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Abstract

In this paper we study the equivalence of nondeterministic automata pairing the concept of a bisimulation with the recent-
ly introduced concept of a uniform relation. In this symbiosis, uniform relations serve as equivalence relations which
relate states of two possibly different nondeterministic automata, and bisimulations ensure compatibility with the tran-
sitions, initial and terminal states of these automata. We define six types of bisimulations, but due to the duality we
discuss three of them: forward, backward-forward, and weak forward bisimulations. For each od these three types of
bisimulations we provide a procedure which decides whether there is a bisimulation of this type between two automata,
and when it exists, the same procedure computes the greatest one. We also show that there is a uniform forward bisim-
ulation between two automata if and only if the factor automata with respect to the greatest forward bisimulation
equivalences on these automata are isomorphic. We prove a similar theorem for weak forward bisimulations, using the
concept of a weak forward isomorphism instead of an isomorphism. We also give examples that explain the relationships
between the considered types of bisimulations.
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1. Introduction

One of the most important problems of automata theory is to determine whether two given automata are
equivalent, what usually means to determine whether their behaviour is identical. In the context of deter-
ministic or nondeterministic automata the behaviour of an automaton is understood to be the language
thatis recognized by it, and two automata are considered equivalent, or more precisely language-equivalent, if
they recognize the same language. For deterministic finite automata the equivalence problem is solvable in
polynomial time, but for nondeterministic finite automata it is computationally hard (PSPACE-complete
[23,151,153]). Another important issue is to express the language-equivalence of two automata as a relation
between their states, if such relationship exists, or find some kind of relations between states which would
imply the language-equivalence. The language-equivalence of two deterministic automata can be expressed
in terms of relationships between their states, but in the case of nondeterministic automata the problem is
more complicated.

A widely-used notion of “equivalence” between states of automata is that of bisimulation. Bisimulations
havebeen introduced by Milner [41] and Park [45] in computer science, where they have been used to model
equivalence between various systems, as well as to reduce the number of states of these systems. Roughly
at the same time they have been also discovered in some areas of mathematics, e.g., in modal logic and set
theory. They are employed today in a many areas of computer science, such as functional languages, object-
oriented languages, types, data types, domains, databases, compiler optimizations, program analysis,
verification tools, etc. For more information about bisimulations we refer to [1,13, 120, 124,40, 42, 43,147, /50].
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The most common structures on which bisimulations have been studied are labelled transition systems,
i.e,, labelled directed graphs, which are essentially nondeterministic automata without fixed initial and ter-
minal states. A definition of bisimulations for nondeterministic automata that takes into account initial and
terminal states was given by Kozen in [38]. In numerous papers dealing with bisimulations mostly one
type of bisimulations has been studied, called just bisimulations, like in the Kozen’s book [3§], or strong
bisimulations, like in [42,!43,147]. In this paper we differentiate two types of simulations, forward and back-
ward simulations. Considering that there are four cases when a relation R and its inverse R™! are forward or
backward simulations, we distinguish four types of bisimulations. We define two homotypic bisimulations,
forward and backward bisimulations, where both R and R~! are forward or backward simulations, and two
heterotypic bisimulations, backward-forward and forward-backward bisimulations, where R is a backward
and R~! a forward simulation or vice versa. Distinction between forward and backward simulations, and
forward and backward bisimulations, has been also made, for instance, in [9, 25, 40] (for various kinds
of automata), but less or more these concepts differ from the concepts having the same name which are
considered here. More similar to our concepts of forward and backward simulations and bisimulations are
those studied in [8], and in [26, 27] (for tree automata).

It is worth noting that forward and backward bisimulations, and backward-forward and forward-back-
ward bisimulations, are dual concepts, i.e., backward and forward-backward bisimulations on a nondeter-
ministic automaton are forward and backward-forward bisimulations on its reverse automaton. This means
that for any universally valid statement on forward or backward-forward bisimulations there is the corre-
sponding universally valid statement on backward and forward-backward bisimulations. For that reason,
our article deals only with forward and backward-forward bisimulations. In general, none of forward and
backward bisimulations or backward-forward and forward-backward bisimulations can be considered in
practical applications better than the other. For example, under the names right and left invariant equiva-
lences, forward and backward bisimulation equivalences have been used by llie, Yu and others [31-34] in
reduction of the number of states of nondeterministic automata. It was shown that there are cases where
one of them better reduces the number of states, but there are also other cases where the another one gives
a better reduction. There are also cases where each of them individually causes a polynomial reduction of
the number of states, but alternately using both types of equivalences the number of states can be reduced
exponentially (cf. [32, Section 11]). It is also worth of mention that backward bisimulation equivalences
were successfully applied in [52] in the conflict analysis of discrete event systems, while it was shown that
forward bisimulation equivalences can not be used for this purpose.

Aswe already said, the main role of bisimulations is to model equivalence between the states of the same
or different automata. However, bisimulations provide compatibility with the transitions, initial and termi-
nal states of automata, but in general they do not behave like equivalences. A kind of relations which can be
conceived as equivalences which relate elements of two possibly different sets appeared recently in [16] in
the fuzzy framework. Here we consider the crisp version of these relations, the so-called uniform relations.
The main aim of the paper is to show that the conjunction of two concepts, uniform relations and bisimula-
tions, provides a very powerful tool in the study of equivalence between nondeterministic automata, where
uniform relations serve as equivalence relations which relate states of two nondeterministic automata, and
bisimulations ensure compatibility with the transitions, initial and terminal states of these automata. Our
second goal is to employ the calculus of relations as a tool that will show oneself as very effective in the study
of bisimulations. And third, we introduce and study a more general type of bisimulations, the so-called
weak bisimulations. We show that equivalence of automata determined by weak bisimulations is closer to the
language equivalence than equivalence determined by bisimulations, and we also show that they produce
smaller automata than bisimulations when they are used in the the reduction of the number of states.

Our main results are the following. The main concepts and results from [16] concerning uniform fuzzy
relations are translated to the case of ordinary relations, and besides, the proofs and some statements are
simplified (cf. Theorems[3.1] B.2and [3.4). We also define the concept of the factor automaton with respect to
an arbitrary equivalence, and prove two theorems that can be conceived as a version, for nondeterministic
automata, of two well-known theorems of universal algebra: Second Isomorphism Theorem and Corre-
spondence Theorem (cf. Theorems@.Tland 4.2). Then we study the general properties of forward and back-
ward-forward bisimulations. In cases where there is at least one forward or backward-forward bisimulation,
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we prove the existence of the greatest one, and we also show that the greatest forward bisimulation is a
partial uniform relation (cf. Theorems 5.5 and 5.6). An algorithm that decides whether there is a forward
bisimulation between nondeterministic automata was provided by Kozen in [38]. When there is a forward
bisimulation, this algorithm also computes the greatest one. Here we give another version of this algorithm,
and we also provide an analogous algorithm for backward-forward bisimulations (Theorems [6.3land [6.5).

Given two automata A and B and a uniform relation ¢ € A X B between their sets of states, we show that
@ is a forward bisimulation if and only if both its kernel Efﬁ and co-kernel E}, are forward bisimulation equi-
valences on A and B, and the function ¢ induced in a natural way by ¢ is an isomorphism between factor
automata A/EY and B/E} (Theorem[Z.2). Also, given two forward bisimulation equivalences E on A and F
on B, we show that there is a uniform forward bisimulation between A and B whose kernel and co-kernel
are E and F if and only if the factor automata A/E and B/F are isomorphic (Theorem[Z.3). Two automata A
and B are defined to be FB-equivalent if there is a complete and surjective forward bisimulation between
A and B, which is equivalent to the existence of a uniform forward bisimulation between A and 8. We
prove that A and B are FB-equivalent if and only if the factor automata with respect to the greatest forward
bisimulation equivalences on A and B are isomorphic (cf. Theorem[8.2). As a consequence we obtain that
the factor automaton with respect to the greatest forward bisimulation equivalence on an automaton A is
the unique (up to an isomorphism) minimal automaton in the class of all automata which are FB-equivalent
to A. Let us note that similar results were proved in [38], under the assumption that the automaton A is
accessible, and in [11].

