
ar
X

iv
:1

10
2.

54
49

v1
  [

cs
.F

L
] 

 2
6 

Fe
b 

20
11
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Abstract

In this paper we study the equivalence of nondeterministic automata pairing the concept of a bisimulation with the recent-
ly introduced concept of a uniform relation. In this symbiosis, uniform relations serve as equivalence relations which
relate states of two possibly different nondeterministic automata, and bisimulations ensure compatibility with the tran-
sitions, initial and terminal states of these automata. We define six types of bisimulations, but due to the duality we
discuss three of them: forward, backward-forward, and weak forward bisimulations. For each od these three types of
bisimulations we provide a procedure which decides whether there is a bisimulation of this type between two automata,
and when it exists, the same procedure computes the greatest one. We also show that there is a uniform forward bisim-
ulation between two automata if and only if the factor automata with respect to the greatest forward bisimulation
equivalences on these automata are isomorphic. We prove a similar theorem for weak forward bisimulations, using the
concept of a weak forward isomorphism instead of an isomorphism. We also give examples that explain the relationships
between the considered types of bisimulations.

Key words: Nondeterministic automaton; Equivalence of automata; State reduction; Factor automaton; Uniform
relation; Forward bisimulation; Backward-forward bisimulation; Weak forward bisimulation;

1. Introduction

One of the most important problems of automata theory is to determine whether two given automata are
equivalent, what usually means to determine whether their behaviour is identical. In the context of deter-
ministic or nondeterministic automata the behaviour of an automaton is understood to be the language
that is recognized by it, and two automata are considered equivalent, or more precisely language-equivalent, if
they recognize the same language. For deterministic finite automata the equivalence problem is solvable in
polynomial time, but for nondeterministic finite automata it is computationally hard (PSPACE-complete
[23, 51, 53]). Another important issue is to express the language-equivalence of two automata as a relation
between their states, if such relationship exists, or find some kind of relations between states which would
imply the language-equivalence. The language-equivalence of two deterministic automata can be expressed
in terms of relationships between their states, but in the case of nondeterministic automata the problem is
more complicated.

A widely-used notion of “equivalence” between states of automata is that of bisimulation. Bisimulations
have been introduced by Milner [41] and Park [45] in computer science, where they have been used to model
equivalence between various systems, as well as to reduce the number of states of these systems. Roughly
at the same time they have been also discovered in some areas of mathematics, e.g., in modal logic and set
theory. They are employed today in a many areas of computer science, such as functional languages, object-
oriented languages, types, data types, domains, databases, compiler optimizations, program analysis,
verification tools, etc. For more information about bisimulations we refer to [1, 13, 20, 24, 40, 42, 43, 47, 50].
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The most common structures on which bisimulations have been studied are labelled transition systems,
i.e., labelled directed graphs, which are essentially nondeterministic automata without fixed initial and ter-
minal states. A definition of bisimulations for nondeterministic automata that takes into account initial and
terminal states was given by Kozen in [38]. In numerous papers dealing with bisimulations mostly one
type of bisimulations has been studied, called just bisimulations, like in the Kozen’s book [38], or strong
bisimulations, like in [42, 43, 47]. In this paper we differentiate two types of simulations, forward and back-
ward simulations. Considering that there are four cases when a relation R and its inverse R−1 are forward or
backward simulations, we distinguish four types of bisimulations. We define two homotypic bisimulations,
forward and backward bisimulations, where both R and R−1 are forward or backward simulations, and two
heterotypic bisimulations, backward-forward and forward-backward bisimulations, where R is a backward
and R−1 a forward simulation or vice versa. Distinction between forward and backward simulations, and
forward and backward bisimulations, has been also made, for instance, in [9, 25, 40] (for various kinds
of automata), but less or more these concepts differ from the concepts having the same name which are
considered here. More similar to our concepts of forward and backward simulations and bisimulations are
those studied in [8], and in [26, 27] (for tree automata).

It is worth noting that forward and backward bisimulations, and backward-forward and forward-back-
ward bisimulations, are dual concepts, i.e., backward and forward-backward bisimulations on a nondeter-
ministic automaton are forward and backward-forward bisimulations on its reverse automaton. This means
that for any universally valid statement on forward or backward-forward bisimulations there is the corre-
sponding universally valid statement on backward and forward-backward bisimulations. For that reason,
our article deals only with forward and backward-forward bisimulations. In general, none of forward and
backward bisimulations or backward-forward and forward-backward bisimulations can be considered in
practical applications better than the other. For example, under the names right and left invariant equiva-
lences, forward and backward bisimulation equivalences have been used by Ilie, Yu and others [31–34] in
reduction of the number of states of nondeterministic automata. It was shown that there are cases where
one of them better reduces the number of states, but there are also other cases where the another one gives
a better reduction. There are also cases where each of them individually causes a polynomial reduction of
the number of states, but alternately using both types of equivalences the number of states can be reduced
exponentially (cf. [32, Section 11]). It is also worth of mention that backward bisimulation equivalences
were successfully applied in [52] in the conflict analysis of discrete event systems, while it was shown that
forward bisimulation equivalences can not be used for this purpose.

As we already said, the main role of bisimulations is to model equivalence between the states of the same
or different automata. However, bisimulations provide compatibility with the transitions, initial and termi-
nal states of automata, but in general they do not behave like equivalences. A kind of relations which can be
conceived as equivalences which relate elements of two possibly different sets appeared recently in [16] in
the fuzzy framework. Here we consider the crisp version of these relations, the so-called uniform relations.
The main aim of the paper is to show that the conjunction of two concepts, uniform relations and bisimula-
tions, provides a very powerful tool in the study of equivalence between nondeterministic automata, where
uniform relations serve as equivalence relations which relate states of two nondeterministic automata, and
bisimulations ensure compatibility with the transitions, initial and terminal states of these automata. Our
second goal is to employ the calculus of relations as a tool that will show oneself as very effective in the study
of bisimulations. And third, we introduce and study a more general type of bisimulations, the so-called
weak bisimulations. We show that equivalence of automata determined by weak bisimulations is closer to the
language equivalence than equivalence determined by bisimulations, and we also show that they produce
smaller automata than bisimulations when they are used in the the reduction of the number of states.

Our main results are the following. The main concepts and results from [16] concerning uniform fuzzy
relations are translated to the case of ordinary relations, and besides, the proofs and some statements are
simplified (cf. Theorems 3.1, 3.2 and 3.4). We also define the concept of the factor automaton with respect to
an arbitrary equivalence, and prove two theorems that can be conceived as a version, for nondeterministic
automata, of two well-known theorems of universal algebra: Second Isomorphism Theorem and Corre-
spondence Theorem (cf. Theorems 4.1 and 4.2). Then we study the general properties of forward and back-
ward-forward bisimulations. In cases where there is at least one forward or backward-forward bisimulation,
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we prove the existence of the greatest one, and we also show that the greatest forward bisimulation is a
partial uniform relation (cf. Theorems 5.5 and 5.6). An algorithm that decides whether there is a forward
bisimulation between nondeterministic automata was provided by Kozen in [38]. When there is a forward
bisimulation, this algorithm also computes the greatest one. Here we give another version of this algorithm,
and we also provide an analogous algorithm for backward-forward bisimulations (Theorems 6.3 and 6.5).

Given two automataA andB and a uniform relationϕ ⊆ A×B between their sets of states, we show that
ϕ is a forward bisimulation if and only if both its kernel E

ϕ

A
and co-kernel E

ϕ
B

are forward bisimulation equi-
valences onA and B, and the function ϕ̃ induced in a natural way by ϕ is an isomorphism between factor
automataA/E

ϕ

A
and B/E

ϕ

B
(Theorem 7.2). Also, given two forward bisimulation equivalences E onA and F

on B, we show that there is a uniform forward bisimulation betweenA and B whose kernel and co-kernel
are E and F if and only if the factor automataA/E and B/F are isomorphic (Theorem 7.3). Two automataA
and B are defined to be FB-equivalent if there is a complete and surjective forward bisimulation between
A and B, which is equivalent to the existence of a uniform forward bisimulation between A and B. We
prove thatA andB are FB-equivalent if and only if the factor automata with respect to the greatest forward
bisimulation equivalences onA and B are isomorphic (cf. Theorem 8.2). As a consequence we obtain that
the factor automaton with respect to the greatest forward bisimulation equivalence on an automatonA is
the unique (up to an isomorphism) minimal automaton in the class of all automata which are FB-equivalent
to A. Let us note that similar results were proved in [38], under the assumption that the automaton A is
accessible, and in [11].

Theorems similar to Theorems 7.2 and 7.3 are proved for backward-forward bisimulations (Theorems 9.1
and 9.2). The only difference is that the kernel of a backward-forward bisimulation is a forward bisimulation
equivalence, and the co-kernel is a backward bisimulation equivalence. This difference is the reason why
we can not use backward-forward bisimulations to define an equivalence relation between automata, but
nevertheless, the existence of a backward-forwardbisimulation between two automata implies the language
equivalence between them. As a tool for providing structural characterization of equivalence, backward-
forward bisimulations were used in [6], and in [2–4, 9, 21, 22, 39, 49] within the context of weighted automata
(under different names). We also prove that a function between the sets of states of two automata is a forward
bisimulation if and only if it is a backward-forward bisimulation (Theorem 9.3).

Then we introduce and study two new types of bisimulations, weak forward and weak backward bisim-
ulations, which are more general than forward and backward bisimulations and determine two types of
structural equivalence which are closer to the language-equivalence than the FB- and BB-equivalence. We
give a way to decide whether there is a weak forward bisimulation between two automata, and if it exists,
we provide a way to construct the greatest one (Theorem 10.6). Given two automataA andB and a uniform
relation ϕ ⊆ A × B between their sets of states, we show that ϕ is a weak forward bisimulation if and
only if both E

ϕ

A
and E

ϕ

B
are weak forward bisimulation equivalences onA and B, and ϕ̃ is a weak forward

isomorphism between factor automataA/E
ϕ

A
andB/E

ϕ
B

(Theorem 11.4). We also characterize uniform weak
forward bisimulations between automata A and B in terms of isomorphism between the reverse Nerode
automata of A and B (Theorem 11.8). Finally, we study weak forward bisimulation equivalence between
automata and we give an example of automata which are weak forward bisimulation equivalent but not
forward bisimulation equivalent. It should be noted that our concepts of a weak forward bisimulation and a
weak backward bisimulation differ from the concept of a weak bisimulation studied in the concurrency
theory.

The paper is organized as follows. In Section 2 we give definitions of basic notions and notation con-
cerning relations and relational calculus, in Section 3 we talk about uniform relations, and in Section 4 we
define basic notions and notation concerning nondeterministic automata, introduce factor automata and
prove some of their fundamental properties. In Section 5 we define two types of simulations and four types
of bisimulations and discuss the main properties of forward and backward-forward bisimulations, and in
Section 6 we give procedures for deciding whether there are forward and backward-forward bisimulations
between given automata, and whenever they exist, our procedures compute the greatest ones. Section 7 pro-
vides characterization results for uniform forward bisimulations, and in Section 8 we define FB-equivalence
between automata and prove the main characterization result for FB-equivalent automata. Section 9 discuss
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basic properties of backward-forward bisimulations and points to similarities and fundamental differences
between them and forward bisimulations. Then in Section 10 we introduce weak forward and weak back-
ward bisimulations and explore some of their general properties. In Section 11 we deal with uniform weak
forward bisimulations, and in Section 12 we study WFB-equivalence of automata.

It is worth noting that a comprehensive overview of various concepts on deterministic, nondeterministic,
fuzzy, and weighted automata, which are related to bisimulations, as well as to the algebraic concepts of a
homomorphism, congruence, and relational morphism was given in the penultimate section of [17]. It was
shown that all these concepts amount either to forward or to backward-forward bisimulations.

2. Preliminaries

Let A and B be non-empty sets. Any subset R ⊆ A × B is called a relation from A to B, and equality,
inclusion, union and intersection of relations from A to B are defined as for subsets of A × B. The inverse of
a relation R ⊆ A × B is a relation R−1 ⊆ B ×A defined by (b, a) ∈ R−1 if and only if (a, b) ∈ R, for all a ∈ A and
b ∈ B. If A = B, that is, if R ⊆ A×A, then R is called a relation on A. For a relationϕ ⊆ A×B we define a subset
Domϕ of A and Imϕ of B by Domϕ = {a ∈ A | (∃b ∈ B) (a, b) ∈ ϕ} and Imϕ = {b ∈ B | (∃a ∈ A) (a, b) ∈ ϕ}. We
call Domϕ the domain of ϕ and Imϕ the image of ϕ.

For non-empty sets A, B and C, and relations R ⊆ A × B and S ⊆ B × C, the composition of R and S is a
relation R ◦ S ⊆ A × C defined by

(a, c) ∈ (R ◦ S) ⇔ (∃b ∈ B)
(
(a, b) ∈ R ∧ (b, c) ∈ S

)
, (1)

for all a ∈ A and c ∈ C. For non-empty sets A and B, a relation R ⊆ A × B, and subsets α ⊆ A and β ⊆ B, we
define subsets α ◦ R ⊆ B and R ◦ β ⊆ A by

b ∈ α ◦ R ⇔ (∃a ∈ A)
(
a ∈ α ∧ (a, b) ∈ R

)
, a ∈ R ◦ β ⇔ (∃b ∈ B)

(
(a, b) ∈ R ∧ b ∈ β

)
, (2)

for all a ∈ A and b ∈ B. To simplify our notation, for a non-empty set A and subsets α, β ⊆ A we will write

α ◦ β =


1 if α ∩ β , ∅,

0 if α ∩ β = ∅,
(3)

i.e., α ◦ β is the truth value of the statement ”α ∩ β , ∅”.
For non-empty sets A, B, C and D, arbitrary relations R ⊆ A × B, S, S1, S2, Si ⊆ B × C, where i ∈ I, and

T ⊆ C ×D, and arbitrary arbitrary subsets α ⊆ A, β ⊆ B, and γ ⊆ C, the following is true:

(R ◦ S) ◦ T = R ◦ (S ◦ T), (4)

S1 ⊆ S2 implies R ◦ S1 ⊆ R ◦ S2 and S1 ◦ T ⊆ S2 ◦ T, (5)

R ◦
(⋃

i∈I

Si

)
=
⋃

i∈I

(R ◦ Si),
(⋃

i∈I

Si

)
◦ T =

⋃

i∈I

(Si ◦ T) (6)

(α ◦ R) ◦ S = α ◦ (R ◦ S), (α ◦ R) ◦ β = α ◦ (R ◦ β), (R ◦ S) ◦ γ = R ◦ (S ◦ γ), (7)

(R ◦ S)−1 = S−1 ◦ R−1, (8)

S1 ⊆ S2 implies S−1
1 ⊆ S−1

2 , (9)

α ◦ R = R−1 ◦ α, R ◦ β = β ◦ R−1. (10)

Therefore, parentheses in (4) and (7) can be omitted.
Note that, despite the notation, the inverse relation R−1 is not an inverse of the relation R ⊆ A × B in the

sense of composition of relations, i.e., R◦R−1 and R−1 ◦R are not the equality relations on A and B in general.
Let us also note that if A, B and C are finite sets with |A| = k, |B| = m and |C| = n, then R and S can be treated
as k ×m and m× n Boolean matrices, and R ◦ S is their matrix product. Moreover, if we consider α and β as
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1 × k and 1 × m Boolean matrices, i.e., Boolean vectors of length k and m, then α ◦ R can be treated as the
matrix product of α and R, R◦β as the matrix product of R and βt (the transpose of β), and α◦β as the scalar
product of vectors α and β.

Recall that an equivalence on a set A is any reflexive, symmetric and transitive relation on A. Let E be an
equivalence on a set A. By Ea we denote the equivalence class of an element a ∈ A with respect to E, i.e.,
Ea = {b ∈ A | (a, b) ∈ E}. The set of all equivalence classes of E is denoted by A/E and called the factor set of A
with respect to E. By E♮ we denote the natural function of A onto A/E, i.e., the function given by E♮(a) = Ea,
for every a ∈ A.

3. Uniform relations

Let A and B be non-empty sets. A relation ϕ ⊆ A × B is called complete if for any a ∈ A there exists b ∈ B
such that (a, b) ∈ ϕ, and surjective if for any b ∈ B there exists a ∈ A such that (a, b) ∈ ϕ. Let us note that ϕ is
complete if and only if there exists a function f : A → B such that (a, f (a)) ∈ ϕ, for every a ∈ A. Let us call
a function f with this property a functional description of ϕ, and let us denote by FD(ϕ) the set of all such
functions. For an equivalence F on B, a function f : A→ B is called F-surjective if for every b ∈ B there exists
a ∈ A such that ( f (a), b) ∈ F. In other words, we have that f is F-surjective if and only if f ◦ F♮ : A→ B/F is a
surjective function.

