

STRUCTURED CONTENT-AWARE

DISCOVERY FOR IMPROVING XML DATA

CONSISTENCY

Submitted by

THI HONG LOAN VO

A thesis submitted in total fulfillment

of the requirements for the degree of

Doctor of Philosophy

School of Engineering and Mathematical Sciences

Faculty of Science, Technology and Engineering

La Trobe University

Bundoora, Victoria 3086

Australia

October 2013

CONTENT

 i

Contents

List of tables...v

List of figures ...vii

Lists ...ix

Acknowledgements ...xi

Abstract ...xiii

Statement of authorship ...xv

External refereed publications ..xvii

1 Introduction ..1

1.1 Motivation ..1

1.1.1 Data consistency ...3

1.1.2 Requirements of constraint specification4

1.1.3 Requirements of constraint discovery5

1.1.4 Consistent data management ...6

1.2 Problem definition ..7

1.3 Overview of our approaches ..9

1.4 Contributions ...12

1.5 Thesis organization ..12

2 Related work ..15

2.1 XML database ..15

2.1.1 Document type definition ..16

CONTENT

 ii

2.1.2 XML data .. 17

2.2 Conditional functional dependency .. 19

2.3 Association rule ... 21

2.4 XML Functional dependency .. 22

2.4.1 Tree-tuple based functional dependency.............................. 23

2.4.2 Path-based functional dependency....................................... 24

2.4.3 Extended proposals for XML functional dependency 25

2.5 Managing data consistency in inconsistent data sources 30

2.6 Summary ... 33

3 Content-based discovery for improving XML data consistency........ 37

3.1 Introduction ... 38

3.2 Preliminaries .. 41

3.3 XML conditional functional dependency 46

3.4 XDiscover:

 XML conditional functional dependency discovery................... 49

3.4.1 Search lattice generation .. 50

3.4.2 Candidate identification ... 51

3.4.3 Validation ... 52

3.4.4 Pruning rules .. 54

3.4.5 XDiscover algorithm.. 58

3.5 Experimental analysis .. 63

3.5.1 Synthetic data ... 63

3.5.2 Real life data.. 65

3.6 Case studies ... 66

3.7 Summary .. 71

4 A structured content-aware approach

CONTENT

 iii

 for improving XML data consistency...73

4.1 Introduction ..73

4.2 Preliminaries ..76

4.2.1 Constraints ..76

4.2.2 XML data tree ..79

4.3 Structure similarity measurement ..81

4.3.1 Sub-tree similarity ..81

4.3.2 Path similarity...84

4.4 XML conditional structural functional dependency...................88

4.5 SCAD: structured content-aware discovery approach

 to discover XCSDs ...91

4.5.1 Data summarization: resolving structural inconsistencies....92

4.5.2 XCSD discovery: resolving semantic inconsistencies..........94

4.5.3 SCAD algorithm ...96

4.6 Complexity analysis ...100

4.7 Experimental analysis...101

4.8 Case studies ..107

4.9 Summary...114

5 Structured content-based query answers

 for improving information quality ...115

5.1 Introduction ...116

5.2 Preliminaries ..118

5.2.1 XPath ...118

5.2.2 Motivation examples ..118

5.3 SC2QA: structured content-aware approach

 for customized consistent query answers120

CONTENT

 iv

5.3.1 Data repair ... 122

5.3.2 Calculating customized consistent query answers 128

5.4 Complexity analysis and Correctness 132

5.5 Experimental evaluation ... 135

5.6 Summary .. 138

6 Conclusions ... 139

6.1 Thesis summary .. 139

6.2 Future work ... 141

Bibliography ... 143

LIST OF TABLES

 v

List of Tables

3.1 XDiscover vs Yu08 on the number of discovered constraints64

3.2 Samples of constraints

 discovered by XDiscover vs that of Yu08..64

3.3 Analyzing real life datasets ..66

4.1 Expression forms of XML functional dependencies78

LIST OF TABLES

 vi

LIST OF FIGURES

 vii

List of Figures

1.1 An simplified inconsistent instance of Customer relation3

2.1 An example of DTD...16

2.2 An example of an XML document ..18

2.3 An example of data tree ...19

2.4 An instance of the Bookings relation...19

2.5 A tree-tuple illustration ..24

2.6 A sub-tree represents a generalized-tree-tuple-based FD26

2.7 A sub-tree represents a local functional dependency28

3.1 A Flight Bookings schema tree ..38

3.2 A simplified Bookings data tree containing

 semantic inconsistencies ..40

3.3 A set of containment lattice of A, B and C51

3.4 A simplified Bookings data tree:

 each Booking contains only one Trip ..53

3.5 A simplified Bookings data tree:

 each Booking contains a set of complex element Trip70

4.1 A simplified Bookings data tree

 containing structural and semantic inconsistencies..........................76

4.2 An overview of the SCAD approach ...91

4.3 Numbers of candidates checked vs similarity threshold................103

4.4 Time vs similarity threshold ..103

4.5 SCAD vs Yu08...104

4.6 Range of similarity thresholds ...104

LIST OF FIGURES

 viii

4.7 A simplified Bookings data tree is constrained by constraints

 containing both variable and constants... 111

5.1 An inconsistent Flight Booking data tree

 with respect to XCSDs ... 117

5.2 XCSDs on the Flight Bookings data tree 119

5.3 Repairing consistent data... 126

5.4 Set of XCSDs used in experiments ... 136

5.5 Set of queries used in experiments .. 136

5.6 Execution times: constant XCSDs vs variable XCSDs................. 137

5.7 Execution times when varying

the number of conditions in queries .. 137

LISTS

ix

Lists

3.1 The XDiscover algorithm ..59

3.2 The discoverXCFD algorithm..60

4.1 The subtree_Similarity algorithm ...83

4.2 The path_Similarity algorithm...86

4.3 The data_Summarization algorithm ..93

4.4 The SCAD algorithm ...97

4.5 Utility functions of SCAD ...99

5.1 The SC2QA algorithm ...129

5.2 Utility functions of SC2QA ...130

LISTS

x

ACNOWLEDGEMENTS

xi

Acknowledgements

I would especially like to thank the following people.

• First of all, I would like to thank Dr. Jinli Cao for her endless

support. I sincerely appreciate her contribution of time, guidance,

caring help, and advice during the fourth years of my Ph.D. study at

La Trobe University. I also thank her for being very patient with my

progress.

• I wish to express my gratitude to my second co-supervisor,

Associate Professor Wenny Rahayu, for her support and

encouragement in relation to my research in general. She provided

very helpful comments and ideas on my work. She always supported

me whenever I needed her most.

• I owe a very special thank to my good friends, Dr Hong-Quang

Nguyen from International University, Vietnam National University,

Dr Thi Ngoc Nguyen from National University of Singapore and

Dr. Hai Thanh Do for their tremendous support to me. They

provided me with insightful ideas, shared valuable tips on how to

improve my writing skills and how to present technical materials

and gave very helpful comments on my published papers.

• I would like to thank the chair of my research panel Dr Torab Torabi

and Dr Fei Lui for participating in my thesis committee and

ACNOWLEDGEMENTS

xii

providing helpful feedback for every stage of my Ph.D. I also thank

Ms. Michele Mooney for her careful proof reading of my research

papers and the final draft of this thesis.

• I would like to express my gratitude and love to my family for

always being there whenever I needed them most, and for

supporting me throughout all my thesis years. I would like to thank

my parents for their continuous love and support. I would like to

thank my husband Phuc Duat Phan, for his constant love, care and

encouragement.

ABSTRACT

xiii

Abstract

With the explosive growth of heterogeneous XML sources, data

inconsistencies have become a serious problem, resulting in ineffective

business operations and poor decision-making. XML Functional

Dependencies (XFDs) are well known as essential semantics to enforce the

data integrity of a source. However, existing approaches to XFDs have

insufficiently addressed data inconsistencies arising from both semantic

and structural inconsistencies inherent in heterogeneous XML data. In this

thesis, we address such prevalent inconsistencies by proposing XDiscover,

SCAD and SC2QA approaches.

 XDiscover is a content-based discovery approach which explores

the semantics hidden in data to discover a set of minimal XML conditional

functional dependencies (XCFDs) from a given source to address semantic

inconsistencies. The XCFD notion is extended from XFDs by incorporating

conditions into XFD specifications. The experimental results on the

synthetic and real datasets and the results from the case studies show that

XDiscover can discover more dependencies and the dependencies found

convey more meaningful semantics, in terms of capturing data

inconsistency, than those of the existing XFDs.

 SCAD is a structured and content-aware approach which explores

the semantics of data structures and the semantics hidden in the data values

to discover a set of XML conditional structural functional dependencies

(XCSDs) from a given source to address the inconsistencies caused by both

ABSTRACT

xiv

structural and semantic inconsistencies. XCSDs are path and value-based

constraints, whereby: (i) the paths in XCSD approximately represent

groups of similar paths in sources to express constraints on objects with

diverse structures; while (ii) the values bound to particular elements

express constraints with conditional semantics. We conduct experiments

and case studies on synthetic datasets which contain structural diversity and

constraint variety causing XML data inconsistencies. The experimental

results show that SCAD can discover more dependencies and the

dependencies found can capture data inconsistencies disregarded by XFDs.

 SC2QA utilizes XCSDs to compute customized consistent query

answers for queries posted to inconsistent data sources to improve

information quality. The query answer is calculated by qualifying queries

with appropriate information derived from the interaction between the

query and the XCSDs. We conduct experiments on synthetic datasets to

evaluate the effectiveness of SC2QA.

riacono
Text Box
16 October 2013

kmcintosh
Text Box

STATEMENT OF AUTHORSHIP

xvi

EXTERNAL REFEREED PUBLICATIONS

xvii

External Refereed Publications

The results of this thesis have been published in or under reviewed by the

following journals and proceedings:

Vo, L.T.H., Cao, J., Rahayu, W. and Nguyen, H.-Q. Structured content-

aware discovery for improving XML data consistency. Information

Sciences, 248(1): 168-190, 2013.

Vo, L.T.H., Cao, J. and Rahayu, W. Discovering Conditional Functional

Dependencies in XML Data. Australasian Database Conference, 143-152,

2011.

Vo, L.T.H., Cao, J. and Rahayu, W. Structured content-based query answer

for improving information quality. World Wide Web, under accepted, Jan

2014.

EXTERNAL REFEREED PUBLICATIONS

xviii

1. INTRODUCTION

1

Chapter 1

Introduction

The main theme of this thesis is to study XML data consistency. This

chapter consists of five sections. Section 1.1 highlights the need to

introduce new types of constraints and proposes approaches to discover

anomalies in XML data. Requirements to address data inconsistency are

also discussed in this section as the motivation for this work. Section 1.2

presents the definitions of the problems which are resolved in this thesis.

Section 1.3 briefly introduces our approaches to resolve the identified

problems. Section 1.4 summarizes the main contributions of the thesis. The

thesis organization is outlined in section 1.5.

1.1 Motivation

Extensible Markup Language (XML) has emerged as the standard data

format for storing business information in organizations [6]. Data in these

environments are rapidly changing and highly heterogeneous. This has

increasingly led to the critical problem of data inconsistency in XML data

because the semantics underlying business information, such as business

rules, are enforced insufficiently [58]. XML itself only support for creating

1. INTRODUCTION

2

markup languages used as metadata, it does not guarantee how the

underlying business information must be structured and expressed in

business processes. Data inconsistency appears as violations of constraints

defined over a dataset [43, 80] which, in turn, leads to inaccurate data

interpretation and analysis [47, 68]. Such problems significantly affect the

ability of the system to provide correct information causing inefficient

business operations and poor decision making. XML functional

dependencies (XFDs) [6, 42, 52, 82, 83] have been proposed to increase the

data integrity of the sources. Unfortunately, existing approaches to XFDs

are insufficient to completely address the data inconsistency problem to

ensure that the data is consistent within each XML source or across

multiple XML sources for three main reasons. First, XFDs are defined to

represent constraints globally enforced to the entire document [6, 82],

whereas XML data are often obtained by integrating data from different

sources constrained by local data rules. Thus, they are unable, in some

cases, to capture conditional semantics locally expressed in some fragments

within an XML document.

 Second, the existing XFD notions are incapable of validating data

consistencies in sources with diverse structures. This is because checking

for data consistency against an XFD requires objects to have perfectly

identical structures [82], whereas XML data is organized hierarchically

allowing a certain degree of freedom in the structural definition. Two

structures describing the same object may not be identical [75, 94, 95]. In

such cases, using XFD specifications cannot validate data consistency.

Third, existing approaches to XFD discovery focus on structural validation

rather than semantic validation [11, 42, 82, 91]. Most existing work on

constraint discovery only extracts constraints to solely address data

redundancy and normalization [81, 102]. Such approaches cannot identify

anomalies to discover a proper set of semantic constraints to support data

1. INTRODUCTION

3

inconsistency detection. To the best of our knowledge, there is currently no

existing approach which fully addresses the problems of data inconsistency

in XML data. Such limitations in prior work are addressed in this thesis.

In the next section, we present certain technical terms relating to data

consistency which are necessary to understand the remainder of the thesis.

1.1.1 Data consistency

Consistency is a data quality dimension capturing the violation of semantic

rules defined over a dataset. Integrity constraints are instantiations of such

semantic rules which are dependencies typically defined to ensure schema

quality [15]. They are properties which must be satisfied by all instances of

a database. Data inconsistency describes a source which does not respect

one or more constraints defined over a dataset. For example, a condition

could be that, in every

instance, the customer

name (CName)

functionally depends on

the customer ID (CId),

i.e., a customer ID is

assigned to, at most, one

customer name. This

integrity constraint is a functional dependency (FD) denoted as CId →

CName, indicating that this dependency should hold for the attributes of

the Customer relation. The data in Fig 1.1 is inconsistent with respect to the

above FD. This is because the customer ID of "C01" is assigned to two

different customer names which violates the above functional dependency.

 In XML data, the satisfaction of a source to a set of integrity

constraints often cannot be guaranteed, hence, data inconsistency occurs

Fig 1.1 An simplified inconsistent instance

of Customer relation

CId CName

C01 Mary

C01 Bob

C02 Clayton

1. INTRODUCTION

4

[43, 80]. Data inconsistency is often caused by semantic inconsistency and

structural inconsistency. Semantic inconsistencies occur when business

rules on the same data vary across different fragments [79]. Structural

inconsistencies arise when the same real world concept is expressed in

different ways, with different choices of elements and structures, that is, the

same data is organized differently [75, 95]. In this work, we define integrity

constraints for instances calling them constraints. Such constraints are

defined based on either the actual data content or data structures to enhance

the data consistency within an XML data source. By data consistency, we

mean that the source syntactically and semantically satisfies a set of

constraints.

 In the next section, we discuss the essential features about which

constraints are required to have so that they can prevent data

inconsistencies in XML.

1.1.2 Requirements of constraint specifications

Constraints are essential parts of data semantics used to define the criteria

that a data source should satisfy. Commonly, the validation of XML data

often focuses on the schema level with respect to predefined constraints

expressed in the form of schema [5, 6, 11, 82]. However, XML data are

often integrated from different data sources, and while there are certain

features shared by all data, each fragment might need to maintain certain

constraints differently to suit its unique requirements [91]. The existence of

various constraints holding on the same object across different fragments

causes inconsistencies at the semantic level. In such cases, an additional

validation from the content view with respect to different constraints

holding conditionally on the data is necessary to maintain data consistency.

1. INTRODUCTION

5

By holding conditionally, we mean that each constraint holds on a subset of

the data specified by an accompanying condition.

 In addition to semantic inconsistencies, structural inconsistencies

also pose additional challenges to enhance the data consistency. Structural

inconsistencies are often caused by the existing various data structures

representing the same object. That is, XML data can contain data from

different data sources which might contain either nearly, or exactly the

same information, but they are represented by different structures.

Moreover, even though two objects express similar content, each of them

may contain some extra information. In such cases, constraints on XML

data should be allowed to hold on similar objects. In summary, in order to

ensure the data consistency, constraints not only need to define the data-

value bindings to express conditional semantics, but should also be flexible

enough to describe the similarity of objects. As far as we are concerned,

there is no prior work proposing such constraints to validate data

consistency from both structural and content views. We suggest that such

constraints should be maintained to preserve the data consistency of

applications supported by XML data.

 From the requirements of constraint specifications, we now discuss

the requirements that discovery approaches should take into account to

explore a proper set of constraints to address data inconsistency arising

from both semantic and structural inconsistencies in XML data.

1.1.3 Requirements of constraint discovery

As XML data becomes more common and its data structures more

complex, it is desirable to have algorithms to automatically discover

anomalies from XML data sources. Although there is existing work [4,

102] on discovering constraints, there still exist certain limitations and

1. INTRODUCTION

6

problems which remain completely unsolved. Existing work cannot explore

a proper set of constraints to address data inconsistency. The Apriori

algorithm [4] and its variant approaches [13, 61, 71, 84] are well known for

discovering association rules, which are associations amongst sets of items;

however, such rules contain only constants. By contrast, XML functional

dependencies discovered by the work in [102] contain only variables which

are solely defined on a structural level. Existing work cannot detect

constraints occurring in the data which should be maintained to ensure data

consistency. In order to discover such constraints, the discovery process

has to convey semantics from both structures and data content. This thesis

generalizes the existing techniques relating to association rule [4] and

functional dependency discovery [53, 70, 102] to discover the constraints

containing either variables or constants. They are constraints defined on a

data level. We discuss the features which a system should consider to

manage data consistency in XML data in the next section.

1.1.4 Consistent data management

The problem of data consistency management in inconsistent data has been

widely studied in the database community. Consistent data is formally

obtained following two approaches including data repair and consistent

query answers [9]. Data repair is to find consistent parts of an inconsistent

data source with respect to predefined constraints and minimally differs

from the original one [9, 79]. The inconsistent source is often first

transformed, by means of deletions or additions, into a consistent one

which is then used for calculating query answers [25]. However, repairing

data might also result in side effects, for example it could cause incorrect

answers to queries and it does not always remove inconsistencies

completely. Restoring consistency in an inconsistent data might also be a

1. INTRODUCTION

7

computationally complex and non-deterministic process. Moreover, one of

the main goals of a database system is to compute answers to queries [47].

This means that finding consistent query answers is more important than

repairing data. Hence, it is preferable to leave the data inconsistencies to

avoid losing information due to the data repair and instead, manage the

potential inconsistencies in answers to queries posted to that source, that is,

finding the parts of data which are consistent in query answers. The

consistent answer to a query is defined as the common parts of answers to

the query on all possible repairs of the data source [43, 45, 76]. XML data

is often inconsistent with respect to a set of constraints. Therefore,

constraints should be taken into account along with the data source in the

process of computing query answers. This thesis addresses the issue of

computing consistent answers for queries posted to an inconsistent XML

source with respect to a set of constraints.

 Focusing on the requirements discussed above, this thesis resolves a

number of issues, which can be grouped into three major problems described

in the following section. The first two problems involve constraint

discovery and the third problem concerns consistent query answers.

1.2 Problem definition

The problems of data consistency in relational databases have been

extensively studied [27, 31, 36, 38, 39, 40]. This thesis extends this work to

XML data. We propose approaches to discover a proper set of constraints

used to ensure data consistency in XML data. Constraint discovery can be

divided into two problems. The first problem is to deal with a case where a

data source conforms to a schema. We only need to discover anomalies

caused by semantic inconsistencies. The second problem is a case where a

given data source does not follow any schema. The data source is designed

1. INTRODUCTION

8

with great flexibility in both data structures and semantics. In such cases,

we focus our attention on anomalies arising from both structural and

semantic inconsistencies. Two problems can be formulated as follows:

Problem 1: "Given an XML data tree T conforming to a schema S, discover

a set of non-redundant XML conditional functional dependencies (XCFDs),

where each XCFD is minimal and contains only a single element in the

consequence". The task of constraint discovery only relates to the data

content referred to as resolving semantic inconsistencies.

Problem 2: "Given an XML data tree T, discover a set of minimal XML

conditional structural functional dependencies (XCSDs), where each XCSD

is minimal and contains only a single element in the consequence". The

task of constraint discovery is based on both data content and data

structures. The discovery approach handles both data structural and

semantic aspects which are referred to as resolving structural and semantic

inconsistencies.

 In addition, our proposed constraints are applied to compute

customized consistent query answers for queries posted to inconsistent

XML data. The problem can be formulated as follows:

Problem 3: "Given an XML data tree T and a set of XCSDs, find a

customized consistent answer for query Q posted to tree T". The task is to

find consistent answer for the query posted to an inconsistent data source

with respect to a given set of XCSDs.

 The solutions to problems 1, 2 and 3 are in chapter 3, 4, and 5,

respectively. We believe that our research is especially relevant nowadays,

since a huge amount of data is being exchanged between organizations

1. INTRODUCTION

9

using XML data in which it is very difficult to avoid anomalies. In the next

section we present an overview of our approaches.

1.3 Overview of our approaches

We propose three different approaches, called XDiscover, SCAD and

SC2QA to address the three problems defined above, respectively. First, we

propose a new XDiscover approach to discover a set of XML conditional

functional dependencies (XCFDs) from a given XML data source

conforming to a schema. XCFDs are extended from XFDs by incorporating

conditions into XFD specifications. The XDiscover is based on semantics

hidden in the data to discover constraints. It includes three main functions,

named search lattice generation, candidate identification, and validation.

The search lattice generation is used to generate a search lattice

containing all possible combinations of elements in the given schema. The

candidate identification is used to identify possible candidates of XCFDs.

The identified candidates are then validated by the validation function, to

discover satisfied XCFDs. Validation for a satisfied XCFD includes two

steps. First, partitions for node-labels associated with each candidate XCFD

are calculated based on data values coming with that node-label. Then, the

satisfaction of that candidate XCFD is checked, based on the notion of

partition refinement [53]. The number of candidate XCFDs and the

searching lattice are very large. Therefore, we propose five pruning rules

used to remove redundant and trivial candidates from the search lattice in

order to improve the performance of XDiscover. The first three rules are

used to skip the search for XCFDs that are logically implied by the already

found XCFDs. The last two rules are to prune redundant and trivial XCFD

candidates. Adoptions of Armstrong's Axioms and closure set [12] are used

to prove the correctness of our proposed pruning rules and the

1. INTRODUCTION

10

completeness of the set of XCSDs discovered by XDiscover. The

experimental results on synthetic and real datasets, and results from case

studies show that XDiscover can discover more dependencies and the

dependencies found convey more meaningful semantics, in terms of

capturing data inconsistency, than those of the existing XFDs.

 Second, we observe that it cannot be an assumption that each XML

document has a schema defining its structure for two main reasons. First,

the flexible nature of XML allows the representation of different kinds of

data from different data sources. Second, if a schema exists, each source

might follow its own structural definitions through multiple modifications.

As a result, the problems of structural inconsistencies cannot be avoided.

Therefore, in our second contribution, we propose a structured and content-

aware approach, called SCAD, to discover XML conditional structural

functional dependencies (XCSDs) from a given data source to address

inconsistencies caused by both structural and semantic inconsistencies in

XML data. The input to SCAD is an XML data source which does not

associate to any schema. XCSDs are path and value-based constraints; the

paths in XCSDs approximately represent groups of similar paths in sources

to express constraints on objects with diverse structures, and the values

bound to particular elements express constraints with conditional

semantics. The SCAD approach consists of two phases: resolving

structural inconsistencies and resolving semantic inconsistencies.

 In the first phase, a process, called data summarization, analyses the

data structure to construct a data summary containing only representative

data for the discovery process. This aims to avoid returning redundant data

rules due to structural inconsistencies. In the second phase, the semantics

hidden in the data summary are explored by a process called XCSD

Discovery to discover XCSDs. The XCSD discovery algorithm works in

the same manner as XDiscover. The main difference is that instead of

1. INTRODUCTION

11

discovering constraints from the given data tree as in XDiscover, SCAD

discovers non-trivial XCSDs from the constructed data summary. We

conducted experiments and case studies on synthetic datasets which contain

structural diversity and constraint variation, causing XML data

inconsistencies. The experimental results show that SCAD can discover

more dependencies than XFD approaches. The dependencies found could

capture data inconsistencies disregarded by XFDs.

 Third, we show that the answers of queries might be inaccurate

when queries are posted to inconsistent XML data. We utilize our proposed

XCSDs to compute answers for queries posted to inconsistent source to

improve information quality. In particular, we propose an approach called

SC2QA, which integrates the semantics of XCSDs into the query process

to find consistent data in inconsistent data. The answer is calculated by

qualifying a query with appropriate information derived from the

interaction between the query and the XCSDs. Especially, the similarity

threshold in XCSDs is used to specify the similar objects which are

considered to be qualified for queries. Conditions in XCSDs are used to

find candidate objects for calculating query answers. The original data is

evaluated at each constraint to find the consistent data.

A customized consistent query answer (CCQA) is calculated from

true answers in terms of the structural similarity and consistent data with

respect to XCSDs. To evaluate SC2QA, experiments were conducted on

synthetic datasets containing structural diversity and constraint various

causing XML data inconsistencies. The results show SC2QA work more

efficiently for constant XCSDs than variable XCSDs (i.e. XFDs). Query

answers found by utilizing constant XCSDs are more accurate than that of

XFDs. We summarize our main contributions in this thesis in the next section.

1. INTRODUCTION

12

1.4 Contributions

This thesis addresses the problems of data inconsistency in XML data to

improve data consistency. The focus is on discovering constraints from a

given XML data source. The key principle used in our approaches is the

concept of structure and content awareness. Our approaches have been

shown to be superior to other proposed XFD approaches. In addition, we

utilize our proposed constraints to compute query answers for queries

posted to an inconsistent data source. To summarize, the contributions of

this thesis are as follows:

• the introduction of XML conditional functional dependencies

(XCFDs);

• the proposal of the XDiscover approach to discover XCFDs to

address semantic inconsistencies;

• the introduction of XML conditional structural functional

dependencies (XCSDs);

• the proposal of a structural similarity technique to measure the

similarity between sub-trees;

• the proposal of the SCAD approach to explore XCSDs to

address both semantic and structural inconsistencies;

• proposing the SC2QA approach to compute customized

consistent answers for queries posted to inconsistent XML data

with respect to a set of XCSDs.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 reviews prior work on constraints. The topics covered are

(i) XML database, (ii) conditional functional dependency, (iii)

association rules, (iv) different proposals of XML functional

1. INTRODUCTION

13

dependencies (XFDs) and (v) management of data consistency in

inconsistent data sources.

• Chapter 3 presents our proposed XDiscover approach. XDiscover is

used to discover XML conditional functional dependency from a

given source to address semantic inconsistency in XML data.

• Chapter 4 presents our proposed approach, called SCAD, to discover

XML conditional structural functional dependency from a given

source. This is to address data inconsistency arising from structural

and semantic inconsistencies in XML data.

• Chapter 5 presents our proposed SC2QA approach which is used to

compute customized consistent query answers for queries posted to

an inconsistent XML source with respect to a set of XCSDs.

• Chapter 6 concludes the thesis and describes our immediate future

work.

 It is worth mentioning that the results of this thesis appeared in the

following publications: the results of Chapter 3 appeared in [85], the results

of Chapter 4 appeared in [87] and the results of Chapters 5 appeared in

[86].

1. INTRODUCTION

14

2. RELATED WORK

15

2.

Chapter 2

Related work

This chapter reviews existing work relating to the work in this thesis and is

divided into five sections. Section 2.1 presents a brief background on XML

databases. Section 2.2 reviews conditional functional dependency which

has been extensively studied for improving data consistency in relational

databases. Section 2.3 discusses the notion of association rules and its

mining algorithms. The association rules are partially related to the

specification of our proposed constraints. Section 2.4 discusses different

proposals of XML functional dependencies (XFDs) and XFD discovery

approaches. Section 2.5 reviews existing approaches to manage data

consistency in inconsistent data sources. The final section is a summary of

this chapter. Note that additional background specific to each problem is

covered in the relevant chapter.

2.1 XML database

In this section, we present some background information on XML

databases, including definitions of document types and XML data. As in

the case of relational databases, a schema is defined to specify the structure

of a class of XML documents. There are two predominant proposals to

2. RELATED WORK

16

define the schema: DTD (Document Type Definition) [54] and XML

Schema [88]. Even though DTDs are less expressive than XML Schema

specifications, in general they are expressive enough for a variety of

applications [19]. Therefore, in this thesis, we consider only DTDs. The

specification of a DTD is described in the next section.

2.1.1 Document Type Definition

A Document type definition (DTD) has a start-tag, which is called the root

of the document and is specified by the DOCTYPE declaration. Elements

in XML instances are declared by ELEMENT tags. Each element might be

followed by one element or an arbitrary number of elements. Fig 2.1 is an

example about a DTD for Bookings data, which specifies a nonempty

collection of Bookings. <Booking> is an element since <!ELEMENT

Booking (Carrier, Trip+, Fare, Tax)> (line 3) appears in the DTD.