Theorems similar to Theorems([Z2land[7Z3lare proved for backward-forward bisimulations (Theorems[.1l
and[@.2). The only difference is that the kernel of a backward-forward bisimulation is a forward bisimulation
equivalence, and the co-kernel is a backward bisimulation equivalence. This difference is the reason why
we can not use backward-forward bisimulations to define an equivalence relation between automata, but
nevertheless, the existence of a backward-forward bisimulation between two automata implies the language
equivalence between them. As a tool for providing structural characterization of equivalence, backward-
forward bisimulations were used in [6], and in [2-4,9,121,122,139,/49] within the context of weighted automata
(under different names). We also prove that a function between the sets of states of two automata is a forward
bisimulation if and only if it is a backward-forward bisimulation (Theorem [0.3).

Then we introduce and study two new types of bisimulations, weak forward and weak backward bisim-
ulations, which are more general than forward and backward bisimulations and determine two types of
structural equivalence which are closer to the language-equivalence than the FB- and BB-equivalence. We
give a way to decide whether there is a weak forward bisimulation between two automata, and if it exists,
we provide a way to construct the greatest one (Theorem[10.6). Given two automata A and B and a uniform
relation ¢ C A X B between their sets of states, we show that ¢ is a weak forward bisimulation if and
only if both E:i and EY are weak forward bisimulation equivalences on A and B, and ¢ is a weak forward
isomorphism between factor automata A/ Ei and B/ Eg (Theorem[IT.4). We also characterize uniform weak
forward bisimulations between automata A and B in terms of isomorphism between the reverse Nerode
automata of A and B (Theorem [I1.8). Finally, we study weak forward bisimulation equivalence between
automata and we give an example of automata which are weak forward bisimulation equivalent but not
forward bisimulation equivalent. It should be noted that our concepts of a weak forward bisimulation and a
weak backward bisimulation differ from the concept of a weak bisimulation studied in the concurrency
theory.

The paper is organized as follows. In Section 2 we give definitions of basic notions and notation con-
cerning relations and relational calculus, in Section 3 we talk about uniform relations, and in Section 4 we
define basic notions and notation concerning nondeterministic automata, introduce factor automata and
prove some of their fundamental properties. In Section 5 we define two types of simulations and four types
of bisimulations and discuss the main properties of forward and backward-forward bisimulations, and in
Section 6 we give procedures for deciding whether there are forward and backward-forward bisimulations
between given automata, and whenever they exist, our procedures compute the greatest ones. Section 7 pro-
vides characterization results for uniform forward bisimulations, and in Section 8 we define FB-equivalence
between automata and prove the main characterization result for FB-equivalent automata. Section 9 discuss
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basic properties of backward-forward bisimulations and points to similarities and fundamental differences
between them and forward bisimulations. Then in Section 10 we introduce weak forward and weak back-
ward bisimulations and explore some of their general properties. In Section 11 we deal with uniform weak
forward bisimulations, and in Section 12 we study WFB-equivalence of automata.

Itis worth noting that a comprehensive overview of various concepts on deterministic, nondeterministic,
fuzzy, and weighted automata, which are related to bisimulations, as well as to the algebraic concepts of a
homomorphism, congruence, and relational morphism was given in the penultimate section of [17]. It was
shown that all these concepts amount either to forward or to backward-forward bisimulations.

2. Preliminaries

Let A and B be non-empty sets. Any subset R C A X B is called a relation from A to B, and equality,
inclusion, union and intersection of relations from A to B are defined as for subsets of A X B. The inverse of
arelation R C A X Bis a relation R™! C B x A defined by (b,a) € R™! if and only if (4,b) € R, for alla € A and
b e B.If A = B, thatis, if R € A XA, then Ris called a relation on A. For a relation ¢ C A X B we define a subset
Dom@of AandIm@ of Bby Domgp ={ac A|(AbeB)(a,b) e plandIme ={b e B|(Ja € A)(a,b) € p}. We
call Dom ¢ the domain of ¢ and Im ¢ the image of ¢.

For non-empty sets A, B and C, and relations R € A x Band S C B x C, the composition of R and S is a
relation R o S € A X C defined by

(a,0)€ (RoS) & (I eB)((@bh)eRA(D,)eS), 1)

for alla € A and ¢ € C. For non-empty sets A and B, a relation R C A X B, and subsets « € A and § C B, we
define subsets « c R € Band Ro  C A by

beaoR & (TncA)(acan(ab)eR), acRop o (IbeB)((@b)eRAbep), )

for alla € A and b € B. To simplify our notation, for a non-empty set A and subsets @, § C A we will write

0 ifanp=0, ©)

1 ifan ,
qof = { ifanp#0
i.e., a o B is the truth value of the statement "a N f # 0”.
For non-empty sets A, B, C and D, arbitrary relations R € A X B, 5,51,5,,5; € B X C, where i € I, and
T € C X D, and arbitrary arbitrary subsets a« C A, f C B, and y C C, the following is true:

(RoS)oT=Ro(S0oT), (4)
51 €S, implies RoS; CRoS; and S10TC Sy0T, (5)
Ro(lJs)={Jwosy, — (Us)oT={Jsiom (6)
i€l i€l i€l i€l
(?doR)oS=ao(RoS), (xoR)oB=ao(Rof), (RoS)oy=Ro(Soy), (7)
(RoS)'=5"1oR, (8)
S1 €S, implies S;' € S5, 9)
aoR=R'oq, Rof=poR™. (10)

Therefore, parentheses in () and () can be omitted.

Note that, despite the notation, the inverse relation R~!is not an inverse of the relation R C A X B in the
sense of composition of relations, i.e., RoR™! and R™! o R are not the equality relations on A and B in general.
Let us also note that if A, B and C are finite sets with |A| = k, |B| = m and |C| = 1, then R and S can be treated
as k X m and m X n Boolean matrices, and R o § is their matrix product. Moreover, if we consider a and § as
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1 X k and 1 X m Boolean matrices, i.e., Boolean vectors of length k and 1, then a o R can be treated as the
matrix product of @ and R, R o 8 as the matrix product of R and p' (the transpose of f), and a o § as the scalar
product of vectors a and .

Recall that an equivalence on a set A is any reflexive, symmetric and transitive relation on A. Let E be an
equivalence on a set A. By E, we denote the equivalence class of an element a € A with respect to E, i.e.,
E,={be A|(a,b) € E}. The set of all equivalence classes of E is denoted by A/E and called the factor set of A
with respect to E. By E? we denote the natural function of A onto A/E, i.e., the function given by E%(a) = E,,
for everya € A.

3. Uniform relations

Let A and B be non-empty sets. A relation ¢ C A X B is called complete if for any a € A there exists b € B
such that (a, b) € @, and surjective if for any b € B there exists a € A such that (a,b) € ¢. Let us note that ¢ is
complete if and only if there exists a function f : A — B such that (g, f(a)) € @, for every a € A. Let us call
a function f with this property a functional description of ¢, and let us denote by FD(¢) the set of all such
functions. For an equivalence F on B, a function f : A — B is called F-surjective if for every b € B there exists
a € A such that (f(a), b) € F. In other words, we have that f is F-surjective if and only if fo F*: A — B/Fisa
surjective function.

For an arbitrary relation ¢ C A X B we define equivalences EZ on A and E(g on B in the following way:
for all a;,a, € A and by, b, € B we set

(m1,a2) €Ef & (YbeB)((a1,b) € ¢ & (az,b) € p), (11)
(bi,b) €EY & (acA)(@ab)ep o @b)ep). (12)

We call EY] the kernel, and E}, the cokernel of ¢.

Let A and B be non-empty sets. A partial uniform relation from A to B is a relation ¢ C A X B which
satisfies ¢ o ¢! o ¢ C ¢. Since the opposite inclusion always holds, ¢ is a partial uniform relation if and
only if ¢ o p~' o ¢ = ¢. A partial uniform relation which is complete and surjective is called a uniform
relation. Let us notice that a partial uniform relation ¢ € A X B is a uniform relation from A’ to B, where
A'={ac A|(3beB)(a,b) < ¢} (the domain of p) and B’ = {b € B | (da € A) (a, b) € ¢} (the image of ¢).