For an arbitrary relation ϕ ⊆ A × B we define equivalences E
ϕ

A
on A and E

ϕ
B

on B in the following way:
for all a1, a2 ∈ A and b1, b2 ∈ B we set

(a1, a2) ∈ E
ϕ

A
⇔ (∀b ∈ B)( (a1, b) ∈ ϕ⇔ (a2, b) ∈ ϕ ), (11)

(b1, b2) ∈ E
ϕ

B
⇔ (∀a ∈ A)( (a, b1) ∈ ϕ⇔ (a, b2) ∈ ϕ ). (12)

We call E
ϕ

A
the kernel, and E

ϕ

B
the cokernel of ϕ.

Let A and B be non-empty sets. A partial uniform relation from A to B is a relation ϕ ⊆ A × B which
satisfies ϕ ◦ ϕ−1 ◦ ϕ ⊆ ϕ. Since the opposite inclusion always holds, ϕ is a partial uniform relation if and
only if ϕ ◦ ϕ−1 ◦ ϕ = ϕ. A partial uniform relation which is complete and surjective is called a uniform
relation. Let us notice that a partial uniform relation ϕ ⊆ A × B is a uniform relation from A′ to B′, where
A′ = {a ∈ A | (∃b ∈ B) (a, b) ∈ ϕ} (the domain of ϕ) and B′ = {b ∈ B | (∃a ∈ A) (a, b) ∈ ϕ} (the image of ϕ).

Partial uniform relations and uniform relations are crisp analogues of partial fuzzy functions and uni-
form fuzzy relations, which were studied in [16, 29, 37]. The next two theorems can be derived from more
general theorems proved in the fuzzy framework (Theorems 3.1 and 3.3 [16]), but for the sake of complete-
ness here we give another immediate proofs.

Theorem 3.1. Let A and B be non-empty sets and let ϕ ⊆ A × B be a relation. Then the following conditions are
equivalent:

(i) ϕ is a partial uniform relation;

(ii) ϕ−1 is a partial uniform relation;

(iii) ϕ ◦ ϕ−1 ⊆ E
ϕ

A
;

(iv) ϕ−1 ◦ ϕ ⊆ E
ϕ

B
.

Proof. (i)⇒(iii). Let (a1, a2) ∈ ϕ ◦ϕ−1. Then (a1, b0) ∈ ϕ and (b0, a2) ∈ ϕ−1, for some b0 ∈ B, and for every b ∈ B
we have that (a1, b) ∈ ϕ implies (a2, b) ∈ ϕ ◦ ϕ−1 ◦ ϕ ⊆ ϕ, and likewise, (a2, b) ∈ ϕ implies (a1, b) ∈ ϕ. Thus,
(a1, a2) ∈ E

ϕ

A
.

(iii)⇒(i). Let (a, b) ∈ ϕ ◦ ϕ−1 ◦ ϕ. Then there exist a′ ∈ A and b′ ∈ B such that (a, b′) ∈ ϕ, (b′, a′) ∈ ϕ−1

and (a′, b) ∈ ϕ, whence (a, a′) ∈ ϕ ◦ ϕ−1 ⊆ E
ϕ

A
, and by (a′, b) ∈ ϕ and (11) we obtain (a, b) ∈ ϕ. Therefore,

ϕ ◦ ϕ−1 ◦ ϕ ⊆ ϕ.
Similarly we prove (i)⇔(iv), whereas equivalence (i)⇔(ii) is obvious.
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If ϕ ⊆ A × B is a partial uniform relation, then it can be easily verified that ϕ ◦ ϕ−1 and ϕ−1 ◦ ϕ are
symmetric and transitive relations, but they are not necessary reflexive. Namely, ϕ ◦ ϕ−1 is reflexive if and
only if ϕ is complete, and ϕ−1 ◦ ϕ is reflexive if and only if ϕ is surjective. Therefore, if ϕ is a uniform
relation, then both ϕ ◦ ϕ−1 and ϕ−1 ◦ ϕ are equivalence relations. Moreover, the following is true.

Theorem 3.2. Let A and B be non-empty sets and let ϕ ⊆ A × B be a relation. Then the following conditions are
equivalent:

(i) ϕ is a uniform relation;

(ii) ϕ−1 is a uniform relation;

(iii) ϕ is surjective and ϕ ◦ ϕ−1 = E
ϕ

A
;

(iv) ϕ is complete and ϕ−1 ◦ ϕ = E
ϕ

B
;

(v) ϕ is complete and for all f ∈ FD(ϕ), a ∈ A and b ∈ B, f is E
ϕ

B
-surjective and

(a, b) ∈ ϕ ⇔ ( f (a), b) ∈ E
ϕ

B
; (13)

(vi) ϕ is complete and for all f ∈ FD(ϕ) and a1, a2 ∈ A, f is E
ϕ

B
-surjective and

(a1, f (a2)) ∈ ϕ ⇔ (a1, a2) ∈ E
ϕ

A
. (14)

Proof. (i)⇔(ii). This equivalence is obvious.
(i)⇒(iii). According to Theorem 3.1, we have that ϕ ◦ ϕ−1 ⊆ E

ϕ

A
.

Let (a1, a2) ∈ E
ϕ

A
. Since ϕ is complete, there exists b ∈ B such that (a1, b) ∈ ϕ, and (11) yields (a2, b) ∈ ϕ, so

we obtain that (a1, a2) ∈ ϕ ◦ ϕ−1. Therefore, E
ϕ

A
⊆ ϕ ◦ ϕ−1.

(iii)⇒(i). By Theorem 3.1, ϕ is a partial uniform relation, by the assumption we have that it is surjective,
and by reflexivity of ϕ ◦ ϕ−1 it follows that it is complete.

(ii)⇔(iv). This equivalence can be proved in the same way as (i)⇔(iii).
(iv)⇒(v). Let f ∈ FD(ϕ), a ∈ A and b ∈ B. If (a, b) ∈ ϕ, then by this and by (a, f (a)) ∈ ϕ it follows

( f (a), b) ∈ ϕ−1 ◦ ϕ = E
ϕ

B
. On the other hand, if ( f (a), b) ∈ E

ϕ

B
= ϕ−1 ◦ ϕ, then by this and by (a, f (a)) ∈ ϕ it

follows (a, b) ∈ ϕ ◦ ϕ−1 ◦ ϕ = ϕ. Therefore, (13) holds. By (13) and the surjectivity of ϕ it also follows that f
is E

ϕ
B

-surjective.

(v)⇒(iv). By E
ϕ
B

-surjectivity of f and (13) we obtain that ϕ is surjective. Let (b1, b2) ∈ E
ϕ
B

. Then there

exists a ∈ A such that ( f (a), b1) ∈ E
ϕ

B
, and then ( f (a), b2) ∈ E

ϕ

B
. Now by (13) it follows that (a, b1) ∈ ϕ and

(a, b2) ∈ ϕ, which yields (b1, b2) ∈ ϕ−1 ◦ ϕ.
Conversely, let (b1, b2) ∈ ϕ−1 ◦ ϕ. Then there exists a ∈ A such that (a, b1) ∈ ϕ and (a, b2) ∈ ϕ, and by (13)

we obtain that ( f (a), b1) ∈ E
ϕ

B
and ( f (a), b2) ∈ E

ϕ

B
, so (b1, b2) ∈ E

ϕ

B
.

(iii)⇔(vi). This equivalence can be proved similarly as (iv)⇔(v).

Remark 3.3. Let A and B be non-empty sets and let ϕ be a partial uniform relation from A to B. Then ϕ is a
uniform relation from Domϕ to Imϕ, and for that reason we introduced the name partial uniform relation.

It is easy to check that every equivalence relation and every surjective function are uniform relations,
and every function is a partially uniform relation. This confirms our remark given in the introduction that
uniform relations are common generalization of (surjective) functions and equivalence relations.

Theorem 3.4. Let A and B be non-empty sets, let E be an equivalence on A and F an equivalence on B. Then there
exists a uniform relation ϕ ⊆ A × B such that E = E

ϕ

A
and F = E

ϕ

B
if and only if there exists a bijective function

φ : A/E→ B/F.
This bijective function can be represented as φ = ϕ̃, where ϕ̃ : A/E→ B/F is a function given by

ϕ̃(Ea) = F f (a), for any a ∈ A and f ∈ FD(ϕ). (15)

We also have that (ϕ̃)−1 = ϕ̃−1.
6



Proof. Let ϕ ⊆ A × B be a uniform relation such that E = E
ϕ

A
and F = E

ϕ
B

.
First we show that ϕ̃ : A/E→ B/F given by (15) is a well-defined function, i.e., that it does not depend

on the choice of f ∈ FD(ϕ) and a ∈ A. Indeed, according to (13) and (14), for any a1, a2 ∈ A and f1, f2 ∈ FD(ϕ)
we have that

Ea1
= Ea2

⇔ (a1, a2) ∈ E ⇔ (a1, f2(a2)) ∈ ϕ ⇔ ( f1(a1), f2(a2)) ∈ F ⇔ F f1(a1) = F f2(a2).

By this it follows that ϕ̃ is well-defined, and also, that it is injective. Next, by Theorem 3.2 (v) and (vi), each
f ∈ FD(ϕ) is F-surjective, so we have that ϕ̃ is surjective. Therefore, ϕ̃ is a bijective function.

Conversely, let φ : A/E→ B/F be a bijective function. Let us define ϕ ⊆ A × B by

(a, b) ∈ ϕ ⇔ φ(Ea) = Fb, for all a ∈ A and b ∈ B. (16)

It is clear thatϕ is complete and surjective. If (a, b) ∈ ϕ◦ϕ−1 ◦ϕ, then (a, b′), (a′, b′), (a′, b) ∈ ϕ, for some a′ ∈ A
and b′ ∈ B, so φ(Ee) = Fb′ = φ(Ea′) = Fb, whence (a, b) ∈ ϕ. Thus, ϕ ◦ ϕ−1 ◦ ϕ ⊆ ϕ, and since the opposite
inclusion is evident, we conclude that ϕ is a uniform relation.

Next, according to (11), for arbitrary a1, a2 ∈ A we have that

(a1, a2) ∈ E
ϕ

A
⇔ (∀b ∈ B)

(
(a1, b) ∈ ϕ⇔ (a2, b) ∈ ϕ

)
⇔ (∀b ∈ B) φ(Ea1

) = Fb ⇔ φ(Ea2
) = Fb

⇔ φ(Ea1
) = φ(Ea2

) ⇔ Ea1
= Ea2

⇔ (a1, a2) ∈ E,

and therefore, E
ϕ

A
= E. Likewise, E

ϕ

B
= F.

Finally, for every a ∈ A and f ∈ FD(ϕ), by (a, f (a)) ∈ ϕ and (16) it follows that φ(Ea) = F f (a) = ϕ̃(Ea), so

φ = ϕ̃. It can be easily verified that (ϕ̃)−1 = ϕ̃−1.

Let us note that the bijective function ϕ̃ from Theorem 3.4 determines some kind of “uniformity” between
partitions which correspond to the equivalences E and F, for what reason we use the name uniform relation.

4. Nondeterministic automata and factor automata

Throughout this paper, if not noted otherwise, let X be a finite non-empty set, called an alphabet (or an
input alphabet). We define a nondeterministic automaton over the alphabet X as a quadrupleA = (A, δA, σA, τA),
where A is a non-empty set, called the set of states, δA ⊆ A × X × A is a ternary relation, called the transition
relation, and σA and τA are subsets of A, called respectively the sets of initial states and terminal states. For each
x ∈ X, a binary relation δA

x ⊆ A × A defined by

(a, b) ∈ δA
x ⇔ (a, x, b) ∈ δA, for all a, b ∈ A,

is also called the transition relation. For any word u ∈ X∗, where X∗ is the free monoid over X, the extended
transition relation δA

u ⊆ A × A is defined inductively as follows: for the empty word ε ∈ X∗ we define δA
ε to

be the equality relation, and for all u, v ∈ X∗ we set δA
uv = δ

A
u ◦ δ

A
v . If we disregard initial and terminal states,

then the pair A = (A, δA) is called a labelled transition system over X (cf. [1, 43]). Typically, the set of states
and the input alphabet of a nondeterministic automaton are assumed to be finite. Such assumption is not
necessary here, and we will assume that the input alphabet is finite, but from the methodological reasons,
in some cases we will allow the set of states to be infinite. A nondeterministic automaton whose set of states
is finite will be called a nondeterministic finite automaton. If σA = {a0}, for some a0 ∈ A, and the relation δA is a
function from A×X to A, i.e., for every (a, x) ∈ A×X there is a unique a′ ∈ A such that (a, x, a′) ∈ δA, thenA
is called a deterministic automaton, and we writeA = (A, δA, a0, τA). In this case, the expressions (a, x, a′) ∈ δA

and δA(a, x) = a′ will have the same meaning. We also have that δA
u is a function from A to A, for every

u ∈ X∗, and we will often write δA
u (a) = a′ instead of (a, a′) ∈ δA

u . For the sake of simplicity, in the rest of the
paper we will say just automaton instead of nondeterministic automaton.
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The reverse automaton of an automatonA = (A, δA, σA, τA) is an automaton Ā = (A, δ̄A, σ̄A, τ̄A) whose tran-
sition relation and sets of initial and terminal states are defined by δ̄A(a, x, b) = δA(b, x, a), for all a, b ∈ A and
x ∈ X, σ̄A = τA and τ̄A = σA. In other words, δ̄A

x = (δA
x )−1, for every x ∈ X.

An automaton B = (B, δB, σB, τB) is a subatomaton of an automatonA = (A, δA, σA, τA) if B ⊆ A, δB
x is the

restriction of δA
x to B×B, for each x ∈ X, and σB and τB are restrictions of σA and τA to B, i.e., δB

x = δ
A
x ∩B×B,

σB = σA ∩ B, and τB = τA ∩ B.
LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata. A function φ : A→ B is an isomorphism if it is

bijective and for all a, a1, a2 ∈ A and x ∈ X the following is true:

(a1, a2) ∈ δA
x ⇔ (φ(a1), φ(a2)) ∈ δB

x , (17)

a ∈ σA ⇔ φ(a) ∈ σB, (18)

a ∈ τA ⇔ φ(a) ∈ τB. (19)

If there exists an isomorphism betweenA and B, then we say that A and B are isomorphic automata, and
we writeA � B. In other words, two automata are isomorphic if in essence they have the same structure, if
they differ eachother only in notation of their states. In particular, ifA = (A, δA, a0, τA) andB = (B, δB, b0, τB)
are deterministic automata, then a bijective function φ : A→ B is an isomorphism if and only if it satisfies
φ(a0) = b0, (19) and

φ(δA(a, x)) = δB(φ(a), x), (20)

for all x ∈ x and a ∈ A.
It is easy to check that composition of two isomorphisms of automata is also an isomorphism, and

thus, for arbitrary automata A, B and C, A � B and B � C implies A � C. A function φ : A → B
which is injective and it satisfies (17)–(19) is called a monomorphism fromA into B. It is easy to check that
φ : A→ B is a monomorphism fromA toB if and only if it is an isomorphism fromA to the subautomaton
C = (C, δC, σC, τC) of B, where C = Imφ.

LetA = (A, δA, σA, τA) be an automaton. The language recognized byA, denoted by L(A), is a language in
X∗ defined as follows: for any u ∈ X∗,

u ∈ L(A) ⇔ (∃a1, a2 ∈ A)
(
a1 ∈ σ

A ∧ (a1, a2) ∈ δA
u ∧ a2 ∈ τ

A
)
, (21)

In notation from Section 2 (equations (1)–(3)), the equation (21) ca be also written as

u ∈ L(A) ⇔ (σA ◦ δA
u ) ∩ τA

, ∅ ⇔ σA ∩ (δA
u ◦ τ

A) , ∅ ⇔ σA ◦ δA
u ◦ τ

A = 1. (22)

Two automataA and B are said to be language-equivalent, or just equivalent, if they recognize the same lan-
guage, i.e., if L(A) = L(B).

LetA = (A, δA, σA, τA) be an automaton and let E be an equivalence on A. Without any restriction on the
equivalence E, we can define a transition relation δA/E ⊆ A/E × X × A/E by

(Ea1
, x,Ea2

) ∈ δA/E ⇔ (∃a′1, a
′
2 ∈ A)

(
(a1, a

′
1) ∈ E ∧ (a′1, x, a

′
2) ∈ δA ∧ (a′2, a2) ∈ E

)

⇔ (a1, a2) ∈ E ◦ δx ◦ E,
(23)

for all a1, a2 ∈ A and x ∈ X, and we can also define sets σA/E, τA/E ⊆ A/E by

Ea ∈ σ
A/E ⇔ (∃a′ ∈ A)

(
a′ ∈ σA ∧ (a′, a) ∈ E

)
⇔ a ∈ σA ◦ E, (24)

Ea ∈ τ
A/E ⇔ (∃a′ ∈ A)

(
(a, a′) ∈ E ∧ a′ ∈ τA

)
⇔ a ∈ E ◦ τA, (25)

for every a ∈ A. Evidently, δA/E, σA/E and τA/E are well-defined, and A/E = (A/E, δA/E, σA/E, τA/E) is a
nondeterministic automaton, called the factor automaton ofA w.r.t. E.

