the basic 

primitives to define functional 

dependency in XML data [22, 23].  

Given a node v of an XML tree T, a 

path p in T is defined to be the set of all 

nodes and values reached by following 

p from v in T. Path-based XFDs (pFDs) 

[42, 60, 82] are functional dependencies 

defined based on paths. Similar to the 

tree tuple-based functional 

dependencies, the notion of pFDs is a 

generalization of the definition of 

 

Fig 2.5. A tree-tuple illustration 
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functional dependencies (FDs) in relations. This means there is a 

correspondence between functional dependencies in relations and in XML 

data. In particular, an XFD is defined in a form of pFD [82] as {px1, 

px2,..,pxn} → py, where pxi is a set of paths specifying condition elements 

and py is the path specifying the implication element. For example, the 

XFD "under the sub-tree rooted at Booking, the Departure and Arrival 

determine the Tax" is expressed by the pFDs as follows: 

{//Booking/Departure, //Booking/Arrival}→ //Booking/Tax. 

 Both tFDs and pFDs have the same expressive power of functional 

dependencies [64]. The languages for tFDs and pFDs only allow unary 

functional dependencies holding in the entire document which cannot 

express the semantics of constraints in XML data in some cases, such as 

constraints holding conditionally on subset of data, or constraints holding 

on similar objects. Certain extended proposals of XML functional 

dependencies have been introduced in existing work to cope with the 

hierarchical structure of XML data. We review these in the next section. 

 

2.4.3 Extended proposals for XML functional dependency 

Sub-graph-based functional dependency: a sub-graph is a set of paths of 

XML data. A sub-graph-based functional dependency (gFD) is defined 

based on the sub-graphs of an data tree [52]. gFDs have pre-image 

semantics which allow the expression of XFDs involving a set of elements 

to represent relationships between sub-trees. A gFD has the form {v: X→ 

Y}, where v is a node of data tree T, X and Y are v-subgraphs. A gFD holds 

on T iff for any two pre-images Wi and Wj of Tv, their projections on X are 

equal, then their projections on Y are equal, where Tv is a v-subgraph of T 

rooted at v. For example, an pFD {//Booking/Departure, 

//Booking/Arrival}→ //Booking/Tax can be expressed as a gFD: 
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{vBooking: X→ Y},  where X is the vBooking subgraph with leave elements of 

Departure and Arrival, and Y is the vBooking subgraph with leave element 

of Tax. Although gFDs allow the expression of the semantics of 

constraints relating to a set of elements, they are constraints on the entire 

document which cannot express the semantics of constraints holding 

conditionally on 

subsets of data.  

 

Generalized-tree-

tuple-based functional 

dependency: the work 

in [102] introduced 

another notion of 

XFDs, called 

Generalized-tree-

tuple-based FD 

(gtFD) by extending the notion of tree-tuple functional dependencies. A 

gtFD has a form of <Cp, LHS, RHS> which is expressed as  {Pl1, Pl2,..,Pln} 

→ Pr w.r.t Cp, where Pli (i=1..n ) and Pr are paths relating to the path p, and 

Cp is a tuple-class. gtFDs allow capturing constraints with a set of 

elements. A gtFD holds on an XML data tree T if for any two tree-tuples tk, 

th in Cp: (i) ∃ i, i ∈[1..n], tk.Pli = ⊥ or  th.Pli = ⊥, or (ii) ∀ i ∈[1..n], tk.Pli 

=pv th.Pli then tk.Pr=pv th.Pr. For example, Fig 2.6 shows a Booking contains 

two complex nodes of Trip, and each Trip includes Departure and 

Arrival. The constraint "under the sub-tree rooted at Booking, the value 

of Tax is identified by Carrier and Trip" can be expressed as follows: 

gtFD:{Carrier, Trip/Departure, Trip/Arrival}→ {Tax} w.r.t CBooking.  

 gtFDs have the same express power as gFDs. Each generalized-tree-

tuple used in the gtFD is equal to a v-subgraph used in the gFD. For a gtFD 

 

Fig 2.6. A sub-tree represents a generalized-tree-tuple-based FD 
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{Pl1, Pl2,..,Pln} → Pr w.r.t Cp, it can be expressed by a gFD {v: X → Y}, 

where v is the root of the path p, X is a v-subgraph  consists of path {Pl1, 

Pl2,..,Pln} and Y is a v-subgraph including path Pr. gtFDs can be used to 

express XFDs involving a set of elements as gFDs. gtFDs consider equality 

between two XML elements as equality between sub-trees. However, either 

gFDs or gFDs cannot express constraints holding either on subsets of a data 

tree or similar sub-trees. 

 

Local functional dependency (lFD): to cope with the hierachical structure 

of XML data, one needs not only the absolute constraints holding on the 

whole document such as tFDs and pFDs, but also relative constraints 

holding on subsets of data [21].  Liu et al. [63] introduced the notion of 

local functional dependencies which are functional dependencies holding 

on sub-documents. A local functional dependency is defined as X 

functionally determines Y under a path p, denoted by X p Y, where X and Y 

are two sets of paths in a DTD D and p is a prefix of every path in X and Y. 

The determinant of the lFD is a path terminated by a label for internal 

nodes. The scope of lFD is a particular sub-tree and not on the whole tree 

as in either tFDs or pFDs. For example, Fig 2.7 shows a Bookings data 

tree including a number of Agents which are distinct by the Agent Id (i.e. 

@id). For each Agent, the values of bno are distinct. These constraints 

can be represented as  follows: 
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 lFD1: @id 

AgentBookings.  Agent 

 lFD2: @bno 

BookingAgentBookings ..  

Booking 

Constraint lFD2 cannot be 

represented by either tFDs or 

pFDs. For example, it is 

represented by a pFD as 

{Bookings/Agent/Booking/

@bno}→ Bookings/ Agent/Booking}. It is clear that lFD2 is violated 

due to the same bno of "b1" being used to identify more than one 

Booking. 

 Despite the lFD notion being more expressive than common XFDs, 

it is still not sufficient to express the semantics of some applications. That 

is, lFDs cannot capture the semantics of constraints accurately in situations 

where constraints hold conditionally on the source. For example, the 

semantics of a constraint is that 'any Booking with Carrier of "Qantas" 

having the same Fare should have the same Tax'. This constraint is 

expressed in the form of lFD as Fare BookingBookings.  Tax which only 

expresses that the Fare identifies the Tax under the sub-tree specified by 

the path "Bookings.Booking". Such lFD is impossible to represent the 

conditional expression Carrier of "Qantas". It is clear that the concept of 

lFDs is still too strong which cannot express constraints having scope 

specified by a particular condition. 

 Although different XFD proposals have different expressiveness 

terms and their justification is based on their natural occurencies in XML 

data, existing XFD proposals are insufficient to capture data inconsistency. 

 

Fig 2.7. A sub-tree represents a local functional dependency 
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The reason is that XFDs cannot express the semantics of constraints related 

to conditions. Moreover, existing proposals of XFDs [6, 82] treat the 

equality between two elements as the equality between their identifiers and 

they do not consider sub-tree comparisons. Such XFDs may work well for 

redundancy detection and normalization; however, they work improperly in 

cases where constraints are unknown and required to be extracted from a 

given source. According to existing approaches, two sub-trees satisfy an 

XFD if they are equal with respect to the left part of that XFD and they also 

equal with respect to the right part.   

 In order to address the limitations in prior work, we first propose a 

new type of constraint, called XCFD, which is a value-based constraints 

which  allow the expression of constraints with conditions [85]. Then, we 

introduce XCSDs as path and value-based constraints [87], which are 

different from XFDs in two aspects. The first difference is that each path p 

in XCSDs represents a group of similar paths to p. The second difference is 

that XCSDs allow binding values to particular elements to express 

constraints with conditions. XCSDs are constraints with conditional 

semantics, holding on data with diverse structures which cover both 

structural and semantic aspects. We introduce an approach based on the 

similarity of sub-trees to evaluate the satisfaction of a constraint. Our idea 

is that if two sub-trees are similar with respect to the left part of the 

constraint, and they are also similar with respect to the right part, then they 

satisfy the constraint. The similarity of sub-trees is measured by our 

established measurement, called "sub-tree similarity". Existing work [81, 

102] introduced algorithms to discover XFDs. However, such XFD 

approaches cannot detect proper sets of constraints to address data 

inconsistency. This thesis proposes new approaches, named XDiscover and 

SCAD, which generalize existing techniques relating to association rules 

[4] and functional dependency discovery [53, 70, 102] to discover 
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constraints containing either variables or constants which can be used to 

constrain data consistency. 

 

2.5 Managing data consistency in inconsistent data sources 

In this section, we review existing work commonly used to manage 

consistent data in inconsistent sources. In particular, we consider data 

repair and consistent query answer approaches in relational databases and 

XML data. 

Relational database: the management of consistent data in inconsistent data 

has been extensively studied in relational databases [3, 16, 18, 28]. 

Consistent data is formally obtained following two directions including 

data repair and consistent query answers. Data repair aims to find 

consistent parts from inconsistent data which differs from a given 

inconsistent database in a minimal way [9]. A database D is consistent with 

respect to a set of integrity constraints ICs if D satisfies ICs. Otherwise, D 

is inconsistent with respect to ICs. R is a repair of D if R satisfies IC and 

∆(D, R)= (D\R)  ∪(R \ D)  minimal under set inclusion. Computing data 

consistency with respect to ICs can be achieved only through tuple 

deletions. That is, R is obtained from D by eliminating tuples. R is 

considered to be a minimal repair of D if R satisfies ICs and is maximally 

contained in D, i.e. there R' does not exist such that R' satisfies ICs and 

R⊂R' ⊂ D. For example, given inconsistent data D= {(a, b, c),(a, c, d), (a, 

c, e), (b, g, h)}, D has two repairs R1= {(a, b, c), (b, g, h)} and R2= {(a, c, 

d), (a, c, e), (b, g, h)}. ∆(D, R1) and ∆(D, R2) are minimal under set 

inclusion.  

 Since a large number of repairs might exist for an inconsistent 

database, most existing work has only focused on computational 
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methodologies to retrieve consistent answers for a query posed on an 

inconsistent database, regardless of its inconsistency [9, 29]. A consistent 

query answer is defined to be the common part of answers to the query on 

all possible repairs of the source. Arenas et al. [9] introduce a query 

rewriting algorithm to compute consistent query answers based on query 

rewriting. The basic idea is to enforce constraints locally, at the level of 

data which appears in the query to avoid the explicit computation of data 

repairs. In particular, the original query Q posted to D is rewritten into a 

new query Q' such that the answers to Q' in D are the consistent answers to 

Q from D. Q' is constructed by adding conditions from ICs to Q to enforce 

the satisfaction of constraints in ICs. However, the work in [9] has a very 

limited applicability since it applies first order queries and does not include 

disjunction or quantification, or binary universal integrity constraints. The 

first order query rewriting technique only works appropriately for a certain 

types of queries and constraints, which are universal queries and 

constraints. There does not exist first order rewriting for queries and 

constraints relating to conjunctive queries with projection and referential 

constraints; and the problem cannot be solved in a polynomial time. [17]. 

 Chomicki [29] presents a framework for computing consistent query 

answers based on a graph-theoretic representation of repairs. It considers 

relational algebra queries without projection and denial constraints. This 

work handles union queries which can extract indefinite disjunctive 

information from an inconsistent database. Arenas et al. [8] apply logic 

programming based on answer sets to retrieve consistent information from 

an inconsistent database. This work concentrates mainly on logic programs 

for binary integrity constraints. The work in [7] studies the decidability 

status of consistent query answering by combining instances, ICs and query 

as input. The notion of consistent query answers are also extended to the 

case of aggregate queries [10, 46]. Arenas et al. [10] investigate the 
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problem of consistent answers of aggregate queries in the presence of 

functional dependencies. The work in [46] provides data violating a set of 

aggregate constraints. These constraints are defined on numerical attributes 

(such as Sale Price, Tax, etc.) and are not intrinsically involved in other 

forms of constraints. Deker [32] introduces a concept, called cause, to 

specify query answers having integrity in data sources which might violate 

their integrity constraints. A cause of an answer is a minimal excerpt of the 

data explaining the reasons why an answer is give to a query. An answer 

has integrity if one of its causes does not overlap with any cause of 

integrity violation. Most above cited approaches suppose that tuple 

insertions and deletions are the basic primitives for repairing inconsistent 

data. Recently, database repairs and consistent query answering have been 

considered in the context of conditional functional dependencies [36, 55, 

56]. However, due to the different structure of data and the different nature 

of constraints, existing techniques in relational databases cannot easily be 

applied to XML data [44].  

 

XML data: the notions of repair and consistent query answers have been 

generalized to the context of XML data. The work in [44, 45, 78] find 

inconsistent data with respect to a set of XML functional dependencies. 

The data repair in [45] is found based on replacing node values and 

introducing functions, indicating the reliability of node information. Tan et 

al. [78] study the problem of data repair by making the smallest 

modifications in terms of repair cost. Flesca et al. [43] study the existence 

of repairs with respect to a set of integrity constraints and a DTD. The 

existence of repairs using minimal sets of update operations is investigated. 

The work in [69] considers the problem of data repair with respect to a set 

of functional dependencies in the merged format of XML data. This work 

extends the XFDs to be satisfied by comparing sub-trees in a specified 
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context of the data. Yakout et al. [99] present an approach using machine 

learning as a guide for repairing data. However, such approaches may 

correct data improperly, and worse, might result in other inconsistencies 

when repairing the data. Moreover, the concept of data repair is often used 

as an auxiliary notion to define consistent query answers and existing 

approaches do not give any algorithms to compute data consistency.  

 Second, the problem of finding consistent query answers can be 

considered as a principled way to manage data inconsistency [9, 74, 76, 

103]. The work in [74] studies the problem of computing query answers 

with respect to a given DTD. This work presents a validity-sensitive 

method of querying XML data, which extracts more information from 

invalid data sources than the standard query evaluation. Tan et al. [76] 

propose an approach to compute consistent query answers from virtually 

integrated data with respect to a set of constraints. However, they do not 

take into account constraints which hold conditionally on similar objects, as 

in our work. Query rewriting techniques have been widely used as 

powerful methods to calculate query answers [33, 34, 66, 103]. The work 

in [33, 34, 103] introduces techniques for query rewriting in the 

represention of constraints. Yu et al. [103] propose a technique 

incorporating target constraints into query rewiring to calculate query 

answers through target schemas. However, we found that such work is 

inapplicable for the scenarios which we consider. To the best of our 

knowledge, none of the existing work on finding query answers properly 

combines both structural and data semantics to calculate query answers, as 

in our approach.  

2.6 Summary 

In this chapter, we first presented background information on XML 

databases including DTD schema, XML documents and data trees. Second, 
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we reviewed conditional functional dependency and show that CFD 

approaches intended to address data inconsistency in relational databases 

do not work well in XML data. Third, we discussed association rules and 

pointed out that they cannot properly express semantic constraints in XML 

data as constraints contain only constants. Fourth, we reviewed several 

proposals for XML functional dependencies including tree-tuple-based 

FDs, path-based FDs, sub-graph-based FDs, generalized-tree-tuple-based 

FDs and XML local functional dependencies. We provided a justification 

of XFD approaches and pointed out that XFD specifications are constraints 

containing only variables which, in some cases, cannot target data 

inconsistency in XML data.  

 This thesis introduces new notions of constraints based on the idea 

of conditions in CFDs and a new concept of structural similarity. Such 

constraints contain either constants or variables which are suitable for 

capturing the semantics of constraints in heterogeneous XML data sources. 

Existing XFD approaches cannot detect proper sets of constraints to 

address data inconsistency since they do not consider constraints with 

conditions. This thesis presents new approaches which generalize existing 

techniques of association rule mining and functional dependency discovery 

to discover constraints containing either variables or constants. Finally, we 

review existing approaches relating to data repairs and consistent query 

answers. Computing consistent query answers can be considered as a 

principled way to manage data consistency. However, none of the existing 

work on consistent query answers properly calculates answers for queries 

posted to an inconsistent XML data source caused by both semantic and 

structural inconsistencies. This thesis proposes a new approach combining 

both structural and data semantics to calculate customized consistent query 

answers for queries posted to inconsistent XML data. 
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3.  

 

 

Chapter 3 

 

Content-based discovery  

for improving XML data consistency  

 

This chapter introduces a novel approach, called XDiscover, which is a 

content-based discovery approach to discover XML conditional functional 

dependencies (XCFDs) from a given data source conforming to a given 

schema. This is to resolve data inconsistency caused by semantic 

inconsistency. The XCFD notion is extended from XFDs by incorporating 

conditions into XFD specifications. The rest of chapter is organized as 

follows: Section 3.1 presents the introduction to the problem, including our 

motivation and the summary of our approach; Section 3.2 presents the 

preliminaries consisting of the notations used in this chapter; Section 3.3 

presents our proposed XCFD specification; Section 3.4 describes the detail 

of XDiscover; Section 3.5 details the experiment results of XDiscover; 

Ssection 3.6 presents case studies; and Section 3.7 summarises the chapter.  
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3.1 Introduction 

The Extensible Markup Language (XML) has become a standard for 

representing data on the web. XML-based standards, such as OASIS, xCBL 

and xBRL have been introduced for reporting and exchanging business and 

financial information [1, 59, 67]. However, such standards only provide 

schema document frameworks for preparing reports and exchanging data.  

Most XML-based standards do not address the semantics of underlying 

business information. This leads to constraints on the underlying data from 

different organizations satisfied by an individual data source which may 

not be applicable in the federated data. Although XML functional 

dependency (XFD) is one type of semantic constraint, existing notions of 

XFD [6, 37, 82] are not sufficient for capturing data inconsistency. This is 

because XFDs globally express constraints over the whole document; thus, 

they are unable to capture conditional semantics partially expressed in 

some fragments of the document.  

 Fig 3.2 shows an example of a simplified instance of a Flight 

Bookings data tree D constrained by the schema Flight Bookings S in 

Fig 3.1. D contains data of Flight Bookings. Each Booking includes 

information on the Carrier, Trip, Fare and Tax. For each Trip, 

information on Departure 

and Arrival are maintained. 

Values of elements are 

recorded under the node names 

(in bold). We assign a pair 

(order, depth) to each node in 

schema tree S and data tree D 

as a key to identify that node in 

the tree. This notion will be 

 

(4,2)Trip+ 

(1,0)Bookings  

(2,1)Booking+ 

(3,2)Carrier 

(5,3)Departure 

 

(6,3)Arrival 

(7,2) Fare  (8,2)Tax 

Fig 3.1 A Flight Bookings schema tree 
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further described in definition 3.1 (section 3.2). Constraints on D have 

different specifications. We classify them into two types: constraints 

without condition and constraints with conditions.  

Type 1: constraints without conditions are constraints containing only 

variables. They are constraints holding over the whole document and are 

commonly known as XML functional dependencies (XFDs). For example,   

Constraint 1: Any Booking with the same Trip including Departure and 

Arrival should have the same Tax. This is an example of a functional 

dependency holding for all Bookings in D. 

 

Type 2:  Constraints with conditions include constraints which either 

contain constants only or both constants and variables. Such constraints 

hold conditionally on the document. They are not standard XFDs. For 

example, 

Constraint 2a: Any Booking with Carrier of "Tiger Airways" with the 

same Fare should have the same Tax.  

Constraint 2b: Any Booking with Carrier of "Virgin" and Arrival of 

"BNE" has a Tax of "20".   

 Constraints 2a and 2b are supposed to hold for Bookings with 

Carrier of "Tiger Airways" or for Bookings with Carrier of "Virgin" 

and Arrival of "BNE", respectively. They refine constraint 1 by binding 

particular values to elements in the constraints e.g. "Qantas" or "Virgin", 

"BNE" and "20" for Carrier, Arrival, and Tax, respectively. Constraints 

of type 2 are very common in real data, especially for data from multiple 

sources that use XML-based standards. Each constraint holds only on a 

particular fragment containing data from one particular source. Thus, we 

need to enforce constraints of type 2 to capture data inconsistency.  
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 When constraints with conditional semantics are not enforced 

explicitly, data inconsistency in some parts of the document cannot be 

detected. For example, Bookings data in D (Fig 3.2) do not satisfy all the 

above constraints. The Bookings of nodes (12, 1) and (22, 1) contain the 

same values of Trip including Departure of "DRW" and Arrival of 

"BNE" and have the same Tax of "30". They satisfy constraint 1 but 

violate either constraint 2a or constraint 2b. For constraint 2a, if Carrier is 

"Tiger Airways", the Fare determines the Tax. Node (12, 1) and node (2, 

1) have the same Fare of "200"  but they contain different values of Tax, 

which are "30" and "40" respectively, which violates constraint 2a. 

According to constraint 2b, for a Booking with Carrier of "Virgin" and 

Departure of "BNE", Tax should be "20" but node (22, 1) contains Tax 

of "30" which violates constraint 2b. We can see that if constraint 2a and 

2b are not enforced, the inconsistency of node (12, 1) and node (22, 1) 

cannot be identified. Under such circumstances, deriving a complete set of 

constraints from a given data instance to constrain the heterogeneous data 

 

Fig 3.2. A simplified Flight Bookings data tree containing semantic inconsistencies  
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sources is necessary to improve data consistency.  