Partial uniform relations and uniform relations are crisp analogues of partial fuzzy functions and uni-
form fuzzy relations, which were studied in [16, 29, 37]. The next two theorems can be derived from more
general theorems proved in the fuzzy framework (Theorems 3.1 and 3.3 [16]), but for the sake of complete-
ness here we give another immediate proofs.

Theorem 3.1. Let A and B be non-empty sets and let ¢ C A X B be a relation. Then the following conditions are
equivalent:

(i) @ is a partial uniform relation;
(ii) @7 is a partial uniform relation;

(it) o™t CE%;
Q@

(iv) ¢t o CE}.

Proof. (i)=(iii). Let (a1,a2) € ¢ o ¢~ 1. Then (a1, by) € ¢ and (by, a2) € ¢!, for some by € B, and for every b € B
we have that (a1, b) € ¢ implies (a2,b) € ¢ o go’l o @ C @, and likewise, (ay,b) € ¢ implies (a1,b) € . Thus,
(a1,a2) € EZ.

(iii)=(i). Let (a,b) € ¢ o ¢! o @. Then there exist a’ € A and b’ € B such that (a,b) € @, (V',a’) € ¢!
and (a’,b) € @, whence (a,a’) € p o ¢! € E¥, and by (@/,b) € ¢ and (II) we obtain (4,b) € ¢. Therefore,
pogplopCy.

Similarly we prove (i) (iv), whereas equivalence (i) & (ii) is obvious. [
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If ¢ C A X B is a partial uniform relation, then it can be easily verified that ¢ o ¢! and ¢! o ¢ are
symmetric and transitive relations, but they are not necessary reflexive. Namely, ¢ o ¢! is reflexive if and
only if ¢ is complete, and ¢! o ¢ is reflexive if and only if ¢ is surjective. Therefore, if ¢ is a uniform
relation, then both ¢ o ¢! and ¢! o @ are equivalence relations. Moreover, the following is true.

Theorem 3.2. Let A and B be non-empty sets and let ¢ C A X B be a relation. Then the following conditions are
equivalent:

(i) @ is a uniform relation;

(ii) @7 is a uniform relation;
(iii) ¢ is surjective and g o =1 = Ei’;;
(iv) @ is completeand ™' o ¢ = E¥;

(v) @ is complete and for all f € FD(¢),a € Aand b € B, f is E}-surjective and
(@b ey & (f(a),b)eEY; (13)
(vi) ¢ is complete and for all f € FD(¢p) and ay,a, € A, f is E}-surjective and

(@, f(@)) €p & (a1,a2) € EZ- (14)

Proof. (i)e(ii). This equivalence is obvious.

(i)=(iii). According to Theorem[B.T} we have that ¢ o ¢~ C EY.

Let (a1,a0) € Eﬁ. Since @ is complete, there exists b € B such that (a1, ) € ¢, and (1) yields (a2, b) € ¢, so
we obtain that (a1, a,) € ¢ o ¢~'. Therefore, EY C g o @.

(iii)=(i). By Theorem[B.1] ¢ is a partial uniform relation, by the assumption we have that it is surjective,
and by reflexivity of ¢ o ¢! it follows that it is complete.

(ii)¢(iv). This equivalence can be proved in the same way as (i) (iii).

(iv)=(v). Let f € FD(¢p),a € Aand b € B. If (a,b) € ¢, then by this and by (g, f(2)) € ¢ it follows
(f(a),b) € ™' o @ = E}. On the other hand, if (f(a),b) € E§ = ¢! o @, then by this and by (4, f(a)) € ¢ it
follows (a,b) € ¢ o 1 o ¢ = . Therefore, (I3) holds. By (I3) and the surjectivity of ¢ it also follows that f
is E(Bp-surjective.

(v)=(@v). By E(Bp-surjectivity of f and (I3) we obtain that ¢ is surjective. Let (b1, b2) € E(Bp. Then there
exists a € A such that (f(a), 1) € Eg, and then (f(a), b,) € Eg. Now by (@3) it follows that (a,b1) € ¢ and
(a,b2) € ¢, which yields (b1, by) € 7' 0 ¢.

Conversely, let (b1, b2) € (p’l o ¢. Then there exists a4 € A such that (a,b1) € ¢ and (4, b2) € ¢, and by (13)
we obtain that (f(a), b1) € E§ and (f(a), b2) € EY, so (b1, by) € Ej.

B
(iif)e(vi). This equivalence can be proved similarly as (iv)<(v). O

Remark 3.3. Let A and B be non-empty sets and let ¢ be a partial uniform relation from A to B. Then ¢ is a
uniform relation from Dom ¢ to Im ¢, and for that reason we introduced the name partial uniform relation.

It is easy to check that every equivalence relation and every surjective function are uniform relations,
and every function is a partially uniform relation. This confirms our remark given in the introduction that
uniform relations are common generalization of (surjective) functions and equivalence relations.

Theorem 3.4. Let A and B be non-empty sets, let E be an equivalence on A and F an equivalence on B. Then there
exists a uniform relation @ C A x B such that E = EY and F = Ej if and only if there exists a bijective function
¢ :AJE — BJF.

This bijective function can be represented as ¢ = @, where ¢ : A/E — B/F is a function given by

@(Eq) = Fpa), foranya e Aand f € FD(¢). (15)

We also have that () = @1



Proof. Let ¢ C A X B be a uniform relation such that E = E% and F = E}.

First we show that ¢ : A/E — B/F given by (15) is a well-defined function, i.e., that it does not depend
on the choice of f € FD(¢) and a € A. Indeed, according to (I3) and ([@4), for any 41,4, € Aand fi, f> € FD(¢p)
we have that

Eyy=Es, © (m1,m) €E & (11, (@) €@ & (film), f2(@2)) €F & Fpay) = Fpay)-

By this it follows that ¢ is well-defined, and also, that it is injective. Next, by Theorem[.21(v) and (vi), each
f € FD(¢) is F-surjective, so we have that ¢ is surjective. Therefore, ¢ is a bijective function.
Conversely, let ¢ : A/E — B/F be a bijective function. Let us define ¢ € A X B by

(a,b)ep © ¢(E;) =Fp, forallac Aand b € B. (16)

Itis clear that ¢ is complete and surjective. If (a,b) € p o p~' o @, then (a,¥’), (@, V'), (@', b) € @, for some a’ € A
and V' € B, so ¢(E,) = Fy = ¢(Ex) = Fj, whence (a,b) € ¢. Thus, ¢ o ¢! o ¢ C ¢, and since the opposite
inclusion is evident, we conclude that ¢ is a uniform relation.

Next, according to (1), for arbitrary a1,a, € A we have that

(a1,8) € EY & (Vb eB)((a,b) € p & (ar,b) € p) & (Vb€ B)(E,,) = F, & ¢(Ea) = Fy
< ¢(Ey) = ¢(Es,) © Eo =Es © (a1,m2) €E,

and therefore, Efﬁ = E. Likewise, Eg =F.
Finally, for every a € A and f € FD(p), by (a, f(a)) € ¢ and (16) it follows that ¢(E,) = Ffu) = @(E,), so

¢ = @. It can be easily verified that ()™ = p~1. O

Let us note that the bijective function ¢ from Theorem[3.4/determines some kind of “uniformity” between
partitions which correspond to the equivalences E and F, for what reason we use the name uniform relation.