Each Booking has one Carrier and an arbitrary number of <Trip>,

1. <!DOCTYPE Bookings [

2. <!ELEMENT Bookings (Booking+)>

3. <!ELEMENT Booking (Carrier, Trip+, Fare, Tax)>

4. <!ATTLIST Booking bno CDATA #REQUIRED>

5. <!ELEMENT Carrier (#PCDATA)>

6. <!ELEMENT Trip (Departure, Arrival)>

7. <!ELEMENT Departure (#PCDATA)>

8. <!ELEMENT Arrival (#PCDATA)>

9. <!ELEMENT Fare (#PCDATA)>

10. <!ELEMENT Tax (#PCDATA)>

11.]>

Fig 2.1. An example of DTD

2. RELATED WORK

17

followed by one <Fare> and one <Tax> element. An ELEMENT

declaration also specifies the sub-elements of an element by means of a

regular expression. For instance, <!ELEMENT Trip (Departure,

Arrival)> (line 6) indicates that the sub-elements of <Trip> have other

sub-elements including one <Departure> and one <Arrival> element.

#PCDATA is used to indicate elements containing text, such as

<!ELEMENT Departure (#PCDATA)> (line7). An ATTLIST declaration

is used to specify the attributes of an element, such as <!ATTLIST

Booking bno CDATA #REQUIRED> (line 4).

2.1.2 XML data

XML documents are widely used to store data [2]. Fig 2.2 is an example of

an XML document storing information about Bookings which is an

instance of the Booking DTD in Fig 2.1. Each <Booking> element has a

Booking number (bno), name of Carrier and information on Trip, Fare,

and Tax. Each Trip contains information on Departure and Arrival.

The document contains two different types of tags: start-tags, such as

<Bookings> and end-tags, such as </Bookings>. These tags must be

balanced and are used to delimit elements, for example, <Carrier> Qantas

</Carrier>. Every element can contain attributes, other elements, text, or a

mixture of them. For instance, <Booking bno="b1">, the <Booking>

element contains attribute bno with a value of "b1"; <Carrier> Qantas

</Carrier> shows that the <Carrier> element contain text of "Qantas";

<Trip> <Departure> BNE </Departure> <Arrival> MEL

</Arrival> </Trip> says that the element <Trip> contains other elements

including Departure and Arrival. An XML DTD or an XML document

can be represented as a schema tree or a data tree, respectively.

2. RELATED WORK

18

 Fig 2.3 is a representation of the Bookings data tree. In the next

section, we discuss conditional functional dependencies (CFDs) which

have been extensively studied to improve data consistency in relational

databases and highlight the challenges associated with employing such

approaches to XML data.

Fig 2.2. An example of an XML document

<Bookings>

 <Booking bno="b1">

 <Carrier> Qantas </Carrier>

 <Trip>

 <Departure> BNE </Departure>

 <Arrival>MEL</Arrival>

 </Trip>

 <Fare> 200 </Fare>

 <Tax> 40 </Tax>

 </Booking>

<Booking bno="b2">

 <Carrier> Qantas </Carrier>

 <Trip>

 <Departure> PER </Departure>

 <Arrival>MEL</Arrival>

 </Trip>

 <Trip>

 <Departure> MEL </Departure>

 <Arrival>BNE</Arrival>

 </Trip>

 <Fare> 350 </Fare>

 <Tax> 80 </Tax>

</Booking>

</Bookings>

2. RELATED WORK

19

2.2 Conditional functional dependency

Traditionally, constraints are introduced to improve the quality of schema,

such as defining normal forms based on functional dependencies [11].

Recently, constraints have been extensively studied to address the problems

of the quality of data, especially data consistency. Conditional Functional

Dependencies (CFDs) [20, 31, 36, 38, 40, 41, 100] have been widely used

as a technique to detect and correct non-compliant data to improve data

consistency while other approaches [27, 39, 48] have been proposed to

 CAR DEP ARR FA TA

Virgin MEL SYD 200 50

Virgin BNE SYD 300 50

Qantas MEL SYD 300 50

Qantas MEL BNE 400 100

Qantas MEL DRW 250 100

Fig 2.4. An instance of the Bookings relation

Fig 2.3. An example of data tree

Tax

"40"

Fare

"200"

Arrival

"MEL"

Departure

"BNE"

Trip

@bno

"b1"

Carrier

"Qantas"

Booking

Bookings

Booking

. . .

Flight

Tax

"80"

Fare

"350"

Arrival

"MEL"

Departure

"PER"

Trip

@bno

"b2"

Carrier

"Qantas"

Booking

Arrival

"BNE"

Departure

"MEL"

2. RELATED WORK

20

automatically discover CFDs from data instances. A CFD consists of a

standard functional dependency (FD) and a pattern tableau specifying the

scope of the FD on the data. Given an instance D on a relation schema R, a

CFD ∂ on R is represented as ∂: (X → Y, Tp), where X and Y are attribute

sets in R, X → Y is a standard FD, Tp is a pattern tableau of ∂ containing all

attributes in X and Y. For each attribute A ∈(X∪Y), the value of A for Tp is

either a value in dom(A) or a variable value. For example, considering a

relation Bookings(CAR, DEP, ARR, FA, TA) specifies the Booking

information including Carrier (CAR), Departure (DEP), Arrival

(ARR), Fare (FA) and Tax (TA). Fig 2.4 shows an instance of the

Bookings relation. Data rules on Bookings can be defined in the forms of

CFDs as follows:

 ∂1: [ARR= "SYD"] →[TA="50"]

 ∂2: [CAR= "Qantas", DEP, ARR] →[TA]

∂1 states that the functional dependency ARR→TA holds in the context

where the value of ARR is "SYD" and the value of TA is "50". ∂2 assumes

that the functional dependency DEP, ARR →[TA] only holds in the

context where CAR is "Qantas". This is, the TA is identified by DEP and

ARR whenever the CAR is "Qantas".

 Despite facing similar problems of data inconsistencies with

relational counterparts, the existing CFD approaches cannot be applied

easily to XML data for several reasons. Firstly, relational databases and

XML sources are very diverse in data structure and the nature of

constraints. For relational databases, each object is defined by a single row.

Discovering CFDs from data stored in tables has a clearly defined

structure. By contrast, XML data has a hierarchical structure and

constraints often involve elements from multiple hierarchical levels. There

are several challenges in identifying XML constraints which are not

2. RELATED WORK

21

encountered in discovering CFDs. Secondly, different notions of equality

are used for constraints. Whereas relational equality simply is the equality

of values, the equality of two objects in XML has to be compared

according to both structure and data [101]. Finally, CFD discovery

algorithms cannot scale well when the XML data structure is complex. This

is because applying these algorithms to XML data requires an XML

document be transformed into a single relational table. When the structure

of schema is complex, the number of attributes in the transformed relation

is large. The number of tuples also increases multiplicatively when the

XML document contains data with complex data types (e.g. maxOccurs in

XML Schema). For example, if each Booking contains two Trips (refer to

Fig 2.1), then the number of tuples in the transformed relation would

double. Therefore, generalizing relational approaches to work on XML data

is nontrivial.

2.3 Association rules

Association rules describing the co-occurrence of data items in a dataset

was first introduced by [4]. Market basket analysis using transaction

databases from supermarkets is a well known application of association

rules. Each transaction contains items bought by a customer. An

association rule represents a relationship between values of elements which

has a form of X→ Y (s, c), X⊆ I, Y⊆ I, and X ∩ Y=∅, where X and Y, I are

itemsets, s and c are support and confidence, respectively. Support and

confidence are used to measure the quality of the rule. Support represents

the frequency of X∪Y in the dataset. Confidence corresponds to the

probability of finding Y, having found X and is given by sup(X∪Y)/ sup(X).

For example, assume that "60% of customers who depart at SYD also

depart at MEL". This can be expressed in the form of rules, SYD → MEL

2. RELATED WORK

22

(40%, 60%), where 40% is the support of the rule indicating how

frequently the customers departure at both SYD and MEL and 60% is the

confidence of the rule. Aprior-like algorithms [13, 14, 61, 62, 71, 84, 92,

93] have been introduced to discover data patterns in large datasets to

address certain data quality issues, such as data anomaly (e.g. outlier) and

to filter out useless data portions. However, association rules are

constraints containing only constants which cannot address data

inconsistency as required in XML data. In our approaches, the Apriori

algorithm is adopted to discover constraints relating to either variables or

constants to improve data consistency in XML data.

 In the next section, we discuss the different proposals in relation to

XML functional dependencies and highlight their limitations in addressing

the problems of data inconsistency to further support our motivation.

2.4 XML functional dependency

XML offers a rich set of predefined constraints, such as structural, domain

and cardinality constraints. However, it lacks the full extensibility to

express constraints specifying at an application level in a declarative way

[91]. Schema languages, such as DTD [88], W3C XML schema [90] and

RelaxNG [30] support type and integrity constraints to specify XML

schema. Type constraints only restrict on the element structure of a data

source and do not relate to data values. Integrity constraints are not well

scoped. For example, primary keys and foreign keys are defined by using

ID and IDREF attributes in DTDs. Each ID attribute are unique within the

whole document and each element type is specified by at most one ID

attribute. DTD cannot express constraints specified in the free text parts. A

document validates against DTD also might not conform to the

specification.

2. RELATED WORK

23

XML Schema and RELAX NG were created to overcome DTD

limitations[57]. Such languages support data types and namespaces which

satisfy critical requirements in XML applications. However, such schema

languages are not sufficient in situations which have complex constraints.

For example, constraints have complicated structural conditions and

express relations between values which cannot be captured in a grammar

based approach. Thus, with the hierarchical nature of XML, inconsistency

in XML data cannot be avoided. To remedy such a problem, XFDs have

been introduced in the literature as an integrity enforcement measure to

improve XML semantic expressiveness [6, 42, 50, 51, 65, 81, 82, 102].

Although different proposals of XFDs are defined by different terms of

expressiveness, in all the proposals presented, data dependencies for XML

are formally defined from two perspectives: tree-tuple-based XFD [6, 101,

102] and path-based XFD [42, 82]. They are constraints on the values

reached by following either regular expressions or paths in XML trees.

2.4.1 Tree-tuple-based functional dependency

The concept of the tree-tuple is similar to the notion of tuple in relational

database. Tree-tuple-based functional dependencies (tFDs) [6, 11] are

proposed by considering a relational representation of XML data, that is,

the XML data is presented as a set of tree-tuples and functional

dependencies are defined on it. A tree-tuple is built as follows: for each

element, exactly one data node from the data tree is selected to construct

the tree-tuple. Fig 2.5 is an example of a Booking tree-tuple constructed

by picking data from the Booking node which has bno of "b2" in the

Booking data tree in Fig 2.3. While the original Booking contains two

2. RELATED WORK

24

nodes of Trip, the tree-tuple constructed from this Booking only includes

one node of Trip at a time.

 The tree-tuple representation allows combining node and value

equality easily. The former corresponds to the equality between vertices

and the latter corresponds to the equality between strings. A tFD over a

DTD D is expressed in a form as X →Y, where X and Y are non-empty

subsets of paths in D [6]. For an XML data tree T |= D, t1 and t2 are tree-

tuples in T, if t1.X= t2.X and t1.X ≠ null, implies t1.Y= t2.Y, then T |= X→Y.

For example, in the sub-tree rooted at Booking, a functional dependency

such that the Departure and Arrival determines the Tax is expressed by

a tFD as follows:

{ Bookings/Booking/Trip/Departure,

Bookings/Booking/Trip/Arrival} → {Bookings/Booking/Tax}.

2.4.2 Path-based functional dependency

Paths are an essential component which

have been used as one of the basic

primitives to define functional

dependency in XML data [22, 23].

Given a node v of an XML tree T, a

path p in T is defined to be the set of all

nodes and values reached by following

p from v in T. Path-based XFDs (pFDs)

[42, 60, 82] are functional dependencies

defined based on paths. Similar to the

tree tuple-based functional

dependencies, the notion of pFDs is a

generalization of the definition of

Fig 2.5. A tree-tuple illustration

 include in the tree-tuple

 not include in the tree-tuple

Trip

Tax

"80"

Price

"350"

Arrival

"MEL"

Departure

"PER"

Trip

@bno

"b2"

Carrier

"Qantas"

Booking

Arrival

"BNE"

Departure

"MEL"

Bookings

2. RELATED WORK

25

functional dependencies (FDs) in relations. This means there is a

correspondence between functional dependencies in relations and in XML

data. In particular, an XFD is defined in a form of pFD [82] as {px1,

px2,..,pxn} → py, where pxi is a set of paths specifying condition elements

and py is the path specifying the implication element. For example, the

XFD "under the sub-tree rooted at Booking, the Departure and Arrival

determine the Tax" is expressed by the pFDs as follows:

{//Booking/Departure, //Booking/Arrival}→ //Booking/Tax.

 Both tFDs and pFDs have the same expressive power of functional

dependencies [64]. The languages for tFDs and pFDs only allow unary

functional dependencies holding in the entire document which cannot

express the semantics of constraints in XML data in some cases, such as

constraints holding conditionally on subset of data, or constraints holding

on similar objects. Certain extended proposals of XML functional

dependencies have been introduced in existing work to cope with the

hierarchical structure of XML data. We review these in the next section.

2.4.3 Extended proposals for XML functional dependency

Sub-graph-based functional dependency: a sub-graph is a set of paths of

XML data. A sub-graph-based functional dependency (gFD) is defined

based on the sub-graphs of an data tree [52]. gFDs have pre-image

semantics which allow the expression of XFDs involving a set of elements

to represent relationships between sub-trees. A gFD has the form {v: X→

Y}, where v is a node of data tree T, X and Y are v-subgraphs. A gFD holds

on T iff for any two pre-images Wi and Wj of Tv, their projections on X are

equal, then their projections on Y are equal, where Tv is a v-subgraph of T

rooted at v. For example, an pFD {//Booking/Departure,

//Booking/Arrival}→ //Booking/Tax can be expressed as a gFD:

2. RELATED WORK

26

{vBooking: X→ Y}, where X is the vBooking subgraph with leave elements of

Departure and Arrival, and Y is the vBooking subgraph with leave element

of Tax. Although gFDs allow the expression of the semantics of

constraints relating to a set of elements, they are constraints on the entire

document which cannot express the semantics of constraints holding

conditionally on

subsets of data.

Generalized-tree-

tuple-based functional

dependency: the work

in [102] introduced

another notion of

XFDs, called

Generalized-tree-

tuple-based FD

(gtFD) by extending the notion of tree-tuple functional dependencies. A

gtFD has a form of <Cp, LHS, RHS> which is expressed as {Pl1, Pl2,..,Pln}

→ Pr w.r.t Cp, where Pli (i=1..n) and Pr are paths relating to the path p, and

Cp is a tuple-class. gtFDs allow capturing constraints with a set of

elements. A gtFD holds on an XML data tree T if for any two tree-tuples tk,

th in Cp: (i) ∃ i, i ∈[1..n], tk.Pli = ⊥ or th.Pli = ⊥, or (ii) ∀ i ∈[1..n], tk.Pli

=pv th.Pli then tk.Pr=pv th.Pr. For example, Fig 2.6 shows a Booking contains

two complex nodes of Trip, and each Trip includes Departure and

Arrival. The constraint "under the sub-tree rooted at Booking, the value

of Tax is identified by Carrier and Trip" can be expressed as follows:

gtFD:{Carrier, Trip/Departure, Trip/Arrival}→ {Tax} w.r.t CBooking.

 gtFDs have the same express power as gFDs. Each generalized-tree-

tuple used in the gtFD is equal to a v-subgraph used in the gFD. For a gtFD

Fig 2.6. A sub-tree represents a generalized-tree-tuple-based FD

Trip

Tax

"80"

Price

"350"

Arrival

"MEL"

Departure

"PER"

Trip

@bno

"b2"

Carrier

"Qantas"

Booking

Arrival

"BNE"

Departure

"MEL"

Bookings

2. RELATED WORK

27

{Pl1, Pl2,..,Pln} → Pr w.r.t Cp, it can be expressed by a gFD {v: X → Y},

where v is the root of the path p, X is a v-subgraph consists of path {Pl1,

Pl2,..,Pln} and Y is a v-subgraph including path Pr. gtFDs can be used to

express XFDs involving a set of elements as gFDs. gtFDs consider equality

between two XML elements as equality between sub-trees. However, either

gFDs or gFDs cannot express constraints holding either on subsets of a data

tree or similar sub-trees.

Local functional dependency (lFD): to cope with the hierachical structure

of XML data, one needs not only the absolute constraints holding on the

whole document such as tFDs and pFDs, but also relative constraints

holding on subsets of data [21]. Liu et al. [63] introduced the notion of

local functional dependencies which are functional dependencies holding

on sub-documents. A local functional dependency is defined as X

functionally determines Y under a path p, denoted by X p Y, where X and Y

are two sets of paths in a DTD D and p is a prefix of every path in X and Y.

The determinant of the lFD is a path terminated by a label for internal

nodes. The scope of lFD is a particular sub-tree and not on the whole tree

as in either tFDs or pFDs. For example, Fig 2.7 shows a Bookings data

tree including a number of Agents which are distinct by the Agent Id (i.e.

@id). For each Agent, the values of bno are distinct. These constraints

can be represented as follows:

2. RELATED WORK

28

 lFD1: @id

AgentBookings. Agent

 lFD2: @bno

BookingAgentBookings ..

Booking

Constraint lFD2 cannot be

represented by either tFDs or

pFDs. For example, it is

represented by a pFD as

{Bookings/Agent/Booking/

@bno}→ Bookings/ Agent/Booking}. It is clear that lFD2 is violated

due to the same bno of "b1" being used to identify more than one

Booking.

 Despite the lFD notion being more expressive than common XFDs,

it is still not sufficient to express the semantics of some applications. That

is, lFDs cannot capture the semantics of constraints accurately in situations

where constraints hold conditionally on the source. For example, the

semantics of a constraint is that 'any Booking with Carrier of "Qantas"

having the same Fare should have the same Tax'. This constraint is

expressed in the form of lFD as Fare BookingBookings. Tax which only

expresses that the Fare identifies the Tax under the sub-tree specified by

the path "Bookings.Booking". Such lFD is impossible to represent the

conditional expression Carrier of "Qantas". It is clear that the concept of

lFDs is still too strong which cannot express constraints having scope

specified by a particular condition.

 Although different XFD proposals have different expressiveness

terms and their justification is based on their natural occurencies in XML

data, existing XFD proposals are insufficient to capture data inconsistency.

Fig 2.7. A sub-tree represents a local functional dependency

 Bookings

Tax

"40"

Fare

"200"

Arrival

"MEL"

Departure

"BNE"

Trip

@bno

"b1"

Carrier

"Qantas"

Booking

Agent

. . .

@id

"A1"

Booking

@bno

"b1"

Agent

. . .

@id

"A2"

. . .

2. RELATED WORK

29

The reason is that XFDs cannot express the semantics of constraints related

to conditions. Moreover, existing proposals of XFDs [6, 82] treat the

equality between two elements as the equality between their identifiers and

they do not consider sub-tree comparisons. Such XFDs may work well for

redundancy detection and normalization; however, they work improperly in

cases where constraints are unknown and required to be extracted from a

given source. According to existing approaches, two sub-trees satisfy an

XFD if they are equal with respect to the left part of that XFD and they also

equal with respect to the right part.

 In order to address the limitations in prior work, we first propose a

new type of constraint, called XCFD, which is a value-based constraints

which allow the expression of constraints with conditions [85]. Then, we

introduce XCSDs as path and value-based constraints [87], which are

different from XFDs in two aspects. The first difference is that each path p

in XCSDs represents a group of similar paths to p. The second difference is

that XCSDs allow binding values to particular elements to express

constraints with conditions. XCSDs are constraints with conditional

semantics, holding on data with diverse structures which cover both

structural and semantic aspects. We introduce an approach based on the

similarity of sub-trees to evaluate the satisfaction of a constraint. Our idea

is that if two sub-trees are similar with respect to the left part of the

constraint, and they are also similar with respect to the right part, then they

satisfy the constraint. The similarity of sub-trees is measured by our

established measurement, called "sub-tree similarity". Existing work [81,

102] introduced algorithms to discover XFDs. However, such XFD

approaches cannot detect proper sets of constraints to address data

inconsistency. This thesis proposes new approaches, named XDiscover and

SCAD, which generalize existing techniques relating to association rules

[4] and functional dependency discovery [53, 70, 102] to discover

2. RELATED WORK

30

constraints containing either variables or constants which can be used to

constrain data consistency.

2.5 Managing data consistency in inconsistent data sources

In this section, we review existing work commonly used to manage

consistent data in inconsistent sources. In particular, we consider data

repair and consistent query answer approaches in relational databases and

XML data.

Relational database: the management of consistent data in inconsistent data

has been extensively studied in relational databases [3, 16, 18, 28].

Consistent data is formally obtained following two directions including

data repair and consistent query answers. Data repair aims to find

consistent parts from inconsistent data which differs from a given

inconsistent database in a minimal way [9]. A database D is consistent with

respect to a set of integrity constraints ICs if D satisfies ICs. Otherwise, D

is inconsistent with respect to ICs. R is a repair of D if R satisfies IC and

∆(D, R)= (D\R) ∪(R \ D) minimal under set inclusion. Computing data

consistency with respect to ICs can be achieved only through tuple

deletions. That is, R is obtained from D by eliminating tuples. R is

considered to be a minimal repair of D if R satisfies ICs and is maximally

contained in D, i.e. there R' does not exist such that R' satisfies ICs and

R⊂R' ⊂ D. For example, given inconsistent data D= {(a, b, c),(a, c, d), (a,

c, e), (b, g, h)}, D has two repairs R1= {(a, b, c), (b, g, h)} and R2= {(a, c,

d), (a, c, e), (b, g, h)}. ∆(D, R1) and ∆(D, R2) are minimal under set

inclusion.

 Since a large number of repairs might exist for an inconsistent

database, most existing work has only focused on computational

2. RELATED WORK

31

methodologies to retrieve consistent answers for a query posed on an

inconsistent database, regardless of its inconsistency [9, 29]. A consistent

query answer is defined to be the common part of answers to the query on

all possible repairs of the source. Arenas et al. [9] introduce a query

rewriting algorithm to compute consistent query answers based on query

rewriting. The basic idea is to enforce constraints locally, at the level of

data which appears in the query to avoid the explicit computation of data

repairs. In particular, the original query Q posted to D is rewritten into a

new query Q' such that the answers to Q' in D are the consistent answers to

Q from D. Q' is constructed by adding conditions from ICs to Q to enforce

the satisfaction of constraints in ICs. However, the work in [9] has a very

limited applicability since it applies first order queries and does not include

disjunction or quantification, or binary universal integrity constraints. The

first order query rewriting technique only works appropriately for a certain

types of queries and constraints, which are universal queries and

constraints. There does not exist first order rewriting for queries and

constraints relating to conjunctive queries with projection and referential

constraints; and the problem cannot be solved in a polynomial time. [17].

 Chomicki [29] presents a framework for computing consistent query

answers based on a graph-theoretic representation of repairs. It considers

relational algebra queries without projection and denial constraints. This

work handles union queries which can extract indefinite disjunctive

information from an inconsistent database. Arenas et al. [8] apply logic

programming based on answer sets to retrieve consistent information from

an inconsistent database. This work concentrates mainly on logic programs

for binary integrity constraints. The work in [7] studies the decidability

status of consistent query answering by combining instances, ICs and query

as input. The notion of consistent query answers are also extended to the

case of aggregate queries [10, 46]. Arenas et al. [10] investigate the

2. RELATED WORK

32

problem of consistent answers of aggregate queries in the presence of

functional dependencies. The work in [46] provides data violating a set of

aggregate constraints. These constraints are defined on numerical attributes

(such as Sale Price, Tax, etc.) and are not intrinsically involved in other

forms of constraints. Deker [32] introduces a concept, called cause, to

specify query answers having integrity in data sources which might violate

their integrity constraints. A cause of an answer is a minimal excerpt of the

data explaining the reasons why an answer is give to a query. An answer

has integrity if one of its causes does not overlap with any cause of

integrity violation. Most above cited approaches suppose that tuple

insertions and deletions are the basic primitives for repairing inconsistent

data. Recently, database repairs and consistent query answering have been

considered in the context of conditional functional dependencies [36, 55,

56]. However, due to the different structure of data and the different nature

of constraints, existing techniques in relational databases cannot easily be

applied to XML data [44].

XML data: the notions of repair and consistent query answers have been

generalized to the context of XML data. The work in [44, 45, 78] find

inconsistent data with respect to a set of XML functional dependencies.

The data repair in [45] is found based on replacing node values and

introducing functions, indicating the reliability of node information. Tan et

al. [78] study the problem of data repair by making the smallest

modifications in terms of repair cost. Flesca et al. [43] study the existence

of repairs with respect to a set of integrity constraints and a DTD. The

existence of repairs using minimal sets of update operations is investigated.

The work in [69] considers the problem of data repair with respect to a set

of functional dependencies in the merged format of XML data. This work

extends the XFDs to be satisfied by comparing sub-trees in a specified

2. RELATED WORK

33

context of the data. Yakout et al. [99] present an approach using machine

learning as a guide for repairing data. However, such approaches may

correct data improperly, and worse, might result in other inconsistencies

when repairing the data. Moreover, the concept of data repair is often used

as an auxiliary notion to define consistent query answers and existing

approaches do not give any algorithms to compute data consistency.

 Second, the problem of finding consistent query answers can be

considered as a principled way to manage data inconsistency [9, 74, 76,

103]. The work in [74] studies the problem of computing query answers

with respect to a given DTD. This work presents a validity-sensitive

method of querying XML data, which extracts more information from

invalid data sources than the standard query evaluation. Tan et al. [76]

propose an approach to compute consistent query answers from virtually

integrated data with respect to a set of constraints. However, they do not

take into account constraints which hold conditionally on similar objects, as

in our work. Query rewriting techniques have been widely used as

powerful methods to calculate query answers [33, 34, 66, 103]. The work

in [33, 34, 103] introduces techniques for query rewriting in the

represention of constraints. Yu et al. [103] propose a technique

incorporating target constraints into query rewiring to calculate query

answers through target schemas. However, we found that such work is

inapplicable for the scenarios which we consider. To the best of our

knowledge, none of the existing work on finding query answers properly

combines both structural and data semantics to calculate query answers, as

in our approach.

2.6 Summary

In this chapter, we first presented background information on XML

databases including DTD schema, XML documents and data trees. Second,

2. RELATED WORK

34

we reviewed conditional functional dependency and show that CFD

approaches intended to address data inconsistency in relational databases

do not work well in XML data. Third, we discussed association rules and

pointed out that they cannot properly express semantic constraints in XML

data as constraints contain only constants. Fourth, we reviewed several

proposals for XML functional dependencies including tree-tuple-based

FDs, path-based FDs, sub-graph-based FDs, generalized-tree-tuple-based

FDs and XML local functional dependencies. We provided a justification

of XFD approaches and pointed out that XFD specifications are constraints

containing only variables which, in some cases, cannot target data

inconsistency in XML data.

 This thesis introduces new notions of constraints based on the idea

of conditions in CFDs and a new concept of structural similarity. Such

constraints contain either constants or variables which are suitable for

capturing the semantics of constraints in heterogeneous XML data sources.

Existing XFD approaches cannot detect proper sets of constraints to

address data inconsistency since they do not consider constraints with

conditions. This thesis presents new approaches which generalize existing

techniques of association rule mining and functional dependency discovery

to discover constraints containing either variables or constants. Finally, we

review existing approaches relating to data repairs and consistent query

answers. Computing consistent query answers can be considered as a

principled way to manage data consistency. However, none of the existing

work on consistent query answers properly calculates answers for queries

posted to an inconsistent XML data source caused by both semantic and

structural inconsistencies. This thesis proposes a new approach combining

both structural and data semantics to calculate customized consistent query

answers for queries posted to inconsistent XML data.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

37

3.

Chapter 3

Content-based discovery

for improving XML data consistency

This chapter introduces a novel approach, called XDiscover, which is a

content-based discovery approach to discover XML conditional functional

dependencies (XCFDs) from a given data source conforming to a given

schema. This is to resolve data inconsistency caused by semantic

inconsistency. The XCFD notion is extended from XFDs by incorporating

conditions into XFD specifications. The rest of chapter is organized as

follows: Section 3.1 presents the introduction to the problem, including our

motivation and the summary of our approach; Section 3.2 presents the

preliminaries consisting of the notations used in this chapter; Section 3.3

presents our proposed XCFD specification; Section 3.4 describes the detail

of XDiscover; Section 3.5 details the experiment results of XDiscover;

Ssection 3.6 presents case studies; and Section 3.7 summarises the chapter.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

38

3.1 Introduction

The Extensible Markup Language (XML) has become a standard for

representing data on the web. XML-based standards, such as OASIS, xCBL

and xBRL have been introduced for reporting and exchanging business and

financial information [1, 59, 67]. However, such standards only provide

schema document frameworks for preparing reports and exchanging data.