 In this chapter, we propose a novel approach, called XDiscover, to 

discover a set of minimal XML conditional functional dependencies 

(XCFDs) from a given XML instance to address semantic inconstency. The 

XCFD notion as constraints of type 2 is extended from XFDs by 

incorporating conditions into XFD specifications. This overcomes the 

limitations of the previous work in two aspects: (i) XCFDs can express 

constraints in the hierarchical structure in XML data, as opposed to 

conditional functional dependencies (CFDs) in relational databases; (ii) 

XCFDs are more powerful than XFDs in term of capturing data 

inconsistency. This is because XCFDs allow binding specific constants to 

particular elements which can cover more situations of dependencies under 

some conditions. XDiscover conveys the semantics hidden in data to 

discover a set of minimal XCFDs from a given instance. A set of our 

proposed pruning rules is incorporated in the discovery process to reduce 

the number of XCFD candidates to be checked on the dataset to improve 

the search performance. Experiments on synthetic and real datasets, and 

case studies are used to demonstrate the correctness of our approach. 

We present preliminary definitions which are necessary for introducing 

XCFDs in the next section. 

 

3.2 Preliminaries 

In this section, we present the background and definitions used in our work, 

such as the XML schema tree, data tree, data–schema conformation and 

node-value equality.   

 We use XPath expression [89] to form a relative path; “.” (self): 

select the context node. “.//”: select the descendants of the context node, 

"[]":qualifier and "*": wildcards. For example, .//Carrier: select Carrier 
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descendants of the context node; .//Trip/Departure: select all Departure 

elements which are children of Trip. We consider an XML schema or an 

instance as rooted-unordered-labelled trees, referred to as a schema tree or 

a data tree, respectively. Each element node is followed by a set of element 

nodes or a set of attribute nodes. For the instance, the element node can be 

terminated by a text node. We give formal definitions for an XML schema 

tree and an XML data tree as follows: 

 

Definition 3.1. (XML schema tree)  

An XML schema tree is defined as S= (E, A, T, root), where: 

• E = E1∪  E2 is a finite set of element nodes in S in which each node is 

associated with a frequency label of ?, +, *, 1; For every node ej in E, the 

number of nodes from an instance mapped to ej is at most one if node ej has 

frequency label ?; exactly one if ej has a frequency either label 1 or no label 

at all; at least one if node ej  has frequency label +; and unlimited 

occurrences if ej has  a frequency label *. E1 is a set of complex nodes; E2 is 

the set of simple nodes.  

• A is a finite set of attribute nodes; attribute nodes only appear as leaf 

nodes.  

• T is a finite set of node types; for each node e∈ E1∪  E2 ∪  A is 

associated with a data type t ∈T;  t can be a simple data type (e.g. string, 

int, float) or a complex data type  (e.g., the data type represents for the 

maxOccurs, “choice” and “all” model groups) in XML Schema Language 

[90]. An element node is called a simple element node if it is defined with a 

simple data type. Otherwise, it is called a complex node. An attribute node 

is considered as a simple element node. 

• root is the root of  the schema tree. 
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For example, the schema tree in Fig 3.1 is defined as S= (E, A, T, root); 

where:  

 E = E1∪  E2; E1 = {Booking, Trip} 

 E2 = {Carrier, Departure, Arrival, Fare, Tax} 

A= {Ø}; root= Bookings; T = {String, int, Booking, Trip}; Booking 

and Trip are complex data types.  

 We assign a path-ID to each node in the XML schema tree as shown 

in Fig 3.1 in a pre-order traversal. Each path-ID is a pair (order, depth); 

where order is an increasing integer (e.g. 1, 2, 3...) which is used as a key 

to identify the path from the root to a particular node and depth label is the 

number of edges traversing from the root to the node in the schema tree. 

The depth of the root is 0; e.g. assigning 0 for /Bookings; 1 for 

/Bookings/Booking 

 

Definition 3.2. (XML data tree constrained by a schema tree)  

An XML data tree constrained by an XML schema tree S= (E, A, T, root) is 

defined as D= (V, lab, ele, att, val, r), where:   

• V is a set of nodes in D; each v ∈V consists of a label e and a node-ID 

that uniquely identify node v in D.  

• lab is a labelling function which maps the set V  to the set  E∪A. Each 

v ∈V, v is called an element node if lab(v) ∈ E; v is called an attribute node 

if lab(v) ∈ A. 

• ele is a partial function from V to a sequence of V nodes; for each 

complex element node v ∈V, the function ele(v) maps v to a list of element 

nodes {v1, v2,…,vn} in V;  att(v) maps v to a list of attribute nodes {v1’, 

v2’,…vm’} in V with distinct labels.   

• val is a function that assigns values to simple element nodes and 

attribute nodes. Each node v ∈ V; val(v) is  the content of attribute if lab(v) 
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∈ A or the content of simple node if  lab(v) ∈E1 ;  val(v) = v if lab(v) ∈ 

E2. 

• r ∈V, lab(r) = root that is the unique root node and is labeled with 

complex data types.  

 The node-ID in the XML data tree is assigned the same ordering as 

the path-ID in the XML schema tree. Each node-ID(order, depth) contains 

values uniquely identifying its position in the data tree.    

For example, from Fig 3.2, we have V a set of nodes from node (1, 0) 

through node (38, 2).  

lab((1,0)Bookings)="Bookings"; lab((3,2)Carrier)=“Carrier”;  

val((2,1)Booking)= Booking; val((3,2)Carrier)=“Tiger Airways”;  

ele((2,1 )Booking)={Carrier, Trip, Fare, Tax}. 

 

From definition 2, we have the following properties: 

i) if v2 ∈ ele(v1) then v2 is called a child node of v1.   

ii) {v[P]} is a set of direct nodes that can be reached following path P 

from v, where P is the path from the root to node v. The path P can be a 

single node, e.g. root[root] = {all direct children nodes of root}. If there is 

only one node in {v[P]}, we write v[P]. 

 In this chapter, we assume that the XML data tree is required to 

conform to the associated XML schema tree. The conformation is defined 

as follows: 

Definition 3.3. (XML data –schema tree conformation) 

 An XML data tree D= (V, lab, ele, att, val, r) is said to conform to a 

schema tree S= (E, A, T, root) denoted as D |= S if and only if (iff):  

• lab(r) = root. 

• Every node v ∈V, lab(v)∈E∪A. There is a homomorphism from V to 

E∪  A such that for every pair of mapping nodes (vi, ej), the node name and 



3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY 

 

45 

 

the data type are preserved. Fig 3.2 is an example of the Bookings data 

tree which conforms to the Bookings schema tree in Fig 3.1. 

 Now we introduce a notion of node-value equality which is an 

essential feature in our proposed constraints.  

 

Definition 3.4. (Node-value equality) 

  Two nodes vi and vj in an XML data tree D= (V, lab, ele, att, val, r) are 

node-value equality, denoted by vi =v vj, iff:  

• vi and vj have the same label, i.e.,  lab(vi) = lab(vj), 

• vi and vj have the same values: 

val(vi) = val(vj), if vi and vj are both simple  nodes or attribute 

nodes. 

val(vik)=val(vjk)  for all  k, where 1≤k ≤  n, if vi and vj  are both 

complex nodes with ele(vi) = [vi1, …,vin]  and ele(vj) =[vj1,…, vjn] 

 

lab is a function returning label of a node, val is a function returning values 

of a node. If vi is a simple node or an attribute node, then val(vi) is the 

content of that node, otherwise val(vi)=vi  and ele(vi) returns a set of 

children nodes of vi. 

For example, Trip(14, 2) and Trip(24, 2) (in Fig 3.2) are node-value 

equality with 

lab((14, 2) Trip)= lab((24, 2) Trip)=“Trip”;  

ele((14,2) Trip)= {(15,3) Departure, (16,3) Arrival };  

ele((24,2) Trip)= {(25,3) Departure, (26,3) Arrival };  

node(15, 3) Departure =v  node(25, 3) Departure = “DRW” and  

node(16, 3) Arrival =v   node(26, 3) Arrival = “BNE”.  

 Based on the above basic concepts, we introduce a new type of 

constraint in the next section.  

 



3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY 

 

46 

3.3 XML conditional functional dependency  

As our proposed conditional functional dependency notion (XCFD) is 

defined on the basis of XFDs used by Fan et al. [42], we discuss XFDs 

before presenting the XCFD definition. In order to avoid returning an 

unnecessarily large number of constraints, we are interested in exploring 

minimal XCFDs existing in a given data source. Thus, we also include a 

notion of minimal XCFDs in this section. 

 

Definition 3.5. (XML functional dependency) 

Given an XML data tree D= (V, lab, ele, att, val, r) conforming to an XML 

schema tree S= (E, A, T, root), an XML functional dependency over D is 

defined as: 

ϕ = Pl: (X� Y); where: 

• Pl is a downward context path starting from the root to a considered 

node with label l, called root path. The scope of ϕ is the sub-tree 

rooted at the node-label l; 

• X and Y are non-empty sets of nodes under sub-trees rooted at node-

label l.  X and Y are exclusive. 

• X�Y indicates a relationship between nodes in X and Y, such that two 

sub-trees sharing the same values for X also share the same values for 

Y, that is, the values of nodes in X uniquely identify the values of 

nodes in Y. We refer to X as the antecedent and Y as the consequence. 

 

Satisfaction of an XFD: A data tree D=(V, lab, ele, att, val, r) 

conforming to S, D|=S, is said to satisfy ϕ = Pl: X� Y denoted D|= ϕ ^S 

iff for every two sub-trees rooted at vi and vj in D, if  vi[X]=v vj[X] then 

vi[Y]=v vj[Y]; 
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 Let us consider an example, supposing PBooking is the path from the 

root to the Booking nodes in the Bookings data tree in Fig 3.2.  

X= (./Departure, ./Arrival) and Y = (./Tax) then we have an XFD: 

ϕ =PBooking: (./Departure ^./Arrival)� (./Tax) holds on the whole 

Bookings data tree. 

 We now introduce our proposed XCFD. The most important 

features of XCFDs are path and value-based constraints. The XCFD 

specification includes two parts: a functional dependency and a Boolean 

expression. The function dependency in the XCFD is basically defined as 

in a normal XFD. The only difference is that instead of only representing 

the relationship between nodes as in XFDs, the functional dependency in 

an XCFD incorporates with the Boolean expression to specify portions of 

data on which the functional dependency holds.  

 

Definition 3.6. (XML conditional functional dependency -  XCFD) 

Given an XML data tree D=(V, lab, ele, att, val, r) conforming to a schema 

tree S =(E, A, T, root); an XML conditional functional dependency holding 

on D is defined as:  

 ψ = Pl: [C ], X � Y, where:  

• Pl is a downward context path starting from the root to a considered 

node with label l, called root path. The scope of ϕ is the sub-tree 

rooted at the node-label l; 

• C  is a condition for the XFD X� Y  holds on D. The condition C  

has the form: C = ex1θ ex2θ …θ exn;  exi is an atomic Boolean 

expression associated to a particular data node. That is, there does 

not exist any connections in exi.  “θ ” is an operator either AND (^) 

or OR (∨ ).  
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• X and Y are non-empty sets of nodes under sub-trees rooted at node-

label l.  X and Y are exclusive. 

• X�Y indicates a relationship between nodes in X and Y, such that two 

sub-trees sharing the same values for X also share the same values for 

Y, that is, the values of nodes in X uniquely identify the values of 

nodes in Y. We refer to X as the antecedent and Y as the consequence. 

 For example, suppose that PBooking is the context path from the root 

to the Booking nodes in the Bookings data tree (Fig 3.2); if there exists 

an XFD (./Fare)�(./Tax) holding on the Bookings data tree under 

condition C = (./Carrier = “Tiger Airways”), then we have an XCFD: 

ψ =PBooking: (./Carrier= “Tiger Airways”, ./Fare)�( ./Tax). 

 

Satisfaction of an XCFD: the consistency of an XML data tree with 

respect to a set of XCFDs is verified by checking for the satisfaction of the 

data to every XCFD. A data tree D=(V, lab, ele, att, val, r) conforming to 

S, D|=S, is said to satisfy ψ = Pl: [C], (X � Y) denoted D|= ψ ^S iff for 

every two sub-trees rooted at ni and nj in D, if  ni[X]=v nj[X] then ni[Y]=v 

nj[Y] under the condition C, where ni and nj have the same root node-label l.   

 XDiscover returns minimal XCFDs. The concept of minimal XCSD 

is defined as follows.  

 

Definition 3.7. (Minimal XCFDs) 

Given an XML data tree D= (V, lab, ele, att, val, r) conforms to the XML 

schema S= (E, A, T, root), an XCFD ψ = Pl:  [C], (X � Y) on D is minimal 

if C is minimal and X � Y is minimal. 

• C is minimal if the number of expressions in C (|C|) cannot be 

reduced, i.e.,∀C’, |C’| < |C|, Pl: [C’],( X ք Y). 
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• X� Y is minimal if none of the nodes in X can be eliminated, which 

means every element in X is necessary for the functional dependency 

holding on D. In other words, Y cannot be identified by any proper 

subset of X, i.e., ∀X' ⊂X, Pl: [C], (X'ք Y). 

For example, we assume that the XCFDψ  holds on D 

ψ = PBooking: (./Type="Airline" ^ ./Carrier="Tiger Airways"), 

(./Departure, ./Arrival  � ./Tax)  

We have C = (./Type="Airline" ^ ./Carrier="Tiger Airways")  

and X � Y = (./Departure , ./Arrival � ./Tax) 

 We assume that: 

• If C’=(./Type="Airline"), 

|C’|={./Type=“Airline”}=1<2={./Type="Airline", ./Carrier= "Tiger 

Airways"} = |C|  

 then PBooking:(./Type="Airline"), (./Departure ^ ./Arrival  � ./Tax)  

does not hold properly on D. 

• If X'=./Departure, |X'|={Departure}⊂{Departure,  Arrival}=|X|, 

then PBooking: (./Type="Airline"^ ./Carrier="Tiger Airways"), 

(./Departure �./Tax) does not hold on D. 

  In the next section, we present our proposed approach, XDiscover, 

for discovering XCFDs from a given XML source associated with a 

schema.  

 

3.4 XDiscover: XML conditional functional dependency 

discovery 

Given an XML data tree D= (V, lab, ele, att, val, r) conforming to a 

schema S= (E, A, T, root); the goal of XDiscover is to discover a set of 
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non-redundant XCFDs in the form ψ = Pl: [C ], X� Y; where each XCFD 

is minimal and contains only a single path in consequence Y.  

 XDiscover aims to discover all non-trivial XCFDs from the data 

source. Our algorithm works in the same manner as candidate generating 

and testing approaches [53, 70, 102]. That is, the algorithms traverse the 

search lattice in a level-wise manner and start finding candidates with small 

antecedents. The results in the current level are used to generate candidates 

in the next level. Pruning rules are employed to reduce the search lattice as 

soon as possible. Supersets of nodes associated with the left-hand side of 

already discovered XCFDs are pruned from the search lattice. Our 

approach identifies more pruning rules (section 3.4.4) than the existing 

approaches. In particular, we include rules to: (i) prune equivalent sets 

relating to already discovered candidates; (ii) eliminate trivial candidates; 

and (iii) remove supersets of nodes related to antecedents of already found 

XCFDs and ignore subsets of nodes associated with conditions of already 

discovered XCFDs.  

 The XDiscover algorithm includes three main functions. The first 

function named search lattice generation, generates a search lattice 

containing all possible combinations of elements in the schema data tree. 

The second function named candidate identification is used to identify 

possible candidates of XCFDs. The last function is called validation and is 

used to validate the identified XCFD candidates to find satisfied XCFDs. 

The detail of each function is described as follows. 

 

3.4.1 Search lattice generation  

We adopt the Apriori-Gen algorithm [4] to generate a search lattice 

containing all possible combinations of node-labels. The process starts 

from nodes with a single label in level d= 1. Nodes in level d with d ≥2 are 
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obtained by merging pairs of node-labels in level (d-1). Fig 3.3 is an 

example of a search lattice of node-labels: A, B and C. Node AC in level 2 

is generated from nodes A and C in level 1. The number of occurrences of 

each node is counted. Nodes with occurrences less than a given threshold 

τ are discarded to limit the discovery to only the frequency portions of 

data. 

 

3.4.2 Candidate identification 

The link between any two direct nodes in the search lattice is a 

representation of a possible candidate XCFD. Assume that W & Z are two 

nodes directly linked in the search lattice. Each edge(W, Z) represents a 

candidate XCFD: ψ =Pl:[C],(X � Y), where W= X ∪ C and Z=W∪{Y}, X 

is a set of variable elements, and C is a set of  conditional elements. For 

example, for edge(W, Z)= edge(AC, ABC) in Fig 3.3, we assume A  is the 

condition, then we have an XCFD  ψ =Pl:  {A}, {C} � {B}.  

 If the condition A is empty, then ψ  becomes a constraint on the 

whole document as an XFD. This means an XFD is a special case of an 

XCFD. To check for the availability of a candidate XCFD represented by 

 

Level 
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 Ø 
 

A  B C 

AB AC BC 

ABC 

Fig 3.3. A set of containment lattice of A, B and C 
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an edge between W and  Z, we examine the set of node-labels in Z  to see 

whether it contains one more node-label than W. After identifying a 

candidate XCFD, a validation process is performed to check whether this 

candidate holds on the data. 

 

3.4.3 Validation 

 Validation for a satisfied XCFD includes two steps. We first calculate 

partitions for node-labels associated with each candidate XCFD, then we 

check for the satisfaction of that candidate XCFD, based on the notion of 

partition refinement [53]. From a general point of view, generating a 

partition for a node-label classifies a dataset into classes based on data 

values coming with that node-label. Each class contains all elements with 

the same value. A partition is defined and calculated as follows:  

 

Definition 3.8. (Partition)  A partition ΠW|l of W on D under the sub-tree 

rooted at node-label l is a set of disjoint equivalence classes wi. Each class 

wi in ΠW|l contains all nodes with the same value. The number of classes in 

a partition is called the cardinality of the partition, denoted by |ΠW|l|. |wi| is 

the number of nodes in the class wi.   

 For example, from schema tree Bookings S in Fig 3.1, we have: 

E={[(1, 0)Bookings] ,[( 2, 1)Booking],[( 3, 2) Carrier], [(4,2) Trip], [(5, 

3) Departure], [(6, 3) Arrival], [(7, 2) Fare], [(8, 2)Tax]}  

From the searching lattice, suppose we consider a partition identifier W= 

“Carrier” which corresponds to the node [(3, 2) Carrier] in schema tree 

S.  Traversing data tree Bookings D in Fig 3.4 finds all data nodes which 

have the node name Carrier and depth of 2.  

The found nodes are grouped into two classes: 
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Class1= { [(23, 2) Carrier= “Tiger Airways”],  [(33, 2) Carrier= “Tiger 

Airways”] , [(53, 2)Carrier= “Tiger Airways”], [(63, 2) Carrier= 

“Tiger Airways”]}   

Class2 ={[(43, 2) Carrier= “Virgin”], [(73, 2) Carrier= “Virgin”]}  

The partition ΠCarrier|Booking to the value of node Carrier with respect to 

sub-tree rooted at Booking is represented as ΠCarrier|Booking = {w1, w2} 

w1= {[(22,1) Booking], [(32, 1) Booking], [(52, 1) Booking], [(62, 1) 

Booking]} 

w2 ={[(42, 1) Booking], [(72, 1)Booking]} 

|ΠCarrier|Booking| = 2; |w1| = 4; |w2| = 2. 

To simplify the presentation, we omit the node-ID and path-ID associated 

with each node in the following sections to avoid cluttering. The validation 

process for a satisfied XCFD is performed follow the following theorem. 

  

 

Fig 3.4. A simplified Bookings data tree: each Booking contains only one Trip 
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Theorem 3.1. Let W= {X}∪{C}, Z=W∪{Y} be two sets of nodes in the 

search lattice, and ΠW and ΠZ be two partitions of W and Z. An XCFD, ψ = 

Pl:[C],(X � Y) holds on data tree D if either of the below conditions is 

satisfied: 

• There exists at least one equivalent pair (wi, zj) between ΠW and ΠZ . 

  or  

• There exists a class ck in ΠC   that contains all elements of a certain pair 

(wi, zj) in ΠW and   ΠZ.  

Proof: the first condition: according to [102], a functional dependency holds on D  

if  every node in a class wi of ΠW is also in a class zj of ΠZ. In our case, the 

satisfied XCFD does not require every class wi in ΠW to be a class zj in ΠZ 

because an XCFD can be true on a portion of D. This means if there exists at least 

one equivalent pair (wi, zj) between ΠW and ΠZ then we conclude that φ  holds 

conditionally on data tree D.     

 The second condition: if there exists a class ck in ΠC containing 

exactly all elements in pair (wi, zj), this means under condition ck, all 

elements in wi, and zj share the same data rules. Then we conclude that the 

XCSD: ψ = Pl: {ck },(X� Y)  holds on data tree D. � 

 The number of candidate XCFDs and the searching lattice are very 

large. In order to improve the performance of XDiscover, we introduce five 

pruning rules used in our approach to remove redundant and trivial 

candidates from the search lattice.  

 

3.4.4 Pruning rules 

We start this section by presenting the theoretical foundation including 

concepts, lemmas and theorems to support our proposed pruning rules.  