4. Nondeterministic automata and factor automata

Throughout this paper, if not noted otherwise, let X be a finite non-empty set, called an alphabet (or an
input alphabet). We define a nondeterministic automaton over the alphabet X as a quadruple A = (A, o4, 04,14,
where A is a non-empty set, called the set of states, 5 C A X X X A is a ternary relation, called the transition
relation, and 0”* and 7/ are subsets of A, called respectively the sets of initial states and terminal states. For each
x € X, a binary relation & C A x A defined by

(a,b) € 62 & (a,x,b)€d?, foralla,be A,

is also called the transition relation. For any word u € X*, where X" is the free monoid over X, the extended
transition relation 6/ C A X A is defined inductively as follows: for the empty word ¢ € X* we define 62 to
be the equality relation, and for all u, v € X* we set 67, = 6% o0 &%} If we disregard initial and terminal states,
then the pair A = (A, ") is called a labelled transition system over X (cf. [1,'43]). Typically, the set of states
and the input alphabet of a nondeterministic automaton are assumed to be finite. Such assumption is not
necessary here, and we will assume that the input alphabet is finite, but from the methodological reasons,
in some cases we will allow the set of states to be infinite. A nondeterministic automaton whose set of states
is finite will be called a nondeterministic finite automaton. If o2 = {ag}, for some ag € A, and the relation ” is a
function from A X X to A, i.e., for every (a,x) € A X X there is a unique a’ € A such that (a,x,4") € &4, then A
is called a deterministic automaton, and we write A = (A, 5%, ag, 7). In this case, the expressions (a,x,a’) € &
and 6%(a,x) = @’ will have the same meaning. We also have that 6/ is a function from A to A, for every
u € X*, and we will often write 67 (a) = a’ instead of (a,a’) € &2. For the sake of simplicity, in the rest of the
paper we will say just automaton instead of nondeterministic automaton.
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The reverse automaton of an automaton A = (A, 54, 04, 74) is an automaton A = (A, 54,54, 74) whose tran-
sition relation and sets of initial and terminal states are defined by 54(a, x,b) = 8*(b, x,a), for alla,b € A and
x € X, 5% =t and 7! = 0. In other words, 62 = (64)71, for every x € X.

An automaton B = (B, 5%, 0%, P) is a subatomaton of an automaton A = (A, 5,04, 1) if B C A, 68 is the
restriction of 62 to B X B, for each x € X, and ¢® and 7? are restrictions of 0 and 74 to B, i.e., 8 = 64 N Bx B,
o® =64 NB,and ¥ = 4 N B.

Let A = (A, 64,04, 74) and B = (B, 6%, 6, 78) be automata. A function ¢ : A — B is an isomorphism if it is
bijective and for all 4,41, 4, € A and x € X the following is true:

(a1,82) €67 & (P(m), P(a2)) € 6%, (17)
nedt o P(a) € b, (18)
aet o ¢)erd. (19)

If there exists an isomorphism between A and B, then we say that A and B are isomorphic automata, and
we write A = B. In other words, two automata are isomorphic if in essence they have the same structure, if
they differ eachother only in notation of their states. In particular, if A = (4, 5%, a9, ") and B = (B, 6%, by, 7°)
are deterministic automata, then a bijective function ¢ : A — B is an isomorphism if and only if it satisfies

$(ao) = by, (19) and
D6 (a,x)) = 5°(9(a), x), (20)

forall x € xand a € A.

It is easy to check that composition of two isomorphisms of automata is also an isomorphism, and
thus, for arbitrary automata A, B and C, A = B and B = C implies A = C. A function ¢ : A — B
which is injective and it satisfies (IZ)-(19) is called a monomorphism from A into B. It is easy to check that
¢ : A — Bis a monomorphism from A to B if and only if it is an isomorphism from A to the subautomaton
C = (G,6%, 0%, 1% of B, where C = Im ¢.

Let A = (A, 64, 04, 7%) be an automaton. The language recognized by A, denoted by L(A), is a language in
X* defined as follows: for any u € X*,

ueL(A) & ([@m,a € A)(m €0’ A(a,m) €6 Aay € ), 1)
In notation from Section 2] (equations ([I)—(3)), the equation (2I) ca be also written as
ueL(A) o @odMHnt' 20 & "N o™ 20 & todlor =1. (22)

Two automata A and B are said to be language-equivalent, or just equivalent, if they recognize the same lan-
guage, i.e., if L(A) = L(B).

Let A= (A, 5,04, TA) be an automaton and let E be an equivalence on A. Without any restriction on the
equivalence E, we can define a transition relation 6/ C A/E x X x A/E by

(Eay, %, Ey) € E & (30,05 € A) ((a1,0)) € E A (af, x,a3) € 5* A (ah,a2) € E)

(23)
& (a1,a) € Eo by 0E,
for all a1, a; € A and x € X, and we can also define sets 0/, 74/F C A/E by
Eceodf o (I cA)(d eo’ A(@,a)€E) & aco’oF, (24)
E,ett o (A €A)((@a)eEna et')o acEot, (25)

for every a € A. Evidently, 6*/E, 6*/F and 74/F are well-defined, and A/E = (A/E,6*E,cA/E, t4/E) is a
nondeterministic automaton, called the factor automaton of A w.r.t. E.
The next theorems can be conceived as a version, for nondeterministic automata, of two well-known the-

orems from universal algebra: Second Isomorphism Theorem and Correspondence Theorem (cf. [10, I1.§6]).
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Theorem 4.1. Let A = (A, 5%, 04, t4) be an automaton, and let E and F be equivalences on A such that E C F.
Then a relation F/E on A/E defined by

(Eay, Eoy) e F/E & (a1,a2) €E, forallay,a; € A, (26)
is an equivalence on A/E, and the factor automata (A/E)/(F/E) and A/F are isomorphic.

Proof. Consider a1,a;,az,a; € A such that E,, = Eq and E,, = Eq, ie., (a1,a}), (a2,a;) € E. Then we have that
(a1,a7),(a2,a3) € F, so (a1,a2) € F if and only if (a},a}) € F. Therefore, F/E is a well-defined relation. It is easy
to check that F/E is an equivalence.

For the sake of simplicity set F/E = P, and define a function ¢ : A/F — (A/E)/P by

¢(Fs) = Pg,, for everya € A.
For arbitrary a;,a, € A we have that
Foy =Fo, & (a1,m2) €F & (Eq, Ep)) €P & Pp, =P, & ¢(Fs) = P(Fs,),

and hence, ¢ is a well-defined and injective function. Itis clear that ¢ is also a surjective function. Therefore,
¢ is a bijective function of A/F onto (A/E)/P.
Since E C Fis equivalent to E o F = F o E = F, for arbitrary a;,a, € A and x € X we have that

(¢(Fa), p(Fs) € 887" & (Pg, ,Pr,) € 8P & (E,, Er) € (Po6y/F o P)
& (33,04 € A) ((Ea,, Ea,) € P A (Egy, Ea,) € 87/F A (Ea, o) € P)
& (Jn3,a4 € A)((a1,83) € F A (a3,a4) € (E 0 87 0 E) A (a4, ) € F)
@(al,az)GFOEO(S;“OEOF:FO(S;‘OF
& (F,,,Fa,) € o4F,

Moreover, for each a € A we have that
P(F,) € WP o pp e dWBP o E e gEop
& (A0’ € A)(Ey € 0"E A (Ev,E) €P) & (I € A)(a' €0” 0EA(d,a) € F)

©aed®oEoF @ acg?oF & F,edt,

and similarly, ¢(F,) € t4/P/P o F, e 7A/F,
Hence, ¢ is an isomorphism of automata A/F and (A/E)/(F/E). O

Theorem 4.2. Let A = (A, 5%, 04, 7*) be an automaton and E an equivalence on A.
The function ® : Eg(A) — E(A/E), where Eg(A) = {F € E(A) | E C F}, defined by

O(F) =F/E, forevery F € Eg(A), (27)
is a lattice isomorphism, i.e., it is surjective and

FCG & OF)CcD(G), forallF,G e Ep(A). (28)
Proof. Consider an arbitrary equivalence P € E(A/E). Define a relation F € A X A by

(m1,m) € F & (E;,E,) €P, forallay,a € A (29)

It is easy to verify that F is an equivalence on A, and clearly, P = F/E. For arbitrary ai,a> € A, if (a1,a2) € E,
then E,, = E,, and (E,,, E,,) € P, whence it follows that (a1,a2) € F. Therefore, E C F, i.e., F € Eg(A), and we
have proved that @ is surjective.
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Moreover, for arbitrary F, G € Eg(A) we have that

FCG & (Y(a,m) € Ax A)((a1,0) € F = (a1,8) € G)
& (V(a1,a) € AX A) ((Eo,, E,) € D(F) = (Eq,, Es,) € D(G))
& O(F) C O(G).