Most XML-based standards do not address the semantics of underlying

business information. This leads to constraints on the underlying data from

different organizations satisfied by an individual data source which may

not be applicable in the federated data. Although XML functional

dependency (XFD) is one type of semantic constraint, existing notions of

XFD [6, 37, 82] are not sufficient for capturing data inconsistency. This is

because XFDs globally express constraints over the whole document; thus,

they are unable to capture conditional semantics partially expressed in

some fragments of the document.

 Fig 3.2 shows an example of a simplified instance of a Flight

Bookings data tree D constrained by the schema Flight Bookings S in

Fig 3.1. D contains data of Flight Bookings. Each Booking includes

information on the Carrier, Trip, Fare and Tax. For each Trip,

information on Departure

and Arrival are maintained.

Values of elements are

recorded under the node names

(in bold). We assign a pair

(order, depth) to each node in

schema tree S and data tree D

as a key to identify that node in

the tree. This notion will be

(4,2)Trip+

(1,0)Bookings

(2,1)Booking+

(3,2)Carrier

(5,3)Departure

(6,3)Arrival

(7,2) Fare (8,2)Tax

Fig 3.1 A Flight Bookings schema tree

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

39

further described in definition 3.1 (section 3.2). Constraints on D have

different specifications. We classify them into two types: constraints

without condition and constraints with conditions.

Type 1: constraints without conditions are constraints containing only

variables. They are constraints holding over the whole document and are

commonly known as XML functional dependencies (XFDs). For example,

Constraint 1: Any Booking with the same Trip including Departure and

Arrival should have the same Tax. This is an example of a functional

dependency holding for all Bookings in D.

Type 2: Constraints with conditions include constraints which either

contain constants only or both constants and variables. Such constraints

hold conditionally on the document. They are not standard XFDs. For

example,

Constraint 2a: Any Booking with Carrier of "Tiger Airways" with the

same Fare should have the same Tax.

Constraint 2b: Any Booking with Carrier of "Virgin" and Arrival of

"BNE" has a Tax of "20".

 Constraints 2a and 2b are supposed to hold for Bookings with

Carrier of "Tiger Airways" or for Bookings with Carrier of "Virgin"

and Arrival of "BNE", respectively. They refine constraint 1 by binding

particular values to elements in the constraints e.g. "Qantas" or "Virgin",

"BNE" and "20" for Carrier, Arrival, and Tax, respectively. Constraints

of type 2 are very common in real data, especially for data from multiple

sources that use XML-based standards. Each constraint holds only on a

particular fragment containing data from one particular source. Thus, we

need to enforce constraints of type 2 to capture data inconsistency.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

40

 When constraints with conditional semantics are not enforced

explicitly, data inconsistency in some parts of the document cannot be

detected. For example, Bookings data in D (Fig 3.2) do not satisfy all the

above constraints. The Bookings of nodes (12, 1) and (22, 1) contain the

same values of Trip including Departure of "DRW" and Arrival of

"BNE" and have the same Tax of "30". They satisfy constraint 1 but

violate either constraint 2a or constraint 2b. For constraint 2a, if Carrier is

"Tiger Airways", the Fare determines the Tax. Node (12, 1) and node (2,

1) have the same Fare of "200" but they contain different values of Tax,

which are "30" and "40" respectively, which violates constraint 2a.

According to constraint 2b, for a Booking with Carrier of "Virgin" and

Departure of "BNE", Tax should be "20" but node (22, 1) contains Tax

of "30" which violates constraint 2b. We can see that if constraint 2a and

2b are not enforced, the inconsistency of node (12, 1) and node (22, 1)

cannot be identified. Under such circumstances, deriving a complete set of

constraints from a given data instance to constrain the heterogeneous data

Fig 3.2. A simplified Flight Bookings data tree containing semantic inconsistencies

(3,2)

Carrier

Tiger Airways

(5,3)

Departure

MEL

(6,3)

Arrival

BNE

(4,2)

Trip

(2,1)

Booking

(7,2)

Fare

200

(8,2)

Tax

40

(13,2)

Carrier

Tiger Airways

(15,3)

Departure

DRW

(16,3)

Arrival

BNE

(14,2)

Trip

(12,1)

Booking

(17,2)

Fare

200

(18,2)

Tax

30

(1,0)

Bookings

(23,2)

Carrier

Virgin

(25,3)

Departure

DRW

(26,3)

Arrival

BNE

(24,2)

Trip

(22,1)

Booking

(22,2)

Fare

200

(28,2)

Tax

30

(33,2)

Carrier

Virgin

(35,3)

Departure

MEL

(36,3)

Arrival

BNE

(34,2)

Trip

(32,1)

Booking

(37,2)

Fare

200

(38,2)

Tax

20

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

41

sources is necessary to improve data consistency.

 In this chapter, we propose a novel approach, called XDiscover, to

discover a set of minimal XML conditional functional dependencies

(XCFDs) from a given XML instance to address semantic inconstency. The

XCFD notion as constraints of type 2 is extended from XFDs by

incorporating conditions into XFD specifications. This overcomes the

limitations of the previous work in two aspects: (i) XCFDs can express

constraints in the hierarchical structure in XML data, as opposed to

conditional functional dependencies (CFDs) in relational databases; (ii)

XCFDs are more powerful than XFDs in term of capturing data

inconsistency. This is because XCFDs allow binding specific constants to

particular elements which can cover more situations of dependencies under

some conditions. XDiscover conveys the semantics hidden in data to

discover a set of minimal XCFDs from a given instance. A set of our

proposed pruning rules is incorporated in the discovery process to reduce

the number of XCFD candidates to be checked on the dataset to improve

the search performance. Experiments on synthetic and real datasets, and

case studies are used to demonstrate the correctness of our approach.

We present preliminary definitions which are necessary for introducing

XCFDs in the next section.

3.2 Preliminaries

In this section, we present the background and definitions used in our work,

such as the XML schema tree, data tree, data–schema conformation and

node-value equality.

 We use XPath expression [89] to form a relative path; “.” (self):

select the context node. “.//”: select the descendants of the context node,

"[]":qualifier and "*": wildcards. For example, .//Carrier: select Carrier

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

42

descendants of the context node; .//Trip/Departure: select all Departure

elements which are children of Trip. We consider an XML schema or an

instance as rooted-unordered-labelled trees, referred to as a schema tree or

a data tree, respectively. Each element node is followed by a set of element

nodes or a set of attribute nodes. For the instance, the element node can be

terminated by a text node. We give formal definitions for an XML schema

tree and an XML data tree as follows:

Definition 3.1. (XML schema tree)

An XML schema tree is defined as S= (E, A, T, root), where:

• E = E1∪ E2 is a finite set of element nodes in S in which each node is

associated with a frequency label of ?, +, *, 1; For every node ej in E, the

number of nodes from an instance mapped to ej is at most one if node ej has

frequency label ?; exactly one if ej has a frequency either label 1 or no label

at all; at least one if node ej has frequency label +; and unlimited

occurrences if ej has a frequency label *. E1 is a set of complex nodes; E2 is

the set of simple nodes.

• A is a finite set of attribute nodes; attribute nodes only appear as leaf

nodes.

• T is a finite set of node types; for each node e∈ E1∪ E2 ∪ A is

associated with a data type t ∈T; t can be a simple data type (e.g. string,

int, float) or a complex data type (e.g., the data type represents for the

maxOccurs, “choice” and “all” model groups) in XML Schema Language

[90]. An element node is called a simple element node if it is defined with a

simple data type. Otherwise, it is called a complex node. An attribute node

is considered as a simple element node.

• root is the root of the schema tree.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

43

For example, the schema tree in Fig 3.1 is defined as S= (E, A, T, root);

where:

 E = E1∪ E2; E1 = {Booking, Trip}

 E2 = {Carrier, Departure, Arrival, Fare, Tax}

A= {Ø}; root= Bookings; T = {String, int, Booking, Trip}; Booking

and Trip are complex data types.

 We assign a path-ID to each node in the XML schema tree as shown

in Fig 3.1 in a pre-order traversal. Each path-ID is a pair (order, depth);

where order is an increasing integer (e.g. 1, 2, 3...) which is used as a key

to identify the path from the root to a particular node and depth label is the

number of edges traversing from the root to the node in the schema tree.

The depth of the root is 0; e.g. assigning 0 for /Bookings; 1 for

/Bookings/Booking

Definition 3.2. (XML data tree constrained by a schema tree)

An XML data tree constrained by an XML schema tree S= (E, A, T, root) is

defined as D= (V, lab, ele, att, val, r), where:

• V is a set of nodes in D; each v ∈V consists of a label e and a node-ID

that uniquely identify node v in D.

• lab is a labelling function which maps the set V to the set E∪A. Each

v ∈V, v is called an element node if lab(v) ∈ E; v is called an attribute node

if lab(v) ∈ A.

• ele is a partial function from V to a sequence of V nodes; for each

complex element node v ∈V, the function ele(v) maps v to a list of element

nodes {v1, v2,…,vn} in V; att(v) maps v to a list of attribute nodes {v1’,

v2’,…vm’} in V with distinct labels.

• val is a function that assigns values to simple element nodes and

attribute nodes. Each node v ∈ V; val(v) is the content of attribute if lab(v)

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

44

∈ A or the content of simple node if lab(v) ∈E1 ; val(v) = v if lab(v) ∈

E2.

• r ∈V, lab(r) = root that is the unique root node and is labeled with

complex data types.

 The node-ID in the XML data tree is assigned the same ordering as

the path-ID in the XML schema tree. Each node-ID(order, depth) contains

values uniquely identifying its position in the data tree.

For example, from Fig 3.2, we have V a set of nodes from node (1, 0)

through node (38, 2).

lab((1,0)Bookings)="Bookings"; lab((3,2)Carrier)=“Carrier”;

val((2,1)Booking)= Booking; val((3,2)Carrier)=“Tiger Airways”;

ele((2,1)Booking)={Carrier, Trip, Fare, Tax}.

From definition 2, we have the following properties:

i) if v2 ∈ ele(v1) then v2 is called a child node of v1.

ii) {v[P]} is a set of direct nodes that can be reached following path P

from v, where P is the path from the root to node v. The path P can be a

single node, e.g. root[root] = {all direct children nodes of root}. If there is

only one node in {v[P]}, we write v[P].

 In this chapter, we assume that the XML data tree is required to

conform to the associated XML schema tree. The conformation is defined

as follows:

Definition 3.3. (XML data –schema tree conformation)

 An XML data tree D= (V, lab, ele, att, val, r) is said to conform to a

schema tree S= (E, A, T, root) denoted as D |= S if and only if (iff):

• lab(r) = root.

• Every node v ∈V, lab(v)∈E∪A. There is a homomorphism from V to

E∪ A such that for every pair of mapping nodes (vi, ej), the node name and

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

45

the data type are preserved. Fig 3.2 is an example of the Bookings data

tree which conforms to the Bookings schema tree in Fig 3.1.

 Now we introduce a notion of node-value equality which is an

essential feature in our proposed constraints.

Definition 3.4. (Node-value equality)

 Two nodes vi and vj in an XML data tree D= (V, lab, ele, att, val, r) are

node-value equality, denoted by vi =v vj, iff:

• vi and vj have the same label, i.e., lab(vi) = lab(vj),

• vi and vj have the same values:

val(vi) = val(vj), if vi and vj are both simple nodes or attribute

nodes.

val(vik)=val(vjk) for all k, where 1≤k ≤ n, if vi and vj are both

complex nodes with ele(vi) = [vi1, …,vin] and ele(vj) =[vj1,…, vjn]

lab is a function returning label of a node, val is a function returning values

of a node. If vi is a simple node or an attribute node, then val(vi) is the

content of that node, otherwise val(vi)=vi and ele(vi) returns a set of

children nodes of vi.

For example, Trip(14, 2) and Trip(24, 2) (in Fig 3.2) are node-value

equality with

lab((14, 2) Trip)= lab((24, 2) Trip)=“Trip”;

ele((14,2) Trip)= {(15,3) Departure, (16,3) Arrival };

ele((24,2) Trip)= {(25,3) Departure, (26,3) Arrival };

node(15, 3) Departure =v node(25, 3) Departure = “DRW” and

node(16, 3) Arrival =v node(26, 3) Arrival = “BNE”.

 Based on the above basic concepts, we introduce a new type of

constraint in the next section.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

46

3.3 XML conditional functional dependency

As our proposed conditional functional dependency notion (XCFD) is

defined on the basis of XFDs used by Fan et al. [42], we discuss XFDs

before presenting the XCFD definition. In order to avoid returning an

unnecessarily large number of constraints, we are interested in exploring

minimal XCFDs existing in a given data source. Thus, we also include a

notion of minimal XCFDs in this section.

Definition 3.5. (XML functional dependency)

Given an XML data tree D= (V, lab, ele, att, val, r) conforming to an XML

schema tree S= (E, A, T, root), an XML functional dependency over D is

defined as:

ϕ = Pl: (X� Y); where:

• Pl is a downward context path starting from the root to a considered

node with label l, called root path. The scope of ϕ is the sub-tree

rooted at the node-label l;

• X and Y are non-empty sets of nodes under sub-trees rooted at node-

label l. X and Y are exclusive.

• X�Y indicates a relationship between nodes in X and Y, such that two

sub-trees sharing the same values for X also share the same values for

Y, that is, the values of nodes in X uniquely identify the values of

nodes in Y. We refer to X as the antecedent and Y as the consequence.

Satisfaction of an XFD: A data tree D=(V, lab, ele, att, val, r)

conforming to S, D|=S, is said to satisfy ϕ = Pl: X� Y denoted D|= ϕ ^S

iff for every two sub-trees rooted at vi and vj in D, if vi[X]=v vj[X] then

vi[Y]=v vj[Y];

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

47

 Let us consider an example, supposing PBooking is the path from the

root to the Booking nodes in the Bookings data tree in Fig 3.2.

X= (./Departure, ./Arrival) and Y = (./Tax) then we have an XFD:

ϕ =PBooking: (./Departure ^./Arrival)� (./Tax) holds on the whole

Bookings data tree.

 We now introduce our proposed XCFD. The most important

features of XCFDs are path and value-based constraints. The XCFD

specification includes two parts: a functional dependency and a Boolean

expression. The function dependency in the XCFD is basically defined as

in a normal XFD. The only difference is that instead of only representing

the relationship between nodes as in XFDs, the functional dependency in

an XCFD incorporates with the Boolean expression to specify portions of

data on which the functional dependency holds.

Definition 3.6. (XML conditional functional dependency - XCFD)

Given an XML data tree D=(V, lab, ele, att, val, r) conforming to a schema

tree S =(E, A, T, root); an XML conditional functional dependency holding

on D is defined as:

 ψ = Pl: [C], X � Y, where:

• Pl is a downward context path starting from the root to a considered

node with label l, called root path. The scope of ϕ is the sub-tree

rooted at the node-label l;

• C is a condition for the XFD X� Y holds on D. The condition C

has the form: C = ex1θ ex2θ …θ exn; exi is an atomic Boolean

expression associated to a particular data node. That is, there does

not exist any connections in exi. “θ ” is an operator either AND (^)

or OR (∨).

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

48

• X and Y are non-empty sets of nodes under sub-trees rooted at node-

label l. X and Y are exclusive.

• X�Y indicates a relationship between nodes in X and Y, such that two

sub-trees sharing the same values for X also share the same values for

Y, that is, the values of nodes in X uniquely identify the values of

nodes in Y. We refer to X as the antecedent and Y as the consequence.

 For example, suppose that PBooking is the context path from the root

to the Booking nodes in the Bookings data tree (Fig 3.2); if there exists

an XFD (./Fare)�(./Tax) holding on the Bookings data tree under

condition C = (./Carrier = “Tiger Airways”), then we have an XCFD:

ψ =PBooking: (./Carrier= “Tiger Airways”, ./Fare)�(./Tax).

Satisfaction of an XCFD: the consistency of an XML data tree with

respect to a set of XCFDs is verified by checking for the satisfaction of the

data to every XCFD. A data tree D=(V, lab, ele, att, val, r) conforming to

S, D|=S, is said to satisfy ψ = Pl: [C], (X � Y) denoted D|= ψ ^S iff for

every two sub-trees rooted at ni and nj in D, if ni[X]=v nj[X] then ni[Y]=v

nj[Y] under the condition C, where ni and nj have the same root node-label l.

 XDiscover returns minimal XCFDs. The concept of minimal XCSD

is defined as follows.

Definition 3.7. (Minimal XCFDs)

Given an XML data tree D= (V, lab, ele, att, val, r) conforms to the XML

schema S= (E, A, T, root), an XCFD ψ = Pl: [C], (X � Y) on D is minimal

if C is minimal and X � Y is minimal.

• C is minimal if the number of expressions in C (|C|) cannot be

reduced, i.e.,∀C’, |C’| < |C|, Pl: [C’],(X ք Y).

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

49

• X� Y is minimal if none of the nodes in X can be eliminated, which

means every element in X is necessary for the functional dependency

holding on D. In other words, Y cannot be identified by any proper

subset of X, i.e., ∀X' ⊂X, Pl: [C], (X'ք Y).

For example, we assume that the XCFDψ holds on D

ψ = PBooking: (./Type="Airline" ^ ./Carrier="Tiger Airways"),

(./Departure, ./Arrival � ./Tax)

We have C = (./Type="Airline" ^ ./Carrier="Tiger Airways")

and X � Y = (./Departure , ./Arrival � ./Tax)

 We assume that:

• If C’=(./Type="Airline"),

|C’|={./Type=“Airline”}=1<2={./Type="Airline", ./Carrier= "Tiger

Airways"} = |C|

 then PBooking:(./Type="Airline"), (./Departure ^ ./Arrival � ./Tax)

does not hold properly on D.

• If X'=./Departure, |X'|={Departure}⊂{Departure, Arrival}=|X|,

then PBooking: (./Type="Airline"^ ./Carrier="Tiger Airways"),

(./Departure �./Tax) does not hold on D.

 In the next section, we present our proposed approach, XDiscover,

for discovering XCFDs from a given XML source associated with a

schema.

3.4 XDiscover: XML conditional functional dependency

discovery

Given an XML data tree D= (V, lab, ele, att, val, r) conforming to a

schema S= (E, A, T, root); the goal of XDiscover is to discover a set of

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

50

non-redundant XCFDs in the form ψ = Pl: [C], X� Y; where each XCFD

is minimal and contains only a single path in consequence Y.

 XDiscover aims to discover all non-trivial XCFDs from the data

source. Our algorithm works in the same manner as candidate generating

and testing approaches [53, 70, 102]. That is, the algorithms traverse the

search lattice in a level-wise manner and start finding candidates with small

antecedents. The results in the current level are used to generate candidates

in the next level. Pruning rules are employed to reduce the search lattice as

soon as possible. Supersets of nodes associated with the left-hand side of

already discovered XCFDs are pruned from the search lattice. Our

approach identifies more pruning rules (section 3.4.4) than the existing

approaches. In particular, we include rules to: (i) prune equivalent sets

relating to already discovered candidates; (ii) eliminate trivial candidates;

and (iii) remove supersets of nodes related to antecedents of already found

XCFDs and ignore subsets of nodes associated with conditions of already

discovered XCFDs.

 The XDiscover algorithm includes three main functions. The first

function named search lattice generation, generates a search lattice

containing all possible combinations of elements in the schema data tree.

The second function named candidate identification is used to identify

possible candidates of XCFDs. The last function is called validation and is

used to validate the identified XCFD candidates to find satisfied XCFDs.

The detail of each function is described as follows.

3.4.1 Search lattice generation

We adopt the Apriori-Gen algorithm [4] to generate a search lattice

containing all possible combinations of node-labels. The process starts

from nodes with a single label in level d= 1. Nodes in level d with d ≥2 are

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

51

obtained by merging pairs of node-labels in level (d-1). Fig 3.3 is an

example of a search lattice of node-labels: A, B and C. Node AC in level 2

is generated from nodes A and C in level 1. The number of occurrences of

each node is counted. Nodes with occurrences less than a given threshold

τ are discarded to limit the discovery to only the frequency portions of

data.

3.4.2 Candidate identification

The link between any two direct nodes in the search lattice is a

representation of a possible candidate XCFD. Assume that W & Z are two

nodes directly linked in the search lattice. Each edge(W, Z) represents a

candidate XCFD: ψ =Pl:[C],(X � Y), where W= X ∪ C and Z=W∪{Y}, X

is a set of variable elements, and C is a set of conditional elements. For

example, for edge(W, Z)= edge(AC, ABC) in Fig 3.3, we assume A is the

condition, then we have an XCFD ψ =Pl: {A}, {C} � {B}.

 If the condition A is empty, then ψ becomes a constraint on the

whole document as an XFD. This means an XFD is a special case of an

XCFD. To check for the availability of a candidate XCFD represented by

Level

1

2

3

 Ø

A B C

AB AC BC

ABC

Fig 3.3. A set of containment lattice of A, B and C

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

52

an edge between W and Z, we examine the set of node-labels in Z to see

whether it contains one more node-label than W. After identifying a

candidate XCFD, a validation process is performed to check whether this

candidate holds on the data.

3.4.3 Validation

 Validation for a satisfied XCFD includes two steps. We first calculate

partitions for node-labels associated with each candidate XCFD, then we

check for the satisfaction of that candidate XCFD, based on the notion of

partition refinement [53]. From a general point of view, generating a

partition for a node-label classifies a dataset into classes based on data

values coming with that node-label. Each class contains all elements with

the same value. A partition is defined and calculated as follows:

Definition 3.8. (Partition) A partition ΠW|l of W on D under the sub-tree

rooted at node-label l is a set of disjoint equivalence classes wi. Each class

wi in ΠW|l contains all nodes with the same value. The number of classes in

a partition is called the cardinality of the partition, denoted by |ΠW|l|. |wi| is

the number of nodes in the class wi.

 For example, from schema tree Bookings S in Fig 3.1, we have:

E={[(1, 0)Bookings] ,[(2, 1)Booking],[(3, 2) Carrier], [(4,2) Trip], [(5,

3) Departure], [(6, 3) Arrival], [(7, 2) Fare], [(8, 2)Tax]}

From the searching lattice, suppose we consider a partition identifier W=

“Carrier” which corresponds to the node [(3, 2) Carrier] in schema tree

S. Traversing data tree Bookings D in Fig 3.4 finds all data nodes which

have the node name Carrier and depth of 2.

The found nodes are grouped into two classes:

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

53

Class1= { [(23, 2) Carrier= “Tiger Airways”], [(33, 2) Carrier= “Tiger

Airways”] , [(53, 2)Carrier= “Tiger Airways”], [(63, 2) Carrier=

“Tiger Airways”]}

Class2 ={[(43, 2) Carrier= “Virgin”], [(73, 2) Carrier= “Virgin”]}

The partition ΠCarrier|Booking to the value of node Carrier with respect to

sub-tree rooted at Booking is represented as ΠCarrier|Booking = {w1, w2}

w1= {[(22,1) Booking], [(32, 1) Booking], [(52, 1) Booking], [(62, 1)

Booking]}

w2 ={[(42, 1) Booking], [(72, 1)Booking]}

|ΠCarrier|Booking| = 2; |w1| = 4; |w2| = 2.

To simplify the presentation, we omit the node-ID and path-ID associated

with each node in the following sections to avoid cluttering. The validation

process for a satisfied XCFD is performed follow the following theorem.

Fig 3.4. A simplified Bookings data tree: each Booking contains only one Trip

 (1,0)

Bookings

(43,2)

 Carrier

Virgin

(45,3)

 Departure

MEL

(46,3)

Arrival

BNE

(44,2)

Trip

 (42,1)

Booking

(47,2)

Fare

300

(48,2)

Tax

70

(53,2)

Carrier

Tiger

Airways

(55,3)

 Departure

DRW

(56,3)

Arrival

BNE

(54,2)

Trip

(52,1)

Booking

(57,2)

Fare

300

(58,2)

Tax

60

(62,1)

Booking

(63,2)

Carrier

Tiger

Airways

(65,3)

 Departure

BNE

(66,3)

Arrival

DRW

(64,2)

Trip
(67,2)

Fare

300

(68,2)

Tax

60

(73,2)

Carrier

Virgin

(75,3)

 Departure

MEL

(76,3)

Arrival

SYD

(74,2)

Trip

(72,1)

Booking

(77,2)

Fare

200

(78,2)

Tax

20

(32,1)

Booking

(33,2)

Carrier

Tiger

Airways

(35,3)

 Departure

BNE

(36,3)

Arrival

DRW

(34,2)

Trip
(37,2)

Fare

200

(38,2)

Tax

40

(22,1)

Booking

(23,2)

Carrier

Tiger

Airways

(25,3)

Departure

MEL

(26,3)

Arrival

BNE

(24,2)

Trip
(27,2)

Fare

200

(28,2)

Tax

40

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

54

Theorem 3.1. Let W= {X}∪{C}, Z=W∪{Y} be two sets of nodes in the

search lattice, and ΠW and ΠZ be two partitions of W and Z. An XCFD, ψ =

Pl:[C],(X � Y) holds on data tree D if either of the below conditions is

satisfied:

• There exists at least one equivalent pair (wi, zj) between ΠW and ΠZ .

 or

• There exists a class ck in ΠC that contains all elements of a certain pair

(wi, zj) in ΠW and ΠZ.

Proof: the first condition: according to [102], a functional dependency holds on D

if every node in a class wi of ΠW is also in a class zj of ΠZ. In our case, the

satisfied XCFD does not require every class wi in ΠW to be a class zj in ΠZ

because an XCFD can be true on a portion of D. This means if there exists at least

one equivalent pair (wi, zj) between ΠW and ΠZ then we conclude that φ holds

conditionally on data tree D.

 The second condition: if there exists a class ck in ΠC containing

exactly all elements in pair (wi, zj), this means under condition ck, all

elements in wi, and zj share the same data rules. Then we conclude that the

XCSD: ψ = Pl: {ck },(X� Y) holds on data tree D. �

 The number of candidate XCFDs and the searching lattice are very

large. In order to improve the performance of XDiscover, we introduce five

pruning rules used in our approach to remove redundant and trivial

candidates from the search lattice.

3.4.4 Pruning rules

We start this section by presenting the theoretical foundation including

concepts, lemmas and theorems to support our proposed pruning rules.

Theoretical foundation: we introduce a concept of equivalent sets and

four lemmas, which are necessary to justify our proposed pruning rules.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

55

This is to prove that the pruning rules do not eliminate any valid

information when nodes are pruned from the search lattice. We employ the

following rules which are similar to the well-known Armstrong's Axioms

[12] for functional dependencies in the relational database to prove the

correctness of the defined lemmas.

 Let X, Y, Z be a set of elements of a given XML data D. These rules

are obtained from adoptions of Armstrong's Axioms [12]. This is, we adapt

the notation of exiting rules to conform to the notation of our work.

Reflexivity If Y ⊆ X, then Pl: X� Y

Augmentation If Pl: X� Y, then Pl: XZ� YZ

Transitivity If Pl: X� Y, Pl: Y� Z, then Pl: X� Z

 The following two inference rules can be derived from above three rules

Union If Pl: X� Y and Pl: Y� Z, then Pl: X� YZ.

Decomposition If Pl: X� YZ, then Pl: X� Y and Pl: X� Z .

Definition 3.9. (Equivalent sets)

Given W= X and Z=W∪{Y}, if ψ = Pl: (X= “a”)�(Y= “b”) and ψ ' = Pl:

(Y= “b”) � (X= “a”) hold on D, where a, b are constants; X and Y contain

only a single data node, then X and Y are called equivalent sets, denoted

X↔Y.

Lemma 3.1. Given W= X∪ C and Z=W∪{Y}, X'= X∪{A}, if ψ = Pl:[C],

(X � Y) then ψ ’= Pl:[C], (X'� Y).

Proof: We have ψ = Pl: [C], (X � Y),

Applying augmentation rule, Pl: [C], (X∪{A}� Y∪{A})

Applying decomposition rule, Pl: [C], (X∪{A}� Y) and Pl: [C], (X∪{A}�

{A})

Therefore, Pl: [C], (X'� Y).□

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

56

Lemma 3.2. Given W= X∪ C and Z=W∪{Y}, if ψ = Pl: [C], (X � Y)

associated to a class wi holds on T then ψ ’= Pl: [C’],(X � Y) holds on D

where C’ ⊆ C.