Theoretical foundation: we introduce a concept of equivalent sets and 

four lemmas, which are necessary to justify our proposed pruning rules. 
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This is to prove that the pruning rules do not eliminate any valid 

information when nodes are pruned from the search lattice. We employ the 

following rules which are similar to the well-known Armstrong's Axioms 

[12] for functional dependencies in the relational database to prove the 

correctness of the defined lemmas.  

  Let X, Y, Z  be a set of elements of a given XML data D. These rules 

are obtained from adoptions of Armstrong's Axioms [12]. This is, we adapt 

the notation of exiting rules to conform to the notation of our work.  

Reflexivity   If Y ⊆  X, then Pl: X� Y  

Augmentation   If Pl: X� Y, then Pl: XZ� YZ  

Transitivity If Pl: X� Y, Pl: Y� Z, then  Pl: X� Z   

 The following two inference rules can be derived from above three rules 

Union  If  Pl: X� Y  and Pl: Y� Z, then Pl: X� YZ.  

Decomposition If  Pl: X� YZ, then Pl: X� Y  and Pl: X� Z . 

 

Definition 3.9. (Equivalent sets)  

Given W= X and Z=W∪{Y}, if ψ = Pl: (X= “a”)�(Y= “b”) and ψ ' = Pl: 

(Y= “b”) � (X= “a”) hold on D, where a, b are constants; X and Y contain 

only a single data node, then  X and Y are called equivalent sets, denoted 

X↔Y. 

 

Lemma 3.1. Given W= X∪ C and Z=W∪{Y},  X'= X∪{A}, if ψ = Pl:[C], 

(X � Y) then ψ ’= Pl:[C], (X'� Y). 

Proof:   We have ψ = Pl: [C], (X � Y), 

Applying augmentation rule, Pl: [C], (X∪{A}� Y∪{A}) 

Applying decomposition rule, Pl: [C], (X∪{A}� Y) and Pl: [C], (X∪{A}� 

{A}) 

Therefore, Pl: [C], (X'� Y).□ 
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Lemma 3.2.  Given W= X∪ C and Z=W∪{Y},  if ψ = Pl: [C], (X � Y) 

associated to a class wi holds on T then ψ ’= Pl: [C’],(X � Y) holds on D 

where C’ ⊆ C. 

Proof:  If ψ = Pl: [C], (X � Y) associated to a class wi holds on D,  

Assume that C = C’ ∪ C”, 

Applying decomposition rule: Pl:[C’],(X � Y) and Pl: [C”],(X � Y)  

Therefore, Pl: [C'],(X � Y) holds on D including elements from class wi. □  

 

Lemma 3.3. Given W= X and Z=W∪{Y}, if ψ = Pl: (X= “a”)�(Y= “b”) 

holds, and the number of  actual occurrences of expression Y = “b” in T, 

called ob , is equal to the size of |zb|  then X↔Y. 

Proof:  ψ = Pl: (X= “a”)�(Y= “b”) means |wa| = | zb|  (1) 

Since  

we have |zb|= ob , Y=”b” does not occur with any other  antecedence (2) 

From (1) & (2) indicate that Y="b" only occurs with the value of X="a". 

Therefore,  (Y= “b”)�(X= “a”) holds.  X↔Y is proven. □ 

 

Lemma 3.4. Let E be a set of distinct nodes in the D, the XCFD ψ = Pl: 

[C],(X � Y) is minimal if for all A ∈X, where Y ∈R(X\ {A})∪R(C), R(X)= 

{ Y ∈E| ∀A∈X:  Pl: [C],( X\ {A, Y} ք Y)}. 

Proof:  If Y ∉ R(X\ {A})∪  R(C) for a given set X, then Y has been found in 

a discovered XCSD where either the antecedent is a proper subset of X  or 

the condition is a proper subset of C. In such cases,  ψ = Pl:[C],(X � Y) is 

not minimal. □ 

 

Pruning rules: we introduce five pruning rules used in our approach to 

remove redundant and trivial candidates from the search lattice. 
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Particularly, these rules are used to delete candidates at level d-1 for 

generating candidates at level d. Pruning rules 3.1-3.4 are justified by 

Lemmas 3.1-3.4, respectively. Rule 3.5 is relevant to the cardinality 

threshold. The first three rules are used to skip the search for XCFDs that 

are logically implied by the already found XCFDs. The last two rules are 

used to prune redundant and trivial XCFD candidates.  

Pruning rule 3.1. Pruning supersets of nodes associated with the 

antecedent of already discovered XCFDs. If ψ = Pl: [C], (X � Y) holds, 

then candidate ψ ’= Pl: [C], (X'� Y) can be deleted where X' is a superset 

of X. 

 

Pruning rule 3.2. Pruning subsets of the condition associated with already 

discovered XCFDs. If ψ = Pl:[C], (X � Y) holds on a sub-tree specified by 

a class wi, then candidate ψ ’= Pl: [C'], (X � Y) related to wi  is ignored, 

where C’ ⊂  C . 

 

Pruning rule 3.3. Pruning equivalent sets associated with discovered 

XCFDs. If ψ = Pl:(X= “a”)�(Y= “b”) corresponding to edge(W, Z) holds 

on data tree D, and X↔Y then Y can be deleted. 

 

Pruning rule 3.4. Pruning XCFDs which are potentially redundant. If for 

any A∈X, Y ∉ G(X\{A})∪  G(C), then skip checking the candidate ψ = Pl: 

[C], (X� Y).  

 

Pruning rule 3.5. Pruning XCFD candidates considered to be trivial. 

Given a cardinality thresholdτ , τ >=2, we do not consider class wi 

containing less than τ elements i.e. |wi|<τ . XCFDs associated with such 
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classes are not interesting. In other words, we only discover XCFDs 

holding for at least τ sub-trees.  

 

3.4.5 XDiscover Algorithm 

We first introduce the concept and the theorem on the Closure set of 

XCFDs, which is used for completeness of the set of XCFDs discovered by 

XDiscover. Then, we present the detail of XDiscover. Finally, we also give 

a theorem (Theorem 3.2) to specify that the set of XCFDs discovered by 

XDiscover from a given source is greater than or equal to the set of XFDs 

which hold on that source. 

 

Definition 3.10. (Closure set of XCFDs)  Let G be a set of XCFDs. The 

closure of G, denoted by G
+
, is the set of all XCFDs which can be deduced 

from G using the above Armstrong's Axioms. 

 

Theorem 3.2. Let G be the set of XCFDs that are discovered by XDiscover 

from D and G
+ 

be the closure of G. Then, an XCFD ψ = Pl: [C], ( X � Y ) 

holds on T iff ψ ∈ G
+
. 

Proof:  For a candidate X and Y, we first prove that if a constraint XCFD ψ  

holds on D then the constraint ψ  is in G
+

. After this, we prove that if  ψ  is 

in G
+ 

then ψ  holds on D. 

  (i)  Proving if   ψ = Pl: [C], ( X � Y ) holds on D  then ψ ∈ G
+ 

 Suppose constraint ψ  holds on D, ψ  may be directly discovered by 

XDiscover.  

• If  ψ  is discovered by XDiscover, then  ψ ∈ G. Therefore,  ψ ∈ G
+
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• If ψ  is not discovered by XDiscover, this means either X is pruned by 

pruning rule 1 or condition C is pruned by pruning rule 3.2 or Y is 

pruned by pruning rule 3.3 and 3.4. Hence, ψ ∈ G
+
. 

ii)  Proving if  ψ  ∈ G
+ 

then ψ  holds on D.  

Suppose that  ψ = Pl: [C], ( X � Y )  is in  G
+ 

 but ψ does not hold in D 

Since ψ ∈ G
+
, this means, it can be logically derived from G. That is, there 

exists at least a set of elements Z associated to two constraints in G, such 

that ψ ’= Pl: [C], ( X � Z )  and ψ ’’ = Pl: [C], ( Z � Y )  to derive 

transitively ψ . Therefore,  ψ  is satisfied by D. □ 

 

XDiscover algorithm. Listing 3.1 presents our proposed XDiscover 

algorithm to find XCFDs from a given data tree D. Our algorithm traverses 

the searching lattice following a breadth-first search manner combining 

 

Listing 3.1: The XDiscover algorithm 

Algorithm: XDiscover 

Input: XML data tree D=(V, lab, ele, att, val, r) schema tree S=(E, A, T, root) 

Output: a minimal set of XCFDs 

1. DF ← { Ø }; 

2. Level d←1;  

3. PId← E;  

4. GPl ← generatePartition(D, PId);  

5. While |PId |≠ { Ø } do 

6. d++; 

7. PId ← generatePartitionIdentifier(GPd);  

8. GPd ← generatePartition(D, PId); 

9. DF← DF ∪ discoverXCFD(GPd, GPd-1); 

10. Prune(GPd-1);   

11. Return (DF). 
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with pruning rules. The searching process starts from level 1 (d=1); all 

nodes from E are stored in Partition Identifier PI1= {v1, v2,… vn} (line 3). 

Each node in E is a partition identifier with a single label associated with 

some candidate XCFDs. Partitions of Partition identifiers are generated and 

stored in GP1 - Generated Partition (line 4). At level d > 1, node labels are 

generated from PId -1 and  stored in PId (line 7) in the form vivj; where vi≠vj;  

vi, vj
∈PId-1; PId-1 contains node labels at level (d-1);  all partitions of vivj 

nodes at level d are generated and stored in GPd.  

 
Algorithm: discoverXCFD 

Input: GPl , GPl-1 // partitions at level l and l-1    

Output: satisfied XCFDs 

1. DF← {Ø};  

2. For each partition of W ∈  GPl-1 do 

3. For each partition of Z ∈  GPl do   

4. If Z = (W ∪  {Y}) then    

5. ΩW← subsumed wi;  

6. While ΩW <> {Ø} do 

7. For each class wi ∈  ΠW do 

8. For each class zi ∈   ΠZ do 

9. If ((|wi|>τ ) and (|wi| = |zi |))  then   

10. DF← DF ∪   (C, X � Y); 

11. ΩW← ΩW \ (wi ∈(C, X � Y)); 

12. If not found XCFD then  

13. generateAdditionPartition;  

14. For each ci in C do    

15. If   ci contains values only from ΩW then  

16. DF← DF ∪   (C, X � Y); 

17. ΩW← ΩW \ (wi ∈(C, X � Y)); 

18. Return(DF). 

 

Listing 3.2: The discoverXCFD algorithm 
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 All candidates in the form ci,wi � zj are checked; where vi= wici, 

vj=wicizj and  zj ∈PI1 \ (wi ∪  ci). The validation for a satisfied XCFD 

follows the approach described in Section 3.4.3 (line 9: function 

discoverXCFD in Listing 3.2). The found XCFDs are stored in DF - the 

discovered set of XCFDs. Then the Prune function containing the pruning 

rules is performed to prune redundant nodes and edges from the searching 

lattice for the next level (line 10). The searching process is repeated until 

no more partition identifiers are considered (line 5). The output of 

XDiscover is a set of minimal XCFDs. 

 The function of discoverXCFD depicted in Listing 3.2 searches for 

XCFDs at each level d. If there still exists classes in ΠW which do not 

belong to any discovered XCFD, then we continue to consider such classes 

with additional condition nodes. discoverXCFD calls the 

generateAdditionPartition function to calculate partitions with additional 

condition nodes. The discoverXCFD returns XCFDs to XDiscover. 

 The following theorem is to specify that the set of XCFDs 

discovered by XDiscover from a given source is greater than or equal to the 

set of XFDs which hold on that source. 

 

Theorem 3.3. Let G  be the set of XCFDs obtained from D  by applying 

XDiscover and F be a set of possible XFDs hold on D,  then |G|≥  |F|.   

 

Proof: we refer to the source instance as D= (V, lab, ele, att, val, r) 

conforming to a schema S= (E, A, T, root. G is a set of discovered XCFDs. 

The expression form of XCFD is ψ = Pl: [C], ( X � Y ). 

 Let N be a set of elements in S, N={e1, e2,..,en}. The domain of ei is 

denoted as dom(ei). dom(ei)= { }i

k

ii eee ,..,, 21 , k >1. Assume that F= { 1ϕ , 

2ϕ ,.., mϕ } is a set of traditional XFDs on D, where iϕ = Wi → ei,  Wi⊂N,  ei 

⊄Wi, i=1..m.  
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 Suppose that there exist dependencies capturing relationships among 

data values in iϕ . This means ∀ t

ie ∈dom(ei), ∃ iψ , iψ = Ci →
t

ie , where ∀ ec 

⊂  Ci, ec is related to a value in dom(ec), Ci ≡ Wi , iψ  is an extension 

of iϕ where each element in either the antecedent or consequence of iϕ  is a 

value in its domain. We do not consider an element which has the same 

value on the whole document. This means the number of distinguished 

values associated with ei is greater than 1( |dom(ei)| >1 ). Therefore, ei is 

identified by a set of dependencies Gi extended from iϕ , instead of only one 

functional dependency iϕ . In other words, we have  

 |Gi| > 1= |{ iϕ }| (1) 

 Suppose that semantic inconsistencies appear in D. This means 

different dependencies exist to identify the value of the consequence ei in 

iϕ , denoted (C( iϕ )). 

 Let iϕ = Wi → ei, Wi⊂N,  ei ⊄Wi, i=1..m. 

 ∀ ei ⊂  C( iϕ ), ∃ iψ , jψ :  

 iψ = [Ci], ( Xi→ ei )  

 jψ = [Cj], ( Xj→ ei ) ,  

 where  iψ ≠ jψ , i ≠ j, Ci ∪  Xi = Wi, Cj ∪  Xj = Wi. 

  ∀ ec ⊂  Ci ∪  Cj,  ec is related to a value in dom(et), 

  ∀ ev⊂  Xi ∪  Xj, ev is either a value in dom(ev) or a variable. 

 We can see that ei is identified by a set G'i of conditional 

dependencies instead of only one functional dependency iϕ . Hence,  

 |G'i| >=2 > |{ iϕ }| (2) 

Without loss of generality, from (1) & (2), we have  |G|= |
mi ..1=∪ {G'i}| > 

|{ iϕ }i=1..m| = |F|. In other words, the number of discovered XCFDs is much 

greater than the number of XFDs. Each consequence ei of a dependency is 
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identified by a set of XCFDs which include traditional XFDs and its 

extensions. □ 

 In the following section, we present a summary of the experiments 

and comparisons between XDiscover and a related approach. 

3.5 Experimental analysis 

We evaluate the performance of our XDiscover using a comprehensive set 

of experiments on synthetic and real datasets. 

3.5.1 Synthetic data 

Datasets: our dataset is on Flight Bookings, which is an extension of the 

"Flight Bookings" data shown in Fig 3.2. The dataset contains 150 

Bookings. All data represents real relationships between elements with 

inconsistent data rules. Such specifications are needed to verify the 

existence of constraints holding conditionally on XML data.  

Parameters: The cardinality threshold τ  determining a minimum number 

of classes associated with interesting XCFDs was set from 2 to 4 with 

every step of 1.  

System: we ran experiments on a PC with an Intel i5, 3.2GHz CPU and 

8GB RAM. The implementation was in Java and data was stored in 

MySQL.   

Comparative evaluation: to the best of our knowledge, there are no similar 

techniques for discovering constraints which are equivalent to XCFDs. 

There is only one algorithm which is close to our work, denoted Yu08, 

introduced by Yu et al. [102], for discovering XFDs. Such XFDs are 

considered as XCFDs containing only variables. Both approaches use 

partitioning techniques with respect to data values to identify dependencies 

from a given data source. Therefore, we choose Yu08 to draw comparisons 

with our approach on the number and the semantics of discovered 
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constraints. Our purpose is to evaluate the correctness of XDiscover in 

discovering constraints.  We ran experiments on the Flight Bookings 

datasets as described above. The comparisons relate to: (i) the number of 

discovered constraints; and (ii) the specifications of the discovered 

constraints. 

XDiscover Yu08 
 

τ  # discovered constraints  # discovered constraints  

τ = 2 23 7 

τ = 3 16 7 

τ = 4 13 7 

Table 3.1. XDiscover vs Yu08 on the number of discovered constraints 

 

XDiscover  Yu08 

PBooking: (./Carrier= “Tiger 

Airways”, ./Fare) �./Tax   

PBooking: ./Fare →. /Tax 

 

PBooking: (./Carrier = “Virgin” ^ 

./Trip/Arrival = “BNE”) � (./Tax = 

“20”) 

PBooking: ./Trip/Departure, 

./Trip/Arrival →./Tax 

Table 3.2.  Samples of constraints discovered by XDiscover vs that of Yu08  

 

The results in Table 3.1 show that while our approach returns from 13 to 23 

constraints, Yu08 discovers only 7 constraints. This is because Yu08 does 

not consider conditional constraints holding on a subset of Flight Bookings 

as XDiscover does.  

Table 3.2 represents the certain number of  constraints discovered by 

XDiscover and Yu08.  Yu08 returns inaccurate rules like  

 PBooking: ./Fare →. /Tax,   

 PBooking: ./Trip/Departure, ./Trip/Arrival →./Tax  

while DisX discovers more specific and accurate dependencies  
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PBooking: (./Carrier = “Virgin” ^ ./Trip/Arrival = “BNE”) � (./Tax = 

“20”). 

 In general, the set of constraints discovered by XDiscover is much 

more numerous than Yu08. This is because XDiscover considers 

conditional constraints. Yu08 returns inaccurate rules since Yu08 does not 

consider conditional semantics as XDiscover does. Constraints returned by 

XDiscover are more specific and accurate than constraints returned by 

Yu08. The existing algorithm discovers XFDs containing only variables 

(e.g. ./Fare and ./Tax) and can not detect dependencies which hold 

partially on documents with conditions. Our approach discovers constraints 

containing both variables and constants (e.g. ./Carrier= "Virgin" and 

./Trip/Arrival="BNE"), or either variables or constants that allow the 

detection of more interesting semantic constraints than algorithms to 

discover XFDs.  

 

3.5.2 Real life data 

 Although synthetic dataset can help us analyze the real potential of the 

approach, experiments on real datasets are necessary to test its practicality. 

We ran experiments on two available real life datasets including: 

wikibooks from Wikimedia [96] and the  CD dataset as used in [95]. 

wikibooks consist of about 19 schema elements, the max schema depth 

being 5. It contains 900 pages (14200 data elements). The CD dataset 

contains 9763 CDs which is randomly extracted from FreeDB database. It 

includes 21 schema elements and the max schema depth is 4. The CD 

dataset contains 298 duplicate objects. We ran XDiscover on these datasets 

to find the number of checked candidates, the discovery time and the 

number of discovered constraints in each case. The results summarized in 

Table 3.3 show that the cardinality threshold influences to the time 
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consuming and the number constraints discovered by XDiscover. 

XDiscover works more effectively, in terms of consuming time, when the 

cardinality threshold is higher. This means XDiscover deals effectively on 

data sources with constraints holding on a large number of objects. 

 

Datasets wikibooks CD Datasets 

Cardinality threshold  τ  τ = 2 τ = 3 τ = 4 τ = 2 τ = 3 τ = 4 

#Candidate checked  221 108 88 427 248 195 

#Discovery time(seconds) 106 95 88 334 258 226 

#discovered constraints 15 13 8 61 44 21 

Table 3.3. Analyzing real life datasets 

 

We present case studies to further demonstrate the effectiveness of the 

proposed approach in the next section. 

 

3.6 Case studies 

We use the Flight Booking XML data for our case studies. From schema 

Bookings S in Fig 3.1, we have E={Bookings, Booking, Carrier, Trip, 

Departure, Arrival, Fare, Tax}. The cardinality threshold τ  determines 

the classes associated with interesting XCFDs. τ  affects the results of 

XDiscover due to changes in the number of classes which need to be 

checked. If the value of τ is too large, then only a small number of 

equivalent classes is satisfied, which might result in a loss of interesting 

XCFDs. Therefore, in our case studies, we fix the value of τ at 2, which 

means we only consider classes with cardinality equal to or greater than 2. 

We do not consider constraints holding for only one specific sub-tree, as 

such constraints are considered trivial. 
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Case 3.1. XCFDs contain only constants.  

Suppose data tree D in Fig 3.4 conforms to schema Bookings S and each 

Booking only contains one Trip as shown in D.  

Consider edge(W, Z)= (Carrier-Arrival, Carrier-Arrival-Tax). 

Follow the process described in section 3.4.1 to generate two partitions of 

Carrier-Arrival and Carrier-Arrival-Tax with respect to the sub-tree 

rooted at Booking. To simplify the presentation, we omit the node label 

(e.g. Booking) associated to each node in the classes. 

ΠCarrier, Trip/Arrival|Booking  = { w1, w2, w3, w4} 

={{(22,1)}, {(32,1), (52,1)}, {(42,1), (72, 1)}, {(62, 1)}}   

ΠCarrier, Trip/Arrival, Tax|Booking  = { z1, z2, z3, z4, z5} 

={{(22,1)},{(32,1)}, {(42,1), (72,1)}, {(52,1)}, {(62,1)}}   

 We can see that w3 in ΠCarrier, Trip/Arrival|Booking  is equivalent to z3 in 

ΠCarrier, Flight/Arrival, Tax|Booking . That is, w3 = z3 ={(42,1), (72,1)}. Nodes in 

w3 have the same value of Carrier= “Virgin” and Arrival= “BNE”.   