Therefore, @ is a lattice isomorphism. [

It is worth noting that in terms of the lattice theory, Eg(A) is the principal filter (or principal dual ideal) of
the lattice E(A) (which is determined or generated by E).
5. Simulations and bisimulations

Let A = (A,6%,04,74) and B = (B, 5%, 0%, 7%) be automata and let ¢ C A X B be a non-empty relation.
We call ¢ a forward simulation if

ot Cobogl, (30)
plodd cobogp, foreveryxeX, (31)
oot C b, (32)

and a backward simulation if

ot op co®, (33)
dopCpodt, foreveryxeX, (34)
™ C @o . (35)

We call ¢ a forward bisimulation if both ¢ and ¢! are forward simulations, i.e., if it satisfies (30)-(32) and

o®coto Q, (36)
podlcofogp, foreveryxeX, (37)
potlct?, (38)

and a backward bisimulation if both @ and ¢! are backward simulations, i.e., if it satisfies (33)—35) and

oPo (p_1 c UA, (39)
Boplcplosd, foreveryxeX, (40)
TB C qfl ° TA. (41)

Let us note that condition (30) means that for every a € ¢” there exists b € o® such that (a,b) € ¢, and
(B6) means that for every b € o® there exists a € 0 such that (a,b) € ¢. On the other hand, condition (32)
means that {b € B | (Ja € ) (a,b) € ¢} C 7P, and (B8) means that {a € A | (Ab € 78) (a,b) € ¢} C 7. Similar
interpretations can be given for conditions (33), (35), (39) and @I).

Next, we call ¢ a forward-backward simulation if ¢ is a forward and ¢! is a backward simulation, i.e., if

=P o, 42)
plodt =680, foreveryxeX, (43)
oot =5, (44)
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Figure 1: Forward and backward simulation

and a backward-forward simulation if ¢ is a backward and ¢! is a forward simulation, i.e., if

ot o = UB, (45)
op=qodt, foreveryxeX, (46)
™=¢porh (47)

For the sake of simplicity, we will call ¢ just a simulation if it is either a forward or a backward simulation, and
just a bisimulation if it is any of the four types of bisimulations defined above. Moreover, forward and back-
ward bisimulations will be called homotypic, and backward-forward and forward-backward bisimulations
will be called heterotypic.

It is worth to explain the meaning of the names forward and backward simulation. For this purpose we
will use the diagram shown in Figure 1. Let ¢ be a forward simulation and let ag, a1, ..., a, be an arbitrary
successful run of the automaton A on a word u = x1x2- -+ x,, (x1,%2,..., %, € X), i.e., a sequence of states of
A such that ag € 04, (a, axs1) € 64, for 0 <k <n—1,and a, € . According to (30), there exists an initial
state by € o® such that (ag, by) € @. Suppose that for some k, 0 < k < n — 1, we have built a sequence of states
bo, b1, ..., by such that (bi_1,b;) € 68 and (a;, b;) € @, for each i, 1 < i < k. Then (b, ax1) € @~ 0 &4, and

by (BI) we obtain that (b, ax1) € 65 o ¢!, which means that there exists by,1 € B such that (b, bes1) € 85
and (ax+1, br+1) € @. Therefore, we have successively built a sequence by, by, . .., b, of states of B such that
bo € 0®, (bx, brs1) € 65, for every k, 0 <k < n—1, and (ax, by) € @, for every k, 0 < k < n. Moreover, by (32)
we obtain that b, € 78. Thus, the sequence by, by, . .., by is a successful run of the automaton % on the word
u which simulates the original run ag, a1, ..., a, of A on u.

In contrast to forward simulations, where we build the sequence by, by, . . ., b, moving forward, starting
with by and ending with b,, in the case of backward simulations we build this sequence moving backward,
starting with b, and ending with b,.

In numerous papers dealing with simulations and bisimulations mostly forward simulations and for-
ward bisimulations have been studied. They have been usually called just simulations and bisimulations,
or strong simulations and strong bisimulations (cf. [42,43,47]), and the greatest bisimulation equivalence has
been usually called a bisimilarity. Distinction between forward and backward simulations, and forward and
backward bisimulations, has been made, for instance, in [9, 25, 40] (for various kinds of automata), but less
or more these concepts differ from the concepts having the same name which are considered here. More sim-
ilar to our concepts of forward and backward simulations and bisimulations are those studied in [8], and
in [26,27] (for tree automata).

The following lemma can be easily proved by induction.

Lemma 5.1. If condition (31) or condition (34) holds for every x € X, then it also holds if we replace the letter x by
an arbitrary word u € X*.
11



We also prove the following two lemmas.

Lemma 5.2. Let A = (A, 64,04, 1) and B = (B, 6%, 6%, tP) be automata, and let ¢ C A X B be a relation. Then

(@) If @ is a simulation, then L(A) C L(B).
(b) If @ is a bisimulation, then L(A) = L(B).

Proof. (a) Let ¢ be a forward simulation. Then for every u € X* we have that

A A

0 odl ot <oPopTlosl ot <P odlop ot <P o sl orh,
and by (22) we obtain that L(A) € L(B). Similarly, if ¢ is a backward simulation, then also L(A) C L(B).

(b) This follows immediately by (a). O

Lemma 5.3. Let A = (A, 6%, 0%,74) and B = (B, 58, 68, 78) be automata and let o C A X B be a relation. Then

(a) ¢ is a backward bisimulation from A to B if and only if it is a forward bisimulation from A to B.

(b) ¢ is a forward-backward bisimulation from A to B if and only if it is a backward-forward bisimulation from A
to B.

Proof. It can be easily shown that ¢ is a backward simulation from A to 8 if and only if ¢~ is a forward
simulation from B to A, and consequently, ¢! is a backward simulation from B to A if and only if ¢ is a
forward simulation from A to B. O

According to the previous lemma, for any statement on forward (resp. backward-forward) bisimulations
which is universally valid (valid for all nondeterministic automata) there is the corresponding universally
valid statement on backward (resp. forward-backward) bisimulations. For that reason, we will deal only
with forward and backward-forward bisimulations.

Let us emphasize the following distinction between homotypic and heterotypic bisimulations. Evidently,
the inverse of a forward (resp. backward) bisimulation is also a forward (resp. backward) bisimulation.
However, the inverse of a backward-forward (resp. forward-backward) bisimulation is not necessarily a
backward-forward (resp. forward-backward) bisimulation. The inverse of a backward-forward bisimulation
is a forward-backward bisimulation, and vice versa. Later we will point out other distinctions.

It is easy to verify that the following is true.

Lemma 5.4. The composition of two forward (resp. backward-forward) bisimulations and the union of an arbitrary
family of forward (resp. backward-forward) bisimulations are also forward (resp. backward-forward) bisimulations.

Now we are ready to state and prove the following fundamental result.

Theorem 5.5. Let A = (A, 64,04, 1) and B = (B, 5, 6, 18) be automata such that there exists at least one forward
bisimulation from A to B.
Then there exists the greatest forward bisimulation from A to B, which is a partial uniform relation.

Proof. By the assumption of the theorem, the family {¢i}icr of all forward bisimulations from A to B is
non-empty. Let ¢ be the union of this family. According to Lemma 5.4, we obtain that ¢ is a forward
bisimulation, and clearly, it is the greatest one.

By Lemma 5.4l we also obtain that ¢ o ¢! o ¢ is a forward bisimulation, and since ¢ is the greatest one,
we obtain that ¢ o ¢! 0 ¢ C ¢. This means that ¢ is a partial uniform relation. [J

A similar theorem can be proved for backward-forward bisimulations, but there is a difference because
in that case we can not prove that the greatest backward-forward bisimulation is a partial uniform relation.
In other words, the following is true.
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Theorem 5.6. Let A = (A,8%,0%,7) and B = (B,58, 0", 1P) be automata such that there exists at least one
backward-forward bisimulation from A to B.
Then there exists the greatest backward-forward bisimulation from A to B.

Lemma 5.7. Let A = (A, 64,04, 74) and B = (B, 5%, 6%, ©8) be automata, let o C A X B be a relation. Moreover, let
C = (C,6%,0%,7) and D = (D, 5P, 6P, P) be subautomata of A and B, where C = Dom ¢ and D = Im ¢. Then
¢ CCxDand

(@) if @ is a forward (resp. backward) simulation from A to B, then it is a forward (resp. backward) simulation from
CtoD;

(b) if ot is a forward (resp. backward) simulation from B to A, then it is a forward (resp. backward) simulation
from D to C.