Proof: If ψ = Pl: [C], (X � Y) associated to a class wi holds on D,

Assume that C = C’ ∪ C”,

Applying decomposition rule: Pl:[C’],(X � Y) and Pl: [C”],(X � Y)

Therefore, Pl: [C'],(X � Y) holds on D including elements from class wi. □

Lemma 3.3. Given W= X and Z=W∪{Y}, if ψ = Pl: (X= “a”)�(Y= “b”)

holds, and the number of actual occurrences of expression Y = “b” in T,

called ob , is equal to the size of |zb| then X↔Y.

Proof: ψ = Pl: (X= “a”)�(Y= “b”) means |wa| = | zb| (1)

Since

we have |zb|= ob , Y=”b” does not occur with any other antecedence (2)

From (1) & (2) indicate that Y="b" only occurs with the value of X="a".

Therefore, (Y= “b”)�(X= “a”) holds. X↔Y is proven. □

Lemma 3.4. Let E be a set of distinct nodes in the D, the XCFD ψ = Pl:

[C],(X � Y) is minimal if for all A ∈X, where Y ∈R(X\ {A})∪R(C), R(X)=

{ Y ∈E| ∀A∈X: Pl: [C],(X\ {A, Y} ք Y)}.

Proof: If Y ∉ R(X\ {A})∪ R(C) for a given set X, then Y has been found in

a discovered XCSD where either the antecedent is a proper subset of X or

the condition is a proper subset of C. In such cases, ψ = Pl:[C],(X � Y) is

not minimal. □

Pruning rules: we introduce five pruning rules used in our approach to

remove redundant and trivial candidates from the search lattice.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

57

Particularly, these rules are used to delete candidates at level d-1 for

generating candidates at level d. Pruning rules 3.1-3.4 are justified by

Lemmas 3.1-3.4, respectively. Rule 3.5 is relevant to the cardinality

threshold. The first three rules are used to skip the search for XCFDs that

are logically implied by the already found XCFDs. The last two rules are

used to prune redundant and trivial XCFD candidates.

Pruning rule 3.1. Pruning supersets of nodes associated with the

antecedent of already discovered XCFDs. If ψ = Pl: [C], (X � Y) holds,

then candidate ψ ’= Pl: [C], (X'� Y) can be deleted where X' is a superset

of X.

Pruning rule 3.2. Pruning subsets of the condition associated with already

discovered XCFDs. If ψ = Pl:[C], (X � Y) holds on a sub-tree specified by

a class wi, then candidate ψ ’= Pl: [C'], (X � Y) related to wi is ignored,

where C’ ⊂ C .

Pruning rule 3.3. Pruning equivalent sets associated with discovered

XCFDs. If ψ = Pl:(X= “a”)�(Y= “b”) corresponding to edge(W, Z) holds

on data tree D, and X↔Y then Y can be deleted.

Pruning rule 3.4. Pruning XCFDs which are potentially redundant. If for

any A∈X, Y ∉ G(X\{A})∪ G(C), then skip checking the candidate ψ = Pl:

[C], (X� Y).

Pruning rule 3.5. Pruning XCFD candidates considered to be trivial.

Given a cardinality thresholdτ , τ >=2, we do not consider class wi

containing less than τ elements i.e. |wi|<τ . XCFDs associated with such

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

58

classes are not interesting. In other words, we only discover XCFDs

holding for at least τ sub-trees.

3.4.5 XDiscover Algorithm

We first introduce the concept and the theorem on the Closure set of

XCFDs, which is used for completeness of the set of XCFDs discovered by

XDiscover. Then, we present the detail of XDiscover. Finally, we also give

a theorem (Theorem 3.2) to specify that the set of XCFDs discovered by

XDiscover from a given source is greater than or equal to the set of XFDs

which hold on that source.

Definition 3.10. (Closure set of XCFDs) Let G be a set of XCFDs. The

closure of G, denoted by G
+
, is the set of all XCFDs which can be deduced

from G using the above Armstrong's Axioms.

Theorem 3.2. Let G be the set of XCFDs that are discovered by XDiscover

from D and G
+

be the closure of G. Then, an XCFD ψ = Pl: [C], (X � Y)

holds on T iff ψ ∈ G
+
.

Proof: For a candidate X and Y, we first prove that if a constraint XCFD ψ

holds on D then the constraint ψ is in G
+

. After this, we prove that if ψ is

in G
+

then ψ holds on D.

 (i) Proving if ψ = Pl: [C], (X � Y) holds on D then ψ ∈ G
+

 Suppose constraint ψ holds on D, ψ may be directly discovered by

XDiscover.

• If ψ is discovered by XDiscover, then ψ ∈ G. Therefore, ψ ∈ G
+

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

59

• If ψ is not discovered by XDiscover, this means either X is pruned by

pruning rule 1 or condition C is pruned by pruning rule 3.2 or Y is

pruned by pruning rule 3.3 and 3.4. Hence, ψ ∈ G
+
.

ii) Proving if ψ ∈ G
+

then ψ holds on D.

Suppose that ψ = Pl: [C], (X � Y) is in G
+

 but ψ does not hold in D

Since ψ ∈ G
+
, this means, it can be logically derived from G. That is, there

exists at least a set of elements Z associated to two constraints in G, such

that ψ ’= Pl: [C], (X � Z) and ψ ’’ = Pl: [C], (Z � Y) to derive

transitively ψ . Therefore, ψ is satisfied by D. □

XDiscover algorithm. Listing 3.1 presents our proposed XDiscover

algorithm to find XCFDs from a given data tree D. Our algorithm traverses

the searching lattice following a breadth-first search manner combining

Listing 3.1: The XDiscover algorithm

Algorithm: XDiscover

Input: XML data tree D=(V, lab, ele, att, val, r) schema tree S=(E, A, T, root)

Output: a minimal set of XCFDs

1. DF ← { Ø };

2. Level d←1;

3. PId← E;

4. GPl ← generatePartition(D, PId);

5. While |PId |≠ { Ø } do

6. d++;

7. PId ← generatePartitionIdentifier(GPd);

8. GPd ← generatePartition(D, PId);

9. DF← DF ∪ discoverXCFD(GPd, GPd-1);

10. Prune(GPd-1);

11. Return (DF).

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

60

with pruning rules. The searching process starts from level 1 (d=1); all

nodes from E are stored in Partition Identifier PI1= {v1, v2,… vn} (line 3).

Each node in E is a partition identifier with a single label associated with

some candidate XCFDs. Partitions of Partition identifiers are generated and

stored in GP1 - Generated Partition (line 4). At level d > 1, node labels are

generated from PId -1 and stored in PId (line 7) in the form vivj; where vi≠vj;

vi, vj
∈PId-1; PId-1 contains node labels at level (d-1); all partitions of vivj

nodes at level d are generated and stored in GPd.

Algorithm: discoverXCFD

Input: GPl , GPl-1 // partitions at level l and l-1

Output: satisfied XCFDs

1. DF← {Ø};

2. For each partition of W ∈ GPl-1 do

3. For each partition of Z ∈ GPl do

4. If Z = (W ∪ {Y}) then

5. ΩW← subsumed wi;

6. While ΩW <> {Ø} do

7. For each class wi ∈ ΠW do

8. For each class zi ∈ ΠZ do

9. If ((|wi|>τ) and (|wi| = |zi |)) then

10. DF← DF ∪ (C, X � Y);

11. ΩW← ΩW \ (wi ∈(C, X � Y));

12. If not found XCFD then

13. generateAdditionPartition;

14. For each ci in C do

15. If ci contains values only from ΩW then

16. DF← DF ∪ (C, X � Y);

17. ΩW← ΩW \ (wi ∈(C, X � Y));

18. Return(DF).

Listing 3.2: The discoverXCFD algorithm

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

61

 All candidates in the form ci,wi � zj are checked; where vi= wici,

vj=wicizj and zj ∈PI1 \ (wi ∪ ci). The validation for a satisfied XCFD

follows the approach described in Section 3.4.3 (line 9: function

discoverXCFD in Listing 3.2). The found XCFDs are stored in DF - the

discovered set of XCFDs. Then the Prune function containing the pruning

rules is performed to prune redundant nodes and edges from the searching

lattice for the next level (line 10). The searching process is repeated until

no more partition identifiers are considered (line 5). The output of

XDiscover is a set of minimal XCFDs.

 The function of discoverXCFD depicted in Listing 3.2 searches for

XCFDs at each level d. If there still exists classes in ΠW which do not

belong to any discovered XCFD, then we continue to consider such classes

with additional condition nodes. discoverXCFD calls the

generateAdditionPartition function to calculate partitions with additional

condition nodes. The discoverXCFD returns XCFDs to XDiscover.

 The following theorem is to specify that the set of XCFDs

discovered by XDiscover from a given source is greater than or equal to the

set of XFDs which hold on that source.

Theorem 3.3. Let G be the set of XCFDs obtained from D by applying

XDiscover and F be a set of possible XFDs hold on D, then |G|≥ |F|.

Proof: we refer to the source instance as D= (V, lab, ele, att, val, r)

conforming to a schema S= (E, A, T, root. G is a set of discovered XCFDs.

The expression form of XCFD is ψ = Pl: [C], (X � Y).

 Let N be a set of elements in S, N={e1, e2,..,en}. The domain of ei is

denoted as dom(ei). dom(ei)= { }i

k

ii eee ,..,, 21 , k >1. Assume that F= { 1ϕ ,

2ϕ ,.., mϕ } is a set of traditional XFDs on D, where iϕ = Wi → ei, Wi⊂N, ei

⊄Wi, i=1..m.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

62

 Suppose that there exist dependencies capturing relationships among

data values in iϕ . This means ∀ t

ie ∈dom(ei), ∃ iψ , iψ = Ci →
t

ie , where ∀ ec

⊂ Ci, ec is related to a value in dom(ec), Ci ≡ Wi , iψ is an extension

of iϕ where each element in either the antecedent or consequence of iϕ is a

value in its domain. We do not consider an element which has the same

value on the whole document. This means the number of distinguished

values associated with ei is greater than 1(|dom(ei)| >1). Therefore, ei is

identified by a set of dependencies Gi extended from iϕ , instead of only one

functional dependency iϕ . In other words, we have

 |Gi| > 1= |{ iϕ }| (1)

 Suppose that semantic inconsistencies appear in D. This means

different dependencies exist to identify the value of the consequence ei in

iϕ , denoted (C(iϕ)).

 Let iϕ = Wi → ei, Wi⊂N, ei ⊄Wi, i=1..m.

 ∀ ei ⊂ C(iϕ), ∃ iψ , jψ :

 iψ = [Ci], (Xi→ ei)

 jψ = [Cj], (Xj→ ei) ,

 where iψ ≠ jψ , i ≠ j, Ci ∪ Xi = Wi, Cj ∪ Xj = Wi.

 ∀ ec ⊂ Ci ∪ Cj, ec is related to a value in dom(et),

 ∀ ev⊂ Xi ∪ Xj, ev is either a value in dom(ev) or a variable.

 We can see that ei is identified by a set G'i of conditional

dependencies instead of only one functional dependency iϕ . Hence,

 |G'i| >=2 > |{ iϕ }| (2)

Without loss of generality, from (1) & (2), we have |G|= |
mi ..1=∪ {G'i}| >

|{ iϕ }i=1..m| = |F|. In other words, the number of discovered XCFDs is much

greater than the number of XFDs. Each consequence ei of a dependency is

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

63

identified by a set of XCFDs which include traditional XFDs and its

extensions. □

 In the following section, we present a summary of the experiments

and comparisons between XDiscover and a related approach.

3.5 Experimental analysis

We evaluate the performance of our XDiscover using a comprehensive set

of experiments on synthetic and real datasets.

3.5.1 Synthetic data

Datasets: our dataset is on Flight Bookings, which is an extension of the

"Flight Bookings" data shown in Fig 3.2. The dataset contains 150

Bookings. All data represents real relationships between elements with

inconsistent data rules. Such specifications are needed to verify the

existence of constraints holding conditionally on XML data.

Parameters: The cardinality threshold τ determining a minimum number

of classes associated with interesting XCFDs was set from 2 to 4 with

every step of 1.

System: we ran experiments on a PC with an Intel i5, 3.2GHz CPU and

8GB RAM. The implementation was in Java and data was stored in

MySQL.

Comparative evaluation: to the best of our knowledge, there are no similar

techniques for discovering constraints which are equivalent to XCFDs.

There is only one algorithm which is close to our work, denoted Yu08,

introduced by Yu et al. [102], for discovering XFDs. Such XFDs are

considered as XCFDs containing only variables. Both approaches use

partitioning techniques with respect to data values to identify dependencies

from a given data source. Therefore, we choose Yu08 to draw comparisons

with our approach on the number and the semantics of discovered

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

64

constraints. Our purpose is to evaluate the correctness of XDiscover in

discovering constraints. We ran experiments on the Flight Bookings

datasets as described above. The comparisons relate to: (i) the number of

discovered constraints; and (ii) the specifications of the discovered

constraints.

XDiscover Yu08

τ # discovered constraints # discovered constraints

τ = 2 23 7

τ = 3 16 7

τ = 4 13 7

Table 3.1. XDiscover vs Yu08 on the number of discovered constraints

XDiscover Yu08

PBooking: (./Carrier= “Tiger

Airways”, ./Fare) �./Tax

PBooking: ./Fare →. /Tax

PBooking: (./Carrier = “Virgin” ^

./Trip/Arrival = “BNE”) � (./Tax =

“20”)

PBooking: ./Trip/Departure,

./Trip/Arrival →./Tax

Table 3.2. Samples of constraints discovered by XDiscover vs that of Yu08

The results in Table 3.1 show that while our approach returns from 13 to 23

constraints, Yu08 discovers only 7 constraints. This is because Yu08 does

not consider conditional constraints holding on a subset of Flight Bookings

as XDiscover does.

Table 3.2 represents the certain number of constraints discovered by

XDiscover and Yu08. Yu08 returns inaccurate rules like

 PBooking: ./Fare →. /Tax,

 PBooking: ./Trip/Departure, ./Trip/Arrival →./Tax

while DisX discovers more specific and accurate dependencies

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

65

PBooking: (./Carrier = “Virgin” ^ ./Trip/Arrival = “BNE”) � (./Tax =

“20”).

 In general, the set of constraints discovered by XDiscover is much

more numerous than Yu08. This is because XDiscover considers

conditional constraints. Yu08 returns inaccurate rules since Yu08 does not

consider conditional semantics as XDiscover does. Constraints returned by

XDiscover are more specific and accurate than constraints returned by

Yu08. The existing algorithm discovers XFDs containing only variables

(e.g. ./Fare and ./Tax) and can not detect dependencies which hold

partially on documents with conditions. Our approach discovers constraints

containing both variables and constants (e.g. ./Carrier= "Virgin" and

./Trip/Arrival="BNE"), or either variables or constants that allow the

detection of more interesting semantic constraints than algorithms to

discover XFDs.

3.5.2 Real life data

 Although synthetic dataset can help us analyze the real potential of the

approach, experiments on real datasets are necessary to test its practicality.

We ran experiments on two available real life datasets including:

wikibooks from Wikimedia [96] and the CD dataset as used in [95].

wikibooks consist of about 19 schema elements, the max schema depth

being 5. It contains 900 pages (14200 data elements). The CD dataset

contains 9763 CDs which is randomly extracted from FreeDB database. It

includes 21 schema elements and the max schema depth is 4. The CD

dataset contains 298 duplicate objects. We ran XDiscover on these datasets

to find the number of checked candidates, the discovery time and the

number of discovered constraints in each case. The results summarized in

Table 3.3 show that the cardinality threshold influences to the time

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

66

consuming and the number constraints discovered by XDiscover.

XDiscover works more effectively, in terms of consuming time, when the

cardinality threshold is higher. This means XDiscover deals effectively on

data sources with constraints holding on a large number of objects.

Datasets wikibooks CD Datasets

Cardinality threshold τ τ = 2 τ = 3 τ = 4 τ = 2 τ = 3 τ = 4

#Candidate checked 221 108 88 427 248 195

#Discovery time(seconds) 106 95 88 334 258 226

#discovered constraints 15 13 8 61 44 21

Table 3.3. Analyzing real life datasets

We present case studies to further demonstrate the effectiveness of the

proposed approach in the next section.

3.6 Case studies

We use the Flight Booking XML data for our case studies. From schema

Bookings S in Fig 3.1, we have E={Bookings, Booking, Carrier, Trip,

Departure, Arrival, Fare, Tax}. The cardinality threshold τ determines

the classes associated with interesting XCFDs. τ affects the results of

XDiscover due to changes in the number of classes which need to be

checked. If the value of τ is too large, then only a small number of

equivalent classes is satisfied, which might result in a loss of interesting

XCFDs. Therefore, in our case studies, we fix the value of τ at 2, which

means we only consider classes with cardinality equal to or greater than 2.

We do not consider constraints holding for only one specific sub-tree, as

such constraints are considered trivial.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

67

Case 3.1. XCFDs contain only constants.

Suppose data tree D in Fig 3.4 conforms to schema Bookings S and each

Booking only contains one Trip as shown in D.

Consider edge(W, Z)= (Carrier-Arrival, Carrier-Arrival-Tax).

Follow the process described in section 3.4.1 to generate two partitions of

Carrier-Arrival and Carrier-Arrival-Tax with respect to the sub-tree

rooted at Booking. To simplify the presentation, we omit the node label

(e.g. Booking) associated to each node in the classes.

ΠCarrier, Trip/Arrival|Booking = { w1, w2, w3, w4}

={{(22,1)}, {(32,1), (52,1)}, {(42,1), (72, 1)}, {(62, 1)}}

ΠCarrier, Trip/Arrival, Tax|Booking = { z1, z2, z3, z4, z5}

={{(22,1)},{(32,1)}, {(42,1), (72,1)}, {(52,1)}, {(62,1)}}

 We can see that w3 in ΠCarrier, Trip/Arrival|Booking is equivalent to z3 in

ΠCarrier, Flight/Arrival, Tax|Booking . That is, w3 = z3 ={(42,1), (72,1)}. Nodes in

w3 have the same value of Carrier= “Virgin” and Arrival= “BNE”.

Nodes in z3 share the same value of Tax = “20”. An XCFD is discovered:

ψ 1= PBooking: (./Carrier = “Virgin” ^ ./Trip/Arrival = “BNE”) � (./Tax

= “20”).

 This case demonstrates the XCFD contains only constants. For each

XFD, there might exist a number of conditional dependency XCFDs which

refine this XFD by binding particular values to elements in its

specification. Such constraints cannot be expressed by using the XFD

notion.

Case 3.2. XCFDs contain both variables and constants.

Using the same assumption in case 1, considering edge (W, Z)= edge

(Fare, Fare-Tax), two partitions of Fare and Fare-Tax with respect to

the sub-tree rooted at Booking:

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

68

ΠFare|Booking = {w1, w2}={{(22, 1), (32, 1), (72, 1)}, {(42, 1), (52, 1), (62,

1)}}

ΠFare, Tax|Booking = { z1, z2, z3, z4}={{(22,1), (32,1)}, {(42,1)}, {(52, 1), (62,

1)}, {(72, 1)}}

 There does not exist any equivalent pair between the two partitions

ΠFare|Booking and ΠFare, Tax|Booking. We need to add more data nodes from

the remaining set of E\{W∪Z}. For example, the node of Carrier can be

added to edge(Fare, Fare-Tax) as a conditional data node. We now consider

edge(W’, Z’)= (Carrier-Fare, Carrier-Fare-Tax). Partitions of

Carrier-Fare and Carrier-Fare-Tax with respect to the sub-tree rooted

at Booking are as follows:

ΠCarrier, Fare|Booking = {w’1, w’2, w’3, w’4}={{(22,1), (32, 1)}, {(42,1)},{(52,

1), (62, 1)}, {(72, 1)}}

ΠCarrier, Fare, Tax|Booking = { z’1, z’2, z’3, z’4}={{(22, 1), (32, 1)}, {(42, 1)},

{(52, 1), (62, 1)}, {(72, 1)}}

The partition of the condition node Carrier:

ΠCarrier|Booking = { c1, c2, c3}={{(22, 1), (32, 1), (52, 1), (62, 1)}, {(42,

1)},{(72, 1)}}

 We have two equivalent pairs (w’1, z’1) and (w’3, z’3) between

ΠCarrier, Fare|Booking & ΠCarrier, Fare, Tax|Booking with |w1|=2≥τ and |w3|=2

≥τ . Furthermore, there exists a class c1 in ΠCarrier|Booking containing exactly

all elements in w’1∪ w’3. All elements in class c1 have the same value for

Carrier = “Tiger Airways”. This means the nodes in classes w’1 and w’3

share the same condition (./Carrier = “Tiger Airways”). Therefore, an

XCFD ψ = PBooking: (./Carrier= “Tiger Airways”, ./Fare) �./Tax is

discovered.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

69

Case 2 illustrates techniques to find an XCFD with extra data nodes

which are referred to as the condition of the XCFD. Such XCFDs contain

both variables and constants.

Case 3.3. Partition identifiers contain a set of complex nodes.

Suppose data tree D in Fig 3.5 conforms to schema Bookings S in Fig 3.1.

Each Booking contains multiple complex nodes Trip. For partition

identifiers containing a set of complex data nodes, the calculating partitions

are processed in a bottom-up fashion. We first consider the sub-tree rooted

at the bottom level in the data tree (e.g Trip) to calculate partitions. Then,

we convert all classes in each generated partition into the corresponding

parent of this complex node (i.e., the parent of Trip is Booking) to find

the refinement. We repeat converting the found partition to obtain its

refinement until reaching the sub-tree rooted at the considered nodes (i.e.,

Booking). The validation for a satisfied XCFD is similar to the cases

which deal with the partition identifier which contain single data nodes.

 Consider edge(Trip, Tax) with respect to the sub-tree rooted at

Booking. We start generating partitions under the sub-tree rooted at Trip.

Following the process described in section 3.4.1, we partition the nodes

according to each Trip (including Departure and Arrival) under the sub-

tree rooted at Trip:

ΠTrip/Departure, Trip/Arrival|Trip = {{(104, 2), (124, 2)}, {(107, 2), (127, 2)}}

 Then, converting these classes into the Booking sub-tree, we have a

refinement: ΠTrip|Booking = {{(102, 1), (122, 1)}}. Validating for a

satisfied XCFD is done similarly to a case which partition identifiers

contain only single data nodes. The discovered XCFD is represented in the

form:

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

70

 ψ 2=PBooking:(./Carrier=“Virgin”,{./Trip})�(./Tax); where

{./Trip} represents a set of complex data nodes Trip including

Departure and Arrival.

In a case where there is only one Trip node in the constraint, the XCFD

can be represented as:

 ψ ’2 = PBooking: (./Carrier = “Virgin”, ./Trip)� (./Tax),

ψ ’2 is a special case of ψ 2. Generally, a partition identifier containing

simple nodes is a special case of the partition identifier containing complex

nodes. Therefore, we apply the same process to deal with the partition

identifiers which contain complex nodes for both cases.

Fig 3.5. A simplified Bookings data tree: each Booking contains a set of complex element Trip

 (1,0)

Bookings

(103,2)

Carrier

Virgin

(105,3)

Departure

CGK

(106,3)

Arrival

SIN

(110,2)

Fare

0

(111,2)

Tax

 200

(104,2)

Trip

(102,1)

Booking

(108,3)

Departure

SIN

 (109,3)

Arrival

 MEL

(107,2)

Trip

(123,2)

Carrier

Virgin

(125,3)

Departure

CGK

(126,3)

Arrival

SIN

(130,2)

Fare

 0

(131,2)

Tax

 200

(124,2)

Trip

(122,1)

Booking

(128,3)

Departure

SIN

 (129,3)

Arrival

 MEL

(127,2)

Trip

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

71

3.7 Summary

This chapter addressed the issues of data inconsistency caused by semantic

inconsistencies. Specifically, we introduced the notion of XML conditional

functional dependency which incorporates conditions into dependencies to

express constraints with conditional semantics. We proposed the

XDiscover algorithm based on semantics hidden in the data to discover a

set of possible XCFDs from a given XML data instance. We proposed a set

of pruning rules incorporated into the discovery process to improve the

performance of XDiscover. Experiments on synthetic and real life datasets,

and case studies were used to evaluate XDiscover. In our experiments, we

show that XDiscover can discover more situations of dependencies than the

XFD approach. XCFDs also have more expressive power, in term of

constraining data consistency, than that of XFDs. Our approach can be

used to enhance data quality management by suggesting possible rules and

identifying non-compliant data. Discovered XCFDs also can also be

embedded into an enterprise’s systems as an integral part to support the

manipulation of data. Data inconsistency can be caused by structural

inconsistencies inherent in heterogeneous XML data sources. Therefore,

our work will be further extended to address such problems in the next

chapter.

3. CONTENT-BASED DISCOVERY FOR IMPROVING XML DATA CONSISTENCY

72

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

73

4.

Chapter 4

Structured content-aware discovery

for improving XML data consistency

The goal of this thesis is to find principles for improving XML data

consistency. The previous chapter introduced a content-based discovery

approach to discover XML conditional functional dependencies from a

given data source conforming to a given schema. This is to resolve the data

inconsistency caused by semantic inconsistencies. Our intention is to

extend this approach to deal with data inconsistency caused by either

structural or semantic inconsistencies. This chapter introduces a structured

and content-based approach to discover anomalies where a data tree does

not follow any schema. Our work includes the concept of conditions as in

XCFDs and adds a new notion of similarity to work properly in XML data.

4.1 Introduction

One of the main features of XML is that it can represent different kinds of

data from different data sources. Two predominant proposals exist, namely

DTD (Document Type Definition) [49, 54] and XML Schema [90] to

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

74

specify the structure of a class of XML documents. However, such

proposals have not yet emerged as a standard. In addition, XML documents

are flexible which can represent different kinds of data from different data

sources. Each source might have its own structural definitions by

modifying the original schema [88]. Thus, we cannot assume that each

XML document always has a schema defining its structure. In such cases,

data inconsistencies often arise from both structural and semantic

inconsistencies inherent in the heterogeneous XML data sources.

Structural inconsistencies arise when the same real world concept is

expressed in different ways, with different choices of elements and

structures, that is, the same data is organized differently [35, 75, 95]. This

is because XML data is integrated from different data sources which might

have nearly or exactly the same information but are constructed using

different structures. Even though two objects express similar information,

each of them may have some extra information with respect to the other.

Semantic inconsistencies occur when business rules on the same data vary

across different fragments [79]. To the best of our knowledge, there is

currently no existing approach which fully addresses the problems of data

inconsistencies in XML. In the previous chapter, we propose an approach

to discover a set of XML conditional functional dependencies (XCFDs)

that targets semantic inconsistencies.

This chapter addresses the problem of data inconsistencies caused

by both semantic and structural inconsistencies. We assume that XML data

are integrated from multiple sources in the context of data integration, in

which labeling syntax is standardized and data structures are flexible. We

first introduce a novel constraint type, called XML conditional structural

functional dependencies (XCSDs), which represent relationships between

groups of similar real-world objects under particular conditions. They are

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

75

constraints in which functional dependencies are incorporated, not only

with conditions as in XCFDs to specify the scope of constraints but also

with a similarity threshold. The similarity threshold here is used to specify

similar objects on which the XCSD holds. The similarity between objects is

measured based on their structural properties using our newly proposed

structural similarity measurement. Thus, XCSDs are able to validate data

consistency on the identified similar, instead of identical, objects in data

sources with structural inconsistencies.

In addition, we propose an approach, named SCAD, to discover

XCSDs from a given data source. SCAD exploits semantics explicitly

observed from data structures and those hidden in the data to detect a

minimal set of XCSDs. Structural semantics are derived by our proposed

method, called data summarization, which constructs a data summary

containing only representative data for the discovery process. The rationale

behind this is to resolve structural inconsistencies. Semantics hidden in the

data are explored in the process of discovering XCSDs. Experiments and

case studies on synthetic data were used to evaluate the feasibility of

SCAD. The concept of minimal XCSD is the same as that of XCFD

(Definition 3.7).

 The remainder of this chapter is organized into eight sections.

Section 4.2 presents preliminaries. Section 4.3 presents a new

measurement, called the structural similarity measurement, which is

necessary to introduce the XCSDs described in Section 4.4. Our proposed

approach, SCAD, is described in Section 4.5. The complexity analysis of

SCAD is presented in Section 4.6. Section 4.7 covers the experiment

results. Case studies are presented in Section 4.8. Finally, Section 4.9

concludes the chapter.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

76

4.2 Preliminaries

In this section, we give some preliminaries including: (i) considering a

variety of examples of constraints to further illustrate the anomalies

existing in XML data, and discussing the limitations of the existing work in

expressing such constraints. This is to emphasize the needs to propose a

new type of constraint to capture data inconsistency in XML data; and (ii)

presenting the definition of a data tree used in this chapter.