Nodes in z3 share the same value of Tax = “20”. An XCFD is discovered: 

ψ 1= PBooking: (./Carrier = “Virgin” ^ ./Trip/Arrival = “BNE”) � (./Tax 

= “20”). 

 This case demonstrates the XCFD contains only constants. For each 

XFD, there might exist a number of conditional dependency XCFDs which 

refine this XFD by binding particular values to elements in its 

specification. Such constraints cannot be expressed by using the XFD 

notion.  

 

Case 3.2. XCFDs contain both variables and constants. 

Using the same assumption in case 1, considering edge (W, Z)= edge 

(Fare, Fare-Tax), two partitions of Fare and Fare-Tax with respect to 

the sub-tree rooted at Booking: 
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ΠFare|Booking  = {w1, w2}={{(22, 1), (32, 1), (72, 1)}, {(42, 1), (52, 1), (62, 

1)}} 

ΠFare, Tax|Booking  = { z1, z2, z3, z4}={{(22,1), (32,1)}, {(42,1)}, {(52, 1), (62, 

1)}, {(72, 1)}}   

 There does not exist any equivalent pair between the two partitions 

ΠFare|Booking and ΠFare, Tax|Booking. We need to add more data nodes from 

the remaining set of E\{W∪Z}. For example, the node of Carrier can be 

added to edge(Fare, Fare-Tax) as a conditional data node. We now consider 

edge(W’, Z’)= (Carrier-Fare, Carrier-Fare-Tax). Partitions of 

Carrier-Fare and Carrier-Fare-Tax with respect to the sub-tree rooted 

at Booking are as follows:  

ΠCarrier, Fare|Booking  = {w’1, w’2, w’3, w’4}={{(22,1), (32, 1)}, {(42,1)},{(52, 

1), (62, 1)}, {(72, 1)}} 

ΠCarrier, Fare, Tax|Booking  = { z’1, z’2, z’3, z’4}={{(22, 1), (32, 1)}, {(42, 1)}, 

{(52, 1), (62, 1)}, {(72, 1)}}   

The partition of the condition node Carrier:   

ΠCarrier|Booking  = { c1, c2, c3}={{(22, 1), (32, 1), (52, 1), (62, 1)}, {(42, 

1)},{(72, 1)}}   

 We have two equivalent pairs (w’1, z’1) and (w’3, z’3) between 

ΠCarrier, Fare|Booking & ΠCarrier, Fare, Tax|Booking with |w1|=2≥τ  and |w3|=2 

≥τ . Furthermore, there exists a class c1 in ΠCarrier|Booking containing exactly 

all elements in w’1∪  w’3.  All elements in class c1 have the same value for 

Carrier = “Tiger Airways”. This means the nodes in classes w’1 and w’3 

share the same condition (./Carrier = “Tiger Airways”). Therefore, an 

XCFD ψ = PBooking: (./Carrier= “Tiger Airways”, ./Fare) �./Tax  is 

discovered.  
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Case 2 illustrates techniques to find an XCFD with extra data nodes 

which are referred to as the condition of the XCFD. Such XCFDs contain 

both variables and constants.    

 

Case 3.3. Partition identifiers contain a set of complex nodes.   

Suppose data tree D in Fig 3.5 conforms to schema Bookings S in Fig 3.1. 

Each Booking contains multiple complex nodes Trip. For partition 

identifiers containing a set of complex data nodes, the calculating partitions 

are processed in a bottom-up fashion. We first consider the sub-tree rooted 

at the bottom level in the data tree (e.g Trip) to calculate partitions. Then, 

we convert all classes in each generated partition into the corresponding 

parent of this complex node (i.e., the parent of Trip is Booking) to find 

the refinement. We repeat converting the found partition to obtain its 

refinement until reaching the sub-tree rooted at the considered nodes (i.e., 

Booking). The validation for a satisfied XCFD is similar to the cases 

which deal with the partition identifier which contain single data nodes. 

 Consider edge(Trip, Tax) with respect to the sub-tree rooted at 

Booking. We start generating partitions under the sub-tree rooted at Trip. 

Following the process described in section 3.4.1, we partition the nodes 

according to each Trip (including Departure and Arrival) under the sub-

tree rooted at Trip: 

ΠTrip/Departure, Trip/Arrival|Trip = {{(104, 2), (124, 2)}, {(107, 2), (127, 2)}} 

 Then, converting these classes into the Booking sub-tree, we have a 

refinement:  ΠTrip|Booking = {{(102, 1), (122, 1)}}.  Validating for a 

satisfied XCFD is done similarly to a case which partition identifiers 

contain only single data nodes. The discovered XCFD is represented in the 

form: 
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 ψ 2=PBooking:(./Carrier=“Virgin”,{./Trip})�(./Tax); where 

{./Trip} represents a set of complex data nodes Trip including 

Departure and Arrival.  

In a case where there is only one Trip node in the constraint, the XCFD 

can be represented as:  

 ψ ’2 = PBooking: (./Carrier = “Virgin”, ./Trip)� (./Tax), 

ψ ’2 is a special case of ψ 2.  Generally, a partition identifier containing 

simple nodes is a special case of the partition identifier containing complex 

nodes. Therefore, we apply the same process to deal with the partition 

identifiers which contain complex nodes for both cases. 

 

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

Fig 3.5. A simplified Bookings data tree: each Booking contains a set of complex element Trip 
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3.7 Summary 

This chapter addressed the issues of data inconsistency caused by semantic 

inconsistencies. Specifically, we introduced the notion of XML conditional 

functional dependency which incorporates conditions into dependencies to 

express constraints with conditional semantics. We proposed the 

XDiscover algorithm based on semantics hidden in the data to discover a 

set of possible XCFDs from a given XML data instance. We proposed a set 

of pruning rules incorporated into the discovery process to improve the 

performance of XDiscover. Experiments on synthetic and real life datasets, 

and case studies were used to evaluate XDiscover. In our experiments, we 

show that XDiscover can discover more situations of dependencies than the 

XFD approach. XCFDs also have more expressive power, in term of 

constraining data consistency, than that of XFDs.  Our approach can be 

used to enhance data quality management by suggesting possible rules and 

identifying non-compliant data. Discovered XCFDs also can also be 

embedded into an enterprise’s systems as an integral part to support the 

manipulation of data. Data inconsistency can be caused by structural 

inconsistencies inherent in heterogeneous XML data sources. Therefore, 

our work will be further extended to address such problems in the next 

chapter. 

 



3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY 

 

72 



4. STUCTURED CONTENT-AWARE DISCOVERY  

FOR IMPROVING XML DATA CONSISTENCY 

 

 

73 

4.  

 

 

Chapter 4 

 

Structured content-aware discovery  

for improving XML data consistency 

 

The goal of this thesis is to find principles for improving XML data 

consistency. The previous chapter introduced a content-based discovery 

approach to discover XML conditional functional dependencies from a 

given data source conforming to a given schema. This is to resolve the data 

inconsistency caused by semantic inconsistencies. Our intention is to 

extend this approach to deal with data inconsistency caused by either 

structural or semantic inconsistencies. This chapter introduces a structured 

and content-based approach to discover anomalies where a data tree does 

not follow any schema. Our work includes the concept of conditions as in 

XCFDs and adds a new notion of similarity to work properly in XML data.  

 

4.1 Introduction 

One of the main features of XML is that it can represent different kinds of 

data from different data sources. Two predominant proposals exist, namely 

DTD (Document Type Definition) [49, 54] and XML Schema [90] to 
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specify the structure of a class of XML documents. However, such 

proposals have not yet emerged as a standard. In addition, XML documents 

are flexible which can represent different kinds of data from different data 

sources. Each source might have its own structural definitions by 

modifying the original schema [88]. Thus, we cannot assume that each 

XML document always has a schema defining its structure. In such cases, 

data inconsistencies often arise from both structural and semantic 

inconsistencies inherent in the heterogeneous XML data sources.  

Structural inconsistencies arise when the same real world concept is 

expressed in different ways, with different choices of elements and 

structures, that is, the same data is organized differently [35, 75, 95]. This 

is because XML data is integrated from different data sources which might 

have nearly or exactly the same information but are constructed using 

different structures. Even though two objects express similar information, 

each of them may have some extra information with respect to the other. 

Semantic inconsistencies occur when business rules on the same data vary 

across different fragments [79]. To the best of our knowledge, there is 

currently no existing approach which fully addresses the problems of data 

inconsistencies in XML. In the previous chapter, we propose an approach 

to discover a set of XML conditional functional dependencies (XCFDs) 

that targets semantic inconsistencies.  

This chapter addresses the problem of data inconsistencies caused 

by both semantic and structural inconsistencies. We assume that XML data 

are integrated from multiple sources in the context of data integration, in 

which labeling syntax is standardized and data structures are flexible. We 

first introduce a novel constraint type, called XML conditional structural 

functional dependencies (XCSDs), which represent relationships between 

groups of similar real-world objects under particular conditions. They are 
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constraints in which functional dependencies are incorporated, not only 

with conditions as in XCFDs to specify the scope of constraints but also 

with a similarity threshold. The similarity threshold here is used to specify 

similar objects on which the XCSD holds. The similarity between objects is 

measured based on their structural properties using our newly proposed 

structural similarity measurement. Thus, XCSDs are able to validate data 

consistency on the identified similar, instead of identical, objects in data 

sources with structural inconsistencies.  

In addition, we propose an approach, named SCAD, to discover 

XCSDs from a given data source. SCAD exploits semantics explicitly 

observed from data structures and those hidden in the data to detect a 

minimal set of XCSDs. Structural semantics are derived by our proposed 

method, called data summarization, which constructs a data summary 

containing only representative data for the discovery process. The rationale 

behind this is to resolve structural inconsistencies. Semantics hidden in the 

data are explored in the process of discovering XCSDs. Experiments and 

case studies on synthetic data were used to evaluate the feasibility of 

SCAD. The concept of minimal XCSD is the same as that of XCFD 

(Definition 3.7).  

 The remainder of this chapter is organized into eight sections. 

Section 4.2 presents preliminaries. Section 4.3 presents a new 

measurement, called the structural similarity measurement, which is 

necessary to introduce the XCSDs described in Section 4.4. Our proposed 

approach, SCAD, is described in Section 4.5. The complexity analysis of 

SCAD is presented in Section 4.6. Section 4.7 covers the experiment 

results. Case studies are presented in Section 4.8. Finally, Section 4.9 

concludes the chapter.  
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4.2 Preliminaries 

In this section, we give some preliminaries including: (i) considering a 

variety of examples of constraints to further illustrate the anomalies 

existing in XML data, and discussing the limitations of the existing work in 

expressing such constraints. This is to emphasize the needs to propose a 

new type of constraint to capture data inconsistency in XML data; and (ii) 

presenting the definition of a data tree used in this chapter. 

 

4.2.1 Constraints  

Fig 4.1 is a simplified instance of data tree T for Bookings. Each 

Booking in T contains information on Type, Carrier, Departure, 

Arrival, Fare and Tax. Values of elements are recorded under the 

element names. We give examples to demonstrate anomalies in XML data. 

All examples are based on the data tree in Fig 4.1. 
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Fig 4.1. A simplified Bookings data tree contains structural and semantic inconsistencies 
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Constraint 1:  For any Booking having the same Fare should have the 

same Tax. 

Constraint 2a: For any Booking of "Airline" having Carrier of 

"Qantas", the Departure and Arrival determines the Tax.  

Constrain 2b:  Any Booking of "Airline" having Carrier of "Tiger 

Airways", the Fare identifies the Tax.  

 

Constraint 1 holds for all Bookings in T. Such a constraint contains only 

variables (e.g. Fare and Tax), commonly known as an XFD. Constraints 

2a and 2b are only true under given contexts. For instance, constraint 2a 

holds for Bookings with Type of "Airline" and Carrier of "Qantas". 

Constraint 2b holds for Bookings with Type of "Airline" and Carrier of 

"Tiger Airways". These are examples of constraints holding locally on a 

subset of data. Conditional semantics are common in real data, especially if 

a data tree contains integrated data from multiple sources, then a constraint 

may hold only on a portion of the data obtained from one particular source 

[48]. Constraints 2a and 2b are examples of semantic inconsistencies, that 

is, for Bookings of “Airline”, values of Tax might be determined by 

different business rules. Tax is determined by Departure and Arrival for 

Carrier of "Qantas" (e.g. Constraint 2a). Tax is however identified by 

Fare for Carrier of "Tiger Airways" (e.g. Constraint 2b). We can see that 

while Bookings of node (2, 1) and node (12, 1) describe the data which 

have the same semantics, they employ different structures: Departure is a 

direct child of the former Booking, whereas it is a grandchild of the latter 

Booking with an extra parent node, Trip. This is an example of structural 

inconsistencies. Detecting data inconsistencies as violations of XFDs fails 

due to the existence of such constraints. 
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 We now consider the different expression forms of XFDs under the 

Path-based approach [82] and the Generalized tree tuple-based approach 

[102] presented in Table 4.1. It is possible to see that both notions 

effectively capture the constraints holding on the overall document. For 

example, Constraint 1 can be expressed in the form of P1 under the Path-

based approach and G1 under the Generalized tree tuple-based approach. 

The semantics of P1 is as follows: "For any two distinct Tax nodes in the 

data tree, if the Fare nodes with which they are associated have the same 

value, then the Tax nodes themselves have the same value". The semantics 

of G1 is, "For any two generalized tree tuples CBooking, if they have the 

same values at the Fare nodes, they will share the same value at the Tax 

nodes". The semantics of either P1 or G1 are exactly as in the original 

constraint 1. 

Constraint Path-based approach [82] Generalized tree tuple-based 

approach [102] 

General 

form 

{Px1,..,Pxn}� Py, 

where Pxi are the paths specifying 

antecedent elements, Py: is the 

path specifying a consequent 

element. 

LHS� RHS w.r.t Cp,  

where LHS is a set of paths 

relative to p, and RHS is a single 

path relative to p, Cp is a tuple 

class that is a set of generalized 

tree tuples.  

1 

P1: 

{Bookings/Booking/Fare} � 

{Bookings/Booking/Tax}  

G1: 

{./Fare}� ./Tax w.r.t CBooking 

2a 

P2a: 

{Booings/Booking/Departure, 

Bookings/Booking/Arrival} � 

{Bookings/Booking/Tax} 

G2a: 

{./Departure,./Arrival}� 

./Tax w.r.t CBooking 

 

Table 4.1. Expression forms of XML functional dependencies. 
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 However, neither of the two existing notions can capture a constraint 

with conditions. For example, the closest forms to which constraint 2a can 

be expressed under [82] and [102] are P2a and G2a, respectively. The 

semantics of such expressions is only: "Any two Bookings having the 

same Departure and Arrival should have the same Tax". Such 

semantics is different from the semantics of the original Constraint 2a 

which includes conditions: Booking of "Airline" and Carrier of "Qantas". 

Moreover, neither existing notions can capture the semantics of constraints 

holding on similar objects. For example, neither P2a nor G2a can capture 

the semantic similarity of Booking(2, 1) and Booking(12, 1) (refer to 

Figure 1). Under such circumstances, these two Bookings are considered 

inconsistent because Departure and Arrival in Booking(2, 1) and 

Booking(12, 1) belong to different parents. Departure and Arrival are 

direct children of the former Booking and are grandchildren of the latter 

Booking. Our proposed XCSDs address such semantic limitations in 

expressing the constraints in previous work. 

 

4.2.2 XML Data tree  

An XML instance is considered as a rooted-unordered-labeled tree. Each 

element node is followed by a set of element nodes or a set of attribute 

nodes. An attribute node is considered a simple element node. An element 

node can be terminated by a text node.  An XML data tree is formally 

defined as follows.  

 

Definition 4.1. (XML data tree) 

An XML data tree is defined as T= (V, E, F, root), where 
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• V is a finite set of nodes in T, each node v ∈V consists of a label l and 

an id that uniquely identify v in T. The id assigned to each node in the 

XML data tree, as shown in Figure 1, is in a pre-order traversal. Each 

id is a pair (order, depth), where order is an increasing integer (e.g. 1, 

2, 3...) used as a key to identify a node in the tree; depth label is the 

number of edges traversing from the root to that node in the tree, e.g. 

1 assigning for /Bookings/Booking. The depth of the root is 0. 

• E ⊆  V x V is the set of edges.  

• F is a set of value assignments, each f (v)= s ∈F is to assign a string s 

to each node v ∈V. If v is a simple node or an attribute node, then s is 

the content of node v, otherwise if v has multiple descendant nodes, 

then s is a concatenation of all descendants' content.  

• root is a distinguished node called the root of the data tree. 

An XML data tree defined as above possesses the following properties:  

For any nodes vi, vj ∈ V: 

• If there exists an edge(vi, vj) ∈E, then vi is the parent node of vj, 

denoted as parent(vj), and vj is a child node of vi, denoted as 

child(vi).  

• If there exists a set of nodes {vk1,..,vkn} such that vi = parent(vk1),..,vkn 

= parent(vj), then vi is called an ancestor of vj, denoted as ancestor(vj) 

and vj is called a descendant of vi, denoted as descendant(vi).  

• If vi and vj have the same parent, then vi and vj are called sibling 

nodes. 

• Given a path p= {v1v2...vn}, a path expression is denoted as path(p)= 

/l1/../ln, where lk is the label of node vk for all k ∈[1,.., n]. 

• Let v= (l, id, c) be a node of data tree T, where c is the content of v. If 

there exists a path p' extending a path p by adding content c into the 
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path expression of p such that p'= /li/../lj /c, then p' is called a text 

path. 

• {v[X]} is a set of nodes under the subtree rooted at v. If {v[X]} 

contains only one node, it is simply written as v[X].  

 An XCSD might hold on an object represented by variable 

structures. In such cases, checking for similar structures is necessary to 

validate the conformation of the object to that XCSD.  To do this, in the 

next section, we propose a method to measure the structural similarity 

between two sub-trees.  

 

4.3 Structural similarity measurement 

The similarity between sub-trees is in general independent of the particular 

technique adopted to measure the semantics between two XML elements. 

Any technique which aims to assess whether two elements refer to the 

same object can be used. Our method follows the idea of structure-only 

XML similarity [24, 73]. That is, the similarity between sub-trees is 

evaluated, based on their structural properties, and data values are 

disregarded. We consider that each sub-tree is a set of paths, and each path 

starts from the root node and ends at the leaf nodes of the sub-tree. 

Subsequently, the similarity between two sub-trees is evaluated, based on 

the similarity of two corresponding sets of paths. The more similar paths 

the two sub-trees have, the more similar the two sub-trees are.  

 

4.3.1 Sub-tree Similarity 

Given two sub-trees R and R' rooted at nodes having the same node-label l 

in T. R and R' contain m and n paths, respectively: R =(p1,..,pm)  and R' = 
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(q1,..,qn), where each path starts from the root node of the sub-tree. The 

similarity between two sub-trees R and R' is denoted by dT(R, R'). Both 

Cosine [98] and Jaccard [97] functions can be easily adopted to calculate 

the similarity between two sub-trees. The Cosine function is used to 

measure the similarity of two non-binary vectors. The Jaccard function is 

often used to measure the similarity of two objects consisting of 

asymmetric binary attributes (e.g. 1 and 0). Obviously, the choice of the 

similarity function is highly dependent on the representation used to 

describe the two sub-trees. In this work, the similarity between two sub-

trees R and R' is evaluated, based on two sets of weights (w1,..,wm) and 

(w1,..,wn), where wi and w'i are the path similarity weights of two paths pi 

and pj in the corresponding sub-trees R and R'. The values of wi and w'i are 

real numbers in a range of [0, 1]. Therefore, we used the Cosine similarity 

formula to compute the similarity between sub-trees.  

In our adopted formula, each set of weight can be considered a non-

binary vector where each dimension corresponds to a path similarity 

weight. Consequently, the similarity between two sub-trees is measured 

based on two non-binary vectors of weights and it is computed as:  

dT(R, R')=  

∑∑

∑

i

i

i

i

i

i

i

ww

ww

2'2
.

. '

, 

where wi and wi' are the path similarity weights of  pi and qi  in the 

corresponding sub-trees R and R', and the value of dT(R, R')∈ [0, 1] 

represents that the similarity of two sub-trees changes from a dissimilar to 

similar status. By defining dP(pi, qj) as the path similarity of two paths pi 

and qj, the weight wi of  path pi in R to R' is calculated as the maximum of 

all dP(pi ,qj),  where  1≤  j ≤n. The term of path similarity dP(pi ,qj) is 

described in the next subsection. 
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 List 4.1 represents the subtree_Similarity algorithm to calculate the 

similarity between two sub-trees. The algorithm first calculates the weight 

wi of each path pi in R  to R' for all 1≤ i ≤m (line 2-3). Then the weight  w'j 

of each path qj in R' to R is calculated for all 1≤ j ≤n  (line 5- 6). This 

means two sets of weights (w1,..,wm ) and (w1,..,wn) are computed. If the 

cardinalities of the two sets are not equal, then the weights of 0 are added 

to the smaller set to ensure the two sets have the same cardinality (line 7-

 

List 4.1. The subtree_Similarity algorithm 

Algorithm: subtree_Similarity 

Input: Two sub-trees R and R' contain paths (p1,…, pm) and  (q1,..,qn) respectively. 