The next theorems can be conceived as a version, for nondeterministic automata, of two well-known the-
orems from universal algebra: Second Isomorphism Theorem and Correspondence Theorem (cf. [10, II.§6]).
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Theorem 4.1. LetA = (A, δA, σA, τA) be an automaton, and let E and F be equivalences on A such that E ⊆ F.
Then a relation F/E on A/E defined by

(Ea1
,Ea2

) ∈ F/E ⇔ (a1, a2) ∈ F, for all a1, a2 ∈ A, (26)

is an equivalence on A/E, and the factor automata (A/E)/(F/E) andA/F are isomorphic.

Proof. Consider a1, a′1, a2, a′2 ∈ A such that Ea1
= Ea′

1
and Ea2

= Ea′
2
, i.e., (a1, a′1), (a2, a′2) ∈ E. Then we have that

(a1, a′1), (a2, a′2) ∈ F, so (a1, a2) ∈ F if and only if (a′
1
, a′2) ∈ F. Therefore, F/E is a well-defined relation. It is easy

to check that F/E is an equivalence.
For the sake of simplicity set F/E = P, and define a function φ : A/F→ (A/E)/P by

φ(Fa) = PEa
, for every a ∈ A.

For arbitrary a1, a2 ∈ A we have that

Fa1
= Fa2

⇔ (a1, a2) ∈ F ⇔ (Ea1
,Ea2

) ∈ P ⇔ PEa1
= PEa2

⇔ φ(Fa1
) = φ(Fa2

),

and hence, φ is a well-defined and injective function. It is clear that φ is also a surjective function. Therefore,
φ is a bijective function of A/F onto (A/E)/P.

Since E ⊆ F is equivalent to E ◦ F = F ◦ E = F, for arbitrary a1, a2 ∈ A and x ∈ X we have that

(φ(Fa1
), φ(Fa2

)) ∈ δ(A/E)/P
x ⇔ (PEa1

,PEa2
) ∈ δ(A/E)/P

x ⇔ (Ea1
,Ea2

) ∈ (P ◦ δA/E
x ◦ P)

⇔ (∃a3, a4 ∈ A)
(
(Ea1

,Ea3
) ∈ P ∧ (Ea3

,Ea4
) ∈ δA/E

x ∧ (Ea4
,Ea2

) ∈ P
)

⇔ (∃a3, a4 ∈ A)
(
(a1, a3) ∈ F ∧ (a3, a4) ∈ (E ◦ δA

x ◦ E) ∧ (a4, a2) ∈ F
)

⇔ (a1, a2) ∈ F ◦ E ◦ δA
x ◦ E ◦ F = F ◦ δA

x ◦ F

⇔ (Fa1
, Fa2

) ∈ δA/F
x .

Moreover, for each a ∈ A we have that

φ(Fa) ∈ σ(A/E)/P ⇔ PEa
∈ σ(A/E)/P ⇔ Ea ∈ σ

A/E ◦ P

⇔ (∃a′ ∈ A)
(
Ea′ ∈ σ

A/E ∧ (Ea′ ,Ea) ∈ P
)
⇔ (∃a′ ∈ A)

(
a′ ∈ σA ◦ E ∧ (a′, a) ∈ F

)

⇔ a ∈ σA ◦ E ◦ F ⇔ a ∈ σA ◦ F ⇔ Fa ∈ σ
A/F,

and similarly, φ(Fa) ∈ τ(A/E)/P ⇔ Fa ∈ τA/F.
Hence, φ is an isomorphism of automataA/F and (A/E)/(F/E).

Theorem 4.2. LetA = (A, δA, σA, τA) be an automaton and E an equivalence on A.
The function Φ : EE(A)→ E(A/E), where EE(A) = {F ∈ E(A) | E ⊆ F}, defined by

Φ(F) = F/E, for every F ∈ EE(A), (27)

is a lattice isomorphism, i.e., it is surjective and

F ⊆ G ⇔ Φ(F) ⊆ Φ(G), for all F,G ∈ EE(A). (28)

Proof. Consider an arbitrary equivalence P ∈ E(A/E). Define a relation F ⊆ A × A by

(a1, a2) ∈ F ⇔ (Ea1
,Ea2

) ∈ P, for all a1, a2 ∈ A. (29)

It is easy to verify that F is an equivalence on A, and clearly, P = F/E. For arbitrary a1, a2 ∈ A, if (a1, a2) ∈ E,
then Ea1

= Ea2
and (Ea1

,Ea2
) ∈ P, whence it follows that (a1, a2) ∈ F. Therefore, E ⊆ F, i.e., F ∈ EE(A), and we

have proved that Φ is surjective.
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Moreover, for arbitrary F,G ∈ EE(A) we have that

F ⊆ G ⇔ (∀(a1, a2) ∈ A × A)
(
(a1, a2) ∈ F⇒ (a1, a2) ∈ G

)

⇔ (∀(a1, a2) ∈ A × A)
(
(Ea1

,Ea2
) ∈ Φ(F)⇒ (Ea1

,Ea2
) ∈ Φ(G)

)

⇔ Φ(F) ⊆ Φ(G).

Therefore,Φ is a lattice isomorphism.

It is worth noting that in terms of the lattice theory, EE(A) is the principal filter (or principal dual ideal) of
the lattice E(A) (which is determined or generated by E).

5. Simulations and bisimulations

Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and let ϕ ⊆ A × B be a non-empty relation.
We call ϕ a forward simulation if

σA ⊆ σB ◦ ϕ−1, (30)

ϕ−1 ◦ δA
x ⊆ δ

B
x ◦ ϕ

−1, for every x ∈ X, (31)

ϕ−1 ◦ τA ⊆ τB, (32)

and a backward simulation if

σA ◦ ϕ ⊆ σB, (33)

δA
x ◦ ϕ ⊆ ϕ ◦ δ

B
x , for every x ∈ X, (34)

τA ⊆ ϕ ◦ τB. (35)

We call ϕ a forward bisimulation if both ϕ and ϕ−1 are forward simulations, i.e., if it satisfies (30)–(32) and

σB ⊆ σA ◦ ϕ, (36)

ϕ ◦ δB
x ⊆ δ

A
x ◦ ϕ, for every x ∈ X, (37)

ϕ ◦ τB ⊆ τA, (38)

and a backward bisimulation if both ϕ and ϕ−1 are backward simulations, i.e., if it satisfies (33)–(35) and

σB ◦ ϕ−1 ⊆ σA, (39)

δB
x ◦ ϕ

−1 ⊆ ϕ−1 ◦ δA
x , for every x ∈ X, (40)

τB ⊆ ϕ−1 ◦ τA. (41)

Let us note that condition (30) means that for every a ∈ σA there exists b ∈ σB such that (a, b) ∈ ϕ, and
(36) means that for every b ∈ σB there exists a ∈ σA such that (a, b) ∈ ϕ. On the other hand, condition (32)
means that {b ∈ B | (∃a ∈ τA) (a, b) ∈ ϕ} ⊆ τB, and (38) means that {a ∈ A | (∃b ∈ τB) (a, b) ∈ ϕ} ⊆ τA. Similar
interpretations can be given for conditions (33), (35), (39) and (41).

Next, we call ϕ a forward-backward simulation if ϕ is a forward and ϕ−1 is a backward simulation, i.e., if

σA = σB ◦ ϕ−1, (42)

ϕ−1 ◦ δA
x = δ

B
x ◦ ϕ

−1, for every x ∈ X, (43)

ϕ−1 ◦ τA = τB, (44)
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Figure 1: Forward and backward simulation

and a backward-forward simulation if ϕ is a backward and ϕ−1 is a forward simulation, i.e., if

σA ◦ ϕ = σB, (45)

δA
x ◦ ϕ = ϕ ◦ δ

B
x , for every x ∈ X, (46)

τA = ϕ ◦ τB. (47)

For the sake of simplicity, we will callϕ just a simulation if it is either a forward or a backward simulation, and
just a bisimulation if it is any of the four types of bisimulations defined above. Moreover, forward and back-
ward bisimulations will be called homotypic, and backward-forward and forward-backward bisimulations
will be called heterotypic.

It is worth to explain the meaning of the names forward and backward simulation. For this purpose we
will use the diagram shown in Figure 1. Let ϕ be a forward simulation and let a0, a1, . . . , an be an arbitrary
successful run of the automatonA on a word u = x1x2 · · · xn (x1, x2, . . . , xn ∈ X), i.e., a sequence of states of
A such that a0 ∈ σA, (ak, ak+1) ∈ δA

xk+1
, for 0 6 k 6 n − 1, and an ∈ τA. According to (30), there exists an initial

state b0 ∈ σB such that (a0, b0) ∈ ϕ. Suppose that for some k, 0 6 k 6 n − 1, we have built a sequence of states
b0, b1, . . . , bk such that (bi−1, bi) ∈ δB

xi
and (ai, bi) ∈ ϕ, for each i, 1 6 i 6 k. Then (bk, ak+1) ∈ ϕ−1 ◦ δA

xk+1
, and

by (31) we obtain that (bk, ak+1) ∈ δB
xk+1
◦ ϕ−1, which means that there exists bk+1 ∈ B such that (bk, bk+1) ∈ δB

xk+1

and (ak+1, bk+1) ∈ ϕ. Therefore, we have successively built a sequence b0, b1, . . . , bn of states of B such that
b0 ∈ σB, (bk, bk+1) ∈ δB

xk+1
, for every k, 0 6 k 6 n − 1, and (ak, bk) ∈ ϕ, for every k, 0 6 k 6 n. Moreover, by (32)

we obtain that bn ∈ τB. Thus, the sequence b0, b1, . . . , bn is a successful run of the automaton B on the word
u which simulates the original run a0, a1, . . . , an ofA on u.

In contrast to forward simulations, where we build the sequence b0, b1, . . . , bn moving forward, starting
with b0 and ending with bn, in the case of backward simulations we build this sequence moving backward,
starting with bn and ending with b0.

In numerous papers dealing with simulations and bisimulations mostly forward simulations and for-
ward bisimulations have been studied. They have been usually called just simulations and bisimulations,
or strong simulations and strong bisimulations (cf. [42, 43, 47]), and the greatest bisimulation equivalence has
been usually called a bisimilarity. Distinction between forward and backward simulations, and forward and
backward bisimulations, has been made, for instance, in [9, 25, 40] (for various kinds of automata), but less
or more these concepts differ from the concepts having the same name which are considered here. More sim-
ilar to our concepts of forward and backward simulations and bisimulations are those studied in [8], and
in [26, 27] (for tree automata).

The following lemma can be easily proved by induction.

Lemma 5.1. If condition (31) or condition (34) holds for every x ∈ X, then it also holds if we replace the letter x by
an arbitrary word u ∈ X∗.
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We also prove the following two lemmas.

Lemma 5.2. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, and let ϕ ⊆ A × B be a relation. Then

(a) If ϕ is a simulation, then L(A) ⊆ L(B).

(b) If ϕ is a bisimulation, then L(A) = L(B).

Proof. (a) Let ϕ be a forward simulation. Then for every u ∈ X∗ we have that

σA ◦ δA
u ◦ τ

A
6 σB ◦ ϕ−1 ◦ δA

u ◦ τ
A
6 σB ◦ δB

u ◦ ϕ
−1 ◦ τA

6 σB ◦ δB
u ◦ τ

B,

and by (22) we obtain that L(A) ⊆ L(B). Similarly, if ϕ is a backward simulation, then also L(A) ⊆ L(B).
(b) This follows immediately by (a).

Lemma 5.3. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and let ϕ ⊆ A × B be a relation. Then

(a) ϕ is a backward bisimulation fromA to B if and only if it is a forward bisimulation from Ā to B̄.

(b) ϕ is a forward-backward bisimulation fromA to B if and only if it is a backward-forward bisimulation from Ā
to B̄.

Proof. It can be easily shown that ϕ is a backward simulation from A to B if and only if ϕ−1 is a forward
simulation from B̄ to Ā, and consequently, ϕ−1 is a backward simulation from B toA if and only if ϕ is a
forward simulation from Ā to B̄.

According to the previous lemma, for any statement on forward (resp. backward-forward) bisimulations
which is universally valid (valid for all nondeterministic automata) there is the corresponding universally
valid statement on backward (resp. forward-backward) bisimulations. For that reason, we will deal only
with forward and backward-forward bisimulations.

Let us emphasize the following distinction between homotypic and heterotypic bisimulations. Evidently,
the inverse of a forward (resp. backward) bisimulation is also a forward (resp. backward) bisimulation.
However, the inverse of a backward-forward (resp. forward-backward) bisimulation is not necessarily a
backward-forward (resp. forward-backward) bisimulation. The inverse of a backward-forward bisimulation
is a forward-backward bisimulation, and vice versa. Later we will point out other distinctions.

It is easy to verify that the following is true.

Lemma 5.4. The composition of two forward (resp. backward-forward) bisimulations and the union of an arbitrary
family of forward (resp. backward-forward) bisimulations are also forward (resp. backward-forward) bisimulations.

Now we are ready to state and prove the following fundamental result.

Theorem 5.5. LetA = (A, δA, σA, τA) andB = (B, δB, σB, τB) be automata such that there exists at least one forward
bisimulation fromA to B.

Then there exists the greatest forward bisimulation fromA to B, which is a partial uniform relation.

Proof. By the assumption of the theorem, the family {ϕi}i∈I of all forward bisimulations from A to B is
non-empty. Let ϕ be the union of this family. According to Lemma 5.4, we obtain that ϕ is a forward
bisimulation, and clearly, it is the greatest one.

By Lemma 5.4 we also obtain that ϕ ◦ ϕ−1 ◦ ϕ is a forward bisimulation, and since ϕ is the greatest one,
we obtain that ϕ ◦ ϕ−1 ◦ ϕ ⊆ ϕ. This means that ϕ is a partial uniform relation.

A similar theorem can be proved for backward-forward bisimulations, but there is a difference because
in that case we can not prove that the greatest backward-forward bisimulation is a partial uniform relation.
In other words, the following is true.
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Theorem 5.6. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata such that there exists at least one
backward-forward bisimulation fromA to B.

Then there exists the greatest backward-forward bisimulation fromA to B.

Lemma 5.7. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, let ϕ ⊆ A × B be a relation. Moreover, let
C = (C, δC, σC, τC) and D = (D, δD, σD, τD) be subautomata of A and B, where C = Domϕ and D = Imϕ. Then
ϕ ⊆ C ×D and

(a) if ϕ is a forward (resp. backward) simulation fromA toB, then it is a forward (resp. backward) simulation from
C toD;

(b) if ϕ−1 is a forward (resp. backward) simulation from B toA, then it is a forward (resp. backward) simulation
fromD to C.

Also, if A = C, then the opposite implication in (a) holds, and if B = D, then the opposite implication in (b) holds.

Proof. We will prove only the part of (a) concerning forward simulations. The remaining assertions can be
proved similarly. Accordingly, let ϕ be a forward simulation fromA to B.

First, consider an arbitrary a ∈ σC ⊆ σA ⊆ σB◦ϕ−1. Then there exists b ∈ B such that b ∈ σB and (b, a) ∈ ϕ−1,
i.e., (a, b) ∈ ϕ, which implies b ∈ D. This means that b ∈ σB ∩ D = σD, so a ∈ σD ◦ ϕ−1. Therefore, we have
proved that σC ⊆ σD ◦ ϕ−1.

Next, let (b, a) ∈ ϕ−1 ◦ δC
x ⊆ ϕ

−1 ◦ δA
x ⊆ δ

B
x ◦ ϕ

−1. From (b, a) ∈ ϕ−1 ◦ δC
x it follows that (b, a′) ∈ ϕ−1 and

(a′, a) ∈ δC
x , for some a′ ∈ C, which yields b ∈ D. Moreover, from (b, a) ∈ δB

x ◦ϕ
−1 we obtain that there is b′ ∈ B

such that (b, b′) ∈ δB
x and (b′, a) ∈ ϕ−1, whence b′ ∈ D. Therefore, we have that b, b′ ∈ D and (b, b′) ∈ δB

x , so
(b, b′) ∈ δD

x , and since (b′, a) ∈ ϕ−1, we conclude that (b, a) ∈ δD
x ◦ ϕ

−1. Hence, ϕ−1 ◦ δC
x ⊆ δ

D
x ◦ ϕ

−1.
Finally, let b ∈ ϕ−1 ◦ τC ⊆ ϕ−1 ◦ τA ⊆ τB. From b ∈ ϕ−1 ◦ τC it follows that there exists a ∈ C such that

(b, a) ∈ ϕ−1 and a ∈ τC, whence b ∈ D. Thus, b ∈ τB ∩D = τD, so we have proved that ϕ−1 ◦ τC ⊆ τD.
If A = C or B = D, then the opposite implications in (a) and (b) are immediate consequences of (5).