4.2.1 Constraints

Fig 4.1 is a simplified instance of data tree T for Bookings. Each

Booking in T contains information on Type, Carrier, Departure,

Arrival, Fare and Tax. Values of elements are recorded under the

element names. We give examples to demonstrate anomalies in XML data.

All examples are based on the data tree in Fig 4.1.

 (1,0)

Bookings

(2,1)

Booking

(4, 2)

Carrier

"Qantas"

(8, 2)

Tax
"40"

(7, 2)

Fare
"200"

(6, 2)

Arrival

"SYD"

(5, 2)

Departure
"MEL"

(3, 2)

Type

"Airline"

(12,1)

Booking

(19, 2)

Tax
"40"

(18, 2)

Fare
"250"

(15, 2)

Trip

 (17, 3)

Arrival

 "SYD"

(16, 3)

Departure

"MEL"

(14, 2)

Carrier
"Qantas"

(13, 2)

Type
"Airline"

(22,1)

Booking

(29, 2)

Tax

"40"

(28, 2)

Fare

"250"

(25, 2)

Trip

 (27, 3)

Arrival
 "SYD"

(26, 3)

Departure
"MEL"

(24, 2)

Carrier

"Tiger

Airways"

(23, 2)

Type

"Airline"

(32,1)

Booking

(38, 2)

Tax

"20"

(37, 2)

Fare

"200"

(34, 2)

Trip

(36, 3)

Arrival
"6:00pm"

(35, 3)

Departure
"6:00am"

(33, 2)

Type

"Coach"

Fig 4.1. A simplified Bookings data tree contains structural and semantic inconsistencies

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

77

Constraint 1: For any Booking having the same Fare should have the

same Tax.

Constraint 2a: For any Booking of "Airline" having Carrier of

"Qantas", the Departure and Arrival determines the Tax.

Constrain 2b: Any Booking of "Airline" having Carrier of "Tiger

Airways", the Fare identifies the Tax.

Constraint 1 holds for all Bookings in T. Such a constraint contains only

variables (e.g. Fare and Tax), commonly known as an XFD. Constraints

2a and 2b are only true under given contexts. For instance, constraint 2a

holds for Bookings with Type of "Airline" and Carrier of "Qantas".

Constraint 2b holds for Bookings with Type of "Airline" and Carrier of

"Tiger Airways". These are examples of constraints holding locally on a

subset of data. Conditional semantics are common in real data, especially if

a data tree contains integrated data from multiple sources, then a constraint

may hold only on a portion of the data obtained from one particular source

[48]. Constraints 2a and 2b are examples of semantic inconsistencies, that

is, for Bookings of “Airline”, values of Tax might be determined by

different business rules. Tax is determined by Departure and Arrival for

Carrier of "Qantas" (e.g. Constraint 2a). Tax is however identified by

Fare for Carrier of "Tiger Airways" (e.g. Constraint 2b). We can see that

while Bookings of node (2, 1) and node (12, 1) describe the data which

have the same semantics, they employ different structures: Departure is a

direct child of the former Booking, whereas it is a grandchild of the latter

Booking with an extra parent node, Trip. This is an example of structural

inconsistencies. Detecting data inconsistencies as violations of XFDs fails

due to the existence of such constraints.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

78

 We now consider the different expression forms of XFDs under the

Path-based approach [82] and the Generalized tree tuple-based approach

[102] presented in Table 4.1. It is possible to see that both notions

effectively capture the constraints holding on the overall document. For

example, Constraint 1 can be expressed in the form of P1 under the Path-

based approach and G1 under the Generalized tree tuple-based approach.

The semantics of P1 is as follows: "For any two distinct Tax nodes in the

data tree, if the Fare nodes with which they are associated have the same

value, then the Tax nodes themselves have the same value". The semantics

of G1 is, "For any two generalized tree tuples CBooking, if they have the

same values at the Fare nodes, they will share the same value at the Tax

nodes". The semantics of either P1 or G1 are exactly as in the original

constraint 1.

Constraint Path-based approach [82] Generalized tree tuple-based

approach [102]

General

form

{Px1,..,Pxn}� Py,

where Pxi are the paths specifying

antecedent elements, Py: is the

path specifying a consequent

element.

LHS� RHS w.r.t Cp,

where LHS is a set of paths

relative to p, and RHS is a single

path relative to p, Cp is a tuple

class that is a set of generalized

tree tuples.

1

P1:

{Bookings/Booking/Fare} �

{Bookings/Booking/Tax}

G1:

{./Fare}� ./Tax w.r.t CBooking

2a

P2a:

{Booings/Booking/Departure,

Bookings/Booking/Arrival} �

{Bookings/Booking/Tax}

G2a:

{./Departure,./Arrival}�

./Tax w.r.t CBooking

Table 4.1. Expression forms of XML functional dependencies.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

79

 However, neither of the two existing notions can capture a constraint

with conditions. For example, the closest forms to which constraint 2a can

be expressed under [82] and [102] are P2a and G2a, respectively. The

semantics of such expressions is only: "Any two Bookings having the

same Departure and Arrival should have the same Tax". Such

semantics is different from the semantics of the original Constraint 2a

which includes conditions: Booking of "Airline" and Carrier of "Qantas".

Moreover, neither existing notions can capture the semantics of constraints

holding on similar objects. For example, neither P2a nor G2a can capture

the semantic similarity of Booking(2, 1) and Booking(12, 1) (refer to

Figure 1). Under such circumstances, these two Bookings are considered

inconsistent because Departure and Arrival in Booking(2, 1) and

Booking(12, 1) belong to different parents. Departure and Arrival are

direct children of the former Booking and are grandchildren of the latter

Booking. Our proposed XCSDs address such semantic limitations in

expressing the constraints in previous work.

4.2.2 XML Data tree

An XML instance is considered as a rooted-unordered-labeled tree. Each

element node is followed by a set of element nodes or a set of attribute

nodes. An attribute node is considered a simple element node. An element

node can be terminated by a text node. An XML data tree is formally

defined as follows.

Definition 4.1. (XML data tree)

An XML data tree is defined as T= (V, E, F, root), where

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

80

• V is a finite set of nodes in T, each node v ∈V consists of a label l and

an id that uniquely identify v in T. The id assigned to each node in the

XML data tree, as shown in Figure 1, is in a pre-order traversal. Each

id is a pair (order, depth), where order is an increasing integer (e.g. 1,

2, 3...) used as a key to identify a node in the tree; depth label is the

number of edges traversing from the root to that node in the tree, e.g.

1 assigning for /Bookings/Booking. The depth of the root is 0.

• E ⊆ V x V is the set of edges.

• F is a set of value assignments, each f (v)= s ∈F is to assign a string s

to each node v ∈V. If v is a simple node or an attribute node, then s is

the content of node v, otherwise if v has multiple descendant nodes,

then s is a concatenation of all descendants' content.

• root is a distinguished node called the root of the data tree.

An XML data tree defined as above possesses the following properties:

For any nodes vi, vj ∈ V:

• If there exists an edge(vi, vj) ∈E, then vi is the parent node of vj,

denoted as parent(vj), and vj is a child node of vi, denoted as

child(vi).

• If there exists a set of nodes {vk1,..,vkn} such that vi = parent(vk1),..,vkn

= parent(vj), then vi is called an ancestor of vj, denoted as ancestor(vj)

and vj is called a descendant of vi, denoted as descendant(vi).

• If vi and vj have the same parent, then vi and vj are called sibling

nodes.

• Given a path p= {v1v2...vn}, a path expression is denoted as path(p)=

/l1/../ln, where lk is the label of node vk for all k ∈[1,.., n].

• Let v= (l, id, c) be a node of data tree T, where c is the content of v. If

there exists a path p' extending a path p by adding content c into the

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

81

path expression of p such that p'= /li/../lj /c, then p' is called a text

path.

• {v[X]} is a set of nodes under the subtree rooted at v. If {v[X]}

contains only one node, it is simply written as v[X].

 An XCSD might hold on an object represented by variable

structures. In such cases, checking for similar structures is necessary to

validate the conformation of the object to that XCSD. To do this, in the

next section, we propose a method to measure the structural similarity

between two sub-trees.

4.3 Structural similarity measurement

The similarity between sub-trees is in general independent of the particular

technique adopted to measure the semantics between two XML elements.

Any technique which aims to assess whether two elements refer to the

same object can be used. Our method follows the idea of structure-only

XML similarity [24, 73]. That is, the similarity between sub-trees is

evaluated, based on their structural properties, and data values are

disregarded. We consider that each sub-tree is a set of paths, and each path

starts from the root node and ends at the leaf nodes of the sub-tree.

Subsequently, the similarity between two sub-trees is evaluated, based on

the similarity of two corresponding sets of paths. The more similar paths

the two sub-trees have, the more similar the two sub-trees are.

4.3.1 Sub-tree Similarity

Given two sub-trees R and R' rooted at nodes having the same node-label l

in T. R and R' contain m and n paths, respectively: R =(p1,..,pm) and R' =

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

82

(q1,..,qn), where each path starts from the root node of the sub-tree. The

similarity between two sub-trees R and R' is denoted by dT(R, R'). Both

Cosine [98] and Jaccard [97] functions can be easily adopted to calculate

the similarity between two sub-trees. The Cosine function is used to

measure the similarity of two non-binary vectors. The Jaccard function is

often used to measure the similarity of two objects consisting of

asymmetric binary attributes (e.g. 1 and 0). Obviously, the choice of the

similarity function is highly dependent on the representation used to

describe the two sub-trees. In this work, the similarity between two sub-

trees R and R' is evaluated, based on two sets of weights (w1,..,wm) and

(w1,..,wn), where wi and w'i are the path similarity weights of two paths pi

and pj in the corresponding sub-trees R and R'. The values of wi and w'i are

real numbers in a range of [0, 1]. Therefore, we used the Cosine similarity

formula to compute the similarity between sub-trees.

In our adopted formula, each set of weight can be considered a non-

binary vector where each dimension corresponds to a path similarity

weight. Consequently, the similarity between two sub-trees is measured

based on two non-binary vectors of weights and it is computed as:

dT(R, R')=

∑∑

∑

i

i

i

i

i

i

i

ww

ww

2'2
.

. '

,

where wi and wi' are the path similarity weights of pi and qi in the

corresponding sub-trees R and R', and the value of dT(R, R')∈ [0, 1]

represents that the similarity of two sub-trees changes from a dissimilar to

similar status. By defining dP(pi, qj) as the path similarity of two paths pi

and qj, the weight wi of path pi in R to R' is calculated as the maximum of

all dP(pi ,qj), where 1≤ j ≤n. The term of path similarity dP(pi ,qj) is

described in the next subsection.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

83

 List 4.1 represents the subtree_Similarity algorithm to calculate the

similarity between two sub-trees. The algorithm first calculates the weight

wi of each path pi in R to R' for all 1≤ i ≤m (line 2-3). Then the weight w'j

of each path qj in R' to R is calculated for all 1≤ j ≤n (line 5- 6). This

means two sets of weights (w1,..,wm) and (w1,..,wn) are computed. If the

cardinalities of the two sets are not equal, then the weights of 0 are added

to the smaller set to ensure the two sets have the same cardinality (line 7-

List 4.1. The subtree_Similarity algorithm

Algorithm: subtree_Similarity

Input: Two sub-trees R and R' contain paths (p1,…, pm) and (q1,..,qn) respectively.

Output: dT(R, R')

Process:

1. //calculating the weight vector of R

2. For each path pi in R do

3. wi ← max j=1..n {dP(pi, qj)}

4. //calculating the weight vector of R'

5. For each path qj in R' do

6. w'j ← max i=1..m {dP(pi, qj)}

7. If m≠ n then

8. If m< n then

9. For k= (m +1) to n do wk ← 0;

10. else if m> n then

11. For k= (n +1) to m do w'k ← 0;

12. t← max(m, n);

13. S1← '

1

i

t

i

i ww∑
=

;

14. S2←∑
=

t

i

iw
1

2
; S3← ∑

=

t

i

iw
1

2'

15. dT← S1/(S2
1/2

 . S3
1/2

);

16. Return(dT).

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

84

11). The similarity of R and R' is calculated based on these two sets of

weights using a Cosine similarity formula (line 13-15). In the following

subsection, we describe how to measure the similarity between paths.

4.3.2 Path Similarity

Path similarity is used to measure the similarity of two paths, where each

path is considered a set of nodes. Consequently, the similarity of two paths

is evaluated based on the information from two sets of nodes, which

includes common-nodes, gap and length difference. The common-nodes

refer to a set of nodes shared by two paths. The number of common-nodes

indicates the level of relevance between two paths. The gap denotes that

pairs of adjacent nodes in one path appear in the other path in a relative

order but there exist a number of intermediate nodes between two nodes of

each pair. The numbers of gaps and the lengths of gaps have a significant

impact on the similarity between two paths. A longer gap length or a larger

number of gaps will result in less similarity between two paths.

 Finally, the length difference indicates the difference in the number

of nodes in two paths, which in turn, indicates the level of dissimilarity

between two paths. We also take into account the node's positions in

measuring the similarity between paths. Nodes located at different

positions in a path have different influence-scopes to that path. We suppose

that a node in a higher level is more important in terms of semantic

meaning and hence, it is assigned more weight than a node in a lower level.

The weight of a node v having the depth of d is calculated as µ(v)= (λ)
d
,

where λ is a coefficient factor and 0<λ <=1. The value of λ depends on the

length of paths.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

85

 List 4.2 represents the pathSimilarity algorithm to calculate the

similarity of two paths p= (v1,..,vm) and q= (w1,..,wn), where v1 and w1

have the same node-label l, and m and n are the numbers of nodes in p and

q, respectively. The similarity of two paths p and q, dP(p, q), is calculated

from three metrics, common-node weight, average-gap weight and length

difference reflecting the above factors: common-nodes, gap and length

difference (line 1). The common-node weight, fc, is calculated as the weight

of nodes with the same node-labels from two paths. The set of nodes with

the same node-label between p and q, called common node-labels, is the

intersection of two node-label sets of p and q (line 3). Assuming that there

exist k labels in common, the common-node weight can be calculated as:

fc(p,q)=

∑∑

∑

==

=

k

i

i

k

i

i

i

k

i

i

wv

wv

1

2

1

2

1

)(.)(

)(.)(

µµ

µµ

,

where µ(vi) and µ(wi) are the weights of two nodes vi and wi in p and q,

respectively. vi and wi have the same node-label. The coefficient factor λ =

min(|p|,|q|)/max(|p|,|q|) (line 3). The average-gap weight, fa, is calculated as

the average weight of gaps in two paths. The calculation of fa comprises

three steps. First, the algorithm finds the longest gap and the number of

gaps between two paths (line 7-9). Second, the gap's weights from one path

against the other path and vice versa are calculated. Each gap's weight is

calculated based on the total weights of nodes and the number of nodes in

the longest gap in that path. The gap's weight of p against q is calculated

by:

gw(p, q) =
||

)(
1

g

v
g

i

i∑
=

µ
,

where g is the length of the longest gap of p and q, and the coefficient

factor λ = |g|/|q|. The same process is applied to calculate the gap's weight

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

86

 Algorithm: path_Similarity

Input: two paths p= (v1,..,vm) and q= (w1,..wn)

Output: dP(p, q)

Function dP(p, q)

1. dP← fc(p, q) - (fa(p, q) + fl(p,q))/max(|p|, |q|)

Return (dP).

Function fc (p, q) //calculate common node weights of pi and qj

2.
pl

←{lab(v1),..,lab(vm) };
ql ←{ lab(w1),..,lab(wn)};

3. comlab ←
qp ll ∩ ; k ← |comlab|;

4. S1 ←)().(
1

ii

k

i

wv µµ∑
=

; S2 ←
2

1

)(i

k

i

v∑
=

µ ; S3 ←
2

1

)(i

k

i

w∑
=

µ

5. S ← S1/(S2
1/2

 . S3
1/2

);

6. Return S;

Function fa(p, q) //calculate average gap weight of pi and qj

7. FindGap(p , q, gap1); FindGap(q , p, gap2);

8. noG1←|gap1|; noG2← |gap2|;

9. gap1max← max i=1..noG1{gap1i}; gap2max← max i=1..noG2{gap2i}

10. gw1 ← ∑
=

|1|

1

max

)(
gap

j

jvµ /|gap1max|; gw2 ←)(
|2|

1

max

i

gap

i

v∑
=

µ /|gap2max|;

11. S← (gw1. noG1 + gw2. noG2)/(noG1 + noG2);

12. Return S;

Function FindGap(p, q, gap)

13. For i=1 to m do{

14. If found(vi , q) and found(vi+1 , q) then

15. If (|pos(vi+1, q)- pos(vi , q)| >1) then

16. gapi←subseq(vi , vi+1 , q);

17. Else

18. If (|pos(vi+1, q)- pos(vi , q)| ==1) then gapi←Null;

19. Else gapi← pj;

20. Return gap;

Function fl (p, q)

21. ld← |m- n| /max(m, n);

Return (ld);

List 4.2. The path_Similarity algorithm

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

87

of q against p (line 10). Finally, the average of gap's weights is calculated

based on two calculated gap's weights and the number of gaps in two paths

(line 11). The length difference, fl, is the difference in the number of nodes

between two paths (line 21).

 For example, given two paths p= "Booking/Departure", q=

"Booking/Trip/Departure", we calculate the similarity score of p and q

as follows.

• Calculating the common node weight

 pl = {Booking, Departure}

 ql = {Booking, Trip, Departure}

comLab(p, q) = qp
ll ∩ = {Booking, Departure}

The depths of "Booking" and "Departure" in p and q are {1, 2} and

{1, 3}

 The weights in p are{2/3, (2/3)
2
} and in q are {2/3, (2/3)

3
}.

fc (p, q)= (2/3. 2/3+ (2/3)
2
.(2/3)

3
)/ (((2/3)

2
+ (2/3)

4
)

1/2
. ((2/3)

2
+

(2/3)
6
)

1/2
)= 0.99

• Calculating the average gap weight

Calculating gw(p, q):

 noG1 = 1; gap1max= "Trip"; | gap1max | =1;

 Assuming that the depth("Trip") is 2

 gw(p, q)= 0.11

Calculating gw(q, p)

noG2 =2; gap2max="Booking/Departure"; | gap2max | =2;

Assume that depth("Booking")=1 and depth("Departure")= 2.

gw(q, p)= 1

The average gap weight fa(q, p)= (1/9 * 1+ 1* 2) /3 = 0.7

• Calculating the length difference: fl(p, q)= 1/3 =0.33

• The similarity score of p and q: dP(p, q)= 0.99-(0.7+0.33)/3= 0.64

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

88

 If the similarity score is larger than a given similarity threshold, then

we conclude that the two paths are similar; otherwise, the two paths are not

similar. A similarity score equal to 1 indicates that the two paths are the

same.

 Based on the above definitions, we introduce a new type of

constraint, named XML Conditional Structural Functional Dependency

(XCSD) in the next section.

4.4 XML Conditional Structural Functional Dependency

XML conditional structural functional dependency (XCSD) specifications

are defined on the basis of the XFDs used by Fan et al. [42] as in the XCFD

definition. The main difference between XCSDs and XCFDs is that XCSD

specifications are represented as general forms of constraints composed of

a set of dependencies and conditions, which can be used to express both

XFDs and XCFDs. In particular, our proposed XCSD specification

includes three parts: a functional dependency, a similarity threshold and a

Boolean expression.

 The function dependency in XCSDs is basically defined as in a

normal XFD. The only difference is that instead of representing the

relationship between nodes as in XFDs, the functional dependency in an

XCSD represents the relationship between groups of nodes. Each group

includes nodes with the same label and similar root path. The values of

nodes in a certain group are identified by the values of nodes from another

group. The similarity threshold in the XCSD is used to set a limit for

similar comparisons between paths, instead of equal comparisons as

performed on an XFD. The Boolean expression specifies portions of data

on which the functional dependency holds.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

89

Definition 4.2. (XML conditional structural functional dependency)

Given an XML data tree T= (V, E, F, root), an XML conditional structural

functional dependency (XCSD) holding on T is defined as:

 φ = Pl: [α] [C], (X � Y), where

• α is a similarity threshold indicating that each path pi in φ can be

replaced by a similar path pj, with the similarity between pi and pj

being greater than or equal to α, α ∈(0, 1]. The greater value of α, the

more similarity between the replaced path pj and the original path pi

in φ is required. The default value of α is 1, implying that the

replaced paths have to be exactly equivalent to the original path in φ .

In such cases, φ becomes an XCFD [85].

• C is a condition which is restrictive for the functional dependency Pl:

X � Y holding on a subset of T. The condition C has the form: C=

ex1θ ex2θ …θ exn, where exi is an atomic Boolean expression

associated to particular elements. “θ ” is a logical operator either AND

(^) or OR (∨). C is optional; if C is empty then φ holds for the whole

document.

• X and Y are groups of nodes under sub-trees rooted at node-label l and

nodes of each group have similar root paths. X and Y are exclusive.

• X� Y indicates a relationship between nodes in X and Y, such that

any two sub-trees sharing the same values for X also share the same

values for Y, that is, the values of nodes in X uniquely identify the

value of node in Y.

 For example, there exist two different XFDs relating to Tax. The

first XFD is, PBooking:./Departure, ./Arrival� ./Tax holding for

Bookings having Carrier of “Qantas” and the second XFD is, PBooking:(.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

90

/Fair � ./Tax) holding for Bookings having the Carrier of “Tiger

Airways”. If each XFD holds on groups of similar Bookings with a

similarity threshold of 0.5, then we have two corresponding XCSDs.

 1φ = PBooking: (0.5) (./Carrier="Qantas"), (./Departure, ./Arrival �

./Tax)

2φ = PBooking: (0.5) (./Carrier="Tiger Airways"), (. /Fair � ./Tax).

 Either 1φ or 2φ allow identifying the Tax in different Bookings with

a similarity threshold of 0.5. 1φ is only true under the condition of Carrier

= “Qantas" and 2φ is true under the condition of Carrier="Tiger Airways".

Such XCSDs are constraints capturing on sources which have structural

and semantic inconsistencies.

Satisfaction of an XCSD: The consistency of an XML data tree with

respect to a set of XCSDs is verified by checking for the satisfaction of the

data to every XCSD. A data tree T= (V, E, F, root) is said to satisfy an

XCSD φ = Pl: [α] [C], (X � Y) denoted as T|= φ if any two sub-trees R

and R' rooted at vi and vj in T having dt(R, R') ≥ α and if {vi[X]}=v {vj[X]}

then {vi[Y]}=v {vj[Y]} under the condition C, where vi and vj have the same

root node-label l.

 For example, assume that φ = PBooking: (0.5) (./Carrier="Qantas"),

(./Departure, ./Arrival � ./Tax) and the similarity between two sub-

trees rooted at nodes (2, 1) and (12, 1) is 0.64, which is greater than the

given similar threshold (α = 0.5). We are then able to derive that T|=φ .

 In the next section, we will present our proposed approach, SCAD,

for discovering XCSDs from a given XML source.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

91

4.5 SCAD approach: Structured Content-Aware Discovery

approach to discover XCSDs

Given an XML data tree T= (V, E, F, root), SCAD intends to discover a set

of minimal XCSDs in the form φ = Pl: [α][C],(X � Y), where each XCSD

is minimal and contains only a single element in the consequence Y. Fig 4.2

represents an overview of the SCAD algorithm, consisting of two phases.

First, a process called data summarization analyzes the data structure to

construct a data summary containing only representative data for the

discovery process. This is to resolve structural inconsistencies. Second, the

semantics hidden in the data are explored by a process called Discovery to

discover XCSDs. This is to deal with semantic inconsistencies.

Data summarization

XML instance T

Discovery

Candidate identification

Search lattice generation

Validation

Partition
generation

Satisfied
X C SD

checking

Discovered XCSDs

Fig 4.2. An overview of the SCAD approach

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

92

4.5.1 Data summarization: resolving structural inconsistencies

Data summarization is an algorithm constructing a data summary by

compressing an XML data tree into a compact form to reduce structural

diversity. The path similarity measurement is employed to identify similar

paths which can be reduced from a data source. Principally, the algorithm

traverses through the data tree following a depth first preorder and parses

its structures and content to create a data summary. The summarized data

are represented as a list of node-labels, values and node-ids where

corresponding nodes take place. The summarized data only contains text-

paths, each of which is ended by a node containing a value (as described in

Section 3). For each node vi under a sub-tree rooted at node-label l, the id

and values of nodes are stored into the list LV[]|l. To reduce the structural

diversity, all similar root-paths of nodes with the same node-label are

stored exactly once by using an equivalent path. That is, if a node vi can be

reached from roots of two different sub-trees by following two similar

paths p and q, then only the path with a smaller length between p and q is

stored in LV. Original paths p and q are stored in a list called OP[]|l. The

data in LV are used for the discovery process. The data stored in the OP are

used for tracking original paths. We use the path similarity measurement

technique, as described in section 4.2, to calculate the similarity between

paths.

 In particular, the data summarization algorithm in List 4.3 works as

follows. For each node vi, if the root path of vi is a text path (line 4), then

the existing label li of node vi in the OP is checked. If li does not exist in

OP, then a new element in OP with identifier li is generated to store the

root-path of vi (line 8); and a new element in the LV with identifier li is

generated to store the value and the id of node vi (line 9). If li already exists

in the OP at t, and the root paths of vi are not equal but are similar to any

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

93

paths stored at OP[li] (line 12), then we add the root-path of vi to OP[li]

(line 14) and add its id and value to LV[li] (line 15). If there exists an

element in OP which is equal to li, then only its id and value are added to

LV[li] (line 18).

 For example, if we consider the sub-tree rooted at Booking (Fig

4.1), nodes with the label Departure and the path "Booking/Departure"

List 4. 3. The data_Summarization algorithm

Algorithm: data_Summarization

Input: an XML data tree T=(V, E, F, root)

Output: The summarized document D=(LV, OP) for T

Process:

1. Create empty lists LV[]←{Ø }; OP[]←{Ø };

2. Traversing the XML data tree in pre-order

3. For each node vi do

4. If not Empty(text(vi)) then

5. pi ← root_context_path(vi);

6. li ← lab(vi);

7. If not exist OP[li] then

8. Generate_New(OP[li]); adding pi to OP[li];

9. Generate_New(LV[li]); adding id_val(vi) to LV[li];

10. else

11. For each element t in OP[li] do

12. If (t<> pi) then

13. If (PathSim(t, pi)>= α) then

14. adding pi to OP[li];

15. adding id_val(vi) to LV[li];

16. exitFor;

17. else

18. adding id_val(vi) to LV[li];

19. Return D;

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

94

occur at node (5,2) with a value of "MEL". We first assign

LV[Departure]|Booking={(5,2)MEL}, OP[Departure]|Booking= {"Booking/

Departure"}. The label Departure also appears at nodes (16, 3)MEL,

(26, 3)MEL and (35,3)6:00am. The root path of node (16, 3) is

"Booking/Trip/Departure" which is different to the stored path

"Booking/Departure" in the OP list, hence we calculate the similarity

between p1=“Booking/Departure” and p2=“Booking/Trip/Departure”,

dP(p1, p2)= 0.64.

Assuming a threshold for similarity α = 0.5, then two paths p1 and p2

are similar. We continue to add the id and the value of node (16, 3) to the

list LV: LV[Departure]|Booking= {(5, 2)MEL), (16, 3)MEL)}. Original root

path p2 is added to OP:

OP[Departure]|Booking={"Booking/Departure","Booking/Trip/

Departure"}.

Performing the same process for nodes (26,3) and (35,3) then we have

LV[Departure]|Booking= {(5, 2)MEL, (16, 3)MEL, (26,3)MEL, (35,3)

6:00am}.

 We use the summarized data as input for the discovery phase. The

next section presents the discovery process.

4.5.2 XCSD Discovery: resolving semantic inconsistencies

The XCSD discovery algorithm works in the same manner as XDiscover.

The main difference is that instead of discovering constraints from the

given data tree as in XDiscover, the XCSD discovery algorithm tries to

discover non-trivial XCSDs from the data summarization. This is to avoid

returning redundant constraints. The discovery of XCSDs comprises three

main stages which are performed on the summarized data. The first stage,

named Search lattice generation, is to generate a search lattice containing

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

95

all possible combinations of elements in the summarized data. The second

stage is Candidate identification which is used to identify possible

candidates of XCSDs. The identified candidates are then validated in the

last stage, called Validation, to discover satisfied XCSDs. The process of

each stage is the same as that in XDiscover.