Output: dT(R, R') 

Process: 

1. //calculating the weight vector of R 

2. For each path pi  in R  do  

3.  wi  ← max j=1..n {dP(pi, qj)} 

4. //calculating the weight vector of R' 

5. For each path qj  in R'  do 

6.  w'j ← max i=1..m {dP(pi, qj)} 

7. If m≠ n then 

8.  If m< n then  

9.   For k= (m +1) to n do wk ← 0; 

10.  else if  m> n then 

11.   For k= (n +1) to m do w'k  ← 0; 

12.  t← max(m, n);   

13.   S1← '

1

i

t

i

i ww∑
=

;  

14.  S2←∑
=

t

i

iw
1

2
; S3← ∑

=

t

i

iw
1

2'  

15. dT← S1/(S2
1/2

 . S3
1/2

); 

16. Return(dT).  
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11). The similarity of R and R' is calculated based on these two sets of 

weights using a Cosine similarity formula (line 13-15). In the following 

subsection, we describe how to measure the similarity between paths. 

 

4.3.2 Path Similarity 

Path similarity is used to measure the similarity of two paths, where each 

path is considered a set of nodes. Consequently, the similarity of two paths 

is evaluated based on the information from two sets of nodes, which 

includes common-nodes, gap and length difference. The common-nodes 

refer to a set of nodes shared by two paths. The number of common-nodes 

indicates the level of relevance between two paths. The gap denotes that 

pairs of adjacent nodes in one path appear in the other path in a relative 

order but there exist a number of intermediate nodes between two nodes of 

each pair. The numbers of gaps and the lengths of gaps have a significant 

impact on the similarity between two paths. A longer gap length or a larger 

number of gaps will result in less similarity between two paths.  

 Finally, the length difference indicates the difference in the number 

of nodes in two paths, which in turn, indicates the level of dissimilarity 

between two paths. We also take into account the node's positions in 

measuring the similarity between paths. Nodes located at different 

positions in a path have different influence-scopes to that path. We suppose 

that a node in a higher level is more important in terms of semantic 

meaning and hence, it is assigned more weight than a node in a lower level. 

The weight of a node v having the depth of d is calculated as µ(v)= (λ )
d
, 

where λ  is  a coefficient factor and 0<λ <=1. The value of λ depends on the 

length of paths. 
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 List 4.2 represents the pathSimilarity algorithm to calculate the 

similarity of two paths p= (v1,..,vm) and  q= (w1,..,wn), where v1 and w1 

have the same node-label l, and m and n are the numbers of nodes in p and 

q, respectively. The similarity of two paths p and q, dP(p, q), is calculated 

from three metrics, common-node weight, average-gap weight and length 

difference reflecting the above factors: common-nodes, gap and length 

difference (line 1). The common-node weight, fc, is calculated as the weight 

of nodes with the same node-labels from two paths. The set of nodes with 

the same node-label between p and q, called common node-labels, is the 

intersection of two node-label sets of p and q (line 3). Assuming that there 

exist k labels in common, the common-node weight can be calculated as: 

fc(p,q)=

∑∑

∑

==

=

k

i

i

k

i

i

i

k

i

i

wv

wv

1

2

1

2

1

)(.)(

)(.)(

µµ

µµ

, 

where µ(vi) and  µ(wi) are the weights of two nodes vi and wi in p and q, 

respectively. vi and wi have the same node-label. The coefficient factor λ = 

min(|p|,|q|)/max(|p|,|q|) (line 3). The average-gap weight, fa, is calculated as 

the average weight of gaps in two paths. The calculation of fa comprises 

three steps. First, the algorithm finds the longest gap and the number of 

gaps between two paths (line 7-9). Second, the gap's weights from one path 

against the other path and vice versa are calculated. Each gap's weight is 

calculated based on the total weights of nodes and the number of nodes in 

the longest gap in that path. The gap's weight of p against q is calculated 

by:  

gw(p, q) = 
||

)(
1

g

v
g

i

i∑
=

µ
,  

where g is the length of the longest gap of p and q, and the coefficient 

factor λ = |g|/|q|. The same process is applied to calculate the gap's weight  
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 Algorithm: path_Similarity 

Input:  two paths p= (v1,..,vm) and  q= (w1,..wn) 

Output: dP(p, q) 

Function dP(p, q) 

1. dP← fc(p, q) - (fa(p, q) + fl(p,q))/max(|p|, |q|) 

Return (dP). 

Function fc (p, q) //calculate common node weights of pi and qj 

2. 
pl  

←{lab(v1),..,lab(vm) }; 
ql ←{ lab(w1),..,lab(wn)}; 

3. comlab ← 
qp ll ∩ ; k ← |comlab|; 

4. S1 ←   )().(
1

ii

k

i

wv µµ∑
=

; S2 ← 
2

1

)( i

k

i

v∑
=

µ ; S3  ←  
2

1

)( i

k

i

w∑
=

µ  

5. S  ←  S1/(S2
1/2

 . S3
1/2

); 

6. Return S; 

Function fa(p, q) //calculate average gap weight of pi and qj 

7. FindGap(p , q, gap1); FindGap(q , p, gap2); 

8. noG1←|gap1|; noG2← |gap2|; 

9. gap1max← max i=1..noG1{gap1i}; gap2max← max i=1..noG2{gap2i} 

10. gw1 ←  ∑
=

|1|

1

max

)(
gap

j

jvµ /|gap1max|;   gw2 ← )(
|2|

1

max

i

gap

i

v∑
=

µ /|gap2max|; 

11. S← (gw1. noG1 + gw2. noG2)/(noG1 + noG2); 

12. Return S; 

Function FindGap(p, q, gap) 

13. For i=1 to m do{ 

14.   If found(vi , q) and found(vi+1 , q) then 

15.      If (|pos(vi+1, q)- pos(vi , q)| >1) then  

16.  gapi←subseq(vi , vi+1 , q);  

17.       Else  

18.           If (|pos(vi+1, q)- pos(vi , q)| ==1)  then gapi←Null; 

19.  Else  gapi← pj;  

20. Return gap;   

Function fl (p, q) 

21. ld←  |m- n| /max(m, n); 

Return (ld);   

List 4.2. The path_Similarity algorithm 
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of q against p (line 10). Finally, the average of gap's weights is calculated 

based on two calculated gap's weights and the number of gaps in two paths 

(line 11). The length difference, fl, is the difference in the number of nodes 

between two paths (line 21). 

 For example, given two paths p= "Booking/Departure", q= 

"Booking/Trip/Departure", we calculate the similarity score of p and q 

as follows.  

• Calculating the common node weight 

 pl = {Booking, Departure}  

 ql = {Booking, Trip, Departure}  

comLab(p, q) = qp
ll ∩ = {Booking, Departure}   

The depths of "Booking" and "Departure" in p and q are {1, 2} and 

{1, 3}  

 The weights in p are{2/3, (2/3)
2
} and in q are {2/3, (2/3)

3
}. 

fc (p, q)= (2/3. 2/3+ (2/3)
2
.(2/3)

3
)/ (((2/3)

2
+ (2/3)

4
)

1/2
. ((2/3)

2
+ 

(2/3)
6
)

1/2
)= 0.99 

• Calculating the average gap weight 

Calculating gw(p, q): 

  noG1 = 1; gap1max= "Trip";   | gap1max | =1;  

  Assuming that the depth("Trip") is 2  

  gw(p, q)=  0.11 

Calculating gw(q, p)  

noG2 =2; gap2max="Booking/Departure";  | gap2max | =2;  

Assume that depth("Booking")=1  and depth("Departure")= 2. 

gw(q, p)= 1 

The average gap weight fa(q, p)=  (1/9 * 1+ 1* 2) /3 = 0.7 

• Calculating the length difference:  fl(p, q)= 1/3 =0.33 

• The similarity score of  p and q:   dP(p, q)= 0.99-(0.7+0.33)/3= 0.64 
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 If the similarity score is larger than a given similarity threshold, then 

we conclude that the two paths are similar; otherwise, the two paths are not 

similar. A similarity score equal to 1 indicates that the two paths are the 

same.  

 Based on the above definitions, we introduce a new type of 

constraint, named XML Conditional Structural Functional Dependency 

(XCSD) in the next section.  

 

4.4 XML Conditional Structural Functional Dependency 

XML conditional structural functional dependency (XCSD) specifications 

are defined on the basis of the XFDs used by Fan et al. [42] as in the XCFD 

definition. The main difference between XCSDs and XCFDs is that XCSD 

specifications are represented as general forms of constraints composed of 

a set of dependencies and conditions, which can be used to express both 

XFDs and XCFDs. In particular, our proposed XCSD specification 

includes three parts: a functional dependency, a similarity threshold and a 

Boolean expression.  

 The function dependency in XCSDs is basically defined as in a 

normal XFD. The only difference is that instead of representing the 

relationship between nodes as in XFDs, the functional dependency in an 

XCSD represents the relationship between groups of nodes. Each group 

includes nodes with the same label and similar root path. The values of 

nodes in a certain group are identified by the values of nodes from another 

group. The similarity threshold in the XCSD is used to set a limit for 

similar comparisons between paths, instead of equal comparisons as 

performed on an XFD. The Boolean expression specifies portions of data 

on which the functional dependency holds. 
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Definition 4.2. (XML conditional structural functional dependency) 

Given an XML data tree T= (V, E, F, root), an XML conditional structural 

functional dependency (XCSD) holding on T is defined as:  

 φ = Pl:  [α] [C ], (X � Y), where  

• α is a similarity threshold indicating that each path pi in φ  can be 

replaced by a similar path pj, with the similarity between pi and pj 

being greater than or equal to α,  α ∈(0, 1]. The greater value of α, the 

more similarity between the replaced path pj and the original path pi 

in φ  is required. The default value of α is 1, implying that the 

replaced paths have to be exactly equivalent to the original path in φ . 

In such cases, φ  becomes an XCFD [85]. 

• C is a condition which is restrictive for the functional dependency Pl: 

X � Y holding on a subset of T. The condition C has the form:  C= 

ex1θ ex2θ …θ exn, where exi is an atomic Boolean expression 

associated to particular elements. “θ ” is a logical operator either AND 

(^)  or OR (∨ ). C is optional; if C is empty then φ  holds for the whole 

document. 

• X and Y are groups of nodes under sub-trees rooted at node-label l and 

nodes of each group have similar root paths. X and Y are exclusive. 

•  X� Y indicates a relationship between nodes in X and Y, such that 

any two sub-trees sharing the same values for X also share the same 

values for Y, that is, the values of nodes in X uniquely identify the 

value of node in Y.  

 For example, there exist two different XFDs relating to Tax. The 

first XFD is,   PBooking:./Departure, ./Arrival� ./Tax holding for 

Bookings having Carrier of “Qantas”  and the second XFD is,  PBooking:(. 
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/Fair � ./Tax) holding for Bookings having the Carrier of “Tiger 

Airways”. If each XFD holds on groups of similar Bookings with a 

similarity threshold of 0.5, then we have two corresponding XCSDs.  

 1φ = PBooking: (0.5) (./Carrier="Qantas"), (./Departure, ./Arrival � 

./Tax)  

2φ = PBooking: (0.5) (./Carrier="Tiger Airways"), (. /Fair � ./Tax).  

 Either 1φ  or 2φ  allow identifying the Tax in different Bookings with 

a similarity threshold of 0.5. 1φ  is only true under the condition of Carrier 

= “Qantas" and 2φ  is true under the condition of Carrier="Tiger Airways". 

Such XCSDs are constraints capturing on sources which have structural 

and semantic inconsistencies. 

  

Satisfaction of an XCSD: The consistency of an XML data tree with 

respect to a set of XCSDs is verified by checking for the satisfaction of the 

data to every XCSD. A data tree T= (V, E, F, root) is said to satisfy an 

XCSD φ = Pl: [α] [C], (X � Y) denoted as T|= φ  if any two sub-trees R 

and R' rooted at vi and vj in T having dt(R, R') ≥ α and if {vi[X]}=v {vj[X]} 

then {vi[Y]}=v {vj[Y]} under the condition C, where vi and vj have the same 

root node-label l.   

 For example, assume that φ = PBooking: (0.5) (./Carrier="Qantas"), 

(./Departure, ./Arrival � ./Tax) and the similarity between two sub-

trees rooted at nodes (2, 1) and (12, 1) is 0.64, which is greater than the 

given similar threshold (α = 0.5). We are then able to derive that T|=φ .  

 In the next section, we will present our proposed approach, SCAD, 

for discovering XCSDs from a given XML source.  
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4.5 SCAD approach: Structured Content-Aware Discovery 

approach to discover XCSDs  

Given an XML data tree T= (V, E, F, root), SCAD intends to discover a set 

of minimal XCSDs in the form φ = Pl: [α][C],(X � Y), where each XCSD 

is minimal and contains only a single element in the consequence Y. Fig 4.2 

represents an overview of the SCAD algorithm, consisting of two phases.  

First, a process called data summarization analyzes the data structure to 

construct a data summary containing only representative data for the 

discovery process. This is to resolve structural inconsistencies. Second, the 

semantics hidden in the data are explored by a process called Discovery to 

discover XCSDs. This is to deal with semantic inconsistencies. 

 

    

Data summarization   

XML instance T 

Discovery   

Candidate identification   

Search   lattice generation   

Validation   
  

Partition   
generation   

Satisfied 
X C  SD 

checking   

Discovered XCSDs   
   

Fig 4.2. An overview of the SCAD approach 
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4.5.1 Data summarization: resolving structural inconsistencies 

Data summarization is an algorithm constructing a data summary by 

compressing an XML data tree into a compact form to reduce structural 

diversity. The path similarity measurement is employed to identify similar 

paths which can be reduced from a data source. Principally, the algorithm 

traverses through the data tree following a depth first preorder and parses 

its structures and content to create a data summary. The summarized data 

are represented as a list of node-labels, values and node-ids where 

corresponding nodes take place. The summarized data only contains text-

paths, each of which is ended by a node containing a value (as described in 

Section 3). For each node vi under a sub-tree rooted at node-label l, the id 

and values of nodes are stored into the list LV[]|l. To reduce the structural 

diversity, all similar root-paths of nodes with the same node-label are 

stored exactly once by using an equivalent path. That is, if a node vi can be 

reached from roots of two different sub-trees by following two similar 

paths p and q,  then only the path with a smaller length between p and q  is 

stored in LV. Original paths p and q are stored in a list called OP[]|l. The 

data in LV are used for the discovery process. The data stored in the OP are 

used for tracking original paths. We use the path similarity measurement 

technique, as described in section 4.2, to calculate the similarity between 

paths.  

 In particular, the data summarization algorithm in List 4.3 works as 

follows. For each node vi, if the root path of vi is a text path (line 4), then 

the existing label li  of node vi  in the OP is checked. If li does not exist in 

OP, then a new element in OP with identifier li is generated to store the 

root-path of vi (line 8); and a new element in the LV with identifier li is 

generated to store the value and the id of node vi (line 9). If li already exists 

in the OP at t, and the root paths of vi are not equal but are similar to any 
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paths stored at OP[li]  (line 12), then we add the root-path of vi to OP[li] 

(line 14) and add its id and value to LV[li] (line 15). If there exists an 

element in OP which is equal to li, then only its id and value are added to 

LV[li] (line 18). 

 For example, if we consider the sub-tree rooted at Booking (Fig 

4.1), nodes with the label Departure and the path "Booking/Departure" 

 

List 4. 3. The data_Summarization algorithm 

Algorithm: data_Summarization 

Input: an XML data tree T=(V, E, F, root) 

Output: The summarized document D=(LV, OP) for T 

Process: 

1. Create empty lists LV[]←{Ø }; OP[]←{Ø }; 

2. Traversing the XML data tree in pre-order 

3. For each node vi do 

4.  If  not Empty(text(vi)) then 

5. pi ←  root_context_path(vi);  

6.   li ← lab(vi); 

7.   If not exist OP[li] then   

8.   Generate_New(OP[li]); adding pi to OP[li]; 

9.   Generate_New(LV[li]); adding id_val(vi) to LV[li]; 

10.   else 

11.   For each element t in OP[li ] do 

12.   If  (t<> pi) then 

13.   If  (PathSim(t, pi)>= α) then   

14.   adding pi to OP[li]; 

15.   adding id_val(vi) to LV[li]; 

16.     exitFor; 

17.   else 

18.   adding id_val(vi) to LV[li]; 

19. Return D; 
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occur at node (5,2) with a value of "MEL". We first assign 

LV[Departure]|Booking={(5,2)MEL}, OP[Departure]|Booking= {"Booking/ 

Departure"}. The label Departure also appears at nodes (16, 3)MEL, 

(26, 3)MEL and (35,3)6:00am. The root path of node (16, 3) is 

"Booking/Trip/Departure" which is different to the stored path 

"Booking/Departure" in the OP list, hence we calculate the similarity 

between p1=“Booking/Departure” and p2=“Booking/Trip/Departure”, 

dP(p1, p2)= 0.64. 

Assuming a threshold for similarity α = 0.5, then two paths p1 and p2 

are similar. We continue to add the id and the value of node (16, 3) to the 

list LV:  LV[Departure]|Booking= {(5, 2)MEL), (16, 3)MEL)}. Original root 

path p2 is added to OP:  

OP[Departure]|Booking={"Booking/Departure","Booking/Trip/

Departure"}.  

Performing the same process for nodes (26,3) and (35,3) then we have 

LV[Departure]|Booking= {(5, 2)MEL, (16, 3)MEL, (26,3)MEL, (35,3) 

6:00am}. 

 We use the summarized data as input for the discovery phase. The 

next section presents the discovery process.  

4.5.2 XCSD Discovery: resolving semantic inconsistencies 

The XCSD discovery algorithm works in the same manner as XDiscover. 

The main difference is that instead of discovering constraints from the 

given data tree as in XDiscover, the XCSD discovery algorithm tries to 

discover non-trivial XCSDs from the data summarization. This is to avoid 

returning redundant constraints. The discovery of XCSDs comprises three 

main stages which are performed on the summarized data. The first stage, 

named Search lattice generation, is to generate a search lattice containing 
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all possible combinations of elements in the summarized data. The second 

stage is Candidate identification which is used to identify possible 

candidates of XCSDs. The identified candidates are then validated in the 

last stage, called Validation, to discover satisfied XCSDs. The process of 

each stage is the same as that in XDiscover.  

 We adopted five pruning rules used in XDiscover to remove 

redundant and trivial candidates from the search lattice to improve the 

performance of SCAD. The first three rules are used to skip the search for 

XCSDs that are logically implied by the already found XCSDs. The last 

two rules are used to prune redundant and trivial XCSD candidates. 

 

Pruning rule 4.1. Pruning supersets of nodes associated with the 

antecedent of already discovered XCSDs. If φ = Pl: [α][C], (X � Y) holds, 

then candidate φ ’= Pl: [α][C], (X'� Y) can be deleted where X' is a 

superset of X. 

 

Pruning rule 4.2. Pruning subsets of the condition associated with already 

discovered XCSDs.  

If φ = Pl: [α][C],(X � Y) holds on a sub-tree specified by a class wi, then 

candidate φ ’= Pl: [α][C'],(X � Y) related to wi  is ignored, where C’ ⊂  C . 

Pruning rule 4.3. Pruning equivalent sets associated with discovered 

XCSDs.  

If φ = Pl:[α] (X= “a”)�(Y= “b”) corresponding to edge(W, Z)  holds on 

data tree T, and X↔Y  then Y can be deleted. 

 

Pruning rule 4.4. Pruning XCSDs those are potentially redundant. 

If for any A∈X, Y ∉ G(X\{A})∪  G(C) then skip checking the candidate 

φ = Pl: [α][C], (X� Y).  
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Pruning rule 4.5. Pruning XCSD candidates considered to be trivial.  

Given a cardinality thresholdτ , τ >=1, we do not consider class wi 

containing less than τ elements i.e. |wi|<τ . XCSDs associated with such 

classes are not interesting. In other words, we only discover XCSDs 

holding for at least τ sub-trees.  

 According to the above theoretical foundation and ideas, we 

describe the detail of the SCAD algorithm in the following section. 

 

4.5.3 SCAD algorithm 

Given a data tree T, we are interested in exploring all minimal XCSDs 

existing in T.  We adopt the Apriori-Gen algorithm [4] to generate a search 

lattice containing all possible combinations of node-labels stored in the 

summarized data LV.  For W= X∪C & Z=W∪{Y}, where W and Z are 

nodes in the search lattice, to find all minimal XCSDs of the form φ = Pl: 

[α][C],(X � Y), we search through the search lattice level by level from 

nodes of single elements to nodes containing larger sets of elements. For a 

node Z, SCAD tests whether a dependency of the form Z\{Y}�{Y} holds 

under a specific condition C, where Y is a node of single element.  

Applying a small to large direction guarantees that only non-

redundant XCSDs are considered. We apply pruning rules 1 and 2 to prune 

supersets of antecedent and the supersets of the condition associated with 

already discovered XCSDs to guarantee that each discovered XCSD is 

minimal. That is, we do not consider Y in a candidate with antecedent X' is 

a superset of X. For every class wi of ΠW that satisfies a minimal XCSD φ = 

Pl: [α][C],(X � Y), we do not consider wi in candidate XCSDs φ ’= Pl: 

[α][C'],(X � Y) where C’ ⊂  C. wi might be considered in the next 

candidates with conditions not including C. 
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 We adopted the “compute_dependecies” algorithm in TANE [53] to 

test for a minimal XCSD. For a potential candidate Z\{Y}�{Y}, we need to 

know whether Z' \ {Y}�{Y} holds for some proper subset Z' of Z. This 

information is stored in the set R(Z') of the right-hand side candidates of Z'. 