Also, if A = C, then the opposite implication in (a) holds, and if B = D, then the opposite implication in (b) holds.

Proof. We will prove only the part of (a) concerning forward simulations. The remaining assertions can be
proved similarly. Accordingly, let ¢ be a forward simulation from A to 8.

First, consider an arbitrarya € o¢cotcob O(p‘l. Then there exists b € Bsuch thatb € ¢® and (b, a) € (p‘l,
i.e., (a,b) € ¢, which implies b € D. This means that b € 6® N D = o, so a € 0P o ¢~L. Therefore, we have
proved that ¢¢ € 0P o L.

Next, let (b,a) € o' 06 C @71 062 C 68 0 L. From (b,a) € ¢! 0 6¢ it follows that (b,a’) € ¢~ and
(@,a) € 6?, for some a’ € C, which yields b € D. Moreover, from (b, a) € o8 o qo‘l we obtain that thereis ' € B
such that (b,1’) € 6% and (V',a) € ¢!, whence b’ € D. Therefore, we have that b, b’ € D and (b, b’) € 65, so
(b,b’) € 62, and since (I, a) € ¢!, we conclude that (b,a) € 62 o p~'. Hence, ¢! 0 6¢ C 6P o 7.

Finally, let b € ¢™1 0 7€ C 7' o 74 C 7. From b € ¢! o 1* it follows that there exists a € C such that
(b,a) € 7' and a € 1, whence b € D. Thus, b € 78 N D = 7P, so we have proved that ¢! o 7€ C 7P.

If A = Cor B = D, then the opposite implications in (a) and (b) are immediate consequences of (3). [

Let A = (A4, 5,04, TA) be an arbitrary automaton. If ¢ C A X A is a forward bisimulation from A into
itself, it will be called a forward bisimulation on A (analogously we define backward bisimulations on A). The
family of all forward bisimulations on A is non-empty (it contains at least the equality relation), and as in the
proof of Theorem5.5]it can be shown that there is the greatest forward bisimulation on A, which is an equiv-
alence (cf. [1], [43]). Forward bisimulations on A which are equivalences will be called forward bisimulation
equivalences (analogously we define backward bisimulation equivalences). The set of all forward bisimulation
equivalences on A will be denoted by E®(A).

By symmetry, an equivalence E on A is a forward bisimulation on A if and only if

Eo 6;? c 6? oE, foreachxeX, (48)
Eotd =14, (49)

It is worth noting that conditions (30) and (B6) are satisfied whenever A = B and ¢ is a reflexive relation
on A, and hence, whenever A = B and ¢ is an equivalence on A. According to Theorem 4.1 [19] (see also
Theorem 1 [18]), condition (@8) is equivalent to

EodloE=0640oF, foreachx e X. (50)
Similarly, an equivalence E on A is a backward bisimulation on A if and only if

64 oECEod), foreachxeX, (51)

oA oE = UA, (52)
and we also have that condition (51) is equivalent to

Eod2ocE=Eod}, foreachx e X. (53)
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Forward bisimulation equivalences have been widely studied in the context of labeled transition systems,
where they have been very successfully exploited to reduce the number of states. In particular, many algo-
rithms have been proposed to compute the greatest forward bisimulation equivalence on a given labeled
transition system. The faster ones are based on the crucial equivalence between the greatest forward bisim-
ulation equivalence and the relational coarsest partition problem (cf. [20, 124, 36, 44, 146, 48]). Forward and
backward bisimulation equivalences on nondeterministic automata have been studied by Ilie, Yu and others
[31-34], where they were respectively called right and left invariant equivalences (see also [12,(14]). In a dif-
ferent context, forward bisimulation equivalences were also discussed by Calude et al. [11], and there they
were called well-behaved equivalences. Both mentioned types of equivalences were used in reduction of the
number of states of nondeterministic automata.

The next theorem can be deduced by Theorem 4.2 [19] (or Theorem 2 [18]), but we give a different, direct
proof.

Theorem 5.8. Let A = (A, 5%, 04, 1) be an automaton.
The set E®(A) of all forward bisimulation equivalences on A forms a complete lattice. This lattice is a complete
join-subsemilattice of the lattice E(A) of all equivalences on A.

Proof. Since &(A) contains the least element of E(A), the equality relation on A, it is enough to prove that
E®(A) is a complete join-subsemilattice of E(A).

Let {E;}ic; be an arbitrary non-empty family of forward bisimulation equivalences on A, and let E be
the join of this family in the lattice &(A). It is well-known that E can be represented as the set-theoretical
union of all relations from (E; | i € I), where (E; | i € I) denotes the subsemigroup, generated by the family
{Ei}ie1, of the semigroup of all binary relations on A. This means that every relation from (E; | i € I) can be
represented as the composition of some finite collection of relations from {E;}c;, and according to Lemma[5.4]
we conclude that every relation from (E; | i € I) is a forward bisimulation, and therefore, E is a forward
bisimulation as the union of all these relations. Hence, E € &®(A),what means that EP(A) is a complete
join-subsemilattice of A(A). O

6. Algorithms for computing the greatest bisimulations

Kozen in [38] provided an algorithm that decides whether there is at least one forward bisimulation be-
tween nondeterministic automata, and when there is a forward bisimulation, the same algorithm computes
the greatest one. Here we give another version of this algorithm, and we also provide an analogous algo-
rithm for backward-forward bisimulations.

For non-empty sets A and B and subsets n € A and & C B we define relations - & € A X B and
n < & € A X B as follows

(aben—-& & (aen=0€8), (54)
aben—é&é o (beé& =aen), (55)
for arbitrary a € A and b € B. We prove the following.
Lemma 6.1. Let A and B be non-empty sets and let n C A and £ C B.

(a) The set of all solutions to the inequality no x C &, where x is an unknown relation between A and B, is the
principal ideal of R(A, B) generated by the relation n — &.

(b) The set of all solutions to the inequality x o & C 1, where x is an unknown relation between A and B, is the
principal ideal of R(A, B) generated by the relation n « &.

Proof. (a) Let a relation ¢ € A X Bbe a solutiontonox C &, andlet(a,b) € p.Ifae€n, thenbenop C &, and
according to (54) we conclude that (a,b) € n — & Thus, ¢ €1 — &

Conversely, assume that ¢ C 1 — &. Then for an arbitrary b € i o ¢ we have that there exists a € 1 such
that (2,b) € ¢ € n — &, and again by (54) we conclude that b € &. Hence, ¢ is a solution to o x C &, and
consequently, the assertion (a) is true.

The assertion (b) can be proved in a similar way. [
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It is worth noting that (n = )N (N « &) = (X E U ((A\n) X (B\ &)) =1 & &, where n & £ is arelation
between A and B defined by

abeneé & (aene bel), (56)

for arbitrarya € Aand b € B.
Next, let A and B be non-empty sets and let« € A X A, € Bx B and ¢ C A x B. The right residual of ¢
by a is a relation ¢/a C A x B defined by

@abegpl/a & (Vo' €eA)((@,a)ea = @,b)ecyp), (57)
for alla € A and b € B, and the left residual of ¢ by f is a relation ¢\p € A X B defined by
(@,b)ep\p & (V' e€B) ((0,V)ep = @b)ep), (58)

foralla € Aand b € B. In the case when A = B, these two concepts become the well-known concepts of right
and left residuals of relations on a set (cf. [5,/7]). We have the following.

Lemma 6.2. Let A and B be non-empty sets and let « CAX A, B CBxBandp C A XB.

(@) The set of all solutions to the inequality a o x C ¢, where x is an unknown relation between A and B, is the
principal ideal of R(A, B) generated by the right residual @/« of of ¢ by a.

(b) The set of all solutions to the inequality x o B C @, where x is an unknown relation between A and B, is the

principal ideal of R(A, B) generated by the left residual o\p of of ¢ by B.