 We adopted five pruning rules used in XDiscover to remove

redundant and trivial candidates from the search lattice to improve the

performance of SCAD. The first three rules are used to skip the search for

XCSDs that are logically implied by the already found XCSDs. The last

two rules are used to prune redundant and trivial XCSD candidates.

Pruning rule 4.1. Pruning supersets of nodes associated with the

antecedent of already discovered XCSDs. If φ = Pl: [α][C], (X � Y) holds,

then candidate φ ’= Pl: [α][C], (X'� Y) can be deleted where X' is a

superset of X.

Pruning rule 4.2. Pruning subsets of the condition associated with already

discovered XCSDs.

If φ = Pl: [α][C],(X � Y) holds on a sub-tree specified by a class wi, then

candidate φ ’= Pl: [α][C'],(X � Y) related to wi is ignored, where C’ ⊂ C .

Pruning rule 4.3. Pruning equivalent sets associated with discovered

XCSDs.

If φ = Pl:[α] (X= “a”)�(Y= “b”) corresponding to edge(W, Z) holds on

data tree T, and X↔Y then Y can be deleted.

Pruning rule 4.4. Pruning XCSDs those are potentially redundant.

If for any A∈X, Y ∉ G(X\{A})∪ G(C) then skip checking the candidate

φ = Pl: [α][C], (X� Y).

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

96

Pruning rule 4.5. Pruning XCSD candidates considered to be trivial.

Given a cardinality thresholdτ , τ >=1, we do not consider class wi

containing less than τ elements i.e. |wi|<τ . XCSDs associated with such

classes are not interesting. In other words, we only discover XCSDs

holding for at least τ sub-trees.

 According to the above theoretical foundation and ideas, we

describe the detail of the SCAD algorithm in the following section.

4.5.3 SCAD algorithm

Given a data tree T, we are interested in exploring all minimal XCSDs

existing in T. We adopt the Apriori-Gen algorithm [4] to generate a search

lattice containing all possible combinations of node-labels stored in the

summarized data LV. For W= X∪C & Z=W∪{Y}, where W and Z are

nodes in the search lattice, to find all minimal XCSDs of the form φ = Pl:

[α][C],(X � Y), we search through the search lattice level by level from

nodes of single elements to nodes containing larger sets of elements. For a

node Z, SCAD tests whether a dependency of the form Z\{Y}�{Y} holds

under a specific condition C, where Y is a node of single element.

Applying a small to large direction guarantees that only non-

redundant XCSDs are considered. We apply pruning rules 1 and 2 to prune

supersets of antecedent and the supersets of the condition associated with

already discovered XCSDs to guarantee that each discovered XCSD is

minimal. That is, we do not consider Y in a candidate with antecedent X' is

a superset of X. For every class wi of ΠW that satisfies a minimal XCSD φ =

Pl: [α][C],(X � Y), we do not consider wi in candidate XCSDs φ ’= Pl:

[α][C'],(X � Y) where C’ ⊂ C. wi might be considered in the next

candidates with conditions not including C.

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

97

 We adopted the “compute_dependecies” algorithm in TANE [53] to

test for a minimal XCSD. For a potential candidate Z\{Y}�{Y}, we need to

know whether Z' \ {Y}�{Y} holds for some proper subset Z' of Z. This

information is stored in the set R(Z') of the right-hand side candidates of Z'.

If Y in R(Z) for a given set Z, then Y has not been found to depend on any

proper subset of Z. It suffices to find minimal XCSDs by testing that

Z\{Y}�{Y} holds under a condition C, where Y ∈ Z and Y ∈ R(Z\{A}) for

all A ∈ Z.

 List 4.4 presents our proposed SCAD algorithm to discover XCSDs

from an XML data tree T. The summarized data D is extracted from T (line

1). The algorithm traverses the search lattice using the breath-first search

manner combining the pruning rules described in Section 6.3.2. The search

Algorithm: SCAD

Input: An XML data tree T, a similar threshold α

Output: a set of XCSDs

12. LV←dataSummarization(T); //List 4.3

13. Init G← { Ø }; d← 1;

14. NLd←nodeLabel(LV);

15. GPd ← generatePartition(d);

16. While |NLd |≠ { Ø } do

17. increment d;

18. NLd← generateNodeLabel(d);

19. GPd ← generatePartition(d);

20. G ←G∪ findXCSD(d);

21. prune(d);

22. Return (G);

List 4.4. The SCAD Algorithm

4. STUCTURED CONTENT-AWARE DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

98

process starts from level 1 (d=1). Node-labels at level d=1 are a set of node

labels from LV which are stored in NLd in the form NLd= {l1, l2,…, ln} (line

3). Node-labels at level d> 1 are generated by generateNodeLabel in List

4.5 (line 7). Each node label in level d is calculated from node-labels in

NLd-1 in the form lilj , where li ≠lj , li, lj ∈NLd-1. Each node-label might be

associated with some candidate XCSDs. The generatePartition (List 5)

partitions nodes in level d into partitions based on data values. Each

candidate XCSDs in the form ci,wi � zj is checked for a satisfied XCSD by

the sub-function findXCSD in List 4.5 (line 9).

 The findXCSD function finds candidate XCSDs at level d. A

checking process (following the ideas described in 4.2.3) is performed to

check for a satisfied XCSD. Pruning rules are employed to prune

redundant XCSDs and eliminate redundant nodes from the search lattice

for generating candidate XCSDs in the next level (line 10). The searching

process is repeated until there are no more nodes in NLd to be considered

(line 5). Any XCSDs found from the findXCSD function are returned to

SCAD. The output of SCAD is a set of XCSDs.

99

Algorithm: generateNodeLabel

Input: level d

Output: a list of node NLd

1 NLd ← {Ø}; PB← prefixBlock(NLd);

2 For each prefix block P in PB do

3 For each {X1, X2} in P do

4 If (X1 ≠ X2) then X← X1∪ X2

5 If for all A in X, X \{A} ∈NLd-1 then NLd ← NLd ∪ {X} ;

6 Return NLd

Algorithm: generatePartition

Input: level d

Output: a list of generated partitions GPd at level d

1 For each node W of NLd at level d do

2 If d =1 then ΠW ← classified(LV, W)

3 Else

4 X← prefixBlock(W); Y← W \ X; ΠW ← ΠX∩ ΠY; GPd ← GPd ∪ ΠW;

5 Return GPd

Algorithm: findXCSD
Input: d

Output: discovered XCSDs

1. G← {Ø};

2. For each node Z ∈ NLd do

3. R(X) ← XA∈∩ R(X \ {A}); R(C) ← ∩ A ∈C R(C \ {A});

4. For each node label W ∈ NLd-1 do

5. For each node label Z ∈ NLd do

6. If ((Z \ W)= {Y}) then

7. For each class wi ∈ ΠW do

8. For each class zj ∈ ΠZ do

9. If wi = zj and (|wi| >τ) then ΩW ← subsumed wi;

10. If ΩW <> {Ø} then

11. While ΩW do

12. If (C, X �Y) is valid then G← G ∪ (C, X �Y)

13. Else

14. For each ci in C do

15. If ci contains values only from ΩW then G← G ∪ (C, X �Y);

16. ΩW← ΩW \ (wi ∈ (C, X �Y);

17. R(X) ← R(X)\ {Y}; R(C) ← R(C)\ {wi};

18. If (X↔ Y) then R(Y) ← {Ø}

19. Return (G).

Algorithm: prune

Input: d

1. For each node W∈ NLd do

2. If R(W)= Ø then delete W from NLd

List 4.5. Utility functions of SCAD

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

100

In the following section, we briefly analyze the complexity of our

approach in the worst case and provide further discussion on the practical

analysis.

4.6 Complexity analysis

The complexities of SCAD mostly depend on the size of the summarized

data, which is determined by the number of elements and the degree of

similarity amongst the elements in the data source. The time required

varies from different datasets. The worst case occurs when the data

source does not contain any similar elements or SCAD does not find any

constraints. In such a case, the size of the summarized data |LV| is n,

where n is the number of nodes in the original data tree T. Without

considering the handling of path similarity, the function dataSumarization

makes n
2
 random accesses to the dataset.

 Let smax be the size of the largest level and S be the sum of the

sizes of all levels in the search lattice. In the worst case, S=2
|LV|

and smax=

2
|LV|

/ || LV . During the whole computation, total S partitions are formed,

procedure generateNodeLabel makes S|LV| random accesses, the

generatePartition makes S random accesses, procedure findXCSD makes

S|LV| random accesses and procedure prune makes S random accesses. In

summary, SCAD has time complexity of O(n
2
 +2 S(|LV|+1)). SCAD

needs to maintain at most two levels at a time. Hence, the space

complexity is bounded by O(2smax).

 In the worst case analysis, SCAD has exponential time complexity

that cannot handle a large number of elements. However, in practice, the

size of the summarized data |LV| can be significantly smaller than n as in

the worst case due to the similar features in XML data. The more similar

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

101

elements are in the original data, the smaller the size of LV is. In addition,

by employing the pruning strategies, the size of the largest level smax and

the sum of the sizes S can be reduced significantly because the redundant

nodes are eliminated from the search lattice.

 Suppose that a node Y is eliminated from the search lattice at level

d, 1<d <n, then all descendent nodes of Y from level d+1 will be deleted

from the search lattice by the pruning rules. The number of descendent

nodes of Y is 2
|LV|-d

- 1. This means the complexity of SCAD reduces by

2
|LV|-d

- 1 for every node deleted from the search lattice. The more nodes

which are removed from the search lattice, the less time complexity of

SCAD. Moreover, in order to avoid discovering trivial XCSDs, the

minimum value of the cardinality threshold is often set to at least 2. Thus,

the number of checked candidates is reduced considerably. Therefore, the

time and space complexity of SCAD are significantly smaller than O(n
2

+2 S(|LV|+1)) - 2
n-d

 - 1) and O(2smax), respectively.

 In the following section, we present a summary of the experiments

and comparisons between our approach and related approaches.

4.7 Experimental analysis

Datasets: Synthetic data have been used in our test cases to avoid the

noise in real data. The results from synthetic data, in some ways, show

the real potential of the approach. Our synthetic dataset is an extension of

the "Flight Bookings" data shown in Fig 4.1. The dataset covers common

features in XML data, including structural diversity and inconsistent data

rules which are needed to verify the existence of constraints holding

conditionally on similar objects in XML data. The original dataset

contained 150 Bookings (FB1). The DirtyXMLGenerator [72] made

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

102

available by Sven Puhlmann was used to generate synthetic datasets. We

specified that the percentage of duplicates of an object is 100% to

generate a dataset containing similar Bookings. From 150 duplicate

Bookings, we specified 20% of data was missing from the original

objects so that the dataset contained similar objects with missing data

(FB2).

Parameters: we set the value of the similarity threshold α from 0.25 to 1

with every step of 0.25. The value of cardinality threshold τ determining

a minimum number of classes associated with interesting XCSDs was set

to a default value of 2.

System: We ran experiments on a PC with an Intel i5, 3.2GHz CPU and

8GB RAM. The implementation was in Java and data was stored in

MySQL.

 We first ran experiments to analyze the influence of the similarity

threshold on the performance of SCAD. This is to evaluate the

effectiveness of our approach in dealing with structural inconsistencies.

Then, we ran experiments to make comparisons between SCAD and

Yu08 [102] on the numbers and the semantics of discovered constraints.

Our purpose is to evaluate the correctness of SCAD in discovering

constraints.

Effectiveness in structural inconsistency: we ran experiments on FB1

and FB2 to find the number of checked candidates and the processing

times to evaluate the effectiveness of SCAD in dealing with structural

diversity. The results are in Fig 4.3 and Fig 4.4. We first analyze the

influence of the similarity threshold on the performance of SCAD. Then,

we examine the impact of the number of similar objects on the

performance of SCAD. The results show that when the similarity

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

103

threshold increases from 0.25 to 1 in either FB1 or FB2, the number of

checked candidates (Fig 4.3) which lead to the time consumption (Fig

4.4) increase significantly.

0

2

4

6

8

10

12

14

16

0.25 0.5 0.75 1

Similarity threshold

T
im

e
(s
)

FB1

FB2

0

20

40

60

80

100

120

140

0.25 0.5 0.75 1

Similarity threshold

#
C
a
n
d
id
a
te
s
 c
h
e
c
k
e
d

FB1

FB2

Fig 4.4. Time vs similarity threshold

Fig 4.3. Numbers of candidates checked vs similarity threshold

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

104

The number of discovered constraints at α of 1 is more than 2.5 times of

that at α of 0.25 in either FB1 or FB2. This is because the number of

similar elements reduces. The same situation exists for the consumption

of time. The processing times increase from 2 to 2.5 times for FB1 and

FB2, respectively when α increase from 0.25 to 1.

0

5

10

15

20

25

30

35

0.25 0.5 0.75 1

Similarity threshold

#
 D
is
c
o
v
e
re
d
 c
o
n
s
tr
a
in
ts

Scad

Yu08

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Similar threshhold

P
o
N

Fig 4.5. SCAD vs Yu08

Fig 4.6. Range of similarity thresholds

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

105

 Moreover, in cases where the similarity threshold α is set to 0.25,

while the size of FB2 is as twice that of FB1, the number of checked

candidates in two datasets are not much different. When the similarity

threshold is set to a higher value, the gap between the numbers of

checked candidates between in FB1 and FB2 is considerable. For

example, the number of checked candidates in FB2 is more than 1.5 times

that in FB1 at α of 1. The same circumstances also happen for the time

consumption. The processing times of FB1 and FB2 are nearly the same

at α of 0.25; they are significantly different at α of 1 which is nearly 1.5

times. This is because when the similarity threshold increases, the

number of elements considered similar in either FB2 or FB1 reduces.

This results in the size of summarized data for discovering XCSDs of

FB2 being significant larger than that of FB1. Overall, SCAD works

more effectively for datasets which contain more similar elements. This

means SCAD deals effectively on data sources containing structural

inconsistencies.

 According to our analysis in Section 4.6, the worst-case time

complexity of SCAD is exponential with respect to the number of

elements. However, the results from Fig 4.4 show that the processing

time is essentially determined by the degree of similarity amongst

elements in the data source (i.e. α). SCAD time is proportional to the

number of objects in the data summarization that is nearly linear. SCAD

saves a significant fraction of the computation compared to the worst-

case analysis.

Comparative Evaluation: to the best of our knowledge, there are no

similar techniques for discovering constraints, which are equivalent to

XCSDs. There is only one algorithm which is close to our work, denoted

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

106

Yu08, introduced by Yu et al. [102], for discovering XFDs. Such XFDs

are considered as XCSDs containing only variables. Thus, we choose

Yu08 to draw comparisons with SCAD. We ran experiments on dataset

FB1. The value of the similarity threshold α was set from 0.25 to 1 for

every step of 0.25. The results in Fig 4.5 show that the number of

constraints returned by SCAD is always larger than that of Yu08. This is

because SCAD considers conditional constraints holding on a subset of

FB1. The number of constraints returned by SCAD also increases

significantly when the similarity threshold α increases, whereas the

number of constraints discovered Yu08 are stable, because Yu08 does not

consider structural similarity between elements as SCAD does.

 In cases where the similarity is set to a low value, such as α of

0.25, the number of constraints discovered by SCAD and Yu08 is not

much different. The gap between these numbers becomes larger in cases

where the similarity threshold is set to a higher value. For example, the

number of constraints discovered by SCAD is about 3.5 times larger than

that of Yu08 in cases when the similarity threshold is set to 0.5 and about

4 times larger at α of 1.

 Since the structural similarity between elements is not considered,

constraints returned by Yu08 are redundant.

Yu08 returns redundant constraints like

 PBooking: ./Departure, ./Arrival → ./Tax ,

 PBooking: ./Trip/Departure, ./Trip/Arrival → ./Tax

while SCAD discovers more specific and accurate dependencies

PBooking:(0.5)(./Type="Airline"^./Carrier="Qantas"

^./Departure="MEL"^./Arrival = "BNE" � ./Tax = "65").

 In general, the set of constraints discovered by SCAD is much

larger than Yu08. Constraints returned by SCAD are more specific and

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

107

accurate than constraints returned by Yu08. A disadvantage of SCAD is

that SCAD constructs a data summary containing only representative data

for the discovery process to resolve structural inconsistencies. This

allows SCAD to work effectively for datasets containing similar

elements; however, if there are no similar elements in a data source, the

process of data summary is still performed which affects the processing

time.

4.8 Case studies

We use two case studies to further demonstrate the feasibility of our

proposed approach, SCAD, in discovering anomalies from a given XML

data. The first case illustrates the effectiveness of SCAD in detecting

dependencies containing only constants by binding specific values to

elements in XFD specification. The second case aims to demonstrate the

capability of SCAD in discovering constraints containing both constants

and variables. Our purpose is to point out that SCAD can discover

situations of dependencies that the XFD discovery approach cannot

detect.

 In our approach, the similarity threshold α and cardinality

threshold τ are dataset dependent. The similarity threshold α determines

the similarity level of paths for grouping. The cardinality threshold τ

determines the size of classes for checking a candidate XCSD. The

settings of these parameters have a great impact on the results of SCAD.

If α is too small, then a large number of paths considered to be similar for

grouping is returned, which might lead to the issue of important data

missing in the summarized data. Consequently, the advantages reduce at

a lower similarity threshold, since SCAD might discard some interesting

XCSDs. In contrast, if α is too large, the advantages also decrease since

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

108

the number of paths identified as similar for grouping is small, leading to

the fact that the summarized data might contain duplicate data. This

causes the possibility that the set of returned XCSDs might contain

redundant and trivial data rules. The execution time also increases.

Therefore, the selection of α should be based on a percentage of nodes in

the summarized data compared with that in the data source (PoN) so that

the summarized data is small enough to take full advantage of the

discovery process.

 The similarity threshold α is data dependent so its value should be

chosen by running experiments on sample datasets. The value of α should

be selected from a range of values where such PoNs are stable. This is to

ensure that the discovered XCSDs are non-trivial and the execution time

is acceptable. In our experiments, the original FB1 dataset is used to find

the similarity threshold. We ran the data summarization algorithm (List

4.3) to find the summarized data and calculated the PoN for every value

of α, where α varied from 0.25 to 0.75 with every step being 0.05. The

results in Figure 6 show that the PoN is stable in the range of similarity

thresholds from 0.45 to 0.55. Therefore, we set the value of the similarity

threshold to 0.5 as the average of similar thresholds is in such a range for

the following case studies.

 The cardinality threshold τ determines classes associated with

interesting XCSDs. τ affects the results of SCAD due to changes in the

number of classes which need to be checked. If the value of τ is too large,

then only a small number of equivalent classes is satisfied, which might

result in a loss of interesting XCSDs. Therefore, in our case studies, we

fix the value of τ at 2, which means we only consider classes having

cardinality equal or greater than 2. We do not consider constraints

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

109

holding for only one group of similar object, as such constraints which

are considered trivial.

Case 4.1. XML Conditional Structural Dependencies contain only

constants.

We first construct the data summary for the Booking data tree in Fig1 by

following the algorithms in List 4.3. A part of the summarized data is as

follows:

LV[Type]|Booking={(3, 2) Airline, (13, 2) Airline, (23, 2) Airline, (33,

2) Coach}

LV[Carrier]|Booking= {(4,2) Qantas, (14,2) Qantas, (24,2)Tiger

Airways, ""}

LV[Departure]| Booking= {(5, 2)MEL, (16, 3)MEL, (26,3)MEL,

(35,3) 6:00am}

LV[Arrival]|Booking= {(6,2) SYD, (17,3) SYD, (27,3) SYD, (36,3)

6:00pm}

LV[Tax]|Booking={(8,2) 40, (19, 2) 40, (29, 2) 50, (38, 2) 20}

 Then, the search lattice is generated. Assume that we need to find

the XCSDs associated with edge(W, Z)= edge(Type-Carrier-

Departure-Arrival, Type-Carrier-Departure-Arrival-Tax) with

respect to the sub-tree rooted at Booking.

Partitions of Type-Carrier-Departure-Arrival and Type-Carrier-

Departure-Arrival-Tax are generated as:

• Partitioning data into classes based on the data value

ΠType|Booking= {{(3,2),(13,2),(23,2)}Airline, {33,2}Coach}

ΠCarrier|Booking= {{(4,2), (14,2)}Qantas, {(24, 2)}Tiger Airways,

{""}}

ΠDeparture|Booking= {{(5,2),(16,3),(26,3)}MEL,{35,3}6:00am}

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

110

ΠArrival|Booking={{(6,2),(17,3),(27,3)}SYD,{(36,3)}6:00pm}

ΠTax|Booking= {{(8,2), (19,2)}40, {(29,2)}50, {(38,2)}20}

• Converting these classes into the sub-tree rooted at Booking to find

their refinements

Π'Type|Booking= {{(2, 1), (12, 1), (22, 1)}, {32, 1}}

Π'Carrier|Booking= {{(2, 1), (12, 1)}, {(22, 1)}, {""}}

Π'Departure| Booking= {{(2, 1), (12, 1)}, {22, 1}, {32, 1}}

Π'Arrival|Booking= {{(2, 1), (12, 1)}, {22, 1}, {32, 1}}

Π'Tax|Booking= {{(2, 1), (12, 1)}, {22, 1}, {32, 1}}

• Calculating partitions of Type-Carrier-Departure-Arrival and

Type-Carrier-Departure-Arrival-Tax. Assume that τ = 2 then

classes with cardinality less than 2 are discarded in our calculations.

ΠType,Carrier,Departure,Arrival|Booking

= Π'Type|Booking∩Π'Carrier|Booking∩Π'Departure|Booking∩Π’Arrival|Booking

= {(2,1), (12, 1)}= {w1}

ΠType,Carrier,Departure,Arrival,Tax|Booking

= Π'Type|Booking∩Π'Carrier|Booking∩Π'Departure|Booking∩Π’Arrival|Booking∩Π'Tax|Booking

= {(2,1), (12, 1)}={z1}

We can see that w1 is equivalent to z1 that is w1= z1={(2,1), (12, 1)}.

Nodes in w1 have the same value of Type= "Airline", Carrier=

“Qantas”, Departure= "MEL" and Arrival= “SYD”. Nodes in z3 share

the same value of Tax= “40”. An XCSD is discovered:

φ 1=PBooking:(0.5)(Type="Airline"^./Carrier=“Qantas”^./Departure="

MEL"^./Arrival= “SYD” � ./Tax = “40”).

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

111

This case shows that the discovered XCSD contains only

constants. The discovered XCSD refines an XFD by binding particular

values to elements in the XFD specification. For instance,

 φ 1 is a refinement of the XFD

 1ϕ = PBooking: ./Type, ./Carrier, ./Departure, ./Arrival � ./Tax

 There also exists another XCSD refining 1ϕ

 φ '1=PBooking:(0.5)(./Type="Airline"^./Carrier="Qantas"^./Depar

ture="MEL"^./Arrival= "BNE" � ./Tax = "65")

 There might exist a number of XCSDs which refine an XFD. As a

result, the number of XCSDs discovered by SCAD is much greater than

the number of data rules detected by an XFD discovery approach [102].

Case 4.2. XCSDs contain both variables and constants.

Fig 4.7 is a representation of a part of the Booking data tree. We use the

 (1,0)

Bookings

(42,1)

Booking

(43, 2)

Carrier

"Tiger

Airways"

(45, 2)

Tax

"40"

(44, 2)

Fare

"200"

(52,1)

Booking

(53, 2)

Carrier

"Tiger

Airways"

(55, 2)

Tax

"40"

(54, 2)

Fare

"200"

(62,1)

Booking

(63, 2)

Carrier

"Tiger

Airways"

(65, 2)

Tax

"60"

(64, 2)

Fare

"300"

(72,1)

Booking

 (73, 2)

Carrier

"Tiger

Airways"

(75, 2)

Tax

"60"

(74, 2)

Fare

"300"

(82,1)

Booking

(83, 2)

Carrier

"Qantas"

(85, 2)

Tax

"80"

(84, 2)

Fare

"200"

(92,1)

Booking

(93, 2)

Carrier

"Qantas"

(95, 2)

Tax

"120"

(94, 2)

Fare

"300"

Fig 4.7. A simplified Bookings data tree is constrained by constraints containing both variables and constants

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

112

same assumptions and follow the same process in Case 4.1 to construct

the data summary and the search lattice. Assume that we need to find

XCSDs associated with the edge(W, Z)= edge(Fare, Fare-Tax).

• Two partitions of Fare and Fare-Tax are as follows:

ΠFair|Booking ={{(42,1), (52, 1),(82, 1)}, {(62,1), (72,1), (92, 1)}}

ΠFair,Tax|Booking={{(42,1), (52, 1)},{(62, 1), (72,1)}, {(82,1)},

{(92,1)}}

 There does not exist any equivalent pair between two partitions

ΠFair|Booking and ΠFair,Tax|Booking. In such a case, node-labels from the

remaining set of {LV[]}\{W∪Z} are added to edge(Fare, Fare-Tax) as

conditional data nodes. For example, the node-label of Carrier is added

to the edge(Fare, Fare-Tax). We now consider edge(W’, Z’)=

edge(Fare-Carrier,Fare-Tax-Carrier).

• Partitions of Fare-Carrier and Fare-Tax-Carrier with respect to

the sub-tree rooted at Booking are calculated as:

Π Fair, Carrier|Booking= {{(42, 1), (52, 1)}, {(62, 1), (72, 1)}, {(82, 1)},

{(92, 1)}} = {w1, w2, w3, w4}

Π Fair, Tax, Carrier|Booking= {{(42, 1), (52, 1)}, {(62, 1), (72, 1)}, {(82,

1)}, {(92, 1)}} = {z1, z2, z3, z4}

• The partition of the condition node Carrier is:

ΠCarrier|Booking= {{(42, 1), (52, 1), (62, 1), (72, 1)}, {(82, 1), (92, 1)}}

= {c1, c2}

• We have two equivalent pairs (w1, z1) and (w2, z2) between ΠBooking, Fair,

Carrier|Booking & ΠBooking, Fair, Tax, Carrier|Booking with |w1|=2 and |w2|=2 >=τ .

Furthermore, there exists a class c1 in ΠCarrier|Booking containing exactly

all elements in w1∪ w2:

w1 ∪w2 ={(42, 1), (52, 1), (62, 1), (72, 1)}= c1

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

113

All elements in class c1 have the same value of Carrier = “Tiger

Airways”. This means nodes in classes w1 and w2 share the same

condition (Carrier = “Tiger Airways”). Therefore, an XCSD 2φ =

PBooking: (0.5) (./Carrier= “Tiger Airways”), (./Fare �./Tax) is

discovered.

 Case 4.2 illustrates that our proposed approach is able to discover

XCSDs which contain both variables and constants. 2φ cannot be

expressed by the existing notion of XFDs. For instance, XFDs [102] only

express 2φ in the form, PBooking: ./Fare �./Tax, which states that the

value of an object (./Tax) is determined by the other object (./Fare) for

all data. It cannot capture the condition (./Carrier= “Tiger Airways”)

and the similarity threshold (0.5) to express the exact defined semantics

of 2φ .

 From both case studies, we can see that our approach is able to

discover more situations of dependencies than the XFD discovery

approach. There exists a number of XCSDs refining the XFD. Each

XCSD refines an XFD by binding particular values to elements in the

XFD specification. The existing XFD approach [102] cannot detect the

above situations of dependencies due to the existence of conditions in

constraints. XFDs only express special cases of XCSDs which have

conditions being Null. The results from the tested cases somehow show

the real potential of the approach. Hence, we believe that our approach

can be generalized to other similar problems where data contain

inconsistent representations of the same object and/or inconsistencies in

constraining data in different fragments. For example, our approach can

discover constraints in the context of data integration where data is

combined from heterogeneous sources or in the situation of using XML-

4. STUCTURED CONTENT-BASED DISCOVERY

FOR IMPROVING XML DATA CONSISTENCY

114

based standards, such as OASIS, xCBL and xBRL to exchange business

information.

4.9 Summary

In this chapter, we highlighted the need for a new data type constraint

called XML conditional structural functional dependency to resolve the

XML data inconsistency problem. Existing work has shown some

limitations in handling such a problem. We proposed the SCAD approach

to discover a proper set of possible XCSDs considered anomalies from a

given XML data instance. We evaluated the complexity of our approach

in the worst case and in practice. The results obtained from experiments

and case studies revealed that SCAD is able to discover more situations

of dependencies than XFD discovery approaches. Discovered constraints,

which are XCSDs, containing either constants only or both variables and

constants, which cannot be formally expressed by XFDs, have more

semantic expressive power than existing XFDs. The discovered XCSDs

using SCAD may be employed in data-cleaning approaches to detect and

correct non-compliant data through which the consistency in data is

improved. In the next chapter, we will utilize XCSDs to compute

consistent query answers for queries posted to an inconsistent data source

to improve information quality.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

115

5.