Let A = (A, δA, σA, τA) be an arbitrary automaton. If ϕ ⊆ A × A is a forward bisimulation from A into
itself, it will be called a forward bisimulation onA (analogously we define backward bisimulations onA). The
family of all forward bisimulations onA is non-empty (it contains at least the equality relation), and as in the
proof of Theorem 5.5 it can be shown that there is the greatest forward bisimulation onA, which is an equiv-
alence (cf. [1], [43]). Forward bisimulations onA which are equivalences will be called forward bisimulation
equivalences (analogously we define backward bisimulation equivalences). The set of all forward bisimulation
equivalences onA will be denoted by Efb(A).

By symmetry, an equivalence E on A is a forward bisimulation onA if and only if

E ◦ δA
x ⊆ δ

A
x ◦ E, for each x ∈ X, (48)

E ◦ τA = τA. (49)

It is worth noting that conditions (30) and (36) are satisfied whenever A = B and ϕ is a reflexive relation
on A, and hence, whenever A = B and ϕ is an equivalence on A. According to Theorem 4.1 [19] (see also
Theorem 1 [18]), condition (48) is equivalent to

E ◦ δA
x ◦ E = δA

x ◦ E, for each x ∈ X. (50)

Similarly, an equivalence E on A is a backward bisimulation onA if and only if

δA
x ◦ E ⊆ E ◦ δA

x , for each x ∈ X, (51)

σA ◦ E = σA, (52)

and we also have that condition (51) is equivalent to

E ◦ δA
x ◦ E = E ◦ δA

x , for each x ∈ X. (53)
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Forward bisimulation equivalences have been widely studied in the context of labeled transition systems,
where they have been very successfully exploited to reduce the number of states. In particular, many algo-
rithms have been proposed to compute the greatest forward bisimulation equivalence on a given labeled
transition system. The faster ones are based on the crucial equivalence between the greatest forward bisim-
ulation equivalence and the relational coarsest partition problem (cf. [20, 24, 36, 44, 46, 48]). Forward and
backward bisimulation equivalences on nondeterministic automata have been studied by Ilie, Yu and others
[31–34], where they were respectively called right and left invariant equivalences (see also [12, 14]). In a dif-
ferent context, forward bisimulation equivalences were also discussed by Calude et al. [11], and there they
were called well-behaved equivalences. Both mentioned types of equivalences were used in reduction of the
number of states of nondeterministic automata.

The next theorem can be deduced by Theorem 4.2 [19] (or Theorem 2 [18]), but we give a different, direct
proof.

Theorem 5.8. LetA = (A, δA, σA, τA) be an automaton.
The set Efb(A) of all forward bisimulation equivalences on A forms a complete lattice. This lattice is a complete

join-subsemilattice of the lattice E(A) of all equivalences on A.

Proof. Since Efb(A) contains the least element of E(A), the equality relation on A, it is enough to prove that
Efb(A) is a complete join-subsemilattice of E(A).

Let {Ei}i∈I be an arbitrary non-empty family of forward bisimulation equivalences on A, and let E be
the join of this family in the lattice E(A). It is well-known that E can be represented as the set-theoretical
union of all relations from 〈Ei | i ∈ I〉, where 〈Ei | i ∈ I〉 denotes the subsemigroup, generated by the family
{Ei}i∈I, of the semigroup of all binary relations on A. This means that every relation from 〈Ei | i ∈ I〉 can be
represented as the composition of some finite collection of relations from {Ei}i∈I, and according to Lemma 5.4,
we conclude that every relation from 〈Ei | i ∈ I〉 is a forward bisimulation, and therefore, E is a forward
bisimulation as the union of all these relations. Hence, E ∈ Efb(A),what means that Efb(A) is a complete
join-subsemilattice ofA(A).

6. Algorithms for computing the greatest bisimulations

Kozen in [38] provided an algorithm that decides whether there is at least one forward bisimulation be-
tween nondeterministic automata, and when there is a forward bisimulation, the same algorithm computes
the greatest one. Here we give another version of this algorithm, and we also provide an analogous algo-
rithm for backward-forward bisimulations.

For non-empty sets A and B and subsets η ⊆ A and ξ ⊆ B we define relations η → ξ ⊆ A × B and
η← ξ ⊆ A × B as follows

(a, b) ∈ η→ ξ ⇔ ( a ∈ η ⇒ b ∈ ξ ), (54)

(a, b) ∈ η← ξ ⇔ ( b ∈ ξ ⇒ a ∈ η ), (55)

for arbitrary a ∈ A and b ∈ B. We prove the following.

Lemma 6.1. Let A and B be non-empty sets and let η ⊆ A and ξ ⊆ B.

(a) The set of all solutions to the inequality η ◦ χ ⊆ ξ, where χ is an unknown relation between A and B, is the
principal ideal of R(A,B) generated by the relation η→ ξ.

(b) The set of all solutions to the inequality χ ◦ ξ ⊆ η, where χ is an unknown relation between A and B, is the
principal ideal of R(A,B) generated by the relation η← ξ.

Proof. (a) Let a relation ϕ ⊆ A×B be a solution to η ◦χ ⊆ ξ, and let (a, b) ∈ ϕ. If a ∈ η, then b ∈ η ◦ϕ ⊆ ξ, and
according to (54) we conclude that (a, b) ∈ η→ ξ. Thus, ϕ ⊆ η→ ξ.

Conversely, assume that ϕ ⊆ η→ ξ. Then for an arbitrary b ∈ η ◦ ϕ we have that there exists a ∈ η such
that (a, b) ∈ ϕ ⊆ η → ξ, and again by (54) we conclude that b ∈ ξ. Hence, ϕ is a solution to η ◦ χ ⊆ ξ, and
consequently, the assertion (a) is true.

The assertion (b) can be proved in a similar way.
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It is worth noting that (η→ ξ) ∩ (η← ξ) = (η × ξ) ∪ ((A \ η) × (B \ ξ)) = η↔ ξ, where η↔ ξ is a relation
between A and B defined by

(a, b) ∈ η↔ ξ ⇔ ( a ∈ η ⇔ b ∈ ξ ), (56)

for arbitrary a ∈ A and b ∈ B.
Next, let A and B be non-empty sets and let α ⊆ A × A, β ⊆ B × B and ϕ ⊆ A × B. The right residual of ϕ

by α is a relation ϕ/α ⊆ A × B defined by

(a, b) ∈ ϕ/α ⇔ (∀a′ ∈ A)
(

(a′, a) ∈ α ⇒ (a′, b) ∈ ϕ
)
, (57)

for all a ∈ A and b ∈ B, and the left residual of ϕ by β is a relation ϕ\β ⊆ A × B defined by

(a, b) ∈ ϕ\β ⇔ (∀b′ ∈ B)
(

(b, b′) ∈ β ⇒ (a, b′) ∈ ϕ
)
, (58)

for all a ∈ A and b ∈ B. In the case when A = B, these two concepts become the well-known concepts of right
and left residuals of relations on a set (cf. [5, 7]). We have the following.

Lemma 6.2. Let A and B be non-empty sets and let α ⊆ A ×A, β ⊆ B × B and ϕ ⊆ A × B.

(a) The set of all solutions to the inequality α ◦ χ ⊆ ϕ, where χ is an unknown relation between A and B, is the
principal ideal of R(A,B) generated by the right residual ϕ/α of of ϕ by α.

(b) The set of all solutions to the inequality χ ◦ β ⊆ ϕ, where χ is an unknown relation between A and B, is the
principal ideal of R(A,B) generated by the left residual ϕ\β of of ϕ by β.

Proof. (a) Let ψ ⊆ A× B be an arbitrary solution to α ◦ χ ⊆ ϕ, and let (a, b) ∈ ψ. For every a′ ∈ A, if (a′, a) ∈ α,
then (a′, b) ∈ α ◦ ψ ⊆ ϕ, and according to (57), we conclude that (a, b) ∈ ϕ/α. Therefore, ψ ⊆ ϕ/α.

On the other hand, let ψ ⊆ ϕ/α and let (a, b) ∈ α ◦ ψ. Then there exists a′ ∈ A such that (a, a′) ∈ α and
(a′, b) ∈ ψ ⊆ ϕ/α, and by (57) we obtain that (a, b) ∈ ϕ. Hence, ψ is a solution to α ◦χ ⊆ ϕ, and consequently,
we conclude that (a) is true.

The assertion (b) can be proved analogously.

We are now ready to state and prove the following theorem, which provides an algorithm that decides
whether there is a forward bisimulation between two automata and computes the greatest forward bisim-
ulation.

Theorem 6.3. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be finite automata. Define inductively a sequence
{ϕk}k∈N of relations between A and B as follows:

ϕ1 = τ
A ↔ τB, (59)

ϕk+1 = ϕk ∩
⋂

x∈X

(
((δB

x ◦ ϕ
−1
k ) \ δA

x )−1 ∩ ((δA
x ◦ ϕk) \ δB

x )
)
. (60)

Then {ϕk}k∈N is a non-increasing sequence of relations and there exists k ∈N such that ϕk = ϕk+1.
The relation ϕk is the greatest relation between A and B which satisfies conditions (31), (32), (37), and (38). More-

over, if ϕk satisfies conditions (30) and (36), then ϕk is the greatest forward bisimulation between A and B, and
otherwise, if ϕk does not satisfy these conditions, then there is no any forward bisimulation betweenA and B.

Proof. (a) It is clear that ϕk+1 ⊆ ϕk, for every k ∈N. As the sets A and B are finite, there is a finite number of
relations between A and B, so there are k,m ∈ N such that ϕk = ϕk+m. Now, ϕk+1 ⊆ ϕk+m = ϕk ⊆ ϕk+1, and
hence, ϕk = ϕk+1.

Next, setϕ = ϕk. Acording to Lemma 6.1, a relationψ ⊆ A×B satisfies (32) and (38) if and only if ψ ⊆ ϕ1,
and hence, ϕ satisfies (32) and (38). Furthermore, by (62) it follows that

ϕ = ϕ ∩
⋂

x∈X

(
((δB

x ◦ ϕ
−1) \ δA

x )−1 ∩ ((δA
x ◦ ϕ) \ δB

x )
)
,
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and for every x ∈ X we obtain that ϕ ⊆ ((δB
x ◦ ϕ

−1) \ δA
x )−1 and ϕ ⊆ (δA

x ◦ ϕ) \ δB
x , i.e., ϕ−1 ⊆ (δB

x ◦ ϕ
−1) \ δA

x

and ϕ ⊆ (δA
x ◦ ϕ) \ δB

x . According to (b) of Lemma 6.2, ϕ−1 ◦ δA
x ⊆ δ

B
x ◦ ϕ

−1 and ϕ ◦ δB
x ⊆ δ

A
x ◦ ϕ, and thus, ϕ

satisfies conditions (31) and (37).
Let ψ ⊆ A × B be an arbitrary relation satisfying conditions (31), (32), (37), and (38). As we have already

said, ψ satisfies (32) and (38) if and only if ψ ⊆ ϕ1. Suppose that ψ ⊆ ϕi, for some i ∈ N. Then for every
x ∈ X we have that ψ−1 ◦ δA

x ⊆ δ
B
x ◦ ψ

−1 ⊆ δB
x ◦ ϕ

−1
i

, and according to (b) of Lemma 6.2, ψ−1 ⊆ (δB
x ◦ ϕ

−1
i

) \ δA
x ,

that is, ψ ⊆ ((δB
x ◦ ϕ

−1
i

) \ δA
x )−1. Analogously we show that ψ ⊆ (δA

x ◦ ϕi) \ δB
x . Therefore,

ψ ⊆ ϕi ∩
⋂

x∈X

(
((δB

x ◦ ϕ
−1
i ) \ δA

x )−1 ∩ ((δA
x ◦ ϕi) \ δ

B
x )
)
= ϕi+1.

Now, by induction we conclude thatψ ⊆ ϕi, for each i ∈N, and hence,ψ ⊆ ϕ. This means thatϕ is the great-
est relation satisfying conditions (31), (32), (37), and (38).

In addition, if ϕ satisfies conditions (30) and (36), then it is a forward bisimulation between A and
B, and it is just the greatest one. On the other hand, assume that ϕ does not satisfies (30) and (36). If
ψ is an arbitrary forward bisimulation betweenA andB, then it satisfies conditions (31), (32), (37), and (38),
and hence, ψ ⊆ ϕ. From this it follows that σA ⊆ σB ◦ ψ−1 ⊆ σB ◦ ϕ−1 and σB ⊆ σA ◦ ψ ⊆ σA ◦ ϕ, which leads
to contradiction. Therefore, we conclude that if ϕ does not satisfy conditions (30) and (36), then there is no
any forward bisimulation betweenA and B.

Therefore, to decide whether there exists a forward bisimulation between two automata and compute the
greatest one, we build a sequence {ϕk}k∈N of relations in the following way. The first relationϕ1 is computed
as the greatest relation that satisfies the conditions (32) and (38). Then we start an iterative procedure which
computes ϕk+1 from ϕk and check whether ϕk+1 = ϕk. The procedure terminates when we find the smallest
k ∈ N such that ϕk+1 = ϕk. After that we check whether ϕk satisfies conditions (30) and (36). If ϕk does not
satisfy these conditions, we conclude that there is no any forward bisimulation between the given automata,
and if ϕk satisfies (30) and (36), we conclude that it is the greatest forward bisimulation between the given
automata.

The application of this algorithm is demonstrated by the following example.

Example 6.4. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata with |A| = 3, |B| = 5 and X = {x, y},
whose transition relations and sets of initial and terminal states are represented by the following Boolean
matrices and vectors:

δA
x =



1 1 0
0 1 1
1 0 0


 , δA

y =



1 1 0
0 0 1
0 0 1


 , δB

x =




1 1 0 1 0
1 1 0 1 0
1 1 0 0 0
0 0 1 1 1
1 1 0 0 0



, δB

y =




1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
0 0 1 0 1
0 0 1 0 1




σA =
[
1 0 0

]
, σB =

[
1 1 0 0 0

]
, τA =



0
0
1


 , τB =




0
0
1
0
1



.

Using the above described procedure we obtain that

ϕ1 =



1 1 0 1 0
1 1 0 1 0
0 0 1 0 1


 , ϕ2 = ϕ3 =



1 1 0 0 0
0 0 0 1 0
0 0 1 0 1


 .

It is easy to check that ϕ2 satisfies conditions (30) and (36), and therefore, ϕ2 is the greatest forward
bisimulation between automataA and B.
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The following theorem, which can be proved in a similar way as Theorem 6.3, provides an algorithm that
decides whether there is a backward-forward bisimulation between two automata and computes the greatest
backward-forward bisimulation.

Theorem 6.5. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be finite automata. Define inductively a sequence
{ϕk}k∈N of relations between A and B as follows:

ϕ1 = (σA → σB) ∩ (τA ← τB), (61)

ϕk+1 = ϕk ∩
⋂

x∈X

(
(δA

x ◦ ϕk)\δ
B
x ) ∩ ((ϕk ◦ δ

B
x )/δA

x )
)
. (62)

Then {ϕk}k∈N is a non-increasing sequence of relations and there exists k ∈N such that ϕk = ϕk+1.
The relation ϕk is the greatest relation between A and B which satisfies conditions (33), (34), (37), and (38). More-

over, if ϕk satisfies conditions (35) and (36), then ϕk is the greatest backward-forward bisimulation between A and
B, and otherwise, if ϕk does not satisfy these conditions, then there is no any backward-forward bisimulation between
A and B.

The following example shows the case when there is a backward-forward bisimulation, but there is no
a forward bisimulation between two automata.

Example 6.6. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata with |A| = 2, |B| = 3 and X = {x, y},
whose transition relations and sets of initial and terminal states are represented by the following Boolean
matrices and vectors:

δA
x =

[
1 0
1 1

]
, δA

y =

[
1 0
1 0

]
, δB

x =



1 0 0
0 1 1
0 0 1


 , δB

y =



1 0 1
1 0 0
0 0 0




σA =
[
1 0
]
, σB =

[
1 0 1

]
, τA =

[
0
1

]
, τB =



0
1
0


 .

Using the procedure from Theorem 6.5 we obtain that

ϕ =

[
1 0 1
1 1 0

]
,

is the greatest backward-forward bisimulation betweenA and B. On the other hand, using the procedure
from Theorem 6.3 we obtain that there is no a forward bisimulation betweenA and B.