If Y in R(Z) for a given set Z, then Y has not been found to depend on any 

proper subset of Z. It suffices to find minimal XCSDs by testing that 

Z\{Y}�{Y} holds under a condition C, where Y ∈ Z and Y ∈ R(Z\{A}) for 

all A ∈ Z. 

 List 4.4 presents our proposed SCAD algorithm to discover XCSDs 

from an XML data tree T. The summarized data D is extracted from T (line 

1). The algorithm traverses the search lattice using the breath-first search 

manner combining the pruning rules described in Section 6.3.2. The search 

 
Algorithm: SCAD 

Input: An XML data tree T, a similar threshold α  

Output: a set of  XCSDs 

12. LV←dataSummarization(T); //List 4.3 

13. Init G←  { Ø }; d← 1;  

14. NLd←nodeLabel(LV); 

15. GPd ← generatePartition(d); 

16. While |NLd |≠ { Ø } do 

17. increment d; 

18. NLd← generateNodeLabel(d);  

19. GPd ← generatePartition(d); 

20. G ←G∪ findXCSD(d); 

21. prune(d);   

22. Return (G); 

List 4.4. The SCAD Algorithm 
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process starts from level 1 (d=1). Node-labels at level d=1 are a set of node 

labels from LV which are stored in NLd in the form NLd= {l1, l2,…, ln} (line 

3). Node-labels at level d> 1 are generated by generateNodeLabel in List 

4.5 (line 7). Each node label in level d is calculated from node-labels in 

NLd-1 in the form lilj , where li ≠lj ,  li, lj ∈NLd-1. Each node-label might be 

associated with some candidate XCSDs. The generatePartition (List 5) 

partitions nodes in level d into partitions based on data values. Each 

candidate XCSDs in the form ci,wi � zj is checked for a satisfied XCSD by 

the sub-function findXCSD in List 4.5 (line 9).  

 The findXCSD function finds candidate XCSDs at level d. A 

checking process (following the ideas described in 4.2.3) is performed to 

check for a satisfied XCSD. Pruning rules  are employed to prune 

redundant XCSDs and eliminate redundant nodes from the search lattice 

for generating candidate XCSDs in the next level (line 10). The searching 

process is repeated until there are no more nodes in NLd to be considered 

(line 5). Any XCSDs found from the findXCSD function are returned to 

SCAD. The output of SCAD is a set of XCSDs.
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Algorithm: generateNodeLabel 

Input: level d  

Output: a list of node NLd 

1 NLd ← {Ø}; PB← prefixBlock(NLd); 

2 For each prefix block P in PB do 

3 For each {X1, X2} in P do 

4 If  (X1 ≠ X2) then X← X1∪  X2 

5 If for all A in X, X \{A} ∈NLd-1 then NLd  ←  NLd ∪  {X} ; 

6 Return NLd 

Algorithm: generatePartition 

Input: level d 

Output: a list of generated partitions GPd  at level d 

1 For each node W of NLd at level d do   

2 If d =1 then  ΠW  ← classified(LV, W)   

3 Else  

4 X← prefixBlock(W); Y← W \ X; ΠW ← ΠX∩ ΠY; GPd ←  GPd ∪  ΠW; 

5 Return GPd 

Algorithm: findXCSD 
Input: d 

Output: discovered XCSDs 

1. G← {Ø};  

2. For each node Z ∈  NLd do   

3. R(X) ← XA∈∩ R(X \ {A}); R(C) ← ∩ A ∈C R(C  \ {A});  

4. For each node label W ∈  NLd-1 do 

5. For each node label Z ∈  NLd do   

6. If ((Z \ W)= {Y}) then   

7. For each class wi ∈  ΠW do 

8. For each class zj ∈   ΠZ do 

9.  If wi = zj  and (|wi| >τ ) then ΩW ← subsumed wi;   

10. If ΩW <> {Ø} then 

11.  While ΩW do 

12.   If  (C, X �Y ) is valid then  G←  G ∪ (C, X �Y) 

13.      Else 

14.       For each ci in C do    

15.         If   ci contains values only from ΩW then  G←  G ∪   (C, X �Y); 

16.   ΩW←  ΩW \ (wi ∈ ( C, X �Y);  

17.   R(X) ← R(X)\ {Y}; R(C) ← R(C )\ {wi}; 

18.  If (X↔ Y) then R(Y) ← {Ø}  

19. Return (G). 

Algorithm: prune  

Input: d 

1. For each node W∈  NLd  do  

2. If R(W)= Ø then delete W from NLd   

 
List 4.5. Utility functions of SCAD  
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In the following section, we briefly analyze the complexity of our 

approach in the worst case and provide further discussion on the practical 

analysis. 

 

4.6 Complexity analysis  

The complexities of SCAD mostly depend on the size of the summarized 

data, which is determined by the number of elements and the degree of 

similarity amongst the elements in the data source. The time required 

varies from different datasets. The worst case occurs when the data 

source does not contain any similar elements or SCAD does not find any 

constraints. In such a case, the size of the summarized data |LV| is n, 

where n is the number of nodes in the original data tree T. Without 

considering the handling of path similarity, the function dataSumarization 

makes n
2
 random accesses to the dataset.  

 Let smax be the size of the largest level and S be the sum of the 

sizes of all levels in the search lattice. In the worst case, S=2
|LV|

and smax= 

2
|LV|

/ || LV . During the whole computation, total S partitions are formed, 

procedure generateNodeLabel makes S|LV| random accesses, the 

generatePartition makes S random accesses, procedure findXCSD makes 

S|LV| random accesses and procedure prune makes S random accesses. In 

summary, SCAD has time complexity of O( n
2
 +2 S(|LV|+1) ). SCAD 

needs to maintain at most two levels at a time. Hence, the space 

complexity is bounded by O(2smax). 

 In the worst case analysis, SCAD has exponential time complexity 

that cannot handle a large number of elements. However, in practice, the 

size of the summarized data |LV| can be significantly smaller than n as in 

the worst case due to the similar features in XML data. The more similar 
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elements are in the original data, the smaller the size of LV is. In addition, 

by employing the pruning strategies, the size of the largest level smax and 

the sum of the sizes S can be reduced significantly because the redundant 

nodes are eliminated from the search lattice.  

 Suppose that a node Y is eliminated from the search lattice at level 

d, 1<d <n, then all descendent nodes of Y from level d+1 will be deleted 

from the search lattice by the pruning rules. The number of descendent 

nodes of Y is 2
|LV|-d 

- 1. This means the complexity of SCAD reduces by 

2
|LV|-d 

- 1 for every node deleted from the search lattice. The more nodes 

which are removed from the search lattice, the less time complexity of 

SCAD. Moreover, in order to avoid discovering trivial XCSDs, the 

minimum value of the cardinality threshold is often set to at least 2. Thus, 

the number of checked candidates is reduced considerably. Therefore, the 

time and space complexity of SCAD are significantly smaller than O( n
2
 

+2 S(|LV|+1) ) - 2
n-d 

 - 1) and O(2smax), respectively.  

 In the following section, we present a summary of the experiments 

and comparisons between our approach and related approaches.  

 

4.7 Experimental analysis  

Datasets: Synthetic data have been used in our test cases to avoid the 

noise in real data. The results from synthetic data, in some ways, show 

the real potential of the approach. Our synthetic dataset is an extension of 

the "Flight Bookings" data shown in Fig 4.1. The dataset covers common 

features in XML data, including structural diversity and inconsistent data 

rules which are needed to verify the existence of constraints holding 

conditionally on similar objects in XML data. The original dataset 

contained 150 Bookings (FB1). The DirtyXMLGenerator [72] made 
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available by Sven Puhlmann was used to generate synthetic datasets. We 

specified that the percentage of duplicates of an object is 100% to 

generate a dataset containing similar Bookings. From 150 duplicate 

Bookings, we specified 20% of data was missing from the original 

objects so that the dataset contained similar objects with missing data 

(FB2). 

Parameters: we set the value of the similarity threshold α from 0.25 to 1 

with every step of 0.25. The value of cardinality threshold τ  determining 

a minimum number of classes associated with interesting XCSDs was set 

to a default value of 2.  

System: We ran experiments on a PC with an Intel i5, 3.2GHz CPU and 

8GB RAM. The implementation was in Java and data was stored in 

MySQL. 

 We first ran experiments to analyze the influence of the similarity 

threshold on the performance of SCAD. This is to evaluate the 

effectiveness of our approach in dealing with structural inconsistencies. 

Then, we ran experiments to make comparisons between SCAD and 

Yu08 [102] on the numbers and the semantics of discovered constraints. 

Our purpose is to evaluate the correctness of SCAD in discovering 

constraints.  

 

Effectiveness in structural inconsistency: we ran experiments on FB1 

and FB2 to find the number of checked candidates and the processing 

times to evaluate the effectiveness of SCAD in dealing with structural 

diversity. The results are in Fig 4.3 and Fig 4.4. We first analyze the 

influence of the similarity threshold on the performance of SCAD. Then, 

we examine the impact of the number of similar objects on the 

performance of SCAD. The results show that when the similarity 
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threshold increases from 0.25 to 1 in either FB1 or FB2, the number of 

checked candidates (Fig 4.3) which lead to the time consumption (Fig 

4.4) increase significantly. 
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Fig 4.3.  Numbers of candidates checked vs similarity threshold 
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The number of discovered constraints at α of 1 is more than 2.5 times of 

that at α of 0.25 in either FB1 or FB2. This is because the number of 

similar elements reduces. The same situation exists for the consumption 

of time. The processing times increase from 2 to 2.5 times for FB1 and 

FB2, respectively when α increase from 0.25 to 1.  
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Fig 4.5. SCAD vs Yu08 

Fig 4.6. Range of similarity thresholds 
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 Moreover, in cases where the similarity threshold α is set to 0.25, 

while the size of FB2 is as twice that of FB1, the number of checked 

candidates in two datasets are not much different. When the similarity 

threshold is set to a higher value, the gap between the numbers of 

checked candidates between in FB1 and FB2 is considerable. For 

example, the number of checked candidates in FB2 is more than 1.5 times 

that in FB1 at α of 1. The same circumstances also happen for the time 

consumption. The processing times of FB1 and FB2 are nearly the same 

at α of 0.25; they are significantly different at α of 1 which is nearly 1.5 

times. This is because when the similarity threshold increases, the 

number of elements considered similar in either FB2 or FB1 reduces. 

This results in the size of summarized data for discovering XCSDs of 

FB2 being significant larger than that of FB1. Overall, SCAD works 

more effectively for datasets which contain more similar elements. This 

means SCAD deals effectively on data sources containing structural 

inconsistencies.  

 According to our analysis in Section 4.6, the worst-case time 

complexity of SCAD is exponential with respect to the number of 

elements. However, the results from Fig 4.4 show that the processing 

time is essentially determined by the degree of similarity amongst 

elements in the data source (i.e. α). SCAD time is proportional to the 

number of objects in the data summarization that is nearly linear. SCAD 

saves a significant fraction of the computation compared to the worst-

case analysis. 

 

Comparative Evaluation: to the best of our knowledge, there are no 

similar techniques for discovering constraints, which are equivalent to 

XCSDs. There is only one algorithm which is close to our work, denoted 
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Yu08, introduced by Yu et al. [102], for discovering XFDs. Such XFDs 

are considered as XCSDs containing only variables. Thus, we choose 

Yu08 to draw comparisons with SCAD. We ran experiments on dataset 

FB1. The value of the similarity threshold α was set from 0.25 to 1 for 

every step of 0.25. The results in Fig 4.5 show that the number of 

constraints returned by SCAD is always larger than that of Yu08. This is 

because SCAD considers conditional constraints holding on a subset of 

FB1. The number of constraints returned by SCAD also increases 

significantly when the similarity threshold α increases, whereas the 

number of constraints discovered Yu08 are stable, because Yu08 does not 

consider structural similarity between elements as SCAD does.  

 In cases where the similarity is set to a low value, such as α of 

0.25, the number of constraints discovered by SCAD and Yu08 is not 

much different. The gap between these numbers becomes larger in cases 

where the similarity threshold is set to a higher value. For example, the 

number of constraints discovered by SCAD is about 3.5 times larger than 

that of Yu08 in cases when the similarity threshold is set to 0.5 and about 

4 times larger at α of 1.  

 Since the structural similarity between elements is not considered, 

constraints returned by Yu08 are redundant. 

Yu08 returns redundant constraints like  

 PBooking: ./Departure, ./Arrival → ./Tax , 

 PBooking: ./Trip/Departure, ./Trip/Arrival → ./Tax  

while SCAD discovers more specific and accurate dependencies   

PBooking:(0.5)(./Type="Airline"^./Carrier="Qantas" 

^./Departure="MEL"^./Arrival = "BNE" � ./Tax = "65").  

 In general, the set of constraints discovered by SCAD is much 

larger than Yu08. Constraints returned by SCAD are more specific and 
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accurate than constraints returned by Yu08. A disadvantage of SCAD is 

that SCAD constructs a data summary containing only representative data 

for the discovery process to resolve structural inconsistencies. This 

allows SCAD to work effectively for datasets containing similar 

elements; however, if there are no similar elements in a data source, the 

process of data summary is still performed which affects the processing 

time.  

 

4.8 Case studies  

We use two case studies to further demonstrate the feasibility of our 

proposed approach, SCAD, in discovering anomalies from a given XML 

data. The first case illustrates the effectiveness of SCAD in detecting 

dependencies containing only constants by binding specific values to 

elements in XFD specification. The second case aims to demonstrate the 

capability of SCAD in discovering constraints containing both constants 

and variables. Our purpose is to point out that SCAD can discover 

situations of dependencies that the XFD discovery approach cannot 

detect.  

 In our approach, the similarity threshold α and cardinality 

threshold τ are dataset dependent. The similarity threshold α determines 

the similarity level of paths for grouping. The cardinality threshold τ  

determines the size of classes for checking a candidate XCSD. The 

settings of these parameters have a great impact on the results of SCAD. 

If α is too small, then a large number of paths considered to be similar for 

grouping is returned, which might lead to the issue of important data 

missing in the summarized data. Consequently, the advantages reduce at 

a lower similarity threshold, since SCAD might discard some interesting 

XCSDs. In contrast, if α is too large, the advantages also decrease since 
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the number of paths identified as similar for grouping is small, leading to 

the fact that the summarized data might contain duplicate data. This 

causes the possibility that the set of returned XCSDs might contain 

redundant and trivial data rules. The execution time also increases. 

Therefore, the selection of α should be based on a percentage of nodes in 

the summarized data compared with that in the data source (PoN) so that 

the summarized data is small enough to take full advantage of the 

discovery process.  

 The similarity threshold α is data dependent so its value should be 

chosen by running experiments on sample datasets. The value of α should 

be selected from a range of values where such PoNs are stable. This is to 

ensure that the discovered XCSDs are non-trivial and the execution time 

is acceptable. In our experiments, the original FB1 dataset is used to find 

the similarity threshold. We ran the data summarization algorithm (List 

4.3) to find the summarized data and calculated the PoN for every value 

of α, where  α varied from 0.25 to 0.75 with every step being 0.05. The 

results in Figure 6 show that the PoN is stable in the range of similarity 

thresholds from 0.45 to 0.55. Therefore, we set the value of the similarity 

threshold to 0.5 as the average of similar thresholds is in such a range for 

the following case studies.  

 The cardinality threshold τ  determines classes associated with 

interesting XCSDs. τ  affects the results of SCAD due to changes in the 

number of classes which need to be checked. If the value of τ is too large, 

then only a small number of equivalent classes is satisfied, which might 

result in a loss of interesting XCSDs. Therefore, in our case studies, we 

fix the value of τ at 2, which means we only consider classes having 

cardinality equal or greater than 2. We do not consider constraints 
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holding for only one group of similar object, as such constraints which 

are considered trivial. 

 

Case 4.1.  XML Conditional Structural Dependencies contain only 

constants. 

We first construct the data summary for the Booking data tree in Fig1 by 

following the algorithms in List 4.3. A part of the summarized data is as 

follows: 

LV[Type]|Booking={(3, 2) Airline, (13, 2) Airline, (23, 2) Airline, (33, 

2) Coach}  

LV[Carrier]|Booking= {(4,2) Qantas, (14,2) Qantas, (24,2)Tiger 

Airways, ""}  

LV[Departure]| Booking= {(5, 2)MEL, (16, 3)MEL, (26,3)MEL, 

(35,3) 6:00am}  

LV[Arrival]|Booking= {(6,2) SYD, (17,3) SYD, (27,3) SYD, (36,3) 

6:00pm} 

LV[Tax]|Booking={(8,2) 40, (19, 2) 40, (29, 2) 50, (38, 2) 20} 

 Then, the search lattice is generated. Assume that we need to find 

the XCSDs associated with edge(W, Z)= edge(Type-Carrier-

Departure-Arrival, Type-Carrier-Departure-Arrival-Tax) with 

respect to the sub-tree rooted at Booking.  

Partitions of Type-Carrier-Departure-Arrival and Type-Carrier-

Departure-Arrival-Tax are generated as:  

•  Partitioning data into classes based on the data value 

ΠType|Booking= {{(3,2),(13,2),(23,2)}Airline, {33,2}Coach} 

ΠCarrier|Booking= {{(4,2), (14,2)}Qantas, {(24, 2)}Tiger Airways, 

{""}} 

ΠDeparture|Booking= {{(5,2),(16,3),(26,3)}MEL,{35,3}6:00am} 
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ΠArrival|Booking={{(6,2),(17,3),(27,3)}SYD,{(36,3)}6:00pm} 

ΠTax|Booking= {{(8,2), (19,2)}40, {(29,2)}50, {(38,2)}20} 

 

• Converting these classes into the sub-tree rooted at Booking to find 

their refinements 

Π'Type|Booking= {{(2, 1), (12, 1), (22, 1)}, {32, 1}} 

Π'Carrier|Booking= {{(2, 1), (12, 1)}, {(22, 1)}, {""}} 

Π'Departure| Booking= {{(2, 1), (12, 1)}, {22, 1}, {32, 1}} 

Π'Arrival|Booking= {{(2, 1), (12, 1)}, {22, 1}, {32, 1}} 

Π'Tax|Booking= {{(2, 1), (12, 1)}, {22, 1}, {32, 1}} 

 

• Calculating partitions of Type-Carrier-Departure-Arrival and 

Type-Carrier-Departure-Arrival-Tax. Assume that τ = 2 then 

classes with cardinality less than 2 are discarded in our calculations.  

ΠType,Carrier,Departure,Arrival|Booking 

= Π'Type|Booking∩Π'Carrier|Booking∩Π'Departure|Booking∩Π’Arrival|Booking  

= {(2,1), (12, 1)}= {w1} 

ΠType,Carrier,Departure,Arrival,Tax|Booking 

= Π'Type|Booking∩Π'Carrier|Booking∩Π'Departure|Booking∩Π’Arrival|Booking∩Π'Tax|Booking 

= {(2,1), (12, 1)}={z1} 

  

We can see that w1 is equivalent to z1 that is w1= z1={(2,1), (12, 1)}. 

Nodes in w1 have the same value of Type= "Airline", Carrier= 

“Qantas”, Departure= "MEL" and Arrival= “SYD”.   Nodes in z3 share 

the same value of Tax= “40”. An XCSD is discovered: 

φ 1=PBooking:(0.5)(Type="Airline"^./Carrier=“Qantas”^./Departure="

MEL"^./Arrival= “SYD” � ./Tax = “40”). 
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This case shows that the discovered XCSD contains only 

constants. The discovered XCSD refines an XFD by binding particular 

values to elements in the XFD specification. For instance,  

 φ 1 is a refinement of the XFD 

  1ϕ = PBooking: ./Type, ./Carrier, ./Departure, ./Arrival � ./Tax 

 There also exists another XCSD refining 1ϕ  

 φ '1=PBooking:(0.5)(./Type="Airline"^./Carrier="Qantas"^./Depar

ture="MEL"^./Arrival= "BNE" � ./Tax = "65") 

 There might exist a number of XCSDs which refine an XFD. As a 

result, the number of XCSDs discovered by SCAD is much greater than 

the number of data rules detected by an XFD discovery approach [102].  

 

Case 4.2.  XCSDs contain both variables and constants. 

Fig 4.7 is a representation of a part of the Booking data tree. We use the 
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Fig 4.7. A simplified Bookings data tree is constrained by constraints containing both variables and constants  
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same assumptions and follow the same process in Case 4.1 to construct 

the data summary and the search lattice. Assume that we need to find 

XCSDs associated with the edge(W, Z)= edge(Fare,  Fare-Tax).  