Chapter 5

Structured content-based query answers

for improving information quality

This chapter introduces an approach, called SC2QA, which utilizes XML

conditional structural functional dependency to compute answers for

queries posted to arbitrary XML data to improve information quality.

SC2QA integrates the semantics of XCSDs into the query process to handle

data inconsistency and find the consistent parts for query answering. This

chapter is organized into six sections. Section 5.1 presents an introduction

to the problem, including our motivation and the synopsis of our approach.

Section 5.2 presents the preliminaries. Section 5.3 describes our proposed

SC2QA to compute the query answer. The complexity analysis and

correctness of SC2QA are presented in Section 5.4. Section 5.5

demonstrates the experiment evaluations. Section 5.6 summarises the

chapter.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

116

5.1 Introduction

The Extensive markup language (XML) [88] has been widely adopted as a

standard to exchange and integrate data over multiple sources. This allows

users to explore large datasets through a declarative query interface, such

as XQuery [26] and XPath[89]. However, the results of queries posted to

such heterogeneous data sources are often inconsistent due to the anomalies

arising from structural and semantic inconsistencies. This significantly

affects the ability of the system to provide accurate query answers. The

presence of inconsistent data is commonly resolved by repairing data and

computing consistent query answers.

Data repair aims is to find consistent parts in an inconsistent data

source which minimally differs from the original one [9, 25, 47, 79]. Data

repair is then used to calculate consistent query answers. A consistent

query answer (CQA) is defined as the common part of answers to the query

on all possible repairs of the source [9]. Nevertheless, repairing data might

also result in side-effects, for example, it might cause incorrect answers to

queries and introduce new inconsistencies. Moreover, finding all possible

repairs for inconsistent data to compute a consistent query answer is

impossible and impractical since an infinite number of repairs might exist.

Hence, we may leave the data inconsistent to avoid losing information due

to data repair and only manage potential inconsistencies to compute

consistent answers for queries posted to that source.

 As XML data is often inconsistent with respect to a set of

constraints, constraints are often taken into account during the process of

calculating query answers [43, 45, 76]. The work in [74] studies the

problem of computing query answers from inconsistent data with respect to

a given DTD. Other work [45, 77, 78] focuses on finding CQAs from

inconsistent data with respect to a set of functional dependencies. However,

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

117

such existing work generally lacks the full extensibility of cases where

data inconsistency with respect to constraints holding conditionally in

XML data with diverse structures, as in XCSDs.

 In this chapter, we propose an approach called SC2QA to compute

answers to queries posted to arbitrary XML data with respect to a set of

XCSDs. XCSDs are not constraints on database states; they are constraints

used to compute answers to queries which are specified locally with the

query at hand. That is, SC2AD is flexible for users to specify a set of

XCSDs at the query time. The semantics of XCSDs are integrated into the

query planner to compute the query answer. The conditions in XCSDs are

used to specify candidate objects qualified to the query. The similarity

threshold in XCSDs is used to indicate how similar objects can be

considered to be qualified for queries, which allows the retrieval of

information from objects with diverse structures. The inconsistencies of the

involved objects are repaired locally, following the semantics of each

Fig 5.1. An inconsistent Flight Booking data tree with respect to XCSDs

(1,0)

Bookings

(2,1)

Booking

(3, 2)

Carrier
"Tiger

Airways"

(7, 2)

Tax

"150"

(6, 2)

Fare

"600"

(5, 2)

Arrival

"MEL"

(4, 2)

Departure

"SIN"

(12,1)

Booking

(18, 2)

Tax
"0"

(17, 2)

Fare
"600"

(14, 2)

Trip

 (16, 3)

Arrival
"MEL"

(15, 3)

Departure
"SIN"

(13, 2)

Carrier
"Tiger

Airways"

(32,1)

Booking

(33, 2)

Carrier

"Air Asia"

(37, 2)

Tax

"180"

(36, 2)

Fare

"700"

(35, 2)
Arrival

"SYD"

(34, 2)

Departure

"KUL"

(22,1)

Booking

(23, 2)
Carrier

"Tiger

Airways"

(27, 2)

Tax
"180"

(25, 2)

Arrival

"SYD"

(24, 2)

Departure
"SIN"

(26, 2)

Fare
"600"

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

118

related XCSD, to obtain the information which is as consistent as possible.

A query answer, called customized consistent query answer (CCQA), is

calculated from these data which are considered to be consistent with

respect to certain preferred XCSDs. We run experiments on synthetic data

to verify the effectiveness and efficiency of SC2QA. We prove that the

algorithm is correct in the sense that the result retrieves consistent

information.

5.2 Preliminary

In this section, we present some preliminary concepts, including XPath

notations and examples of querying an inconsistent data source with

respect to a set of XCSDs as further motivation to solve our problem.

5.2.1 XPath

We use XPath expression [89] to form a relative path; “.” (self): select the

context node. “.//”: select the descendants of the context node, "[]": means

qualifier and "*": means wildcards. For example, .//Carrier: select

Carrier descendants of the context node Booking; .//Trip/Departure:

select all Departure elements which are children of Trip. An XPath is

simple if it is free of ".//" and "*". Any XPath Q can be replaced by a set of

simple XPath {Q1, Q2,...,Qn}.

5.2.2 Motivation examples

Let us use examples to illustrate the influence of inconsistency caused by

structural and semantic inconsistency in XML data to the answers of

queries posted to that data. Our discussions are based on a simplified

Flight Bookings data tree T, as shown in Fig 5.1. Each Booking

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

119

contains information on Carrier, Departure, Arrival, Transit, Fare

and Tax. The values of elements are recorded under the element names.

The data tree T is inconsistent with respect to three XCSDs, as shown in

Fig 5.2. We suppose that all XCSDs have a similarity threshold of 1, which

means that representations of the same object must have the same structure.

According to constraint 1, any Booking having the Carrier "Tiger

Airways" has the Tax identified by the Fare; however, Booking(2, 1) and

Booking(12, 1) contain the same Fare of "600" but the values of Tax are

different, which are 150 and 0, respectively. These are inconsistent with

respect to constraint 1. Booking(2, 1) and Booking(12, 1) are also

inconsistent in their structures. While Departure(4, 2) and Arrival(5, 2)

are direct children of Booking(2, 1), the Departure(15, 3) and

Arrival(16, 3) are the grandchildren of Booking(12, 1). Considering an

XPath query Q: /Bookings/Booking posted to T, for a consistent query

answer as in definition [9], the information of Departure, Arrival and

Tax of Booking (2, 1) and Booking (12, 1) are excluded.

 Constraint 1: Any Booking having Carrier of "Tiger Airways", the Tax is identified

by the Fare.

1φ = PBooking: [1] [./Carrier ="Tiger Airways"], (./Fare �./Tax)

Constraint 2: Any Booking having Carrier of "Tiger Airways" and Departure of

"SIN" only arrive at "MEL".

2φ = PBooking: [1] [./Carrier ="Tiger Airways"], (./Departure="SIN" �./Arrival=

"MEL")

Constraint 3: Any Booking having Carrier of "Air Asia", Departure of "KUL" and

Arrival of "SYD", there must exist a Transit of "MEL".

3φ = PBooking: [1] [./Carrier ="Air Asia "], (./Departure="KUL",./Arrival= "SYD")

� (./Transit= "MEL")

Fig 5.2. XCSDs on the Flight Bookings data tree

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

120

 The same situation occurs to Booking(22, 1) with respect to

constraint 2. That is, for any Booking having the Carrier "Tiger Airways"

and Departure of "SIN" only arrives at "MEL"', however; Booking(22,

1) contains Departure of "SIN" but Arrival of "SYD". Considering the

query Q: /Bookings/Booking posted to T, for a consistent query answer,

Booking(22, 1) is excluded. For constraint 3, if there exists a Booking

having the Carrier "Air Asia", Departure of "KUL" and Arrival of

"SYD", then there must exist a Transit node with a value of "MEL".

Booking(32, 1) is missing the information of Transit node which results

in inaccurate answers to queries relating to Booking(32, 1). This chapter

introduces the SC2QA approach which is based on the semantics of

XCSDs to compute the query answers by a qualifying query with appropriate

information derived from the interaction between the query and the XCSDs. The

detail of SC2QA is presented in the next section.

5.3 SC2QA: structured content-aware approach for

customized consistent query answers

In this section, we first present a theorem about the superiority of XCSDs

to XCFDs and XFDs. This is necessary to indicate that our approach only

needs to take into account the consistency of data with respect to XCSDs.

Then, we present the concepts used in our approach, including a definition

of consistent data, a definition of data repair, a notation of node repair and

definition of customized consistent query answer. We also mention

repairing principles applied to repair inconsistent data which includes

repair cost and data repair values. Finally, we present the detail of SC2QA.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

121

Theorem 5.1. An XCSD is superior to XML functional dependency (XFD)

and XML conditional functional dependency (XCFD).

Proof: For an XCSD φ = Pl: [α] [C], (X � Y), suppose that there exist {X1,

X2,...Xn} similar to X, and {Y1, Y2,...Ym} is similar to Y with respect to the

value of the similarity threshold α. Then φ can be expressed as a set of

XCFDs Pl: [C], (Xi � Yj), where i= 1..n and j= 1..m. An XCFD can also be

expressed as an XCSD with a similarity threshold of 1. Similarly, φ can be

expressed as a set of XFDs in the form of Pl: (Xg � Yh), where g= 1..n and

h= 1..m and an XFD Pl: X � Y is a special case of XCSD with a similarity

threshold of 1 and the condition C is empty. □

 XCSDs can be used to express the semantics of either XCFDs or

XFDs. Therefore, in this work, we only focus on calculating customized

consistent query answers for queries posted to an inconsistent XML data

with respect to a set of XCSDs. Consistent data is defined as follows:

Definition 5.1. (Consistent data)

Given a data tree T= (V, E, F, root) and a set of XCSDs ∑, T is consistent

with ∑ denoted as T|= ∑, if T satisfies every predefined XCSD in ∑,

otherwise T is inconsistent denoted as T |≠ ∑.

 A data tree T is said to satisfy an XCSD φ = Pl: [α] [C], (X � Y)

denoted as T|= φ if any two sub-trees R and R' rooted at vi and vj in T

having dt(R, R') ≥ α and if {vi[X]}=v {vj[X]} then {vi[Y]}=v {vj[Y]} under

the condition C, where vi and vj have the same root node-label l.

 The concept of data repair is used as an auxiliary to describe the

definition of a customized consistent query answer in an inconsistent data.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

122

Thus, we define the notion of data repair and the detail of data value repair

principles and the repair cost model in the next section.

5.3.1 Data Repair

Repair R is found based on the semantics of candidate XCSDs in ∑ which

relates to query Q to modify the inconsistent data in the original data tree T

such that R is consistent with respect to ∑ and R is minimal different with

original data T. Minimal here means repair R must be the one that takes as

few repair operations as possible to preserve the information from the

original data.

Definition 5.2. (Data repair)

A repair of T with respect to ∑ is a data tree node R such that: (i) R

conforms to ∑; and (ii) there does not exist any other repair R' of T such

that R' conforms to ∑, cost(T, R') < cost(T, R), where cost(T, R) is the

repair cost used to transform T to R.

 In our work, repair R is found by locally repairing every inconsistent

data node. A node repair is defined as follows:

Definition 5.3. (Node repair)

A repair of a node v with respect to iφ is a node v' such that: (i) v' conforms

to iφ ; (ii) there does not exist any other repair v" of v such that v" conforms

to iφ and (iii) cost(v, v") < cost(v, v'), where cost(v, v') is the repair cost

used to transform v to v'.

Data value repair principles: The computation of the repair data is based

on the semantics of XCSDs to modify the values of nodes or add missing

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

123

data. We do not invent new values as in [43, 45]. Suppose that a node v in

T violates an XCSD φ = Pl: [α] [C], (X � Y), the value of v is repaired

based on a set of values occurring in the data tree T or it is a value deduced

based on the semantics of XCSDs. The details of data repair computation

are as follows:

i) Values of node modification:

• If v relates to a constant expression inφ , the value of v is updated by

the value of the corresponding constant such that v satisfiesφ .

• If the violation of node v relates to a variable expression in X∪Y,

this means v violates φ with another node v', then the value of the

violation node is modified with respect to the value v'. That is, (i) if

value of v is null and v' is constant, the value of the v' is set to that

constant, (ii) if v and v' are not null and they contain different

values, such violations have to be resolved by repairing other nodes

relating to another expressions inφ .

ii) Node insertions: suppose that a sub-tree Ti is inconsistent with respect to

an XCSD φ = Pl: [α] [C], (X � Y) due to missing a node v, v is inserted

into that sub-tree based on the semantics of XCSD such that T is consistent

with respect to the considered XCSD.

Example 5.1.

• Booking(22, 1) (in Fig 5.1) violates constraint 2φ = PBooking: [1]

[./Carrier ="Tiger Airways"], (./Departure="SIN" �./Arrival=

"MEL") (in Fig 5.2). This is because Booking(22, 1) contains

Carrier of "Tiger Airways", Departure of "SIN" but Arrival of

"SYD". The Arrival = "SYD" causes violation to the right hand

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

124

side of 2φ which is a constant expression. Therefore, the value of

Arrival should be changed to “SYD” as that in 2φ .

• Considering Booking(12,1) and Booking (2,1) in Fig 5.1, and 1φ =

PBooking: [1] [./Carrier ="Tiger Airways"], (./Fare �./Tax) in Fig

5.2. Booking(12, 1) violates constraint 1 with Booking(2, 1).

According to constraint 1: any Booking having the Carrier "Tiger

Airways" has Tax identified by the Fare. While both Booking(12,

1) and Booking (2, 1) have the same Carrier of "Tiger Airways"

and the Fare of "600", the Tax "0" and "150". Therefore, we

modify the value of Tax in Booking(12, 1) to "150".

• Booking(32, 1) in Fig 5.1 violates constraint 3 in Fig 5.2.

According to constraint 3: for any Booking the Carrier "Air Asia",

Departure of "KUL" and Arrival of "SYD", there must exist a

Transit of "MEL". Booking(32, 1) does not satisfy constraint 3

since the information of Transit is missing. Thus, Transit of

"MEL" is added into Booking (32, 1).

Repair Cost: there are several different ways to resolve a violation. In our

approach, we use a cost model to give priority to the repair which is

considered to be qualified to a query. The result with a lower

transformation cost is considered to be closer to the original data and is

preferred over the ones with higher costs. The cost used to repair an

inconsistent node is weighted by the total number of operations applied to

correct the node so that it satisfies all relevant XCSDs. The cost used to

repair an inconsistent data tree is weighted by the total cost applied to all

violation nodes such that the data tree satisfies all relevant XCSDs.

 Observe that the deletions which may lose information, node

modification and node insertion in general can preserve more information

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

125

from the original data. Thus, our approach only considers modification and

insertion operations. We assume that each operation is assigned a weight in

a range between 0 and 1. A cost of the modification operation is the cost of

updating a node value. The cost of the insertion operation is the cost to

insert a single node which is a descendant of a considered sub-tree. We

prefer node updating than node insertion since inserting a node is more

complicated than updating a node value. In our approach, we assume that

the cost of node insertion is three times the modification cost. The repair

cost of a T to a repair R is defined as

)',(cos),(cos

]..1[ini i vvtRTt ∑ =
= ,

where vi is original node and vi' is the transformed node.

 In addition to choosing a repair with the lowest cost, we also use

cost threshold, denoted as γ, to ignore the repairs which are too different to

the original. Users choose their preferred repair cost threshold when

specifying queries. A cost threshold for each considered node is indicated

by the percentage of the repair cost threshold with the number of candidate

nodes and the number of XCDSs. Such an evaluation mechanism allows

retrieving the desired information which is closer to the original data

source.

φ

γ
γ

CCv

node
.

= ,

where γ is the repair cost threshold of the total data, Cv is the number of

candidate nodes relating to the query and φC is the number of candidate

XCSDs. In this chapter, we set the value of γ to 1.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

126

Example 5.2. Suppose that Booking(42, 1) in Fig 5.3a which is also

included in the data tree T in Fig 5.2. Booking(42, 1) is inconsistent with

respect to constraints 1, 2 & 3 in Fig 5.2. At least two alternative ways exist

to correct Booking(42, 1) with different results (Fig 5.3b & 5.3c). Assume

that the total number of candidate nodes is 4, the modification cost is 0.01

and the insertion cost is 0.03. The cost repair threshold for each node is

γnode= 1/(4 * 3) ≈ 0.08.

 The first repair v1 is followed by constraints 1&2. According to

constraint 1 'Any Booking having the Carrier "Tiger Airways", the Tax

is identified by the Fare'. The Tax and the Fare of Booking(42, 1) are the

same with the Tax and the Fare of Booking(2, 1). Thus, the value of the

Carrier of Booking(42, 1) is updated by "Tiger Airways" with repair cost

of 0.01. According to constraint 2 'Any Booking having Carrier of "Tiger

c) corrections follows constraint 3

a) Inconsistent data

Fig 5.3. Repairing consistent data

b) corrections follows constraints 1&2

 (42,1)

Booking

(43, 2)
Carrier

"Tiger

Airway"

(47, 2)

Tax

"150"

(45, 2)

Arrival

"MEL"

(44, 2)

Departure

"SIN"

(46, 2)

Fare

"600"

 (42,1)

Booking

(43, 2)

Carrier

"Air

Asia"

(48, 2)

Tax

"150"

(46, 2)

Transit

"MEL"

(45, 2)

Arrival

"SYD"

(44, 2)

Departure

"KUL"

(47, 2)

Fare

"600"

 (42,1)

Booking

(43,2)

Carrier

""

(47, 2)

Tax

"150"

(45, 2)

Arrival

""

(44, 2)

Departure

""

(46, 2)

Fare

"600"

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

127

Airways" and Departure of "SIN", the value of Arrival is "MEL" '. The

Carrier of Booking(42, 1) is "Tiger Airways". Hence, the value of

Departure of Booking(42, 1) is updated by "SIN" with repair cost of 0.01

and Arrival is modified by "MEL" with repair cost of 0.01.The total cost

repair: cost(Booking(42, 1), v1)= (0.01 + 0.01 + 0.01)= 0.03 < 0.08 =γnode.

 The second repair v2 is followed constraints 3. According to

constraint 3: for 'Any Booking having Carrier of "Air Asia", Departure

of "KUL" and Arrival of "SYD", there must exist a Transit of "MEL"'.

Following constraint 3, Carrier of Booking(42, 1) is updated by "Air

Asia" with a cost of 0.01, Departure is updated by "KUL" with repair

cost of 0.01, Arrival is updated by "SYD" with repair cost of 0.01, and

insert a node: Transit of "MEL" with a cost of 0.03. The total repair cost

cost(Booking (42, 1), v2)= (0.01 + 0.01 + 0.01 + 0.03)= 0.06 < 0.08 =γnode.

The repair costs of the two cases are 0.03 and 0.06, respectively which

satisfy the repair cost threshold for a node (i.e. 0.08). However, the former

repair is preferred over the latter. Indeed, v1 is closer to original Booking

(42, 1) than v2.

Definition 5.4. (Customized consistent query answer- CCQA)

Given a data tree T, a set of XCSDs ∑ over T and a query Q , the

customized consistent query answer of the query Q on T with respect to ∑,

denoted as Qc(T, ∑) = ki ..1=U Qc(Rvi, ∑), where Qc(Rvi, ∑) is a consistent

query answer of Q on the sub-tree Rvi, Rvi is a repair of sub-tree rooted at vi

w.r.t ∑, k is the number of related nodes to Q and vi is a related nodes to

the query Q.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

128

A formal approach to calculate the customized consistent query answer

will be presented in the next section.

5.3.2 Calculating customized consistent query answers

 Given an inconsistent XML data tree T and a set of XCSDs ∑, we aim to

compute a customized consistent answer for query Q posted to T. Our

approach is based on the semantics of XCSDs to find consistent data,

preserving the original data source. The original inconsistent data is

evaluated at each constraint. The answer is calculated by qualifying query

with appropriate information derived from the interaction between the

query and the XCSDs. The result of a query is a data tree which is

constructed by appropriate projections on the data qualified to Q. The

similarity parameters in XCSDs may result in a large number of candidate

objects qualified to the query, causing difficulties for computing CCQAs.

Therefore, we restrict all XCSDs having the same similarity threshold to

avoid dealing with a various number of candidate objects.

 In particular, SC2QA consists of four processes (List 5.1). First, the

function selDC is performed to select all candidates XCSDs (iφ ,..., kφ)

relating to the posted query Q. This process is based on the comparison

between the context paths of XCSDs and paths in Q with respect to the

similarity threshold of XCSDs. Second, the function selCanNode is called

to select all candidate nodes (v1, v2,..., vn) relating to query Q, based on the

semantics of the candidate XCSDs, where vi is an ancestor of target nodes

of XCSDs. Third, valXCSD is performed to validate XCSDs, vi is the

domain for validating candidate XCSDs. The process of validating XCSDs

is performed locally at each candidate node to retrieve consistent data. For

each violation node vk, the list of violation XCSDs, repair values and repair

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

129

costs are calculated and stored in vk.list(kjφ , rkj, ckj), and node vk is marked

as a violation. Finally, the result data is generated in a top-down fashion by

combining all consistent data and repaired data. A result is considered valid

only if the repair cost of inconsistent data is under a certain cost threshold.

That is, if the repair cost of data is above a given cost threshold then the

repair cost will be set to 100 to indicate that the result is invalid and the

corresponding repair is not considered to be qualified for query Q and

query Q is not actually executed. Thus, for each violation node vk, we

choose the repair (kjφ , rkj, ckj) with the lowest overall repair cost.

Commonly, we choose the node repair cost for vk with the lowest cost.

Algorithm SC2QA

Input: Q, ∑, T, γ

Output: T'

T'← '';

DC← selDC(Q, T, ∑);

CN← selCanNode (Q, T, DC);

repCost← valXCSD(Q, T, DC, ∑, γ)

if repCost ≠ 100

for each candidate node vi in CN do

 if making vi then

 vi' ← repair(vi.list(kφ , rik, cik));

 T' ← T'∪ v'i

 else

 T' ← T'∪ vi;

 return T';

List 5.1. The SC2QAs algorithm

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

130

Algorithm selDC //selecting XCSDs relating to Q

Input: Q, T, ∑;

Output: DC // selected constraints

init DC ← {Ø};

 for each φ = Pl: [α] [C], (X � Y) in ∑ do //select relevant XCSDs to Q

 candidate←{True};

 for each simple path qi in Q do

 if dp(qi,Pl) < α then //not similar

 candidate← {False};

 exitFor;

 DC← Insert(DC, φ); //insert φ into DC in the increasing order

return(DC);

Algorithm selCanNode //selecting candidate target nodes

 Input: Q, T, DC

 Output: CN //set of candidate target nodes

 init CN← {Ø};

 N← satisfiedNodes(Q, T); // N= {n1, n2,...,nk}

 for each XCSD φ = Pl: [α] [C], (X � Y) in DC do

 for each subtree Ti rooted at ni do

 if lab(ni)= l and exiting node nk in Ti satisfying C then

 CN← CN ∪ {ni};

return(CN);

Algorithm valXCSD

Input: Q, ∑, T, γ

Output: repCost

DC← selDC(Q, T, ∑);

CN← selCanNode (Q, T, DC);

nodeγ ← γ /(CN. |∑|);

repCost← 0; //repair cost

for each candidate node vi in CN do

 for each candidate XCSD kφ in DC do

 if kφ does not hold on sub-tree tvi rooted at vi then

 marking vi;

 c← esreco(tvi, kφ)

 if (c < nodeγ) then //estimating repair cost

 vi.list(kφ , rik, c);

 add(repCost, c);

 else remove vi from CN;

If (repCost < γ) return repCost

else

return 100;

List 5.2. Utility functions of SC2QA

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

131

Example 5.3. Finding customized consistent answer for a query

Q: /Bookings/Booking[Carrier= 'Tiger Airways"], posted to Bookings

data tree in Fig 5.1 with respect to three constraints 4φ , 5φ and 6φ .

4φ = Pl: [0.6] [./Carrier ="Tiger Airways"] (./Fare �./Tax)

5φ = Pl: [0.6] [./Carrier ="Tiger Airways"], (./Departure="SIN"

�./Arrival= "MEL")

6φ =Pl: [0.6] [./Carrier ="Air Asia "], (./Departure="KUL",./Arrival=

"SYD") � (./Transit= "MEL")

 We follow the process described in section 5.3 to find a CCQA for

Q. First, we select all candidate XCSDs relating to query Q which include

4φ and 5φ . Second, we select all candidate nodes relating to query Q which

include CN= {Booking(2, 1), Booking(12, 1), Booking(22, 1)}. Third,

we validate XCSDs: for each candidate node in CN, we check for the

satisfaction of candidate XCSDs and find consistent data for that node. We

find Booking(2, 1) is similar to Booking(12, 1). This is because following

the sub-trees similarity algorithm described in List 4.1 to calculate the

similarity between sub-trees T1 rooted at Booking(12,1) and T2 at

Booking(2,1), we have dT(T1, T2)= 0.64 > 0.6. Booking (2, 1) satisfies

constraints 4φ and 5φ .

Booking (12, 1) violates 4φ with Booking(2, 1) since the Tax of

two nodes does not satisfy the condition that Tax is identified by the

Fare. They contain the same Fare of "600" but the values of Tax are

different. While the Tax of Booking(2, 1) is a constant of "150", the Tax

of Booking(12, 1) is constant of "0". Thus, we replace the inconsistency of

the Tax by updating the Tax in Booking(12, 1) with a value of "150" in

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

132

the answer. The Tax(18, 2) node is marked. Booking(22, 1) violates 4φ

and 5φ .

 According to 4φ , the Fare identifies the Tax, the Fare of

Booking(22, 1) is the same at that of Booking(2, 1) but the Tax is

different. Thus, the Tax of Booking(22, 1) is corrected based on the

semantics of 4φ . That is, Tax is "150" and Tax(28, 2) is marked.

According to 5φ , if Departure of "SIN", then Arrival must be "MEL"

but the Arrival of Booking (22, 1) is "SYD" which is replaced by "MEL"

in the answer based on 5φ . The result of query Q will include Bookings

{Booking (2, 1), Booking (12, 1), Booking (22, 1)} with modified values

at marked nodes.

5.4 Complexity analysis and correctness

Complexity analysis: complexity of the SC2QA algorithm mostly depends

on the size of the XML data source, which is determined by the number of

elements, the number of XCSDs and the complexity of query Q on T. The

SC2QA algorithm first performs the selDC to find a set of candidate

XCSDs related to the query Q. The complexity of selDC depends on the

complexity of query Q on T and the size of context paths of XCSDs. In the

worst case, we assume that all n nodes in T are satisfied by Q. Let |∑| be the

total number of XCSDs and m be the maximum size of the context paths of

XCSDsφ . Thus, the selDC makes nm|∑| random accesses to the dataset.

Then, the function selCanNode is called to select candidate nodes related to

the query Q with respect to the conditions of the XCSDs. The selCanNode

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

133

depends on the number of XCSDs and the size of the XML data source.

The worst case occurs when all n nodes in T related to Q and every XCSD

in ∑ having a condition, without considering the number of expressions in

the conditions, the function selCanNode makes n|∑| random accesses to

the dataset.

 Third, the valXCSD is called to validate candidate XCSDs against

every candidate node. In the worse case, we assume that all |∑| XCSDs are

in the set of candidate XCSDs, where the set of candidate nodes includes

all n nodes in T and each node violates all |∑| candidate XCSDs. The

valXCSD makes n|∑| random access to the dataset. Finally, the SC2QA

traverses the data tree T on a top-down manner to obtain the query result.

Every node in T is visited once which means this step needs n random

accesses to the dataset. In summary, SC2QA algorithm has time

complexity of O(n(m|∑|+ 2|∑| + 1)). SC2QA needs to maintain a copy of

data source T at a time. Hence, the space complexity is bounded by O(n).

However, in practice, the number of related nodes can be significantly

smaller than n and the number of XCSDs relating to Q is also smaller than

the total number of XCSDs |∑|. Therefore, the time complexity can be

reduced significantly.

 The following theorem states that the SC2QA algorithm must be

terminated and returns customized consistent query answers.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

134

Theorem 5.2. (Termination) Let Q be a query on a data tree T and ∑ be a

set of XCSDs. The SC2QA always terminates and generates a consistent

query answer Qc(T, ∑).

Proof: Although in each step of algorithm SC2QA, a violation node with

respect to a candidate XCSDs is resolved, it might also introduce new

violations. SC2QA proceeds until no more violation nodes exist. However,

the set of candidate XCSDs and the number of candidate nodes are limited.