Proof. (a) Let1p C A X B be an arbitrary solution to a o x C @, and let (a,b) € ¢. For every a’ € A, if (a’,a) € a,
then (a’,b) € @ o Y C @, and according to (57), we conclude that (4, b) € ¢/a. Therefore, i C ¢/a.

On the other hand, let ¢ € ¢/ and let (a,b) € a o 1. Then there exists a’ € A such that (2,4") € @ and
(@,b) € Y C p/a, and by (57) we obtain that (4, b) € ¢. Hence, ¢ is a solution to @ o x C ¢, and consequently,
we conclude that (a) is true.

The assertion (b) can be proved analogously. ]

We are now ready to state and prove the following theorem, which provides an algorithm that decides
whether there is a forward bisimulation between two automata and computes the greatest forward bisim-
ulation.

Theorem 6.3. Let A = (A, 6,04, 1) and B = (B, 5%, 68, 78) be finite automata. Define inductively a sequence
{@xlken of relations between A and B as follows:

1= TA A4 TB/ (59)
i1 = @e 0 [ ) (62 0 p) \ 6D N (52 0 i) \ D). (60)
xeX

Then {@ilken is a non-increasing sequence of relations and there exists k € IN such that @x = @i41.

The relation @y is the greatest relation between A and B which satisfies conditions (31), 32), (37), and (38). More-
over, if @y satisfies conditions (30) and (B6), then ¢y is the greatest forward bisimulation between A and B, and
otherwise, if @i does not satisfy these conditions, then there is no any forward bisimulation between A and B.

Proof. (a) It is clear that @1 C @, for every k € IN. As the sets A and B are finite, there is a finite number of
relations between A and B, so there are k,m € IN such that @x = @in. NOW, Qi1 € Qhem = @k € Qre1, and
hence, ¢ = Pi41.

Next, set @ = @. Acording to Lemmal6.]] a relation ¢ C A x B satisfies (32) and (38) if and only if ¢ C ¢4,
and hence, ¢ satisfies (32) and (38). Furthermore, by (62) it follows that

p=p0[ (@ o)\ 6N (2 0p)\0E),
xeX
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and for every x € X we obtain that ¢ C (68 0 1)\ 64) ™ and ¢ C (62 0 @) \ 65, ie., 1 C (B 0 71)\ 62
and ¢ C (62 o @) \ 68. According to (b) of Lemmal6.2) ¢~ 0 54 C 68 o 7t and ¢ 0 68 C 2 o ¢, and thus, ¢
satisfies conditions (3I) and (32).

Let ) € A X B be an arbitrary relation satisfying conditions (3I), (32), (387), and (38). As we have already
said, ¢ satisfies (32) and (B8) if and only if ¢ C 1. Suppose that ¢ C ¢;, for some i € IN. Then for every
x € X we have that ™! 0 64 C 65 o ™! C 6% 0 ¢!, and according to (b) of Lemma[6.2l ="' C (6% 0 @;1) \ 62,
thatis, 1 C (6% o ;1) \ 64)7". Analogously we show that 1 C (67 o ¢;) \ 6%. Therefore,

P Coin()((@E o e\ o)™ N (6F 0 9\ 8)) = piaa.

xeX

Now, by induction we conclude that i C ¢;, for each i € IN, and hence, ¢ C ¢. This means that ¢ is the great-
est relation satisfying conditions (3I), (32), (387), and (38).

In addition, if ¢ satisfies conditions (30) and (B6), then it is a forward bisimulation between A and
B, and it is just the greatest one. On the other hand, assume that ¢ does not satisfies (30) and (36). If
Y is an arbitrary forward bisimulation between A and B, then it satisfies conditions (31)), (32), (37), and (38),
and hence, ¢ C . From this it follows that 0 € 6% o ™' C 6% 0 ™' and 0® C 04 0 ¢ C 0 0 @, which leads
to contradiction. Therefore, we conclude that if ¢ does not satisfy conditions (30) and (B6), then there is no
any forward bisimulation between A and 8. 0O

Therefore, to decide whether there exists a forward bisimulation between two automata and compute the
greatest one, we build a sequence {@y}xen of relations in the following way. The first relation ¢, is computed
as the greatest relation that satisfies the conditions (32) and (38). Then we start an iterative procedure which
computes @i1 from @i and check whether @1 = @i. The procedure terminates when we find the smallest
k € IN such that @i = k. After that we check whether ¢y satisfies conditions (30) and (B6). If ¢ does not
satisfy these conditions, we conclude that there is no any forward bisimulation between the given automata,
and if @y satisfies (30) and (36), we conclude that it is the greatest forward bisimulation between the given
automata.

The application of this algorithm is demonstrated by the following example.

Example 6.4. Let A = (A, 6%,04,74) and 8 = (B, 6%, 6%, %) be automata with |A| = 3, |B| = 5 and X = {x, y},
whose transition relations and sets of initial and terminal states are represented by the following Boolean
matrices and vectors:

11010 11010
110 110 11010 11010
5?:[011], 5;‘:[001], =1 100 0f, 6/={0 0 1 0 1
100 00 1 00111 00101
11000 00101

0
0 0
oAz[l 0 o], oB=[1 100 o], TAzH, ®=|1].
0
1

Using the above described procedure we obtain that

110 00
0 0 1 0.
1 0

1
1 0
00

0

1 010
pr=|1 1 0 1 0|, p=¢3=
01 01

—_

It is easy to check that ¢, satisfies conditions 30) and (36), and therefore, ¢, is the greatest forward
bisimulation between automata A and 8.
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The following theorem, which can be proved in a similar way as Theorem[6.3] provides an algorithm that
decides whether there is a backward-forward bisimulation between two automata and computes the greatest
backward-forward bisimulation.

Theorem 6.5. Let A = (A, 5,04, 1) and B = (B, 5%, 68, 78) be finite automata. Define inductively a sequence
{@r}ken of relations between A and B as follows:

Q1 = (GA - GB) N ("CA — TB), (61)
e = 0 [ (5 0 PN O (i 0 88)/51)). (62)
xeX

Then {QilkeN is a non-increasing sequence of relations and there exists k € IN such that @x = @i41.

The relation @y is the greatest relation between A and B which satisfies conditions (33), (34), (37), and (38). More-
over, if @y satisfies conditions (35) and B6), then ¢y is the greatest backward-forward bisimulation between A and
B, and otherwise, if @y does not satisfy these conditions, then there is no any backward-forward bisimulation between
Aand B.

The following example shows the case when there is a backward-forward bisimulation, but there is no
a forward bisimulation between two automata.

Example 6.6. Let A = (A, 6%,04,74) and B = (B, 6%, 6%, %) be automata with |A| = 2, |B| = 3 and X = {x, y},
whose transition relations and sets of initial and terminal states are represented by the following Boolean
matrices and vectors:

1 0 0 1 01
1 0 1 0
A _ A _ B _ B _
5x_[1 1], 5y_[1 o]' 5,_[0 1 1], 5y_[1 0 0]

=10, of=[1 0 1], TAzm, TB=F].

Using the procedure from Theorem[6.5]we obtain that

1 01
=11 1 ol

is the greatest backward-forward bisimulation between A and $B. On the other hand, using the procedure
from Theorem[6.3 we obtain that there is no a forward bisimulation between A and 8.

Moreover, it is easy to verify that ¢ is not a partial uniform relation, which confirms our ascertainment
given immediately before Theorem

7. Uniform forward bisimulations

In this section we deal with forward bisimulations which are uniform relations. First we show that within
the class of uniform relations forward bisimulations can be characterized by means of equalities.

Theorem 7.1. Let A = (A, 6%,0%4,t4) and B = (B, 58, 68, 1) be automata and let o C A X B be a uniform relation.
Then @ is a forward bisimulation if and only if the following hold:

ohopopTt=0"op, dtop=copTtop, (63)
Mopoplt=poslog, plodtop=08o0ptog, for every x € X, (64)
TAz(poTB, @710TA=TB. (65)
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Proof. Let ¢ be a forward bisimulation. By (5), (30), and (36), we obtain 6% o p C o8 o p~togp C o4 0 ¢, so
4o =P 0@ o, and by this it follows that 6 o pop ™t =B oplopogpl =cBogp™.