• Two partitions of Fare and  Fare-Tax are as follows: 

ΠFair|Booking ={{(42,1), (52, 1),(82, 1)}, {(62,1), (72,1), (92, 1)}} 

ΠFair,Tax|Booking={{(42,1), (52, 1)},{(62, 1), (72,1)}, {(82,1)}, 

{(92,1)}} 

 There does not exist any equivalent pair between two partitions 

ΠFair|Booking and ΠFair,Tax|Booking. In such a case, node-labels from the 

remaining set of {LV[]}\{W∪Z} are added to edge(Fare,  Fare-Tax) as 

conditional data nodes. For example, the node-label of Carrier is added 

to the edge(Fare, Fare-Tax). We now consider edge(W’, Z’)= 

edge(Fare-Carrier,Fare-Tax-Carrier).  

• Partitions of Fare-Carrier and Fare-Tax-Carrier with respect to 

the sub-tree rooted at Booking are calculated as:  

Π Fair, Carrier|Booking= {{(42, 1), (52, 1)}, {(62, 1), (72, 1)}, {(82, 1)}, 

{(92, 1)}} = {w1, w2, w3, w4} 

Π Fair, Tax, Carrier|Booking= {{(42, 1), (52, 1)}, {(62, 1), (72, 1)}, {(82, 

1)}, {(92, 1)}} = {z1, z2, z3, z4} 

• The partition of the condition node Carrier is: 

ΠCarrier|Booking= {{(42, 1), (52, 1), (62, 1), (72, 1)}, {(82, 1), (92, 1)}} 

= {c1, c2} 

• We have two equivalent pairs (w1, z1) and (w2, z2) between ΠBooking, Fair, 

Carrier|Booking  & ΠBooking, Fair, Tax, Carrier|Booking with |w1|=2 and |w2|=2 >=τ . 

Furthermore, there exists a class c1 in ΠCarrier|Booking containing exactly 

all elements in  w1∪  w2:    

w1 ∪w2 ={(42, 1), (52, 1), (62, 1), (72, 1)}= c1  
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All elements in class c1 have the same value of Carrier = “Tiger 

Airways”. This means nodes in classes w1 and w2 share the same 

condition (Carrier = “Tiger Airways”). Therefore, an XCSD 2φ = 

PBooking: (0.5) (./Carrier= “Tiger Airways”), (./Fare �./Tax)  is 

discovered.  

 Case 4.2 illustrates that our proposed approach is able to discover 

XCSDs which contain both variables and constants. 2φ cannot be 

expressed by the existing notion of XFDs. For instance, XFDs [102] only 

express 2φ in the form,  PBooking: ./Fare �./Tax,  which states that the 

value of an object (./Tax) is determined by the other object (./Fare) for 

all data. It cannot capture the condition (./Carrier= “Tiger Airways”) 

and the similarity threshold (0.5) to express the exact defined semantics 

of 2φ .  

 From both case studies, we can see that our approach is able to 

discover more situations of dependencies than the XFD discovery 

approach. There exists a number of XCSDs refining the XFD. Each 

XCSD refines an XFD by binding particular values to elements in the 

XFD specification. The existing XFD approach [102] cannot detect the 

above situations of dependencies due to the existence of conditions in 

constraints. XFDs only express special cases of XCSDs which have 

conditions being Null. The results from the tested cases somehow show 

the real potential of the approach. Hence, we believe that our approach 

can be generalized to other similar problems where data contain 

inconsistent representations of the same object and/or inconsistencies in 

constraining data in different fragments. For example, our approach can 

discover constraints in the context of data integration where data is 

combined from heterogeneous sources or in the situation of using XML-
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based standards, such as OASIS, xCBL and xBRL to exchange business 

information.  

 

4.9 Summary 

In this chapter, we highlighted the need for a new data type constraint 

called XML conditional structural functional dependency to resolve the 

XML data inconsistency problem. Existing work has shown some 

limitations in handling such a problem. We proposed the SCAD approach 

to discover a proper set of possible XCSDs considered anomalies from a 

given XML data instance. We evaluated the complexity of our approach 

in the worst case and in practice. The results obtained from experiments 

and case studies revealed that SCAD is able to discover more situations 

of dependencies than XFD discovery approaches. Discovered constraints, 

which are XCSDs, containing either constants only or both variables and 

constants, which cannot be formally expressed by XFDs, have more 

semantic expressive power than existing XFDs. The discovered XCSDs 

using SCAD may be employed in data-cleaning approaches to detect and 

correct non-compliant data through which the consistency in data is 

improved. In the next chapter, we will utilize XCSDs to compute 

consistent query answers for queries posted to an inconsistent data source 

to improve information quality. 
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5.  

 

 

Chapter 5  

 

Structured content-based query answers  

for improving information quality 

 

This chapter introduces an approach, called SC2QA, which utilizes XML 

conditional structural functional dependency to compute answers for 

queries posted to arbitrary XML data to improve information quality. 

SC2QA integrates the semantics of XCSDs into the query process to handle 

data inconsistency and find the consistent parts for query answering. This 

chapter is organized into six sections. Section 5.1 presents an introduction 

to the problem, including our motivation and the synopsis of our approach. 

Section 5.2 presents the preliminaries. Section 5.3 describes our proposed 

SC2QA to compute the query answer. The complexity analysis and 

correctness of SC2QA are presented in Section 5.4. Section 5.5 

demonstrates the experiment evaluations. Section 5.6 summarises the 

chapter. 
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5.1 Introduction 

The Extensive markup language (XML) [88] has been widely adopted as a 

standard to exchange and integrate data over multiple sources. This allows 

users to explore large datasets through a declarative query interface, such 

as XQuery [26] and XPath[89]. However, the results of queries posted to 

such heterogeneous data sources are often inconsistent due to the anomalies 

arising from structural and semantic inconsistencies. This significantly 

affects the ability of the system to provide accurate query answers. The 

presence of inconsistent data is commonly resolved by repairing data and 

computing consistent query answers.  

Data repair aims is to find consistent parts in an inconsistent data 

source which minimally differs from the original one [9, 25, 47, 79]. Data 

repair is then used to calculate consistent query answers. A consistent 

query answer (CQA) is defined as the common part of answers to the query 

on all possible repairs of the source [9]. Nevertheless, repairing data  might 

also result in side-effects, for example, it might cause incorrect answers to 

queries and introduce new inconsistencies. Moreover, finding all possible 

repairs for inconsistent data to compute a consistent query answer is 

impossible and impractical since an infinite number of repairs might exist. 

Hence, we may leave the data inconsistent to avoid losing information due 

to data repair and only manage potential inconsistencies to compute 

consistent answers for queries posted to that source.  

 As XML data is often inconsistent with respect to a set of 

constraints, constraints are often taken into account during the process of 

calculating query answers [43, 45, 76]. The work in [74] studies the 

problem of computing query answers from inconsistent data with respect to 

a given DTD. Other work [45, 77, 78] focuses on finding CQAs from 

inconsistent data with respect to a set of functional dependencies. However, 
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such existing work generally lacks the full extensibility of  cases where 

data inconsistency with respect to constraints holding conditionally in 

XML data with diverse structures, as in XCSDs.  

 In this chapter, we propose an approach called SC2QA to compute 

answers to queries posted to arbitrary XML data with respect to a set of 

XCSDs. XCSDs are not constraints on database states; they are constraints 

used to compute answers to queries which are specified locally with the 

query at hand. That is, SC2AD is flexible for users to specify a set of 

XCSDs at the query time. The semantics of XCSDs are integrated into the 

query planner to compute the query answer. The conditions in XCSDs are 

used to specify candidate objects qualified to the query. The similarity 

threshold in XCSDs is used to indicate how similar objects can be 

considered to be qualified for queries, which allows the retrieval of 

information from objects with diverse structures. The inconsistencies of the 

involved objects are repaired locally, following the semantics of each 

 

Fig 5.1. An inconsistent Flight Booking data tree with respect to XCSDs  
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related XCSD, to obtain the information which is as consistent as possible. 

A query answer, called customized consistent query answer (CCQA), is 

calculated from these data which are considered to be consistent with 

respect to certain preferred XCSDs. We run experiments on synthetic data 

to verify the effectiveness and efficiency of SC2QA. We prove that the 

algorithm is correct in the sense that the result retrieves consistent 

information.  

 

5.2 Preliminary 

In this section, we present some preliminary concepts, including XPath 

notations and examples of querying an inconsistent data source with 

respect to a set of XCSDs as further motivation to solve our problem. 

5.2.1 XPath  

We use XPath expression [89] to form a relative path; “.” (self): select the 

context node. “.//”: select the descendants of the context node, "[]": means 

qualifier and "*": means wildcards. For example, .//Carrier: select 

Carrier descendants of the context node Booking; .//Trip/Departure: 

select all Departure elements which are children of Trip. An XPath is 

simple if it is free of  ".//" and "*". Any XPath Q can be replaced by a set of 

simple XPath {Q1, Q2,...,Qn}. 

 

5.2.2  Motivation examples  

Let us use examples to illustrate the influence of inconsistency caused by 

structural and semantic inconsistency in XML data to the answers of 

queries posted to that data. Our discussions are based on a simplified 

Flight Bookings data tree T, as shown in Fig 5.1. Each Booking 



5. STUCTURED CONTENT-BASED QUERY ANSWERS 

FOR IMPOVING INFORMATION QUALITY 

 

 

119 

contains information on Carrier, Departure, Arrival, Transit, Fare 

and Tax. The values of elements are recorded under the element names. 

The data tree T is inconsistent with respect to three XCSDs, as shown in 

Fig 5.2. We suppose that all XCSDs have a similarity threshold of 1, which 

means that representations of the same object must have the same structure. 

According to constraint 1, any Booking having the Carrier "Tiger 

Airways" has the Tax identified by the Fare; however, Booking(2, 1) and 

Booking(12, 1) contain the same Fare of "600" but the values of Tax are 

different, which are 150 and 0, respectively. These are inconsistent with 

respect to constraint 1. Booking(2, 1) and Booking(12, 1)  are also 

inconsistent in their structures. While Departure(4, 2) and Arrival(5, 2) 

are direct children of Booking(2, 1), the Departure(15, 3) and 

Arrival(16, 3) are the grandchildren of Booking(12, 1). Considering an 

XPath query Q: /Bookings/Booking posted to T, for a consistent query 

answer as in definition [9], the information of Departure, Arrival and 

Tax of Booking (2, 1) and Booking (12, 1) are excluded.  

 Constraint 1: Any Booking having Carrier of "Tiger Airways", the Tax is identified 

by the Fare.  

1φ = PBooking:  [1] [./Carrier ="Tiger Airways" ], (./Fare �./Tax) 

Constraint 2:  Any Booking having Carrier of "Tiger Airways" and Departure of 

"SIN" only arrive at "MEL". 

2φ = PBooking:  [1] [./Carrier ="Tiger Airways" ], (./Departure="SIN" �./Arrival= 

"MEL") 

Constraint 3:  Any Booking having Carrier of "Air Asia", Departure of "KUL" and 

Arrival of "SYD", there must exist a Transit of "MEL". 

3φ = PBooking:  [1] [./Carrier ="Air Asia " ], (./Departure="KUL",./Arrival= "SYD") 

� (./Transit= "MEL") 

Fig 5.2.  XCSDs on the Flight Bookings data tree 
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 The same situation occurs to Booking(22, 1) with respect to 

constraint 2. That is, for any Booking having the Carrier "Tiger Airways" 

and Departure of "SIN" only arrives at "MEL"', however; Booking(22, 

1) contains Departure of "SIN" but Arrival of "SYD". Considering the 

query Q: /Bookings/Booking posted to T, for a consistent query answer, 

Booking(22, 1) is excluded. For constraint 3, if there exists a Booking 

having the Carrier "Air Asia", Departure of "KUL" and Arrival of 

"SYD", then there must exist a Transit node with a value of "MEL". 

Booking(32, 1) is missing the information of Transit node which results 

in inaccurate answers to queries relating to Booking(32, 1). This chapter 

introduces the SC2QA approach which is based on the semantics of 

XCSDs to compute the query answers by a qualifying query with appropriate 

information derived from the interaction between the query and the XCSDs. The 

detail of SC2QA is presented in the next section. 

 

5.3 SC2QA: structured content-aware approach for 

customized consistent query answers 

In this section, we first present a theorem about the superiority of XCSDs 

to XCFDs and XFDs. This is necessary to indicate that our approach only 

needs to take into account the consistency of data with respect to XCSDs. 

Then, we present the concepts used in our approach, including a definition 

of consistent data, a definition of data repair, a notation of node repair and 

definition of customized consistent query answer. We also mention 

repairing principles applied to repair inconsistent data which includes 

repair cost and data repair values. Finally, we present the detail of SC2QA.  
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Theorem 5.1. An XCSD is superior to XML functional dependency (XFD) 

and XML conditional functional dependency (XCFD).  

Proof: For an XCSD φ = Pl: [α] [C], (X � Y), suppose that there exist {X1, 

X2,...Xn} similar to X, and {Y1, Y2,...Ym} is similar to Y with respect to the 

value of the similarity threshold α. Then φ  can be expressed as a set of 

XCFDs  Pl: [C], (Xi � Yj), where i= 1..n and j= 1..m. An XCFD can also be 

expressed as an XCSD with a similarity threshold of 1. Similarly, φ  can be 

expressed as a set of XFDs in the form of  Pl: (Xg � Yh), where g= 1..n and 

h= 1..m and an XFD Pl: X � Y is a special case of XCSD with a similarity 

threshold of 1 and the condition C is empty. □ 

 XCSDs can be used to express the semantics of either XCFDs or 

XFDs. Therefore, in this work, we only focus on calculating customized 

consistent query answers for queries posted to an inconsistent XML data 

with respect to a set of XCSDs. Consistent data is defined as follows: 

Definition 5.1. (Consistent data) 

Given a data tree T= (V, E, F, root) and a set of XCSDs ∑, T is consistent 

with ∑ denoted as T|= ∑, if T satisfies every predefined XCSD in ∑, 

otherwise T is inconsistent denoted as T |≠ ∑.  

 A data tree T is said to satisfy an XCSD φ = Pl: [α] [C], (X � Y) 

denoted as T|= φ  if any two sub-trees R and R' rooted at vi and vj in T 

having dt(R, R') ≥ α and if {vi[X]}=v {vj[X]} then {vi[Y]}=v {vj[Y]} under 

the condition C, where vi and vj have the same root node-label l.   

 The concept of data repair is used as an auxiliary to describe the 

definition of a customized consistent query answer in an inconsistent data. 
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Thus, we define the notion of data repair and the detail of data value repair 

principles and the repair cost model in the next section. 

 

5.3.1 Data Repair 

Repair R is found based on the semantics of candidate XCSDs in ∑ which 

relates to query Q to modify the inconsistent data in the original data tree T 

such that R is consistent with respect to ∑ and R is minimal different with 

original data T. Minimal here means repair R must be the one that takes as 

few repair operations as possible to preserve the information from the 

original data.  

 

Definition 5.2. (Data repair) 

A repair of T with respect to ∑ is a data tree node R  such that: (i) R 

conforms to ∑; and (ii) there does not exist any other repair R' of T such 

that R' conforms to ∑, cost(T, R') < cost(T, R), where cost(T, R) is the 

repair cost used to transform T to R. 

 In our work, repair R is found by locally repairing every inconsistent 

data node. A node repair is defined as follows: 

  

Definition 5.3. (Node repair) 

A repair of a node v with respect to iφ  is a node v' such that: (i) v' conforms 

to iφ ; (ii) there does not exist any other repair v" of v such that v" conforms 

to iφ  and (iii) cost(v, v") < cost(v, v'), where cost(v, v') is the repair cost 

used to transform v to v'. 

   

Data value repair principles: The computation of the repair data is based 

on the semantics of XCSDs to modify the values of nodes or add missing 
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data. We do not invent new values as in [43, 45]. Suppose that a node v in 

T violates an XCSD φ = Pl: [α] [C], (X � Y), the value of v is repaired 

based on a set of values occurring in the data tree T or it is a value deduced 

based on the semantics of XCSDs. The details of data repair computation 

are as follows:  

i) Values of node modification: 

• If v relates to a constant expression inφ , the value of v is updated by 

the value of the corresponding constant such that v satisfiesφ .   

• If the violation of node v relates to a variable expression in X∪Y, 

this means v violates φ  with another node v', then the value of the 

violation node is modified with respect to the value v'. That is, (i) if 

value of v is null and v' is constant, the value of the v' is set to that 

constant, (ii) if v and v' are not null and they contain different 

values, such violations have to be resolved by repairing other nodes 

relating to another expressions inφ .  

ii) Node insertions: suppose that a sub-tree Ti is inconsistent with respect to 

an XCSD φ = Pl: [α] [C], (X � Y) due to missing a node v, v is inserted 

into that sub-tree based on the semantics of XCSD such that T is consistent 

with respect to the considered XCSD.  

 

Example 5.1.  

• Booking(22, 1) (in Fig 5.1) violates constraint 2φ = PBooking:  [1] 

[./Carrier ="Tiger Airways"], (./Departure="SIN" �./Arrival= 

"MEL") (in Fig 5.2). This is because Booking(22, 1) contains 

Carrier of "Tiger Airways", Departure of "SIN" but Arrival of 

"SYD". The Arrival = "SYD" causes violation to the right hand 



5. STUCTURED CONTENT-BASED QUERY ANSWERS 

FOR IMPOVING INFORMATION QUALITY 

 

 

124 

side of 2φ which is a constant expression. Therefore, the value of 

Arrival should be changed to “SYD” as that in 2φ .  

• Considering Booking(12,1) and Booking (2,1) in Fig 5.1, and 1φ = 

PBooking:  [1] [./Carrier ="Tiger Airways" ], (./Fare �./Tax) in Fig 

5.2. Booking(12, 1) violates constraint 1 with Booking(2, 1). 

According to constraint 1: any Booking having the Carrier "Tiger 

Airways" has Tax identified by the Fare. While both Booking(12, 

1) and Booking (2, 1) have the same Carrier of "Tiger Airways" 

and the Fare of "600", the Tax "0" and "150". Therefore, we 

modify the value of Tax in Booking(12, 1) to "150".  

• Booking(32, 1) in Fig 5.1 violates constraint 3 in Fig 5.2. 

According to constraint 3: for any Booking the Carrier "Air Asia", 

Departure of "KUL" and Arrival of "SYD", there must exist a 

Transit of "MEL". Booking(32, 1) does not satisfy constraint 3 

since the information of  Transit is missing. Thus, Transit of 

"MEL" is added into Booking (32, 1). 

Repair Cost:  there are several different ways to resolve a violation. In our 

approach, we use a cost model to give priority to the repair which is 

considered to be qualified to a query. The result with a lower 

transformation cost is considered to be closer to the original data and is 

preferred over the ones with higher costs. The cost used to repair an 

inconsistent node is weighted by the total number of operations applied to 

correct the node so that it satisfies all relevant XCSDs. The cost used to 

repair an inconsistent data tree is weighted by the total cost applied to all 

violation nodes such that the data tree satisfies all relevant XCSDs.  

 Observe that the deletions which may lose information, node 

modification and node insertion in general can preserve more information 
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from the original data. Thus, our approach only considers modification and 

insertion operations. We assume that each operation is assigned a weight in 

a range between 0 and 1. A cost of the modification operation is the cost of 

updating a node value. The cost of the insertion operation is the cost to 

insert a single node which is a descendant of a considered sub-tree. We 

prefer node updating than node insertion since inserting a node is more 

complicated than updating a node value. In our approach, we assume that 

the cost of node insertion is three times the modification cost. The repair 

cost of a T to a repair R is defined as  

     
)',(cos),(cos

]..1[ ini i vvtRTt ∑ =
= , 

 

where vi is original node and vi' is the transformed node.  

 In addition to choosing a repair with the lowest cost, we also use 

cost threshold, denoted as γ, to ignore the repairs which are too different to 

the original. Users choose their preferred repair cost threshold when 

specifying queries. A cost threshold for each considered node is indicated 

by the percentage of the repair cost threshold with the number of candidate 

nodes and the number of XCDSs. Such an evaluation mechanism allows 

retrieving the desired information which is closer to the original data 

source.  

φ

γ
γ

CCv

node
.

= ,  

where γ is the repair cost threshold of the total data, Cv is the number of 

candidate nodes relating to the query and φC  is the number of candidate 

XCSDs. In this chapter, we set the value of γ to 1. 
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Example 5.2. Suppose that Booking(42, 1) in Fig 5.3a which is also 

included in the data tree T in Fig 5.2. Booking(42, 1) is inconsistent with 

respect to constraints 1, 2 & 3 in Fig 5.2. At least two alternative ways exist 

to correct Booking(42, 1) with different results (Fig 5.3b & 5.3c). Assume 

that the total number of candidate nodes is 4, the modification cost is 0.01 

and the insertion cost is 0.03. The cost repair threshold for each node is  

γnode= 1/(4 * 3) ≈ 0.08. 

 The first repair v1 is followed by constraints 1&2. According to 

constraint 1 'Any Booking having the Carrier "Tiger Airways", the Tax 

is identified by the Fare'. The Tax and the Fare of Booking(42, 1) are the 

same with the Tax and the Fare of Booking(2, 1). Thus, the value of the 

Carrier of Booking(42, 1) is updated by "Tiger Airways" with repair cost 

of 0.01. According to constraint 2 'Any Booking having Carrier of "Tiger 

 

c) corrections follows constraint 3  

a) Inconsistent data 

Fig 5.3.  Repairing consistent data  
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Airways" and Departure of "SIN", the value of Arrival is "MEL" '. The 

Carrier of Booking(42, 1) is "Tiger Airways". Hence, the value of 

Departure of Booking(42, 1) is updated by "SIN" with  repair cost of 0.01 

and Arrival is modified by "MEL" with  repair cost of 0.01.The total cost 

repair:  cost(Booking(42, 1), v1)= (0.01 + 0.01 + 0.01)= 0.03 < 0.08 =γnode. 