Thus, SC2QA always terminates. □

Theorem 5.3. (Correctness) Let Q be a query on a data tree T and ∑ be a

set of XCSDs. The query answer obtained by SC2QA is always customized

consistent with the given XCSDs.

Proof: Suppose that Qc(T, ∑)= ∪i=1..k Qc(Rvi, ∑) is the answer of Q. This

means each data node in the CCQA satisfies all XCSDs with the lowest

repair cost. If there exists an answer Qc(Rvi, ∑) for sub-tree Rvi rooted at vi

which violates a constraint mφ , then there exists at least a node vj in the Rvi

violates mφ . In such a case, Qc(Rvi, ∑) is not included in the answer Qc(T, ∑)

and a repairing with respect to the given XCSDs is impossible. Otherwise,

it is a contradiction with the data value repair principles that each Qc(Rvi, ∑)

is considered valid in the answer set only if it is computed from all

consistent data with a repair cost under a certain cost threshold. □

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

135

5.5 Experimental evaluation

We run experiments on synthetic data to evaluate the calculation efficiency

for SC2QA. This is to avoid the noise in real data. Our dataset is an

extension of the Flight Bookings data shown in Fig 5.1. The dataset covers

common features in XML data, including structural diversity and various

data rules. The original dataset contained 100 Bookings. The

DirtyXMLGenerator [72] made by Sven Puhlmann was used to generate

the synthetic dataset. We specified that the percentage of duplicates of an

object is 100% to generate a dataset containing similar Bookings. From 100

duplicate Bookings, we specified 30% of data was missing from the

original objects so that the dataset becomes inconsistent due to missing

data. We evaluated on 5 constraints, consisting of 3 constant XCSDs and 2

variable XCSDs. We ran experiments on a PC with an Intel i5, 3.2GHz

CPU and 8GB RAM. The implementation was in Java and data was stored

in MySQL.

Parameters: the number of XCSDs and the query influence on the

complexity of SC2QA. The dataset is fixed, but the number of conditions

on the query and the XCSDs change. We consider the effectiveness of

cases where: (i) the query Q is computed with respect to different types of

XCSDs including constant XCSDs and variable XCSDs; and (ii) the

number of conditions in query Q increases, and the number of XCSDs is

stable. Fig 5.4 is a set of XCSDs and Fig 5.5 is a set of queries which are

used in experiments. The repair cost threshold γ is set to 1. For each query,

we recorded the running time.

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

136

C1 1φ = Pl: [0.6] [./Carrier ="Tiger Airways"] (./Fare �./Tax)

C2 2φ = Pl: [0.6] [./Carrier ="Air Asia "], (./Departure,./Arrival) � (./Tax)

C3
3φ = Pl: [0.6] [./Carrier ="Tiger Airways"], (./Departure="SIN"

�./Arrival= "MEL")

C4
4φ = Pl: [0.6] [./Carrier ="Air Asia "], (./Departure="KUL",./Arrival=

"SYD") � (./Transit= "MEL")

C5
5φ = Pl: [0.6] [./Carrier ="Air Asia "], (./Departure= "SIN",

./Arrival="SYD") � (./Tax= "200")

Fig 5.4. Set of XCSDs used in experiments

Q1 /Bookings/Booking

Q2 /Bookings/Booking[Carrier= 'Tiger Airways']

Q3 /Bookings/Booking[Carrier= 'Tiger Airways' and Departure='SIN']

Q4
/Bookings/Booking[(Carrier= 'Tiger Airway' and Departure= 'SIN' and

Fare = '600']

Q5
/Bookings/Booking[(Carrier= 'Air Asia' or Carrier= 'Tiger Airways') and

Departure='SIN']

Fig 5.5. Set of queries used in experiments

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

137

The results in Fig 5.6 are the execution times of query Q1 under various

types of XCSDs. The results show that the SC2QA runs more efficiently

when utilizing constant XCSDs than variable XCSDs. This is because

XCSDs with constant expressions provide more information for validating

Fig 5.6 Execution times: constant XCSDs vs variable XCSDs

0

5

10

15

20

25

30

35

C1 C2 C3 C4 C5

XCSDs

T
im

e
 (

s
e
c
o
n
d
s
)

Fig 5.7 Execution times when varying the number of conditions in queries

0

10

20

30

40

50

60

70

80

Q1 Q2 Q3 Q4 Q5

Queries

T
im

e
s
 (

s
e
c
o
n
d
s
)

5. STUCTURED CONTENT-BASED QUERY ANSWERS

FOR IMPOVING INFORMATION QUALITY

138

and correcting violation data than those with variable expressions. The

variable XCSDs hold on a large number of objects, which requires more

processing time. For instance, the execution times of query Q1 under 3φ are

around 50% the execution times of either 1φ or 2φ . The same situation

occurs to 4φ and 5φ .

Fig 5.7 represents the execution times of queries Q1-Q5 where have the

number of conditions varies from 0 to 3 and the number of XCSDs remains

the same (i.e 1φ - 5φ). Execution time depends on the number of conditions

in the queries. In cases where the number of conditions in the queries

increases, the execution time is also slightly increased. That is, the times

required to analyse the interactions between the query and the XCSDs

increase.

5.6 Conclusion

This chapter introduced an approach utilizing XCSDs to compute

customized consistent query answers for queries posted to an inconsistent

data source to improve information quality. Our approach is based on the

semantics of XCSDs to find consistent data from involved objects. By

identifying every inconsistent node locally with respect to each XCSD,

SC2QA is able to collect the information as consistent as possible.

Experiments on a synthetic dataset are used to evaluate the effectiveness of

SC2QA. The results show that SC2QA works more efficiently for constant

XCSDs than variable XCSDs. Constant XCSDs provided more information

for validating and correcting violation data than those with variable

expressions as XFDs. Thus, we expect that utilizing XCSDs to compute the

customized consistent answers to queries are more accurate than that of

XFDs.

6. CONCLUSION

139

6.

Chapter 6

Conclusion

6.1 Thesis summary

This thesis addressed the problems of data inconsistency in XML data. The

problem of XML data inconsistency often arises from either semantic or

structural inconsistencies inherent from in heterogeneous XML data.

Existing XFD approaches have shown several limitations in handling such

problems. XFDs are unable to express the semantics of constraints holding

conditionally on XML data with diverse structures. Existing XFD

discovery approaches cannot explore a proper set of constraints to address

inconsistency in XML data. Such limitations are resolved in this thesis.

Chapter 3 introduced the XDiscover approach to address semantic

inconsistency. We first introduced the notion of XML conditional

functional dependency. XCFDs are constraints which incorporate

conditions into XFD specifications to express constraints with conditional

semantics. Second, the XDiscover approach was proposed to discover a set

of possible XCFDs from a given XML data instance. We conducted

experiments on synthetic and real datasets, and examined on case studies to

evaluate XDiscover. The obtained results revealed that XDiscover is able to

6. CONCLUSION

140

discover more situations of dependencies than the XFD discovery

approach. Furthermore, XCFDs have more semantic expressive power than

existing XFDs.

 Chapter 4 proposed the SCAD approach to target the problems of

data inconsistencies caused by both structural and semantic inconsistencies.

First, we highlighted the need for a new data type constraint called XML

conditional structural functional dependency (XCSD) to resolve such

problems. Second, we proposed the SCAD approach to discover a proper

set of possible XCSDs considered anomalies from a given XML data

instance. Third, we evaluated the complexity of our approach in the worst

case and in practice. Fourth, we ran experiments and case studies on

synthetic datasets. The obtained results revealed that SCAD is able to

discover more situations of dependencies than the XFD discovery

approach. Discovered XCSDs using SCAD also have more semantic

expressive power than existing XFDs. SCAD deals effectively with data

sources containing structure diversity.

 Both XCFDs and XCSDs can be used to enhance data quality

management. They can be embedded as an integral part in an enterprise’s

systems to constrain the data process by suggesting possible rules and

identifying non-compliant data to minimize data inconsistency. They also

can be used to detect and correct non-compliant data. Chapter 5 utilized

XCSDs to compute customized consistent answers for queries posted to an

inconsistent data source to improve the quality of information. First, we

proposed an approach called SC2QA, which integrated semantics of

XCSDs into the query process to compute query answers. Second, we

evaluated the complexity of SC2QA in worst case analysis. Third, to

evaluate the effectiveness of SC2QA, we conducted experiments on a

synthetic dataset which contained structural diversity and constraint variety

causing XML data inconsistencies. The results showed that query answers

6. CONCLUSION

141

found by SC2QA work more efficiently for constant XCSDs than variable

XCSDs. We proved that customized query answers computed by SC2QA are

always consistent with respect to a set of preferred XCSDs.

6.2 Future work

There are several possible directions for future work which can use the

techniques proposed in this thesis as a foundation. These promising

directions are listed as follows:

• This thesis handles inconsistencies at either semantic or structural-

level; other inconsistencies might still exist due to element labels. It

would be interesting to take a step forward to resolve the problems

of data inconsistencies caused by the inconsistencies in the

semantics of labels.

• XML data changes very often which may lead to a corresponding

change in the semantics of constraints. It is an interesting problem

for future research to address the problem of data evolution by

extending this work.

• Data inconsistencies also challenges in data integration

environment. Inconsistency may arise due to the way in which

source data are related with global elements by means of mapping.

Data stored at the local source may violate integrity constraints

specified at the global level. We would like to extend our discovery

techniques to tackle inconsistencies in data integration.

• We would like to extent our SCAD discovery approach to support

association rules holding conditionally on data. This extension is

6. CONCLUSION

142

particular interesting since it allows assigning context-dependent to

association rules, where each context is represented by appropriate

data fragments in which association rule holds.

• We also would like to extent our proposed approaches to support more

types of constraints, such as foreign keys, reference integrity and general

check constraints.

BIBLIOGRAPHY

143

Bibliography

[1]. Abiteboul, S., Buneman, P. and Suciu, D. (eds.). Data on the Web:

From Relations to Semistructured Data and XML, 2000.

[2]. Abiteboul, S., Buneman, P. and Suciu, D., Data on the Web: From

Relations to Semistructured Data and XML. Morgan Kaufmann,

2000.

[3]. Afrati, F.N. and Kolaitis, P.G., Repair checking in inconsistent

databases: algorithms and complexity, ICDT '09 Proceedings of the

12th International Conference on Database Theory St. Petersburg,

Russia, 2009, pp. 31-41.

[4]. Agrawal, R., Imielinski, T. and Swami, A., Mining association rules

between sets of items in large databases, SIGMOD Record (1993),

22 (2), 207-216.

[5]. Ahmad, K., Mamat, A., Ibrahim, H. and Noah, S.A.M., Defining

Funtional Dependency for XML, Journal of Information Systems,

research & Practices (2008), 1 (1).

[6]. Arenas, M., Normalization Theory for XML, SIGMOD Record

(2006), 35 (4), 57-64.

[7]. Arenas, M. and Bertossi, L., On the Decidability of Consistent

Query Answering, In proc. Alberto Mendelzon Int. Workshopon

Foundations of Data Management, 2010.

BIBLIOGRAPHY

144

[8]. Arenas, M., Bertossi, L. and Chomicki, J., Answer Sets for

Consistent Query Answering in Inconsistent Databases, Theory and

Practice of Logic Programming (2003), 3 (4), 393-424.

[9]. Arenas, M., Bertossi, L. and Chomicki, J., Consistent query answers

in inconsistent databases, PODS '99, Philadelphia, Pennsylvania,

USA, 1999, ACM, pp. 68-79.

[10]. Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V. and

Spinrad, J., Scalar aggregation in inconsistent databases, Theoretical

Computer Science (2003), 296 (3), 405–434.

[11]. Arenas, M. and Libkin, L., A normal form for XML documents,

ACM Transactions on Database Systems (TODS) (2004), 29 (1),

195-232.

[12]. Armstrong, W.W., Nakamura, Y. and Rudnicki, P., Armstrong’s

Axioms, Journal of Formalized Mathematics (2003), 14.

[13]. Baralis, E., Cagliero, L., Cerquitelli, T. and Garza, P., Generalized

association rule mining with constraints, Information Sciences

(2012), 194 (1), 68-84.

[14]. Baralis, E., Garza, P., Quintarelli, E. and Tanca, L., Answering

XML Queries by Means of Data Summaries, ACM Trans. Inf. Syst.

(2007), 25 (3).

[15]. Batini, C. and Scannapieca, M., Data Quality- Concepts,

Methodologies and Techniques, Springer Berlin Heidelberg

New York, 2006.

[16]. Bertossi, L., Consistent query answering in databases, SIGMOD

Record (2006), 35 (2), 68-76.

[17]. Bertossi, L., Database Repairing and Consistent Query Answering,

Synthesis Lectures on Data Management (2011), 3 (5), 1-121.

BIBLIOGRAPHY

145

[18]. Bertossi, L., Database Repairing and Consistent Query Answering.

in, Synthesis Lectures on Data Management, Morgan & Claypool

Publishers, 2011.

[19]. Bex, G.J., Neven, F. and Bussche, J.V.d., DTDs versus XML

Schema: A Practical Study, Proceedings of the 7th International

Workshop on the Web and Databases, Paris, 2004, ACM, pp. 79-84.

[20]. Bohannon, P., Fan, W., Geerts, F., Jia, X. and Kementsietsidis, A.,

Conditional Functional Dependencies for Data Cleaning, The 23rd

International Conference on Database Engineering ICDE 2007,

Istanbul, 2007, pp. 746-755.

[21]. Buneman, P., Davidson, S., Fan, W., Hara, C. and Tan, W.-C., Keys

for XML, WWW '01, Hong Kong, 2001, ACM, pp. 201-210.

[22]. Buneman, P., Davidson, S., Fan, W., Hara, C. and Tan, W.-C.,

Reasoning about keys for XML, DBPL '01, 2002, Springer-Verlag,

pp. 133--148.

[23]. Buneman, P., Fan, W. and Weinstein, S., Path Constraints in

Semistructured Databases, Journal of Computer and System

Sciences (2000), 61 (2), 146–193.

[24]. Buttler, D., A Short Survey of Document Structure Similarity

Algorithms, Proceedings of the 5th International Conference on

Internet Computing, USA, 2004, pp. 3-9.

[25]. Cate, B.T., Fontaine, G. and Kolaitis, P.G., On the data complexity

of consistent query answering, Proceedings of the 15th International

Conference on Database Theory, Berlin, Germany, 2012, ACM, pp.

22-33.

[26]. Chamberlin, D., XQuery: An XML query language, IBM Syst. J.

(2002), 41 (4), 597-615.

[27]. Chiang, F. and J.Miller, R., Discovering Data Quality Rules, Proc.

VLDB Endowment (2008), 1 (1), 1166-1177.

BIBLIOGRAPHY

146

[28]. Chomicki, J., Consistent Query Answering: Five Easy Pieces 11th

International Conference on Database theory, Springer LNCS, 2007,

1-17.

[29]. Chomicki, J., Marcinkowski, J. and Staworko, S., Computing

consistent query answers using conflict hypergraphs, CIKM '04

Proceedings of the Thirteenth ACM International Conference on

Information and Knowledge Management 2004, ACM Press, pp.

417-426.

[30]. Clark, J. and Makoto, M., RELAX NG Specification, 2001.

 http://relaxng.org/spec-20011203.html

[31]. Cong, G., Fan, W., Geerts, F., Jia, X. and Ma, S., Improving Data

Quality: Consistency and Accuracy, VLDB'07, Vienna, Austria,

2007, VLDB Endowment, pp. 315-326.

[32]. Decker, H., Answers that have integrity, Semantics in Data and

Knowledge Bases (2011), 6834, 54-72.

[33]. Deutsch, A., Popa, L. and Tannen, V., Query Reformulation with

Constraints, SIGMOD Rec. (2006), 35 (1), 65-73.

[34]. Deutsch, A. and Tannen, V., Reformulation of XML Queries and

Constraints, Proceedings of the 9th International Conference on

Database Theory, 2002, Springer-Verlag, pp. 225-241.

[35]. El-ghfar, R.M.A., EL-Bastawissy, A. and Elazeem, M.A., DRTX: A

Duplicate Resolution Tool for XML Repositories, IJCSNS (2012),

12 (7), 42-49.

[36]. Fan, W., Dependencies Revisited for Improving Data Quality,

PODS'08, Vancouver, Canada, 2008, ACM pp. 159-170.

[37]. Fan, W., XML Constraints: Specifications, Analysis, and

Application, Database and Expert Systems Applications, 2005, pp.

805- 809.

BIBLIOGRAPHY

147

[38]. Fan, W., Geerts, F. and Jia, X., Semandaq: a data quality system

based on conditional functional dependencies, Proc. VLDB

Endowment (2008), 1 (2), 1460-1463.

[39]. Fan, W., Geerts, F., Lakshmanan, L.V.S. and Xiong, M.,

Discovering Conditional Functional Dependencies, ICDE'09,

Shanghai 2009, pp. 1231-1234.

[40]. Fan, W., Li, J., Ma, S., Tang, N. and Yu, W., Interaction between

record matching and data repairing, SIGMOD '11, Athens, Greece,

2011, ACM pp. 469-480.

[41]. Fan, W., Li, J., Ma, S., Tang, N. and Yu, W., Towards certain fixes

with editing rules and master data, The VLDB Journal (2012), 21

(2), 213-238.

[42]. Fan, W. and Simeom, J., Integrity constraints for XML, PODS '00,

Dallas, Texas, United States, 2000, ACM pp. 23-34.

[43]. Flesca, S., Furfaro, F., Greco, S. and Zumpano, E., Querying and

Repairing Inconsistent XML Data. in WISE 2005, Springer Berlin,

Heidelberg, 2005, 175-188.

[44]. Flesca, S., Furfaro, F., Greco, S. and Zumpano, E., Repairing

Inconsistent XML Data with Functional Dependencies. in

Encyclopedia of Database Technologies and Applications, Idea

Group, 2005, 542-547.

[45]. Flesca, S., Furfaro, F., Greco, S. and Zumpano, E., Repairs and

Consistent Answers for XML Data with Functional Dependencies.

in Database and XML Technologies, Springer Berlin, Heidelberg,

2003, 238-253.

[46]. Flesca, S., Furfaro, F. and Parisi, F., Querying and Repairing

Inconsistent Numerical Databases, ACM Trans. Database Syst.

(2010), 35 (2), 1-50.

BIBLIOGRAPHY

148

[47]. Giacomo, G.D., Lembo, D., Lenzerini, M. and Rosati, R., Tackling

inconsistencies in data integration through source preferences

Workshop on Information Quality in Information Systems - QDB,

Paris, 2004, pp. 27-34.

[48]. Golab, L., Karloff, H. and Korn, F., On generating Near-Optimal

Tableaux, PVLDB (2008).

[49]. Goldfarb, C.F., The SGML Handbook. Oxford University Press,

1991.

[50]. Grahne, G. and Zhu, J., Discovering Approximate keys in XML

data, CIKM'02 (2002), 453-460.

[51]. Hartmann, S. and Link, S., More Functional Dependencies for

XML, LNCS 2798 (2003), 355-369.

[52]. Hartmann, S. and Link, S., More Functional Dependencies for

XML. in Advances in Databases and Information Systems, Springer

Berlin, Heidelberg, 2003, 355-369.

[53]. Huhtala, Y., Karkkainen, J., Porkka, P. and Toivonen, H., TANE: an

Efficient Algorithm for Discovering Functional and Approximate

Dependencies, The Computer Journal (1999), 42 (2), 100-111.

[54]. Hunter, D., Rafter, J., Ayers, D. and Vlist, E.V.D., Beginning XML.

United Kingdom, 2007.

[55]. Kolahi, S. and Lakshmanan, L.V.S., Exploiting conflict structures in

inconsistent databases, ADBIS'10 Proceedings of the 14th East

European Conference on Advances in Databases and Information

Systems, Novi Sad, Serbia, 2010, Springer-Verlag, pp. 320-335.

[56]. Kolahi, S. and Lakshmanan, L.V.S., On approximating optimum

repairs for functional dependency violations, ICDT '09 Proceedings

of the 12th International Conference on Database Theory St.

Petersburg, Russia, 2009, ACM, pp. 53-62.

BIBLIOGRAPHY

149

[57]. Kosek, J. and Nálevka, P., Relaxed: on the way towards true

validation of compound documents, Proceedings of the 15th

international conference on World Wide Web Edinburgh, Scotland,

2006, ACM pp. 427-436

[58]. Lampathaki, F., Mouzakitis, S., Gionis, G., Charabalidis, Y. and

Askounis, D., Business to bussiness interoperability: A current

review of XML data integration standards, Computer Standards &

Interfaces (2009), 31 (6), 1045-1055.

[59]. Lampathaki, F., Mouzakitis, S., Gionis, G., Charalabidis, Y. and

Askounis, D., Bussiness to Bussiness interoperability: A current

review of XML data integration standards, Computer Standards &

Interfaces (2008), 1045-1055.

[60]. Lee, M.-L., Ling, T.W. and Low, W.L., Designing Functional

Dependencies for XML, Proceedings of the 8th International

Conference on Extending Database Technology: Advances in

Database Technology, London, 2002, Springer-Verlag, pp. 124-141.

[61]. Li, X.-Y., Yuan, J.-S. and Kong, Y.-H., Mining Association Rules

from XML Data with Index Table, Proceedings of the Sixth

International Conference on Machine Learning and Cybernetics,

Hong Kong, 2007, pp. 3905 - 3910

[62]. Ling Feng and Dillon, T., Mining Interesting XML-Enabled

Association Rules with Templates, LNCS (2005), 3377, 66-88.

[63]. Liu, J., Vincent, M. and Liu, C., Local XML functional

dependencies, Proceedings of the 5th ACM international workshop

on Web information and data management, New Orleans, Louisiana,

USA, 2003, ACM, pp. 23-28.

[64]. Lv, T. and Yan, P., A Survey Study on XML Functional

Dependencies, The First International Symposium on Data, Privacy,

and E-Commerce, Chengdu, 2007, pp. 143 - 145

BIBLIOGRAPHY

150

[65]. Lv, T. and Yan, P., XML Constraint-tree-based Functional

Dependencies, ICEBE, Shanghai 2006, pp. 224-228.

[66]. Manolescu, I., Florescu, D. and Kossmann, D., Answering XML

Queries on Heterogeneous Data Sources, Proceedings of the 27th

International Conference on Very Large Data Bases, Roma, Italy,

2001, pp. 241-250.

[67]. Moro, M.M., Braganholo, V., Dorneles, C.F., Duarte, D., Galante,

R. and Mello, R.S., XML: some papers in a haystack, SIGMOD

Rec. (2009), 38 (2), 29-34.

[68]. Müller, H., Problems, methods, and challenges in comprehensive

data cleansing. Professoren des Inst. Für Informatik, 2005.

[69]. Ng, W., Repairing Inconsistent Merged XML Data, Database and

Expert Systems Applications, 2003.

[70]. Noël Novelli and Cicchetti, R., FUN: An Efficient Algorithm for

Mining Functional and Embedded Dependencies, International

Conference on Database Theory, London, 2001, pp. 189-203.

[71]. Pears, R., Koh, Y.S., Dobbie, G. and Yeap, W., Weighted

association rule mining via a graph based connectivity model,

Information Sciences (2013), 218 (1), 61-84.

[72]. Puhlmann, S., Naumann, F. and Eis, M., The Dirty XML Generator.

[73]. Rafiei, D., Moise, D.L. and Sun, D., Finding Syntactic Similarities

Between XML Documents, Proceedings of the 17th International

Conference on Database and Expert Systems Applications,

DEXA'06, 2006, pp. 512-516.

[74]. Slawomir Staworko and Chomicki, J., Validity-Sensitive Querying

of XML Databases, EDBT Workshops, 2006, pp. 164-177.

[75]. Tagarelli, A., Exploring dictionary-based semantic relatedness in

labeled tree data, Information Sciences (2013), 220 (20), 244-268.

BIBLIOGRAPHY

151

[76]. Tan, Z., Liu, C., Wang, W. and Shi, B., Consistent query answers

from virtually integrated XML data, Journal of Systems and

Software (2010), 83 (12), 2566-2578.

[77]. Tan, Z., Wang, W. and Shi, B., Extending Tree Automata to Obtain

Consistent Query Answer from Inconsistent XML Document

Proceedings of the First International Multi-Symposium on

Computer and Computational Sciences (IMSCCS'06), 2006, pp.

488-495.

[78]. Tan, Z. and Zhang, L., Repairing XML functional dependency

violations, Information Sciences (2011), 181 (23), 5304--5320.

[79]. Tan, Z., Zhang, Z., Wang, W. and Shi, B., Computing Repairs for

Inconsistent XML Document Using Chase. in Anvances in Data and

Web Management, Springer-Verlag 2007, 293-304.

[80]. Tan, Z., Zhang, Z., Wang, W. and Shi, B., Consistent data for

inconsistent XML document, Information and Software Technology

(2006), 49 (9-10), 497-459.

[81]. Trinh, T., Using Transversals for Discovering XML Functional

Dependencies, FoIKS, Pisa, Italy, 2008, Springer-Verlag pp. 199-

218.

[82]. Vincent, M.W., Liu, J. and Liu, C., Strong Functional

Ddependencies and Their Application to Normal Forms in XML,

ACM Transactions on Database Systems (2004), 29 (3), 445-462.

[83]. Vincent, M.W., Liu, J. and Mohania, M., The implication problem

for 'closest node' functional dependencies in complete XML

documents, J. Comput. Syst. Sci. (2012), 78 (4), 1045-1098.

[84]. Vo, B., Coenen, F. and Le, A.B., A new method for mining Frequent

Weighted Itemsets based on WIT-trees, Expert Syst. Appl. (2013),

40 (4), 1256-1264.

BIBLIOGRAPHY

152

[85]. Vo, L.T.H., Cao, J. and Rahayu, W., Discovering Conditional

Functional Dependencies in XML Data, Australasian Database

Conference, 2011, pp. 143-152.

[86]. Vo, L.T.H., Cao, J. and Rahayu, W., Structured Content-Based

Query Answer for Improving Information Quality Submitted to

World Wide Web (October, 2013).

[87]. Vo, L.T.H., Cao, J., Rahayu, W. and Nguyen, H.-Q., Structured

content-aware discovery for improving XML data consistency,

Inform. Sci. (2013), 248 (1), 168-190.

[88]. W3C, eXtensible Markup Language (XML), 2007.

 http://www.w3.org/xml

[89]. W3C, XML Path Language (XPath), 1999.

 http://www.w3.org/TR/xpath/

[90]. W3C, XML Schema, 2004.

 http://www.w3.org/TR/xmlschema-0/

[91]. Wahid, N. and Pardede, E., XML semantic constraint validation for

XML updates: A survey, Semantic Technology and Information

Retrieval Putrajaya, 2011, IEEE, pp. 57-63.

[92]. Wang, K., He, Y. and Han, J., Mining Frequent Itemsets Using

Support Constraints, VLDB '00 Proceedings of the 26th

International Conference on Very Large Data Bases Cairo, Egypt,

2000, Morgan Kaufmann Publishers Inc, pp. 43-52.

[93]. Wang, K. and Liu, H., Schema Discovery for Semistructured Data,

In Proceedings of the Third International Conference on Knowledge

Discovery and Data Mining, 1997, pp. 271--274.

[94]. Weis, M. and Naumann, F., Detecting Duplicate Objects in XML

Documents, Proceedings of the 2004 international workshop on

Information quality in information systems, Paris, France, 2004,

ACM, pp. 10-19.

BIBLIOGRAPHY

153

[95]. Weis, M. and Naumann, F., DogmatiX Tracks down Duplicates in

XML, Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, Baltimore, Maryland, 2005,

ACM pp. 431-442.

[96]. Wikimedia, kmwikibooks 2013.

 http://dumps.wikimedia.org/kmwikibooks

[97]. Wikipedia, Jaccard index.

 http://en.wikipedia.org/wiki/Jaccard_index

[98]. Wikipedia, Law of cosines.

 http://en.wikipedia.org/wiki/Law_of_cosines

[99]. Yakout, M., Elmagarmid, A.K., Neville, J. and Ouzzani, M., GDR: a

system for guided data repair, SIGMOD, 2010, pp. 1223-1226.

[100]. Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M. and Ilyas,

I.F., Guided data repair, Proc. VLDB Endow. (2011), 4 (5), 279-

289.

[101]. Yu, C. and Jagadish, H.V., Efficient Discovery of XML Data

Redundancies, Proceedings of the 32nd International Conference on

Very Large Databases, Seoul, Korea, 2006, VLDB Endowment pp.

103-114.

[102]. Yu, C. and Jagadish, H.V., XML Schema refinement through

redundancy detection and normalization, VLDB (2008), 17 (2), 203-

223.

[103]. Yu, C. and Popa, L., Constraint-based XML query rewriting for data

integration, SIGMOD '04, Paris, France, 2004, pp. 371-382.