Moreover, it is easy to verify that ϕ is not a partial uniform relation, which confirms our ascertainment
given immediately before Theorem 5.6.

7. Uniform forward bisimulations

In this section we deal with forward bisimulations which are uniform relations. First we show that within
the class of uniform relations forward bisimulations can be characterized by means of equalities.

Theorem 7.1. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and let ϕ ⊆ A× B be a uniform relation.
Then ϕ is a forward bisimulation if and only if the following hold:

σA ◦ ϕ ◦ ϕ−1 = σB ◦ ϕ−1, σA ◦ ϕ = σB ◦ ϕ−1 ◦ ϕ, (63)

δA
x ◦ ϕ ◦ ϕ

−1 = ϕ ◦ δB
x ◦ ϕ

−1, ϕ−1 ◦ δA
x ◦ ϕ = δ

B
x ◦ ϕ

−1 ◦ ϕ, for every x ∈ X, (64)

τA = ϕ ◦ τB, ϕ−1 ◦ τA = τB. (65)
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Proof. Let ϕ be a forward bisimulation. By (5), (30), and (36), we obtain σA ◦ ϕ ⊆ σB ◦ ϕ−1 ◦ ϕ ⊆ σA ◦ ϕ, so
σA ◦ ϕ = σB ◦ ϕ−1 ◦ ϕ, and by this it follows that σA ◦ ϕ ◦ ϕ−1 = σB ◦ ϕ−1 ◦ ϕ ◦ ϕ−1 = σB ◦ ϕ−1.

Next, by Theorem 3.2 and Lemma 5.4 we obtain that ϕ ◦ ϕ−1 is a forward bisimulation equivalence on
A, and according to (50), for every x ∈ X we have

ϕ ◦ δB
x ◦ ϕ

−1 ⊆ δA
x ◦ ϕ ◦ ϕ

−1 = ϕ ◦ ϕ−1 ◦ δA
x ◦ ϕ ◦ ϕ

−1 ⊆ ϕ ◦ δB
x ◦ ϕ

−1 ◦ ϕ ◦ ϕ−1 = ϕ ◦ δB
x ◦ ϕ

−1.

Therefore, δA
x ◦ ϕ ◦ ϕ

−1 = ϕ ◦ δB
x ◦ ϕ

−1. In a similar way we show that ϕ−1 ◦ δA
x ◦ ϕ = δ

B
x ◦ ϕ

−1 ◦ ϕ.

Finally, since ϕ ◦ ϕ−1 is a forward bisimulation equivalence onA, by (49), (32), (5), and (38), we obtain
that τA = ϕ ◦ ϕ−1 ◦ τA ⊆ ϕ ◦ τB ⊆ τA, and hence, τA = ϕ ◦ τB. Similarly we show that ϕ−1 ◦ τA = τB.

Therefore, we have proved that (63)–(65) are true.

Conversely, let (63)–(65) hold. By the reflexivity of ϕ ◦ϕ−1 and (63) we have σA ⊆ σA ◦ϕ ◦ϕ−1 = σB ◦ϕ−1,
and thus, (30) holds. Furthermore, by the reflexivity of ϕ ◦ ϕ−1, (5), and (64), for each x ∈ X we have that

ϕ−1 ◦ δA
x ⊆ ϕ

−1 ◦ δA
x ◦ ϕ ◦ ϕ

−1 = δB
x ◦ ϕ

−1 ◦ ϕ ◦ ϕ−1 = δB
x ◦ ϕ

−1,

soϕ−1◦δA
x ⊆ δ

B
x ◦ϕ

−1, and similarly, ϕ◦δB
x ⊆ δ

A
x ◦ϕ. Finally, it is clear that (65) implies (32) and (38). Therefore,

we have proved that ϕ is a forward bisimulation.

Because of the symmetry in (63) we have included two equalities, although any of them is sufficient, while
the other is unnecessary. For instance, if σA ◦ϕ ◦ϕ−1 = σB ◦ϕ−1 then σA ◦ϕ = σA ◦ϕ ◦ϕ−1 ◦ϕ = σB ◦ϕ−1 ◦ϕ,
and similarly we show that the second equality implies the first one.

The following theorem is one of the main results of this article. It gives a characterization of uniform
forward bisimulations in terms of the properties of their kernels, cokernels, and related factor automata.

Theorem 7.2. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and let ϕ ⊆ A× B be a uniform relation.
Then ϕ is a forward bisimulation if and only if the following hold:

(i) E
ϕ

A
is a forward bisimulation equivalence onA;

(ii) E
ϕ
B

is a forward bisimulation equivalence on B;

(iii) ϕ̃ is an isomorphism of factor automataA/E
ϕ

A
and B/E

ϕ
B

.

Proof. For the sake of simplicity set E
ϕ

A
= E and E

ϕ

B
= F.

Let ϕ be a forward bisimulation. According to Theorem 7.1, for every x ∈ X we have that

E ◦ δA
x ◦ E = ϕ ◦ ϕ−1 ◦ δA

x ◦ ϕ ◦ ϕ
−1 = ϕ ◦ δB

x ◦ ϕ
−1 ◦ ϕ ◦ ϕ−1 = ϕ ◦ δB

x ◦ ϕ
−1 = δA

x ◦ ϕ ◦ ϕ
−1 = δA

x ◦ E,

and also, E ◦ τA = ϕ ◦ ϕ−1 ◦ τA = ϕ ◦ τB = τA. The inclusion σA ⊆ σA ◦ E is evident. Hence, E = E
ϕ

A
is a

forward bisimulation equivalence onA. Likewise, F = E
ϕ

B
is a forward bisimulation equivalence on B.

By Theorem 3.4, ϕ̃ is a bijective function. Next, for any a1, a2 ∈ A, x ∈ X and f ∈ FD(ϕ) we have that

(Ea1
,Ea2

) ∈ δA/E
x ⇔ (a1, a2) ∈ E ◦ δA

x ◦ E ⇔ (a1, a2) ∈ ϕ ◦ δB
x ◦ ϕ

−1

⇔ (∃b1, b2 ∈ B)
(
(a1, b1) ∈ ϕ ∧ (b1, b2) ∈ δB

x ∧ (a2, b2) ∈ ϕ
)

⇔ (∃b1, b2 ∈ B)
(
( f (a1), b1) ∈ F ∧ (b1, b2) ∈ δB

x ∧ ( f (a2), b2) ∈ F
)

⇔ ( f (a1), f (a2)) ∈ F ◦ δB
x ◦ F ⇔ (F f (a1), F f (a2)) ∈ δ

B/F
x

⇔ (ϕ̃(Ea1
), ϕ̃(Ea2

)) ∈ δB/F
x .
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and for any a ∈ A and f ∈ FD(ϕ) we have

Ea ∈ σ
A/E ⇔ a ∈ σA ◦ E ⇔ (∃a′ ∈ A)

(
a′ ∈ σA ∧ (a′, a) ∈ E

)

⇔ (∃a′ ∈ A)
(
a′ ∈ σA ∧ (a′, f (a)) ∈ ϕ

)
⇔ f (a) ∈ σA ◦ ϕ = σB ◦ ϕ−1 ◦ ϕ = σB ◦ F

⇔ F f (a) ∈ σ
B/F ⇔ ϕ̃(Ea) ∈ σ

B/F,

Ea ∈ τ
A/E ⇔ a ∈ E ◦ τA ⇔ (∃a′ ∈ A)

(
(a, a′) ∈ E ∧ a′ ∈ τA

)

⇔ (∃a′ ∈ A)
(
( f (a), a′) ∈ ϕ−1 ∧ a′ ∈ τA

)
⇔ f (a) ∈ ϕ−1 ◦ τA = ϕ−1 ◦ ϕ ◦ τB = F ◦ τB

⇔ F f (a) ∈ τ
B/F ⇔ ϕ̃(Ea) ∈ τ

B/F.

Therefore, ϕ̃ is an isomorphism between automataA/E and B/F.
Conversely, let (i), (ii) and (iii) hold. According to (i), for each x ∈ X we have

E ◦ δA
x ◦ E = δA

x ◦ E = δA
x ◦ ϕ ◦ ϕ

−1,

and by (iii), for arbitrary a1, a2 ∈ A and f ∈ FD(ϕ) we obtain that

(a1, a2) ∈ δA
x ◦ ϕ ◦ ϕ

−1 ⇔ (a1, a2) ∈ E ◦ δA
x ◦ E ⇔ (Ea1

,Ea2
) ∈ δA/E

x

⇔ (ϕ̃(Ea1
), ϕ̃(Ea2

)) ∈ δB/F
x ⇔ (F f (a1), F f (a2)) ∈ δ

B/F
x

⇔ ( f (a1), f (a2)) ∈ F ◦ δB
x ◦ F

⇔ (∃b1, b2 ∈ B)
(
( f (a1), b1) ∈ F ∧ (b1, b2) ∈ δB

x ∧ ( f (a2), b) ∈ F
)

⇔ (∃b1, b2 ∈ B)
(
(a1, b1) ∈ ϕ ∧ (b1, b2) ∈ δB

x ∧ (a2, b) ∈ ϕ
)

⇔ (a1, a2) ∈ ϕ ◦ δB
x ◦ ϕ

−1.

Therefore, the first equality in (64) holds. In a similar way we prove the second equality in (64).
Next, for every a ∈ A we have that

a ∈ σA ◦ ϕ ◦ ϕ−1 ⇔ a ∈ σA ◦ E ⇔ Ea ∈ σ
A/E ⇔ ϕ̃(Ea) ∈ σ

B/F ⇔ F f (a) ∈ σ
B/F

⇔ f (a) ∈ σB ◦ F ⇔ (∃b ∈ B)
(
b ∈ σB ∧ ( f (a), b) ∈ F

)

⇔ (∃b ∈ B)
(
b ∈ σB ∧ (a, b) ∈ ϕ

)
⇔ a ∈ σB ◦ ϕ−1,

so σA ◦ ϕ ◦ ϕ−1 = σB ◦ ϕ−1, and hence, σA ◦ ϕ = σB ◦ ϕ−1 ◦ ϕ. For every a ∈ A we also have

a ∈ τA ⇔ a ∈ E ◦ τA ⇔ Ea ∈ τ
A/E ⇔ ϕ̃(Ea) ∈ τ

B/F ⇔ F f (a) ∈ τ
B/F ⇔ f (a) ∈ F ◦ τB

⇔ (∃b ∈ B)
(
( f (a), b) ∈ F ∧ b ∈ τB

)
⇔ (∃b ∈ B)

(
(a, b) ∈ ϕ ∧ b ∈ τB

)
⇔ a ∈ ϕ ◦ τB,

whence τA = ϕ ◦ τB. Likewise, τB = ϕ−1 ◦ τA. Therefore, we have proved that (63) and (65) also hold, and
consequently, ϕ is a forward bisimulation.

The question that naturally arises is under what conditions two given forward bisimulation equivalences
on two automata determine a uniform forward bisimulation. An answer to this question is given by the fol-
lowing theorem.

Theorem 7.3. LetA = (A, δA, σA, τA) andB = (B, δB, σB, τB) be automata, and let E and F be forward bisimulation
equivalences onA and B.

Then there exists a uniform forward bisimulation ϕ ⊆ A × B such that E
ϕ

A
= E and E

ϕ

B
= F if and only if the

factor automataA/E and B/F are isomorphic.
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Proof. The direct part of the theorem is an immediate consequence of Theorem 7.2.
Conversely, let φ : A/E→ B/F be an isomorphism between factor automataA/E andB/F. Let us define

ϕ ⊆ A × B as in (16), i.e.,

(a, b) ∈ ϕ ⇔ φ(Ea) = Fb, for all a ∈ A and b ∈ B.

By the proof of Theorem 3.4, ϕ is a uniform relation such that E = E
ϕ

A
, F = E

ϕ

B
and φ = ϕ̃, and according to

Theorem 7.2, ϕ is a forward bisimulation.

Next we prove the following.

Theorem 7.4. Let A = (A, δA, σA, τA) be an automaton, let E be a forward bisimulation equivalence on A, and let
F be an equivalence on A such that E ⊆ F.

Then F is a forward bisimulation equivalence onA if and only if F/E is a forward bisimulation equivalence onA/E.

Proof. As in the proof of Theorem 4.1, set F/E = P. For arbitrary a1, a2 ∈ A and x ∈ X, by the proof of
Theorem 4.1 we obtain that

(Ea1
,Ea2

) ∈ P ◦ δA/E
x ◦ P ⇔ (a1, a2) ∈ F ◦ δA

x ◦ F,

and also,

(Ea1
,Ea2

) ∈ δA/E
x ◦ P ⇔ (∃a3 ∈ A)

(
(Ea1

,Ea3
) ∈ δA/E

x ∧ (Ea3
,Ea2

) ∈ P
)

⇔ (∃a3 ∈ A)
(
(a1, a3) ∈ E ◦ δA

x ◦ E ∧ (a3, a2) ∈ F
)

⇔ (a1, a2) ∈ E ◦ δA
x ◦ E ◦ F

⇔ (a1, a2) ∈ δA
x ◦ F,

since E ◦ δA
x ◦ E ◦ F = δA

x ◦ E ◦ F = δA
x ◦ F. Therefore,

P ◦ δA/E
x ◦ P = δA/E

x ◦ P ⇔ F ◦ δA
x ◦ F = δA

x ◦ F.

Furthermore, for an arbitrary a ∈ A we have that

Ea ∈ P ◦ τA/E ⇔ (∃a′ ∈ A) (Ea,Ea′) ∈ P ∧ Ea′ ∈ τ
A/E ⇔ (∃a′ ∈ A) (a, a′) ∈ F ∧ a′ ∈ E ◦ τA

⇔ a ∈ F ◦ E ◦ τA = F ◦ τA,

and according to (25) and (49), Ea ∈ τA/E ⇔ a ∈ E ◦ τA = τA. Hence,

P ◦ τA/E = τA/E ⇔ F ◦ τA = τA,

proving our claim.

In view of Theorem 4.1, the rule F 7→ F/E defines an isomorphism between lattices EE(A) and E(A/E),
for every E ∈ E(A). According to Theorem 7.4, the same rule determines an isomorphism between lattices
Efb

E
(A) and Efb(A/E), where Efb

E
(A) = {F ∈ Efb(A) | E ⊆ F}, for each E ∈ Efb(A).

Consequently, the following is true.

Corollary 7.5. Let A = (A, δA, σA, τA) be an automaton, and let E and F be forward bisimulation equivalences on
A such that E ⊆ F.

Then F is the greatest forward bisimulation equivalence onA if and only if F/E is the greatest forward bisimulation
equivalence onA/E.

Proof. This follows immediately by Theorems 7.4 and equation (28).
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8. Forward bisimulation equivalent automata

Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata. If there exists a complete and surjective
forward bisimulation fromA to B, then we say that A and B are forward bisimulation equivalent, or briefly
FB-equivalent, and we writeA ∼FB B. Notice that completeness and surjectivity of this forward bisimulation
mean that every state of A is equivalent to some state of B, and vice versa. For any automataA, B and C
we have that

A ∼FB A; A ∼FB B ⇒ B ∼FB A;
(
A ∼FB B ∧ B ∼FB C

)
⇒A ∼FB C. (66)

Similarly, we call A and B backward bisimulation equivalent, briefly BB-equivalent, in notation A ∼BB B, if
there exists a complete and surjective backward bisimulation fromA to B.

First we prove that every automaton A is FB-equivalent to the factor automaton of A with respect to
any forward bisimulation equivalence onA.

Theorem 8.1. LetA = (A, δA, σA, τA) be an automaton, let E be an equivalence on A, let ϕE be the natural function
from A to A/E, and letA/E = (A/E, δA/E, σA/E, τA/E) be the factor automaton ofA with respect to E.

Then ϕE is both a forward and a backward simulation.
Moreover, the following conditions are equivalent:

(i) E is a forward bisimulation onA;

(ii) ϕE is a forward bisimulation;

(iii) ϕE is a backward-forward bisimulation.