 The second repair v2 is followed constraints 3. According to 

constraint 3: for 'Any Booking having Carrier of "Air Asia", Departure 

of "KUL" and Arrival of "SYD", there must exist a Transit of "MEL"'. 

Following constraint 3, Carrier of Booking(42, 1) is updated by "Air 

Asia" with a cost of 0.01, Departure is updated by "KUL" with  repair 

cost of 0.01, Arrival is updated by "SYD" with  repair cost of 0.01, and 

insert a node: Transit of  "MEL" with a cost of 0.03. The total repair cost 

cost(Booking (42, 1), v2 )= (0.01 + 0.01 + 0.01 + 0.03)= 0.06 < 0.08 =γnode. 

The repair costs of the two cases are 0.03 and 0.06, respectively which 

satisfy the repair cost threshold for a node (i.e. 0.08). However, the former 

repair is preferred over the latter. Indeed, v1 is closer to original Booking 

(42, 1) than v2.  

 

Definition 5.4. (Customized consistent query answer- CCQA) 

Given a data tree T, a set of  XCSDs ∑ over T  and a query Q , the 

customized consistent query answer of the query Q on T with respect to ∑, 

denoted as  Qc(T, ∑) = ki ..1=U Qc(Rvi, ∑), where Qc(Rvi, ∑) is a consistent 

query answer of Q on the sub-tree Rvi, Rvi is a repair of sub-tree rooted at vi 

w.r.t  ∑, k is the number of related nodes to Q and vi is a related nodes to 

the query Q. 
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A formal approach to calculate the customized consistent query answer 

will be presented in the next section. 

 

5.3.2 Calculating customized consistent query answers 

 Given an inconsistent XML data tree T and a set of XCSDs ∑, we aim to 

compute a customized consistent answer for query Q posted to T. Our 

approach is based on the semantics of XCSDs to find consistent data, 

preserving the original data source. The original inconsistent data is 

evaluated at each constraint. The answer is calculated by qualifying query 

with appropriate information derived from the interaction between the 

query and the XCSDs. The result of a query is a data tree which is 

constructed by appropriate projections on the data qualified to Q. The 

similarity parameters in XCSDs may result in a large number of candidate 

objects qualified to the query, causing difficulties for computing CCQAs. 

Therefore, we restrict all XCSDs having the same similarity threshold to 

avoid dealing with a various number of candidate objects. 

 In particular, SC2QA consists of four processes (List 5.1). First, the 

function selDC is performed to select all candidates XCSDs ( iφ ,..., kφ ) 

relating to the posted query Q. This process is based on the comparison 

between the context paths of XCSDs and paths in Q with respect to the 

similarity threshold of XCSDs. Second, the function selCanNode is called 

to select all candidate nodes (v1, v2,..., vn) relating to query Q, based on the 

semantics of the candidate XCSDs, where vi is an ancestor of target nodes 

of XCSDs. Third, valXCSD is performed to validate XCSDs, vi is the 

domain for validating candidate XCSDs. The process of validating XCSDs 

is performed locally at each candidate node to retrieve consistent data. For 

each violation node vk, the list of violation XCSDs, repair values and repair 
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costs are calculated and stored in vk.list( kjφ , rkj, ckj), and node vk is marked 

as a violation. Finally, the result data is generated in a top-down fashion by 

combining all consistent data and repaired data. A result is considered valid 

only if the repair cost of inconsistent data is under a certain cost threshold. 

That is, if the repair cost of data is above a given cost threshold then the 

repair cost will be set to 100 to indicate that the result is invalid and the 

corresponding repair is not considered to be qualified for query Q and 

query Q is not actually executed. Thus, for each violation node vk, we 

choose the repair ( kjφ , rkj, ckj) with the lowest overall repair cost. 

Commonly, we choose the node repair cost for vk with the lowest cost.   

 

 

 

Algorithm SC2QA 

Input: Q, ∑, T,  γ  

Output: T' 

T'← ''; 

DC← selDC( Q, T, ∑ ); 

CN← selCanNode (Q, T, DC ); 

repCost← valXCSD( Q, T, DC, ∑, γ ) 

if repCost ≠  100 

for each candidate node vi in CN do 

 if making vi then  

  vi' ← repair(vi.list( kφ , rik, cik));  

  T' ← T'∪  v'i 

 else 

 T' ← T'∪  vi; 

 return T'; 

List 5.1. The SC2QAs algorithm 



5. STUCTURED CONTENT-BASED QUERY ANSWERS 

FOR IMPOVING INFORMATION QUALITY 

 

 

130 

  

Algorithm selDC //selecting XCSDs relating to Q 

Input: Q, T, ∑; 

Output: DC  // selected constraints  

init  DC ← {Ø}; 

 for each  φ = Pl: [α] [C], (X � Y) in ∑  do //select relevant XCSDs to Q 

  candidate←{True}; 

  for each simple path qi in Q do 

   if  dp(qi,Pl) < α  then  //not similar 

    candidate← {False};  

    exitFor;    

  DC← Insert(DC, φ ); //insert φ into DC in the increasing order 

return(DC); 

 

Algorithm selCanNode //selecting candidate target nodes 

 Input: Q, T, DC 

 Output: CN //set of candidate target nodes 

 init CN← {Ø};   

  N← satisfiedNodes(Q, T); // N= {n1, n2,...,nk}  

  for each XCSD φ = Pl: [α] [C], (X � Y) in DC do 

  for each subtree Ti rooted at ni  do 

  if  lab(ni)= l  and exiting node nk in Ti  satisfying C  then 

   CN← CN ∪ {ni}; 

return(CN); 

 

Algorithm valXCSD 

Input: Q, ∑, T, γ  

Output: repCost 

DC← selDC( Q, T, ∑ ); 

CN← selCanNode (Q, T, DC ); 

nodeγ ← γ /(CN. |∑|); 

repCost← 0; //repair cost 

for each candidate node vi in CN do 

 for each candidate XCSD kφ  in DC do  

  if  kφ  does not hold on sub-tree tvi rooted at vi then 

   marking vi; 

   c← esreco(tvi, kφ ) 

   if (c < nodeγ ) then  //estimating repair cost 

        vi.list( kφ , rik, c); 

        add(repCost, c); 

        else   remove vi from CN; 

If (repCost < γ )  return repCost  

else  

return  100; 

 

List 5.2. Utility functions of SC2QA  
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Example 5.3. Finding customized consistent answer for a query      

Q: /Bookings/Booking[Carrier= 'Tiger Airways"], posted to Bookings 

data tree in Fig 5.1 with respect to three constraints  4φ , 5φ  and 6φ . 

4φ = Pl: [0.6] [./Carrier ="Tiger Airways"] (./Fare �./Tax) 

5φ = Pl: [0.6] [./Carrier ="Tiger Airways" ], (./Departure="SIN" 

�./Arrival= "MEL") 

6φ =Pl: [0.6] [./Carrier ="Air Asia " ], (./Departure="KUL",./Arrival= 

"SYD") � (./Transit= "MEL") 

 We follow the process described in section 5.3 to find a CCQA for 

Q. First, we select all candidate XCSDs relating to query Q which include 

4φ  and 5φ . Second, we select all candidate nodes relating to query Q which 

include CN= {Booking(2, 1), Booking(12, 1), Booking(22, 1 )}. Third, 

we validate XCSDs: for each candidate node in CN, we check for the 

satisfaction of candidate XCSDs and find consistent data for that node. We 

find Booking(2, 1) is similar to Booking(12, 1). This is because following 

the sub-trees similarity algorithm described in List 4.1 to calculate the 

similarity between sub-trees T1 rooted at Booking(12,1) and T2 at 

Booking(2,1), we have dT(T1, T2)= 0.64 > 0.6. Booking (2, 1) satisfies 

constraints 4φ  and 5φ .  

Booking (12, 1) violates 4φ  with Booking(2, 1) since the Tax of 

two nodes does not satisfy the condition that Tax is identified by the 

Fare. They contain the same Fare of "600" but the values of Tax are 

different. While the Tax of Booking(2, 1) is a constant of "150", the Tax 

of Booking(12, 1) is constant of "0". Thus, we replace the inconsistency of 

the Tax by updating the Tax in Booking(12, 1) with a value of "150" in 
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the answer. The Tax(18, 2) node is marked. Booking(22, 1) violates 4φ  

and 5φ .  

 According to 4φ , the Fare identifies the Tax, the Fare of 

Booking(22, 1) is the same at that of Booking(2, 1) but the Tax is 

different. Thus, the Tax of Booking(22, 1) is corrected based on the 

semantics of 4φ . That is, Tax is "150" and Tax(28, 2) is marked. 

According to 5φ , if  Departure of "SIN", then Arrival must be "MEL" 

but the Arrival of Booking (22, 1) is "SYD" which is replaced by  "MEL" 

in the answer based on 5φ . The result of query Q will include Bookings 

{Booking (2, 1), Booking (12, 1), Booking (22, 1)} with modified values 

at marked nodes. 

 

5.4 Complexity analysis and correctness 

 

Complexity analysis: complexity of the SC2QA algorithm mostly depends 

on the size of the XML data source, which is determined by the number of 

elements, the number of XCSDs and the complexity of query Q on T.  The 

SC2QA algorithm first performs the selDC to find a set of candidate 

XCSDs related to the query Q. The complexity of selDC depends on the 

complexity of query Q on T and the size of context paths of XCSDs. In the 

worst case, we assume that all n nodes in T are satisfied by Q. Let |∑| be the 

total number of XCSDs and m be the maximum size of the context paths of 

XCSDsφ . Thus, the selDC makes nm|∑| random accesses to the dataset. 

Then, the function selCanNode is called to select candidate nodes related to 

the query Q with respect to the conditions of the XCSDs. The selCanNode 
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depends on the number of XCSDs and the size of the XML data source. 

The worst case occurs when all n nodes in T related to Q and every XCSD 

in ∑ having a condition, without considering the number of expressions in 

the conditions, the   function selCanNode makes n|∑| random accesses to 

the dataset. 

 Third, the valXCSD is called to validate candidate XCSDs against 

every candidate node. In the worse case, we assume that all |∑| XCSDs are 

in the set of candidate XCSDs, where the set of candidate nodes includes 

all n nodes in T and each node violates all |∑| candidate XCSDs. The 

valXCSD makes n|∑| random access to the dataset. Finally, the SC2QA 

traverses the data tree T on a top-down manner to obtain the query result. 

Every node in T is visited once which means this step needs n random 

accesses to the dataset.  In summary, SC2QA algorithm has time 

complexity of O(n(m|∑|+ 2|∑| + 1)). SC2QA needs to maintain a copy of 

data source T at a time. Hence, the space complexity is bounded by O(n). 

However, in practice, the number of related nodes can be significantly 

smaller than n and the number of XCSDs relating to Q is also smaller than 

the total number of XCSDs |∑|. Therefore, the time complexity can be 

reduced significantly.  

 The following theorem states that the SC2QA algorithm must be 

terminated and returns customized consistent query answers.  
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Theorem 5.2. (Termination) Let Q be a query on a data tree T and ∑ be a 

set of XCSDs. The SC2QA always terminates and generates a consistent 

query answer Qc(T, ∑). 

Proof:   Although in each step of algorithm SC2QA, a violation node with 

respect to a candidate XCSDs is resolved, it might also introduce new 

violations. SC2QA proceeds until no more violation nodes exist. However, 

the set of candidate XCSDs and the number of candidate nodes are limited. 

Thus, SC2QA always terminates. □ 

 

Theorem 5.3. (Correctness) Let Q be a query on a data tree T and ∑ be a 

set of XCSDs. The query answer obtained by SC2QA is always customized 

consistent with the given XCSDs. 

 

Proof:  Suppose that Qc(T, ∑)= ∪i=1..k Qc(Rvi, ∑) is the answer of Q. This 

means each data node in the CCQA satisfies all XCSDs with the lowest 

repair cost. If there exists an answer Qc(Rvi, ∑) for sub-tree Rvi rooted at vi 

which violates a constraint mφ , then there exists at least a node vj in the Rvi 

violates mφ . In such a case, Qc(Rvi, ∑) is not included in the answer Qc(T, ∑) 

and a repairing with respect to the given XCSDs is impossible.  Otherwise, 

it is a contradiction with the data value repair principles that each Qc(Rvi, ∑)  

is considered valid in the answer set only if it is computed from all 

consistent data with a repair cost under a certain cost threshold. □ 
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5.5 Experimental evaluation 

We run experiments on synthetic data to evaluate the calculation efficiency 

for SC2QA. This is to avoid the noise in real data. Our dataset is an 

extension of the Flight Bookings data shown in Fig 5.1. The dataset covers 

common features in XML data, including structural diversity and various 

data rules. The original dataset contained 100 Bookings. The 

DirtyXMLGenerator [72] made by Sven Puhlmann was used to generate 

the synthetic dataset. We specified that the percentage of duplicates of an 

object is 100% to generate a dataset containing similar Bookings. From 100 

duplicate Bookings, we specified 30% of data was missing from the 

original objects so that the dataset becomes inconsistent due to missing 

data. We evaluated on 5 constraints, consisting of 3 constant XCSDs and 2 

variable XCSDs.  We ran experiments on a PC with an Intel i5, 3.2GHz 

CPU and 8GB RAM. The implementation was in Java and data was stored 

in MySQL.   

 

Parameters: the number of XCSDs and the query influence on the 

complexity of SC2QA. The dataset is fixed, but the number of conditions 

on the query and the XCSDs change.  We consider the effectiveness of 

cases where: (i) the query Q is computed with respect to different types of 

XCSDs including constant XCSDs and variable XCSDs; and (ii) the 

number of conditions in query Q increases, and the number of XCSDs is 

stable. Fig 5.4 is a set of XCSDs and Fig 5.5 is a set of queries which are 

used in experiments. The repair cost threshold γ  is set to 1. For each query, 

we recorded the running time.  
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C1 1φ = Pl:  [0.6] [./Carrier ="Tiger Airways"] (./Fare �./Tax) 

C2 2φ = Pl:  [0.6] [./Carrier ="Air Asia " ], (./Departure,./Arrival) � (./Tax) 

C3 
3φ = Pl:  [0.6] [./Carrier ="Tiger Airways" ], (./Departure="SIN" 

�./Arrival= "MEL") 

C4 
4φ = Pl:  [0.6] [./Carrier ="Air Asia " ], (./Departure="KUL",./Arrival= 

"SYD") � (./Transit= "MEL") 

C5 
5φ = Pl:  [0.6] [./Carrier ="Air Asia "], (./Departure= "SIN", 

./Arrival="SYD") � (./Tax= "200") 

 

Fig 5.4.  Set of XCSDs used in experiments 

Q1 /Bookings/Booking 

Q2 /Bookings/Booking[Carrier= 'Tiger Airways'] 

Q3 /Bookings/Booking[Carrier= 'Tiger Airways' and Departure='SIN' ] 

Q4 
/Bookings/Booking[(Carrier= 'Tiger Airway' and Departure= 'SIN' and 

Fare = '600'] 

Q5 
/Bookings/Booking[(Carrier= 'Air Asia' or Carrier= 'Tiger Airways') and 

Departure='SIN'] 

 

Fig 5.5. Set of queries used in experiments 
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The results in Fig 5.6 are the execution times of query Q1 under various 

types of  XCSDs. The results show that the SC2QA runs more efficiently 

when utilizing constant XCSDs than variable XCSDs. This is because 

XCSDs with constant expressions provide more information for validating 

 

 

Fig 5.6  Execution times: constant XCSDs vs variable XCSDs 
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and correcting violation data than those with variable expressions. The 

variable XCSDs hold on a large number of objects, which requires more 

processing time. For instance, the execution times of query Q1 under 3φ  are 

around 50% the execution times of either 1φ  or 2φ . The same situation 

occurs to 4φ  and 5φ .  

Fig 5.7 represents the execution times of queries Q1-Q5 where have the 

number of conditions varies from 0 to 3 and the number of XCSDs remains 

the same  (i.e 1φ - 5φ ). Execution time depends on the number of conditions 

in the queries. In cases where the number of conditions in the queries 

increases, the execution time is also slightly increased. That is, the times 

required to analyse the interactions between the query and the XCSDs 

increase. 

 

5.6 Conclusion  

This chapter introduced an approach utilizing XCSDs to compute 

customized consistent query answers for queries posted to an inconsistent 

data source to improve information quality. Our approach is based on the 

semantics of XCSDs to find consistent data from involved objects. By 

identifying every inconsistent node locally with respect to each XCSD, 

SC2QA is able to collect the information as consistent as possible. 

Experiments on a synthetic dataset are used to evaluate the effectiveness of 

SC2QA. The results show that SC2QA works more efficiently for constant 

XCSDs than variable XCSDs. Constant XCSDs provided more information 

for validating and correcting violation data than those with variable 

expressions as XFDs. Thus, we expect that utilizing XCSDs to compute the 

customized consistent answers to queries are more accurate than that of 

XFDs.  
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6.  

 

 

Chapter 6 

 

Conclusion 

 

6.1 Thesis summary 

 

This thesis addressed the problems of data inconsistency in XML data. The 

problem of XML data inconsistency often arises from either semantic or 

structural inconsistencies inherent from in heterogeneous XML data. 

Existing XFD approaches have shown several limitations in handling such 

problems. XFDs are unable to express the semantics of constraints holding 

conditionally on XML data with diverse structures. Existing XFD 

discovery approaches cannot explore a proper set of constraints to address 

inconsistency in XML data. Such limitations are resolved in this thesis.  

Chapter 3 introduced the XDiscover approach to address semantic 

inconsistency. We first introduced the notion of XML conditional 

functional dependency. XCFDs are constraints which incorporate 

conditions into XFD specifications to express constraints with conditional 

semantics. Second, the XDiscover approach was proposed to discover a set 

of possible XCFDs from a given XML data instance. We conducted 

experiments on synthetic and real datasets, and examined on case studies to 

evaluate XDiscover. The obtained results revealed that XDiscover is able to 
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discover more situations of dependencies than the XFD discovery 

approach. Furthermore, XCFDs have more semantic expressive power than 

existing XFDs. 

 Chapter 4 proposed the SCAD approach to target the problems of 

data inconsistencies caused by both structural and semantic inconsistencies. 

First, we highlighted the need for a new data type constraint called XML 

conditional structural functional dependency (XCSD) to resolve such 

problems. Second, we proposed the SCAD approach to discover a proper 

set of possible XCSDs considered anomalies from a given XML data 

instance. Third, we evaluated the complexity of our approach in the worst 

case and in practice. Fourth, we ran experiments and case studies on 

synthetic datasets. The obtained results revealed that SCAD is able to 

discover more situations of dependencies than the XFD discovery 

approach. Discovered XCSDs using SCAD also have more semantic 

expressive power than existing XFDs. SCAD deals effectively with data 

sources containing structure diversity.  

 Both XCFDs and XCSDs can be used to enhance data quality 

management. They can be embedded as an integral part in an enterprise’s 

systems to constrain the data process by suggesting possible rules and 

identifying non-compliant data to minimize data inconsistency. They also 

can be used to detect and correct non-compliant data. Chapter 5 utilized 

XCSDs to compute customized consistent answers for queries posted to an 

inconsistent data source to improve the quality of information. First, we 

proposed an approach called SC2QA, which integrated semantics of 

XCSDs into the query process to compute query answers. Second, we 

evaluated the complexity of SC2QA in worst case analysis. Third, to 

evaluate the effectiveness of SC2QA, we conducted experiments on a 

synthetic dataset which contained structural diversity and constraint variety 

causing XML data inconsistencies. The results showed that query answers 
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found by SC2QA work more efficiently for constant XCSDs than variable 

XCSDs. We proved that customized query answers computed by SC2QA are 

always consistent with respect to a set of preferred XCSDs.   

 

6.2 Future work  

There are several possible directions for future work which can use the 

techniques proposed in this thesis as a foundation. These promising 

directions are listed as follows: 

• This thesis handles inconsistencies at either semantic or structural-

level; other inconsistencies might still exist due to element labels. It 

would be interesting to take a step forward to resolve the problems 

of data inconsistencies caused by the inconsistencies in the 

semantics of labels.  

 

• XML data changes very often which may lead to a corresponding 

change in the semantics of constraints. It is an interesting problem 

for future research to address the problem of data evolution by 

extending this work.  

 

• Data inconsistencies also challenges in data integration 

environment. Inconsistency may arise due to the way in which 

source data are related with global elements by means of mapping. 

Data stored at the local source may violate integrity constraints 

specified at the global level. We would like to extend our discovery 

techniques to tackle inconsistencies in data integration. 

 

• We would like to extent our SCAD discovery approach to support 

association rules holding conditionally on data.  This extension is 
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particular interesting since it allows assigning context-dependent to 

association rules, where each context is represented by appropriate 

data fragments in which association rule holds.  

 

• We also would like to extent our proposed approaches to support more 

types of constraints, such as foreign keys, reference integrity and general 

check constraints. 
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