Proof. Note that for arbitrary a1, a2 ∈ A we have that ϕE(a1) = Ea2
(i.e., (a1,Ea2

) ∈ ϕE) if and only if (a1, a2) ∈ E.
For arbitrary x ∈ X and a1, a2 ∈ A we have that

(a1,Ea2
) ∈ δA

x ◦ ϕE ⇔ (∃a3 ∈ A)
(
(a1, a3) ∈ δA

x ∧ (a3,Ea2
) ∈ ϕE

)

⇔ (∃a3 ∈ A)
(
(a1, a3) ∈ δA

x ∧ (a3, a2) ∈ E
)

⇔ (a1, a2) ∈ δA
x ◦ E

⇒ (a1, a2) ∈ E ◦ δA
x ◦ E = E ◦ E ◦ δA

x ◦ E (67)

⇔ (∃a3 ∈ A)
(
(a1, a3) ∈ E ∧ (a3, a2) ∈ (E ◦ δA

x ◦ E)
)

⇔ (∃a3 ∈ A)
(
(a1,Ea3

) ∈ ϕE ∧ (Ea3
,Ea2

) ∈ δA/E
x

)

⇔ (a1,Ea2
) ∈ ϕE ◦ δ

A/E
x ,

and hence, δA
x ◦ ϕE ⊆ ϕE ◦ δ

A/E
x . In a similar way we prove that ϕ−1

E ◦ δ
A
x ⊆ δ

A/E
x ◦ ϕ−1

E .
Furthermore, for any a ∈ A we have that

a ∈ σA ⇒ Ea ∈ σ
A/E ∧ (Ea, a) ∈ ϕ−1

E ⇒ a ∈ σA/E ◦ ϕ−1
E ,

whence σA ⊆ σA/E ◦ ϕ−1
E , and

Ea ∈ σ
A ◦ ϕE ⇔ (∃a′ ∈ A) a′ ∈ σA ∧ (a′,Ea) ∈ ϕE ⇔ (∃a′ ∈ A) a′ ∈ σA ∧ (a′, a) ∈ E

⇔ a ∈ σA ◦ E ⇔ Ea ∈ σ
A/E,

what yields σA ◦ ϕE ⊆ σA/E. In a similar way we show that ϕ−1
E
◦ τA ⊆ τA/E and τA ⊆ ϕE ◦ τA/E.

Therefore, we have proved that ϕE is both a forward and a backward simulation.
Moreover, we have that the opposite implication in (67) holds (i.e., ϕ−1

E is a forward simulation) if and
only if E is a forward bisimulation onA. This proves the equivalence of the conditions (i), (ii), and (iii).

Now we state and prove the main result of this section.
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Theorem 8.2. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, and let E and F be the greatest forward
bisimulation equivalences onA and B.

ThenA and B are FB-equivalent if and only if factor automataA/E and B/F are isomorphic.

Proof. Let A and B be FB-equivalent automata, i.e., let there exists a complete and surjective forward
bisimulation ψ ⊆ A × B. According to Theorem 5.5, then there exists the greatest forward bisimulation ϕ
fromA to B, and ϕ is a partial uniform relation. Since ψ is complete and surjective, and ψ ⊆ ϕ, then ϕ is
also complete and surjective, what means that ϕ is a uniform forward bisimulation.

By Theorem 7.2, E
ϕ

A
and E

ϕ
B

are forward bisimulation equivalences onA andB, and ϕ̃ is an isomorphism

of factor automata A/E
ϕ

A
and B/E

ϕ
B

. Let P and Q denote respectively the greatest forward bisimulation

equivalences onA/E
ϕ

A
and B/E

ϕ

B
. By the fact that ϕ̃ is an isomorphism of A/E

ϕ

A
onto B/E

ϕ

B
we obtain that

P and Q are related by

(α1, α2) ∈ P ⇔
(
ϕ̃(α1), ϕ̃(α2)

)
∈ Q, for all α1, α2 ∈ A/E

ϕ

A
,

so we can define an isomorphism ξ : (A/E
ϕ

A
)/P→ (B/E

ϕ
B

)/Q by ξ(Pα) = Qϕ̃(α), for every α ∈ A/E
ϕ

A
.

Now, according to Corollary 7.5, P = E/E
ϕ

A
and Q = F/E

ϕ
B

, and by Theorem 4.1 we obtain

A/E � (A/E
ϕ

A
)/P � (B/E

ϕ

B
)/Q � B/F,

what was to be proved.
The converse follows immediately by Theorem 7.3.

As a direct consequence of previous two theorems we obtain the following.

Corollary 8.3. LetA be an automaton, let E be the greatest forward bisimulation equivalence onA, and let FB(A)
be the class of all automata which are FB-equivalent toA.

ThenA/E is the unique (up to an isomorphism) minimal automaton in FB(A).

Proof. LetB be any minimal automaton from FB(A), and let F be the greatest forward bisimulation equiva-
lence onB. According to Theorem 8.1 and (66),B/F also belongs toFB(A), and by minimality ofB it follows
that F is the equality relation. Now, by Theorem 8.2 we obtain that B � B/F � A/E, proving our claim.

According Theorem 8.2, the problem of testing FB-equivalence of two automataA andB can be reduced
to the problem of testing isomorphism of their factor automata with respect to the greatest forward bisimu-
lation equivalences onA and B. It is worth of mention that the isomorphism problem for nondeterministic
automata is equivalent to the well-known graph isomorphism problem, the computational problem of deter-
mining whether two finite graphs are isomorphic. Besides its practical importance, the graph isomorphism
problem is a curiosity in computational complexity theory, as it is one of a very small number of problems
belonging to NP that is neither known to be computable in polynomial time nor NP-complete. Along with
integer factorization, it is one of the few important algorithmic problems whose rough computational com-
plexity is still not known, and it is generally accepted that graph isomorphism is a problem that lies be-
tween P and NP-complete if P,NP (cf. [51]). However, although no worst-case polynomial-time algorithm
is known, testing graph isomorphism is usually not very hard in practice. The basic algorithm examines
all n! possible bijections between the nodes of two graphs (with n nodes), and tests whether they preserve
adjacency of the nodes. Clearly, the major problem is the rapid growth in the number of bijections when
the number of nodes is growing, which is also the crucial problem in testing isomorphism between fuzzy
automata, but the algorithm can be made more efficient by suitable partitioning of the sets of nodes as
described in [51]. What is good in our case is that the isomorphism test is applied not to the automataA and
B, but to the factor automata with respect to the greatest forward bisimulation equivalences on A and B.
The number of states of these factor automata can be much smaller than the number of states ofA and B,
which can significantly affect the duration of testing.

According to Lemma 5.2, FB-equivalent automata are language equivalent, but the converse does not
hold, as the following example shows.
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Example 8.4. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata with |A| = 3, |B| = 2 and X = {x},
whose transition relations and sets of initial and terminal states are represented by the following Boolean
matrices and vectors:

δA
x =



1 0 0
0 0 1
0 0 0


 , σ

A =
[
0 1 0

]
, τA =



0
0
1


 , δB

x =

[
0 1
0 0

]
, σB =

[
1 0
]
, τB =

[
0
1

]
.

These automata are language-equivalent, both of them recognize the language L = {x}. On the other
hand, the greatest forward bisimulation equivalences E onA and F onB are equality relations, soA/E � A
andB/F � B. But,A and B have different number of states, and hence, they are not isomorphic. Therefore,
according to Theorem 8.2,A and B are not FB-equivalent.

9. Uniform backward-forward bisimulations

In this section we consider uniform backward-forward bisimulations. We will see that they have certain
properties similar to the corresponding properties of uniform forward bisimulations, but we will also show
that there are some essential differences.

First we prove the following analogue of Theorem 7.2.

Theorem 9.1. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and let ϕ ⊆ A× B be a uniform relation.
Then ϕ is a backward-forward bisimulation if and only if the following hold:

(i) E
ϕ

A
is a forward bisimulation equivalence onA;

(ii) E
ϕ

B
is a backward bisimulation equivalence on B;

(iii) ϕ̃ is an isomorphism of factor automataA/E
ϕ

A
and B/E

ϕ

B
.

Proof. For the sake of simplicity set E = E
ϕ

A
and F = E

ϕ
B

. According to Theorem 3.2, we have that E = ϕ ◦ϕ−1

and F = ϕ−1 ◦ ϕ.

Let ϕ be a backward-forward bisimulation. Then

E ◦ δA
x ◦ E = ϕ ◦ ϕ−1 ◦ δA

x ◦ ϕ ◦ ϕ
−1 = ϕ ◦ ϕ−1 ◦ ϕ ◦ δB

x ◦ ϕ
−1 = ϕ ◦ δB

x ◦ ϕ
−1 = δA

x ◦ ϕ ◦ ϕ
−1 = δA

x ◦ E,

E ◦ τA = ϕ ◦ ϕ−1 ◦ τA = ϕ ◦ ϕ−1 ◦ ϕ ◦ τB = ϕ ◦ τB = τA,

F ◦ δB
x ◦ F = ϕ−1 ◦ ϕ ◦ δB

x ◦ ϕ
−1 ◦ ϕ = ϕ−1 ◦ δA

x ◦ ϕ ◦ ϕ
−1 ◦ ϕ = ϕ−1 ◦ δA

x ◦ ϕ = ϕ
−1 ◦ ϕ ◦ δB

x = F ◦ δB
x ,

σB ◦ F = σB ◦ ϕ−1 ◦ ϕ = σA ◦ ϕ ◦ ϕ−1 ◦ ϕ = σA ◦ ϕ = σB.

Hence, E = E
ϕ

A
is a forward bisimulation equivalence onA and F = E

ϕ
B

is a backward bisimulation equiva-
lence on B. As in the proof of Theorem 7.2 we show that ϕ̃ is an isomorphism of automataA/E and B/F.

Conversely, let (i), (ii), and (iii) hold. For every ψ ∈ FD(ϕ), ξ ∈ FD(ϕ−1), a1, a2 ∈ A, b1, b2 ∈ B and x ∈ X,
as in the proof of Theorem 7.2 we show that

(a1, a2) ∈ (E ◦ δA
x ◦ E)⇔ (ψ(a1), ψ(a2)) ∈ (F ◦ δB

x ◦ F),

(b1, b2) ∈ (F ◦ δB
x ◦ F)⇔ (ξ(b1), ξ(b2)) ∈ (E ◦ δA

x ◦ E),

and by (i) and (ii) we obtain that

δA
x ◦ ϕ = δ

A
x ◦ ϕ ◦ ϕ

−1 ◦ ϕ = δA
x ◦ E ◦ ϕ = E ◦ δA

x ◦ E ◦ ϕ = E ◦ δA
x ◦ ϕ,

ϕ ◦ δB
x = ϕ ◦ ϕ

−1 ◦ ϕ ◦ δB
x = ϕ ◦ F ◦ δB

x = ϕ ◦ F ◦ δB
x ◦ F = ϕ ◦ δB

x ◦ F.
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Now, for all a ∈ A and b ∈ B we obtain that

(a, b) ∈ δA
x ◦ ϕ⇔ (a, b) ∈ E ◦ δA

x ◦ ϕ⇔ (∃a1 ∈ A) ((a, a1) ∈ E ◦ δA
x ∧ (a1, b) ∈ ϕ)

⇔ (∃a1 ∈ A) ((a, a1) ∈ E ◦ δA
x ∧ (a1, ξ(b)) ∈ E)⇔ (a, ξ(b)) ∈ E ◦ δA

x ◦ E

⇔ (ψ(a), ψ(ξ(b))) ∈ F ◦ δB
x ◦ F⇔ (ψ(a), b) ∈ F ◦ δB

x ◦ F

⇔ (∃b1 ∈ B) ((ψ(a), b1) ∈ F ∧ (b1, b) ∈ δB
x ◦ F)⇔ (∃b1 ∈ B) ((a, b1) ∈ ϕ ∧ (b1, b) ∈ δB

x ◦ F)

⇔ (a, b) ∈ ϕ ◦ δB
x ◦ F⇔ (a, b) ∈ ϕ ◦ δB

x ,

and hence, δA
x ◦ ϕ = ϕ ◦ δ

B
x . As in the proof of Theorem 7.2 we prove that τA = ϕ ◦ τB, and analogously we

obtain that σA ◦ ϕ = σB. Therefore, ϕ is a forward-backward bisimulation.

We can also prove the following analogue of Theorem 7.3.

Theorem 9.2. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, let E be a forward bisimulation
equivalence onA and F a backward bisimulation equivalence on B.

Then there exists a uniform backward-forward bisimulation ϕ ⊆ A × B such that E
ϕ

A
= E and E

ϕ
B
= F if and only

if factor automataA/E and B/F are isomorphic.

Proof. This theorem can be proved in a similar way as Theorem 7.3.

In Theorem 8.1 we proved that for any equivalence E, its natural function ϕE is a forward bisimulaton
if and only if it is a backward-forward bisimulation. Now we prove a more general theorem, which shows
that this holds for an arbitrary function.

Theorem 9.3. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, let ϕ : A → B be a function, and let
E = E

ϕ

A
be the kernel of ϕ. Then the following conditions are equivalent:

(i) ϕ is a forward bisimulation;

(ii) ϕ is a backward-forward bisimulation;

(iii) E is a forward bisimulation equivalence onA and the function φ : A/E → B given by φ(Ea) = ϕ(a), for each
a ∈ A, is a monomorphism of the factor automatonA/E into B.

Proof. Let C = Imϕ and consider the subautomaton C = (C, δC, σC, τC) of B.
(i)⇒(iii). According to Lemma 5.7, ϕ ⊆ A × C and ϕ is a forward bisimulation from A to C. We also

have that ϕ is a surjective function from A onto C, and hence, it is a uniform relation from A to C. Now, by
Theorem 7.2 we obtain that E = E

ϕ

A
is a forward bisimulation equivalence onA, E

ϕ

C
is the equality relation

on C, and ϕ̃ is an isomorphism fromA/E to C/E
ϕ
B
� C. If we identify C/E

ϕ
B

and C, then it is easy to see that
ϕ̃ can be represented as φ, where φ is defined as in (iii), so φ is a monomorphism ofA/E into B.

(iii)⇒(i). This is a direct consequence of Theorem 7.2, since E
ϕ

C
is the equality relation and ϕ̃ and φ can

be identified.
(i)⇔(ii). This follows immediately by Theorems 7.2 and 9.1, since E

ϕ

C
is the equality relation on C, and it

is both a forward and backward bisimulation equivalence.

10. Weak simulations and bisimulations

In this section we introduce and study two new types of bisimulations, which are more general than
forward and backward bisimulations.

LetA = (A,X, δA, σA, τA) be an automaton. For each u ∈ X∗ we define subsets σA
u and τA

u of A as follows:

σA
u = σ

A ◦ δA
u , τA

u = δ
A
u ◦ τ

A. (68)
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Moreover, for each a ∈ A, the right language
−→
LA(a) and the left language

←−
LA(a) of the state a are languages

−→
LA(a) = {u ∈ X∗ | a ∈ τA

u },
←−
LA(a) = {u ∈ X∗ | a ∈ σA

u }. (69)

In other words, the right language of a is the language recognized by the automaton obtained fromA by
replacing σA by {a}, and the left language of a is the language recognized by the automaton obtained from
A by replacing τA by {a}. When the automatonA is known from the context, we omit the subscriptA, and

we write just
−→
L (a) and

←−
L (a).

Now, letA = (A, δA, σA, τA) andB = (B, δB, σB, τB) be automata and letϕ ⊆ A×B be a non-empty relation.
We call ϕ a weak forward simulation fromA to B if

ϕ−1 ◦ τA
u ⊆ τ

B
u , for every u ∈ X∗, (70)

σA ⊆ σB ◦ ϕ−1, (71)

and we call ϕ a weak backward simulation fromA to B if

σA
u ◦ ϕ ⊆ σ

B
u , for every u ∈ X∗, (72)

τA ⊆ ϕ ◦ τB. (73)

We call ϕ a weak forward bisimulation if both ϕ and ϕ−1 are weak forward simulations, that is, if it satisfies
(70), (71), and

ϕ ◦ τB
u ⊆ τ

A
u , for every u ∈ X∗, (74)

σB ⊆ σA ◦ ϕ, (75)

and we call ϕ a weak backward bisimulation if both ϕ and ϕ−1 are weak backward simulations, that is, if it
satisfies (72), (73), and

σB
u ◦ ϕ

−1 ⊆ σA
u , for every u ∈ X∗, (76)

τB ⊆ ϕ−1 ◦ τA. (77)

For the sake of simplicity, we will callϕ just a weak simulation if it is either a weak forward or a weak backward
simulation, and just a weak bisimulation if it is either a weak forward or a weak backward bisimulation.

First we prove the following two lemmas.

Lemma 10.1. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, and let ϕ ⊆ A × B be a relation. Then

(a) If ϕ is a weak simulation, then L(A) ⊆ L(B).

(b) If ϕ is a weak bisimulation, then L(A) = L(B).

(c) If ϕ is a forward (resp. backward) simulation, then it is a weak forward (resp. backward) simulation.

Proof. (a) Let ϕ be a weak forward simulation. Then for every u ∈ X∗ we have that

σA ◦ δA
u ◦ τ

A = σA ◦ τA
u 6 σ

B ◦ ϕ−1 ◦ τA
u 6 σ

B ◦ τB
u = σ

B ◦ δB
u ◦ τ

B,

and by (22) we obtain that L(A) ⊆ L(B). Similarly, if ϕ is a weak backward simulation, then L(A) ⊆ L(B).
(b) This follows immediately by (a).
(c) Letϕ be a forward simulation. From (30) it follows immediately that (71) holds, and by (32) we obtain

that (70) holds for u = ε. Suppose that (70) holds for all words of length n, for some natural number n, and
consider a word u ∈ X∗ of length n + 1, i.e., u = xv, for some x ∈ X and v ∈ X∗ such that v has the length n.
Then

ϕ−1 ◦ τA
u = ϕ

−1 ◦ δA
x ◦ τ

A
v ⊆ δ

B
x ◦ ϕ

−1 ◦ τA
v ⊆ δ

B
x ◦ τ

B
v = τ

B
u .

Hence, by induction we obtain that (70) holds for every u ∈ X∗. In a similar way we prove the assertion
concerning backward simulations.
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Lemma 10.2. LetA = (A, δA, σA, τA) andB = (B, δB, σB, τB) be automata. A relationϕ ⊆ A×B is a weak backward
bisimulation fromA to B if and only if it is a weak forward bisimulation from Ā to B̄.

Proof. We can easily show that ϕ is a weak backward simulation fromA to B if and only if ϕ−1 is a weak
forward simulation from B̄ to Ā, and ϕ−1 is a weak backward simulation from B toA if and only if ϕ is a
weak forward simulation from Ā to B̄.

According to the previous lemma, for any statement on weak forward bisimulations which is univer-
sally valid (valid for all nondeterministic automata) there is the corresponding universally valid statement
on weak backward bisimulations. For that reason, we will deal only with weak forward bisimulations.

It is easy to show that the following is true.

Lemma 10.3. The composition of two weak forward simulations (resp. bisimulations) and the union of an arbitrary
family of weak forward simulations (resp. bisimulations) are also weak forward simulations (resp. bisimulations).

Now we state and prove fundamental results concerning weak forward simulations and bisimulations.
The first of them is a theorem that gives a way to decide whether there is a weak forward simulation between
two automata, and whenever it exists, provides a way to construct the greatest one.

Theorem 10.4. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and define a relation λ ⊆ A × B by

(a, b) ∈ λ ⇔ (∀u ∈ X∗) (a ∈ τA
u ⇒ b ∈ τB

u), (78)

for all a ∈ A and b ∈ B.

If λ satisfies (71), then it is the greatest weak forward simulation from A to B. Otherwise, if λ does not satisfy
(71), then there is no any weak forward simulation fromA to B.

Proof. Let λ satisfy (71). If b ∈ λ−1 ◦ τA
u , then there exists a ∈ τA

u such that (b, a) ∈ λ−1, and by (78) we obtain
that b ∈ τB

u . Therefore, λ−1 ◦ τA
u ⊆ τ

B
u , and since λ satisfies (71), we conclude that λ is a weak forward

simulation fromA to B.
Let ϕ be an arbitrary weak forward simulation fromA to B, and let (a, b) ∈ ϕ. For an arbitrary u ∈ X∗,

if a ∈ τA
u then b ∈ ϕ−1 ◦ τA

u ⊆ τ
B
u . Therefore, we have proved that (a, b) ∈ λ, which means that every weak

forward simulation from A to B is contained in λ. Therefore, λ is the greatest weak forward simulation
fromA to B.

Suppose that λ does not satisfy (71). If ϕ is an arbitrary weak forward simulation from A to B, then
σA ⊆ σB ◦ϕ−1 ⊆ σB ◦λ−1, what is in contradiction with the assumption that λ does not satisfy (71). Therefore,
we conclude that there is no any weak forward simulation fromA to B.

The greatest weak forward simulation can also be represented in the following way.

Corollary 10.5. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata such that there exists at least one weak
forward simulation fromA to B, and let λ be the greatest weak forward simulation fromA to B. Then

(a, b) ∈ λ ⇔
−→
L (a) ⊆

−→
L (b), (79)

for all a ∈ A and b ∈ B.

Proof. This is an immediate consequence of (78) and the fact that u ∈
−→
L (a) if and only if a ∈ τA

u .

The next theorem gives a way to decide whether there is a weak forward bisimulation between two auto-
mata, and if it exists, provides a way to construct the greatest one.
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Theorem 10.6. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and define a relation µ ⊆ A × B by

(a, b) ∈ µ ⇔ (∀u ∈ X∗) (a ∈ τA
u ⇔ b ∈ τB

u), (80)

for all a ∈ A and b ∈ B.
If µ satisfies (71) and (75), then it is the greatest weak forward bisimulation from A to B, and it is a partial

uniform relation. Otherwise, if µ does not satisfy (71) and (75), then there is no any weak forward bisimulation from
A to B.

Proof. This theorem can be proved in a similar way as Theorems 10.4 and 5.5.

Also, the greatest weak forward bisimulation can be represented as follows.

Corollary 10.7. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata such that there exists at least one weak
forward bisimulation fromA to B, and let µ be the greatest weak forward bisimulation fromA to B. Then

(a, b) ∈ µ ⇔
−→
L (a) =

−→
L (b), (81)

for all a ∈ A and b ∈ B.

Proof. We can prove this corollary in a similar way as Corollary 10.5.

LetA = (A, δA, σA, τA) be an arbitrary automaton. A weak forward bisimulation fromA into itself will
be called a weak forward bisimulation on A (analogously we define weak backward bisimulations on A). The
family of all weak forward bisimulations onA is non-empty (it contains at least the equality relation), and
according to Theorem 10.6, there is the greatest weak forward bisimulation on A, which is defined as in
(80), and it is easy to check that it is an equivalence (cf. [52]). Weak forward bisimulations on A which
are equivalences will be called weak forward bisimulation equivalences (analogously we define weak backward
bisimulation equivalences). The set of all weak forward bisimulation equivalences onAwe denote byEwfb(A).

Note that condition (71) is satisfied whenever A = B andϕ is a reflexive relation, and hence, it is satisfied
whenever A = B and ϕ is an equivalence. Therefore, an equivalence E on A is a weak forward bisimulation
onA if and only if

E ◦ τA
u ⊆ τ

A
u , for every u ∈ X∗, (82)

or equivalently,

E ◦ τA
u = τ

A
u , for every u ∈ X∗. (83)

Analogously, an equivalence E on A is a weak backward bisimulation onA if and only if

σA
u ◦ E ⊆ σA

u , for every u ∈ X∗, (84)

or equivalently,

σA
u ◦ E = σA

u , for every u ∈ X∗. (85)

In Theorem 5.8 we proved that forward bisimulation equivalences on an automaton form a complete join-
subsemilattice of the lattice of equivalences on this automaton. For weak forward bisimulation equivalences
we show even more, that they form a principal ideal of the lattice of equivalences.

Theorem 10.8. LetA = (A, δA, σA, τA) be an automaton.
The set Ewfb(A) of all weak forward bisimulation equivalences onA forms a principal ideal of the lattice E(A) of

all equivalences on A generated by the relation Ewfb on A defined by

(a, a′) ∈ Ewfb ⇔ (∀u ∈ X∗) ( a ∈ τA
u ⇔ a′ ∈ τA

u ), (86)

for all a, a′ ∈ A.
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Proof. It is clear that Ewfb is an equivalence. For arbitrary u ∈ X∗ and a ∈ A, by a ∈ Ewfb ◦ τA
u it follows that

(a, a′) ∈ Ewfb and a′ ∈ τA
u , for some a′ ∈ A, and by (86) we obtain that a ∈ τA

u . Therefore, Ewfb ∈ Ewfb(A).
Consider an arbitrary E ∈ E(A). If E ⊆ Ewfb, then E ◦ τA

u ⊆ Ewfb ◦ τA
u ⊆ τ

A
u , so E ∈ Ewfb(A). Conversely, let

E ∈ Ewfb(A), i.e., E◦τA
u ⊆ τ

A
u , for each u ∈ X∗. For arbitrary (a, a′) ∈ E and u ∈ X∗, if a ∈ τA

u , then a ∈ E◦τA
u ⊆ τ

A
u ,

and by symmetry, if a′ ∈ τA
u , then a ∈ τA

u . By this it follows that (a, a′) ∈ Ewfb. Therefore, E ⊆ Ewfb if and only
if E ∈ Ewfb(A), and consequently, Ewfb(A) is the principal ideal of E(A) generated by Ewfb.

11. Uniform weak forward bisimulations

In this section we study weak forward bisimulations which are uniform relations. Within the class of uni-
form relations, weak forward bisimulations can be characterized as follows.

Theorem 11.1. LetA = (A, δA, σA, τA) andB = (B, δB, σB, τB) be automata and let ϕ ⊆ A×B be a uniform relation.
Then ϕ is a weak forward bisimulation if and only if the following hold:

σA ◦ ϕ = σB ◦ ϕ−1 ◦ ϕ, σA ◦ ϕ ◦ ϕ−1 = σB ◦ ϕ−1, (87)

ϕ−1 ◦ τA
u = τ

B
u , for each u ∈ X∗, τA

u = ϕ ◦ τ
B
u , for each u ∈ X∗. (88)

Proof. Let ϕ be a weak forward bisimulation. According to (71) and (75) we have that

σA ◦ ϕ ⊆ σB ◦ ϕ−1 ◦ ϕ ⊆ σA ◦ ϕ ◦ ϕ−1 ◦ ϕ = σA ◦ ϕ,

and hence, σA ◦ ϕ = σB ◦ ϕ−1 ◦ ϕ. In a similar way we prove that σB ◦ ϕ−1 = σA ◦ ϕ ◦ ϕ−1.
Next, by reflexivity of ϕ−1 ◦ ϕ, for each u ∈ X∗ we have that

τB
u ⊆ ϕ

−1 ◦ ϕ ◦ τB
u ⊆ ϕ

−1 ◦ τA
u ,

and by this and (70) we obtain that τB
u = ϕ

−1 ◦ τA
u . Similarly we prove that τA

u = ϕ ◦ τ
B
u .

Conversely, let (87) and (88) hold. It is clear that (88) implies both (70) and (74), and by reflexivity of
ϕ ◦ ϕ−1 and ϕ−1 ◦ ϕ we obtain that

σA ⊆ σA ◦ ϕ ◦ ϕ−1 = σB ◦ ϕ−1, σB ⊆ σB ◦ ϕ−1 ◦ ϕ = σA ◦ ϕ,

and hence, (71) and (75) hold. Therefore, ϕ is a weak forward bisimulation.

Further we prove two very useful lemmas.

Lemma 11.2. LetA = (A, δA, σA, τA) be an automaton, E an equivalence on A, andA/E = (A/E, δA/E, σA/E, τA/E)
the factor automaton ofA with respect to E. If E is weak forward bisimulation equivalence, then

Ea ∈ τ
A/E
u ⇔ a ∈ τA

u , (89)

for all u ∈ X∗ and a ∈ A.

Proof. The claim will be proved by induction on the length of the word u.
According to (25) and the hypothesis of the lemma, the claim is true if u is the empty word. Suppose

that the claim is true for some word u, and consider arbitrary x ∈ X and a ∈ A. Then we have that

Ea ∈ τ
A/E
xu = δ

A/E
x ◦ τA/E

u ⇔ (∃a′ ∈ A) ( (Ea,Ea′) ∈ δ
A/E
x ∧ Ea′ ∈ τ

A/E
u )

⇔ (∃a′ ∈ A) ( (a, a′) ∈ E ◦ δA
x ◦ E ∧ a′ ∈ τA

u )

⇔ a ∈ E ◦ δA
x ◦ E ◦ τA

u = E ◦ δA
x ◦ τ

A
u = E ◦ τA

xu = τ
A
xu.

Therefore, the claim is true for all u ∈ X∗ and a ∈ A.
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Lemma 11.3. LetA = (A, δA, σA, τA) be an automaton, let E be an equivalence on A, let ϕE be the natural function
from A to A/E, and letA/E = (A/E, δA/E, σA/E, τA/E) be the factor automaton ofA with respect to E.

Then E is a weak forward bisimulation equivalence onA if and only if ϕE is a weak forward bisimulation between
A andA/E.

Proof. Let E be a weak forward bisimulation equivalence on A. According to Lemma 11.2, for arbitrary
u ∈ X∗ and a ∈ A we have that

Ea ∈ ϕ
−1
E ◦ τ

A
u ⇔ (∃a′ ∈ A) ( (Ea, a

′) ∈ ϕ−1
E ∧ a′ ∈ τA

u ) ⇔ (∃a′ ∈ A) ( Ea = Ea′ ∧ Ea′ ∈ τ
A/E
u ) ⇒ Ea ∈ τ

A/E
u ,

and hence, ϕ−1
E
◦τA

u ⊆ τ
A/E
u . Moreover, we have that σA ⊆ σA ◦E, by reflexivity of E, and according to (24), for

each a ∈ A by a ∈ σA ⊆ σA ◦E it follows Ea ∈ σA/E, and since (Ea, a) ∈ ϕ−1
E , we obtain that a ∈ σA/E ◦ϕ−1

E . Thus,

σA ⊆ σA/E ◦ϕ−1
E

. In the same way we show thatϕE ◦τ
A/E
u ⊆ τA

u , for each u ∈ X∗, and σA/E ⊆ σA ◦ϕE. Therefore,
ϕE is a weak forward bisimulation betweenA andA/E.

Conversely, let ϕE be a weak forward bisimulation betweenA andA/E. According to this assumption
and (25), for arbitrary u ∈ X∗ and a ∈ A we have that

a ∈ E ◦ τA
u ⇔ Ea ∈ τ

A/E
u ⇒ (a,Ea) ∈ ϕE ∧ Ea ∈ τ

A/E
u ⇒ a ∈ ϕE ◦ τ

A/E
u ⊆ τA

u .

Thus E ◦ τA
u ⊆ τ

A
u , and we have proved that E is a weak forward bisimulation equivalence onA.

Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, and let φ : A → B be a bijective function.
If φ satisfies

a ∈ σA ⇔ φ(a) ∈ σB, for every a ∈ A, (90)

a ∈ τA
u ⇔ φ(a) ∈ τB

u , for all u ∈ X∗ and a ∈ A, (91)

then it is called a weak forward isomorphism betweenA and B. Similarly, if φ satisfies

a ∈ σA
u ⇔ φ(a) ∈ σB

u , for all u ∈ X∗ and a ∈ A, (92)

a ∈ τA ⇔ φ(a) ∈ τB, for every a ∈ A, (93)

then it is called a weak backward isomorphism betweenA and B. It is easy to check that the inverse function
of a weak forward (resp. backward) isomorphism is also a weak forward (resp. backward) isomorphism.

Now we state and prove the following analogue of Theorem 7.2. The main difference is that in this case
the factor automata need not be isomorphic, but only weak forward isomorphic.

Theorem 11.4. LetA = (A, δA, σA, τA) andB = (B, δB, σB, τB) be automata and let ϕ ⊆ A×B be a uniform relation.
Then ϕ is a weak forward bisimulation if and only if the following hold:

(i) E
ϕ

A
is a weak forward bisimulation equivalence onA;

(ii) E
ϕ
B

is a weak forward bisimulation equivalence on B;

(iii) ϕ̃ is a weak forward isomorphism of factor automataA/E
ϕ

A
and B/E

ϕ

B
.

Proof. For the sake of simplicity set E
ϕ

A
= E and E

ϕ
B
= F. Moreover, let f ∈ FD(ϕ) be an arbitrary functional

description of ϕ.
Let ϕ be a weak forward bisimulation. Then we have that

E ◦ τA
u = ϕ ◦ ϕ

−1 ◦ τA
u ⊆ ϕ ◦ τ

B
u ⊆ τ

A
u ,

and since the opposite inclusion follows by reflexivity of E, we conclude that E◦τA
u = τ

A
u . Hence, E is a weak

forward bisimulation equivalence on A. In a similar way we prove that F is a weak forward bisimulation
equivalence on B.
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Next, for an arbitrary a ∈ A we have that

Ea ∈ σ
A/E ⇔ a ∈ σA ◦ E = σA ◦ ϕ ◦ ϕ−1 = σB ◦ ϕ−1 ⇔ (∃b ∈ B) ( b ∈ σB ∧ (a, b) ∈ ϕ )

⇔ (∃b ∈ B) ( b ∈ σB ∧ ( f (a), b) ∈ F ) ⇔ f (a) ∈ σB ◦ F ⇔ F f (a) ∈ σ
B/F,

and for arbitrary u ∈ X∗ and a ∈ A we obtain

Ea ∈ τ
A/E
u ⇔ a ∈ τA

u = ϕ ◦ τ
B
u ⇔ (∃b ∈ B) ( (a, b) ∈ ϕ ∧ b ∈ τB

u )

⇔ (∃b ∈ B) ( ( f (a), b) ∈ F ∧ b ∈ τB
u ) ⇔ f (a) ∈ F ◦ τB

u = τ
B
u ⇔ F f (a) ∈ τ

B/F
u .

Therefore, we have proved that ϕ̃ : Ea 7→ F f (a) is a weak forward isomorphism betweenA/E
ϕ

A
and B/E

ϕ
B

.
Conversely, let (i), (ii), and (iii) hold. For an arbitrary a ∈ A we have that

a ∈ σA ◦ ϕ ◦ ϕ−1 = σA ◦ E ⇔ Ea ∈ σ
A/E ⇔ ϕ̃(Ea) ∈ σ

B/F ⇔ F f (a) ∈ σ
B/F ⇔ f (a) ∈ σB ◦ F

⇔ (∃b ∈ B) ( b ∈ σB ∧ (b, f (a)) ∈ F ) ⇔ (∃b ∈ B) ( b ∈ σB ∧ (a, b) ∈ ϕ ) ⇔ a ∈ σB ◦ ϕ−1,

so σA ◦ϕ ◦ϕ−1 = σB ◦ϕ−1, and consequently, σA ◦ϕ = σA ◦ϕ ◦ϕ−1 ◦ϕ = σB ◦ϕ−1 ◦ϕ. Moreover, for arbitrary
u ∈ X∗ and a ∈ A we have

a ∈ τA
u ⇔ Ea ∈ τ

A/E
u ⇔ ϕ̃(Ea) ∈ τ

B/F
u ⇔ F f (a) ∈ τ

B/F
u ⇔ f (a) ∈ τB

u = F ◦ τB
u

⇔ (∃b ∈ B) ( ( f (a), b) ∈ F ∧ b ∈ σB ) ⇔ (∃b ∈ B) ( (a, b) ∈ ϕ ∧ b ∈ σB ) ⇔ a ∈ ϕ ◦ τB
u ,

so τA
u = ϕ ◦τ

B
u , which also yields ϕ−1 ◦τA

u = ϕ
−1 ◦ϕ ◦τB

u = F◦τB
u = τ

B
u . Therefore, according to Theorem 11.1,

ϕ is a weak forward bisimulation.

We can also prove the following.

Theorem 11.5. LetA = (A, δA, σA, τA) andB = (B, δB, σB, τB) be automata, and let E and F be weak forward bisim-
ulation equivalences onA and B.

Then there exists a uniform weak forward bisimulation ϕ ⊆ A × B such that E
ϕ

A
= E and E

ϕ

B
= F if and only if

there exists a weak forward isomorphism between factor automataA/E and B/F.

Proof. This theorem can be proved in a similar way as Theorem 7.3, using Theorem 11.4.

Theorem 11.6. Let A = (A, δA, σA, τA) be an automaton, let E be a weak forward bisimulation equivalence on A,
and let F be an equivalence on A such that E ⊆ F.

Then F is a weak forward bisimulation equivalence on A if and only if F/E is a weak forward bisimulation
equivalence onA/E.

Proof. For arbitrary u ∈ X∗ and a ∈ A we can easily check that

Ea ∈ (F/E) ◦ τA/E
u ⇔ a ∈ F ◦ τA

u .

By this and by Lemma 11.2 we obtain that (F/E) ◦ τA/E
u ⊆ τA/E

u if and only if F ◦ τA
u ⊆ τ

A
u , what is precisely

the claim of the theorem.

Corollary 11.7. LetA = (A, δA, σA, τA) be an automaton, and let E and F be weak forward bisimulation equivalences
onA such that E ⊆ F.

Then F is the greatest weak forward bisimulation equivalence onA if and only if F/E is the greatest weak forward
bisimulation equivalence onA/E.

Proof. This is an immediate consequence of the previous theorem and Theorem 4.2.
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LetA = (A, δA, σA, τA) be an automaton. Let us set AN = {σA
u | u ∈ X∗}, and let us define δAN : AN×X→ AN

and τAN ⊆ AN by

δAN (σA
u , x) = σA

ux, (94)

σA
u ∈ τ

AN ⇔ σA
u ◦ τ

A = 1 ⇔ σA
u ∩ τ

A
, ∅, (95)

for all u ∈ X∗ and x ∈ X. ThenAN = (AN, δAN , σA
ε , τ

AN ) is a deterministic automaton which is language equiv-
alent toA, i.e., L(AN) = L(A), and it is called the Nerode automaton of A (cf. [15, 28, 30, 35]). Note that the
Nerode automaton ofA is the deterministic automaton obtained fromA by means of the determinization
method known as the accessible subset construction.

Moreover, let ĀN = {τA
u | u ∈ X∗}, and let us define δĀN : ĀN × X→ ĀN and τĀN ⊆ ĀN by

δĀN (τA
u , x) = τA

xu, (96)

τA
u ∈ τ

ĀN ⇔ σA ◦ τA
u = 1 ⇔ σA ∩ τA

u , ∅, (97)

for all u ∈ X∗ and x ∈ X. Then ĀN = (ĀN, δĀN , τA
ε , τ

ĀN ) is a deterministic automaton which is isomorphic to
the Nerode automaton of the reverse automaton Ā ofA, and it is called the reverse Nerode automaton ofA.

The following theorem gives a characterization of uniform weak forward bisimulations in terms of the
reverse Nerode automata. Let us note that an analogous theorem, given in terms of the Nerode automata,
characterizes uniform weak backward bisimulations.

Theorem 11.8. LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata and ϕ ⊆ A × B a uniform relation.
Then ϕ is a weak forward bisimulation fromA to B if and only if it satisfies (71) and (75), and functions

τA
u 7→ ϕ−1 ◦ τA

u , τB
u 7→ ϕ ◦ τB

u , (98)

for each u ∈ X∗, are mutually inverse isomorphisms between reverse Nerode automata ĀN and B̄N.

Proof. Consider functions Φ : ĀN → P(B) and Ψ : B̄N → P(A) which are given by Φ(τA
u ) = ϕ−1 ◦ τA

u and
Ψ(τB

u) = ϕ ◦ τB
u , for each u ∈ X∗.

Let ϕ be a weak forward bisimulation fromA to B. By definition, it satisfies (71) and (75). According to
Theorem 11.1, for every u ∈ X∗ we have that Φ(τA

u ) = τB
u ∈ B̄N and Ψ(τB

u) = τA
u ∈ ĀN, which means that Φ

maps ĀN into B̄N, and Ψ maps B̄N into ĀN. According to the same theorem, for every u ∈ X∗ we have that
Ψ(Φ(τA

u )) = ϕ ◦ ϕ−1 ◦ τA
u = τ

B
u and Φ(Ψ(τB

u)) = ϕ−1 ◦ ϕ ◦ τB
u = τ

B
u , and hence, Φ and Ψ are mutually inverse

bijections from ĀN to B̄N, and vice versa.
Clearly, Φ(τA) = τB andΨ(τB) = τA. Next, for arbitrary x ∈ X and u ∈ X∗ we have that

Φ(δĀN (τA
u , x)) = Φ(τA

xu) = τB
xu = δ

B̄N (τB
u , x) = δB̄N (Φ(τA

u ), x).

By Theorem 11.1, for any u ∈ X∗ we have that σA ◦ τA
u = σ

A ◦ ϕ ◦ ϕ−1 ◦ τA
u = σ

B ◦ ϕ−1 ◦ τA
u = σ

B ◦ τB
u , so

τA
u ∈ τ

ĀN ⇔ σA ◦ τA
u = 1 ⇔ σB ◦ τB

u = 1 ⇔ τB
u ∈ τ

B̄N ⇔ Φ(τA
u ) ∈ τB̄N .

Hence, we have proved that Φ is an isomorphism from ĀN to B̄N. In a similar way we prove that Ψ is an
isomorphism from B̄N to ĀN.

Conversely, let (71) and (75) hold, and let Φ and Ψ be mutually inverse isomorphisms from ĀN to B̄N

and from B̄N to ĀN, respectively. Since τA and τB are the unique initial states of ĀN and B̄N, we have that
Φ(τA) = τB, and hence, ϕ−1◦τA = τB andϕ◦τB = τA. Suppose thatΦ(τA

u ) = τB
u , for some u ∈ X∗, and consider

an arbitrary x ∈ X. Then

Φ(τA
xu) = Φ(δĀN (τA

u , x)) = δB̄N (Φ(τA
u ), x) = δB̄N (τB

u , x) = τB
xu.

Now, by induction on the length of u we obtain thatΦ(τA
u ) = τB

u , for every u ∈ X∗, and also,Ψ(τB
u) = τA

u , which
means that (88) holds. Therefore, by Theorem 11.1 we obtain that ϕ is a weak forward bisimulation.
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Note that a similar theorem can be proved for weak backward bisimulations, i.e., a uniform relation ϕ
is a weak backward bisimulation fromA to B if and only if it satisfies (73) and (77), and functions

σA
u 7→ σA

u ◦ ϕ, σB
u 7→ σB

u ◦ ϕ
−1, (99)

for each u ∈ X∗, are mutually inverse isomorphisms between Nerode automataAN and BN.

12. Weak forward bisimulation equivalent automata

LetA = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata. If there exists a complete and surjective weak
forward bisimulation from A to B, then we say that A and B are weak forward bisimulation equivalent, or
briefly WFB-equivalent, and we write A ∼WFB B. Notice that completeness and surjectivity of this forward
bisimulation mean that every state ofA is equivalent to some state of B, and vice versa. For arbitrary auto-
mataA, B and C we have that

A ∼WFB A; A ∼WFB B ⇒ B ∼WFB A;
(
A ∼WFB B ∧ B ∼WFB C

)
⇒A ∼WFB C. (100)

Similarly, we say thatA and B are weak backward bisimulation equivalent, briefly WBB-equivalent, in notation
A ∼WBB B, if there exists a complete and surjective weak backward bisimulation fromA to B.

The following lemma will be useful in our further work.

Lemma 12.1. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, let φ be a weak forward isomorphism
betweenA and B, and let E and F be the greatest weak forward bisimulation equivalences onA and B.

Then for arbitrary a1, a2 ∈ A the following is true:

(a1, a2) ∈ E ⇔ (φ(a1), φ(a2)) ∈ F. (101)

Proof. Let us define a relation F′ on B by

(b1, b2) ∈ F′ ⇔ (φ−1(b1), φ−1(b2)) ∈ E, (102)

for arbitrary b1, b2 ∈ B. It is clear that F′ is an equivalence on B.
Consider an arbitrary u ∈ X∗. If b1 ∈ F′ ◦ τB

u , then there is b2 ∈ B such that (b1, b2) ∈ F′ and b2 ∈ τB
u , and by

(102) and (91) we obtain that (φ−1(b1), φ−1(b2)) ∈ E and φ−1(b2) ∈ τA
u . This means that φ−1(b1) ∈ E ◦ τA

u ⊆ τ
A
u ,

and again by (91) we obtain that b1 = φ(φ−1(b1)) ∈ τB
u . Therefore, F′ ◦ τB

u ⊆ τ
B
u , for each u ∈ X∗, so F′ is a

weak forward bisimulation equivalence on A, whence F′ ⊆ F. Now, for arbitrary a1, a2 ∈ A we have that
(a1, a2) ∈ E implies (φ(a1), φ(a2)) ∈ F′ ⊆ F, so we have proved the direct implication in (101). Analogously
we prove the reverse implication.

Now we state and prove the main result of this section.

Theorem 12.2. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata, and let E and F be the greatest weak
forward bisimulation equivalences onA and B.

ThenA andB are WFB-equivalent if and only if there exists a weak forward isomorphism between factor automata
A/E and B/F.

Proof. LetA and B be WFB-equivalent automata. As in the proof of Theorem 8.2 we show that the greatest
weak forward bisimulation ϕ betweenA and B is a uniform relation.

By Theorem 11.4, E
ϕ

A
and E

ϕ

B
are weak forward bisimulation equivalences onA and B, and ϕ̃ is a weak

forward isomorphism of factor automata A/E
ϕ

A
and B/E

ϕ

B
. Let P and Q be respectively the greatest weak

forward bisimulation equivalences onA/E
ϕ

A
andB/E

ϕ
B

. Let ξ : (A/E
ϕ

A
)/P→ (B/E

ϕ
B

)/Q be a function defined

by ξ(Pα) = Qϕ̃(α), for each α ∈ A/E
ϕ

A
. It is easy to verify that ξ is a well-defined bijective function, and by (89),

(101) and the fact that ϕ̃ is a weak forward isomorphism we obtain that ξ is a weak forward isomorphism.
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By Corollary 11.7 it follows that P = E/E
ϕ

A
and Q = F/E

ϕ
B

, and according to Theorem 4.1,A/E is isomor-

phic to (A/E
ϕ

A
)/P and B/F is isomorphic to (B/E

ϕ

B
)/Q. As we have already proved that ξ is a weak forward

isomorphism between (A/E
ϕ

A
)/P and (B/E

ϕ

B
)/Q, we conclude that there is a weak forward isomorphism

betweenA/E and B/F.
The converse follows immediately by Theorem 11.5.

Corollary 12.3. Let A be an automaton, let E be the greatest weak forward bisimulation equivalence on A, and let
WFB(A) be the class of all automata which are WFB-equivalent toA.

Then A/E is a minimal automaton in WFB(A). Moreover, if B is any minimal automaton in WFB(A), then
there exists a weak forward isomorphism betweenA/E and B.

Proof. Let B be an arbitrary minimal automaton in WFB(A), and let F be the greatest weak forward
bisimulation equivalence on B. According to Theorem 12.2, there exists a weak forward isomorphism
betweenA/E andB/F, and by Lemma 11.3 and (100) it follows thatB/F ∈WFB(A). Now, by minimality of
Bwe obtain that F is the equality relation on B, what means thatB/F � B. Therefore, there is a weak forward
isomorphism betweenA/F and B, and consequently,A/F is also a minimal automaton inWFB(A).

The next example shows that there are automata which are WFB-equivalent, but they are not FB-equi-
valent, and also, that there are automata which are language-equivalent, but they are not WFB-equivalent.

Example 12.4. Let A = (A, δA, σA, τA) and B = (B, δB, σB, τB) be automata with |A| = 4, |B| = 2 and X = {x},
whose transition relations and sets of initial and terminal states are given by the following Boolean matrices
and vectors:

σA =
[
0 1 0 0

]
, δA

x =




1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



, τA =




0
0
1
0



, σB =

[
1 0
]
, δB

x =

[
1 0
1 0

]
, τB =

[
0
1

]
.

Computing the relation µ ⊆ A × B using formula (80) we obtain that

µ =




1 0
1 0
0 1
1 0



,

and we can easily check that µ satisfies both (71) and (75), and according to Theorem 10.6, µ is the greatest
weak forward bisimulation between automataA and B.

On the other hand, using the procedure from Theorem 6.3 we get the relation

ϕ =




1 0
0 0
0 0
0 0




which does not satisfy (30) and (36), and according to Theorem 6.3, there is no any forward bisimulation bet-
weenA and B. Since µ is complete and surjective (i.e., it is a uniform relation), we have thatA and B are
WFB-equivalent, but they are not FB-equivalent.

If we change σA and σB to

σA =
[
0 0 1 0

]
, σB =

[
1 1
]
,

then we obtain that µ does not satisfy (75), and in this case there is no any weak forward bisimulation bet-
weenA and B, i.e.,A and B are not WFB-equivalent. However,A and B are still language-equivalent, i.e.,
we have that L(A) = L(B) (= {ε}).
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13. Concluding remarks

In this article we have formed a conjunction of bisimulations and uniform relations as a very powerful
tool in the study of equivalence between nondeterministic automata. In this symbiosis, uniform relations
serve as equivalences which relate elements of two possibly different sets, while bisimulations provide
compatibility with the transitions, initial and terminal states of automata.We have defined six types of
bisimulations, but due to the duality we have discussed three of them: forward, backward-forward, and
weak forward bisimulations. For each od these three types of bisimulations we have provided a procedure
which decides whether there is a bisimulation of this type between two automata, and when it exists, the
same procedure computes the greatest one. We have proved that a uniform relation between automataA and
B is a forward bisimulation if and only if its kernel and co-kernel are forward bisimulation equivalences on
A andB and there is a special isomorphism between factor automata with respect to these equivalences. As
a consequence we get that automataA andB are FB-equivalent, i.e., there is a uniform forward bisimulation
between them, if and only if there is an isomorphism between the factor automata ofA and Bwith respect
to their greatest forward bisimulation equivalences. This result reduces the problem of testing FB-equi-
valence to the problem of testing isomorphism of automata, which is equivalent to the well-known graph
isomorphism problem. We have shown that some similar results are also valid for backward-forward bisim-
ulations, but there are many significant differences. Analogous results have been also obtained for weak for-
ward bisimulations, for which we have shown that they are more general than forward bisimulations, and
consequently, the WFB-equivalence of automata is closer to the language-equivalence than the FB-equi-
valence.

Similar methodology was used in [17] in the study of bisimulations between fuzzy automata. In further
research, the methodology developed for nondeterministic and fuzzy automata will be applied to weighted
automata over suitable types of semirings, as well as in discussing certain issues of social network analysis.
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