Next, by Theorem B.2land Lemma 5.4l we obtain that ¢ o ¢! is a forward bisimulation equivalence on
A, and according to (50), for every x € X we have

podjopl Colopop=poplodslopop Tl Cpodioplopop T =podog™.

Therefore, &4 o p o =1 = ¢ 0 58 0 L. In a similar way we show that g™l 0 62 0 p =68 0 p~L 0 .

Finally, since ¢ o ¢! is a forward bisimulation equivalence on A, by [@9), 32), (§), and (B8), we obtain

that 74 = p ol o1 C @ o 8 C 14, and hence, 4 = ¢ o 78. Similarly we show that ¢! o 74 = 5.

Therefore, we have proved that (63)-(65) are true.
Conversely, let (63)-(65) hold. By the reflexivity of ¢ o ¢! and (63) we have 0 C 0 oo™t =B og,
and thus, (30) holds. Furthermore, by the reflexivity of ¢ o ¢!, (5), and (64), for each x € X we have that

¢lody CoTlodtopogpTi =8 opTlopopT=5l0p,

soplos? C 6Bogp!, and similarly, pod® C 62 og. Finally, it is clear that (65) implies (32) and (38). Therefore,
we have proved that ¢ is a forward bisimulation. [

Because of the symmetry in (63) we have included two equalities, although any of them is sufficient, while
the other is unnecessary. For instance, if 04 o po g™l =B ol thenclop =clopopTlop=cPoplog,
and similarly we show that the second equality implies the first one.

The following theorem is one of the main results of this article. It gives a characterization of uniform
forward bisimulations in terms of the properties of their kernels, cokernels, and related factor automata.

Theorem 7.2. Let A = (A, 64,04, 1) and B = (B, 58, 68, 1) be automata and let o C A X B be a uniform relation.
Then @ is a forward bisimulation if and only if the following hold:

(1) EZ is a forward bisimulation equivalence on A;
(i) E(g is a forward bisimulation equivalence on B;

(iii) @ is an isomorphism of factor automata A/E" and B/EY.

Proof. For the sake of simplicity set E(Z =EandEj =F.
Let ¢ be a forward bisimulation. According to Theorem[Z.]] for every x € X we have that

E06?0E2@0@7106?0@0@71:@0650@710@0@71:@0650@71:6?0()00@71:6?015/

and also, Eo 14 = p o 97l o4 = ¢ 0 7% = 7. The inclusion ¢ C 0/ o E is evident. Hence, E = E is a
forward bisimulation equivalence on A. Likewise, F = E(g is a forward bisimulation equivalence on 8.
By Theorem[3.4} ¢ is a bijective function. Next, for any 41,42 € A, x € X and f € FD(¢p) we have that

(Ee,,Ey) €6F & (a1,) €E0 8L oFE & (ar,a2) € podloq™
& (b1, by € B)((ar, b1) € @ A (b, bo) € 8 A (az, bo) € )
& (3b1, b € B)((f(@), b1) € F A (b1, b2) € 57 A (f(a2), b2) € F)
& (f@), f(@)) €Fo o oF & (Fpay, Fray) €6/

& (P(Ea), P(Es,)) € 85/F.
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and for any a € A and f € FD(¢) we have

E.co’f © aeod’oFE & (EIa’eA)(a'eoA/\(a',a)eE)

& (Ha’eA)(a’eaA/\(a’,f(a))e(p) & f@yedtop=cPoplop=0PoF

& Fig €t o @(E,) € d®F,

E,e™f @ acEot & (Ha’eA)((a,a’)eE/\a’ETA)
® A cA)((f,a)ep rd et!) o f@eplort=plopor’ =For®
& Frg et o @(E,) e PF.

Therefore, ¢ is an isomorphism between automata A/E and B/F.
Conversely, let (i), (ii) and (iii) hold. According to (i), for each x € X we have

Eoé?oE:é?oE:é?ogoo(p’l,
and by (iii), for arbitrary a1,4, € A and f € FD(¢p) we obtain that

(a,m) €4 oo™ & (a,a) €E0d20E & (E,, Ey) € 62/F
& (@(Ea), P(En)) €67 & (Fran, Fra) €67
& (f(m), f(az)) €Fodf o F
& (b, by € B)((f(a1), by) € F A (by, b2) € 88 A (f(az), b) € F)
& by, by € B)((ar,b1) € @ A (b1, bo) € 68 A (a, b) € )
e (m,m)epo 6f o (pfl.

Therefore, the first equality in (64) holds. In a similar way we prove the second equality in (64).
Next, for every a € A we have that

/E B/F

a€d’opop™ ©acdtoE & Eedf o ¢E) e o Fyyeo

& f(a)ed®oF & (A eB)(bed” A(f(a),b) € F)
© @eB)(bed® A@b)eg) © aca’op™,

soc?opo@ =080, and hence, 0 o ¢ = 08 0 p~! 0 . For every a € A we also have

A /E /F

©aclot & E et o @) e o Fipet® o fla)eFor®

& @ eB)((fa,h)eFabet’) & @ eB)(@bheprber’) & acpor®,

aeT

whence 4 = ¢ o 78, Likewise, 78 = ¢! o 4. Therefore, we have proved that (63) and (65) also hold, and

consequently, ¢ is a forward bisimulation. [

The question that naturally arises is under what conditions two given forward bisimulation equivalences
on two automata determine a uniform forward bisimulation. An answer to this question is given by the fol-

lowing theorem.

Theorem 7.3. Let A = (A, 64,04, 1) and B = (B, 5, 6®, 1) be automata, and let E and F be forward bisimulation

equivalences on A and B.

Then there exists a uniform forward bisimulation ¢ C A X B such that E% = E and E} = F if and only if the

factor automata A/E and B/F are isomorphic.
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Proof. The direct part of the theorem is an immediate consequence of Theorem [Z.21
Conversely, let ¢ : A/E — B/F be an isomorphism between factor automata A/E and B/F. Let us define
@ CAxBasin [6),ie.,

(a,b)ep © ¢(E;) =Fp, forallac Aand b € B.

By the proof of Theorem 3.4} ¢ is a uniform relation such that E = E%, F = Eg and ¢ = ¢, and according to
Theorem[Z.2] ¢ is a forward bisimulation. O

Next we prove the following.

Theorem 7.4. Let A = (A, 5%, 0%, 7t*) be an automaton, let E be a forward bisimulation equivalence on A, and let
F be an equivalence on A such that E C F.
Then F is a forward bisimulation equivalence on A if and only if F/E is a forward bisimulation equivalence on A/E.

Proof. As in the proof of Theorem [4.1] set F/E = P. For arbitrary a1,a4, € A and x € X, by the proof of
Theorem . Tl we obtain that

(Esy Es,) €Po6EoP & (a1,a5) e Fod2 oF,
and also,
(Ea Ewy) € 54/F 0 P & (das € A) ((Eay, Eny) € 677F A (Eay, Er,) € P)
& (a3 € A) ((a1,a3) € E0 5% 0 E A (a3,) € F)
S (a1,a2) eEO(SfOEOF
& (a,a)) €2 oF,
since Eo 64 o Eo F = 64 o Eo F = 64 o F. Therefore,
PodEoP=6MF 0P & Fod?oF=05%0oF.
Furthermore, for an arbitrary a € A we have that
E,ePott o (A € A)(E,Ex)ePAEy et o (A €A @@a)eFAaa eEor?
= CIEFOEOTAZFOTA,
and according to (25) and @9), E, € /F & a € Eo 1" = 4. Hence,
Pot¥E=74F o For? =14,
proving our claim. [

In view of Theorem i.]] the rule F — F/E defines an isomorphism between lattices Eg(A) and E(A/E),
for every E € E(A). According to Theorem [7.4] the same rule determines an isomorphism between lattices
82’(?() and E®(A/E), where 82’(?() = |F € EP(A) | E C F}, for each E € EP(A).

Consequently, the following is true.

Corollary 7.5. Let A = (A, 5,04, 1) be an automaton, and let E and F be forward bisimulation equivalences on
A such that E C F.

Then F is the greatest forward bisimulation equivalence on A if and only if F/ E is the greatest forward bisimulation
equivalence on A/E.

Proof. This follows immediately by Theorems[Z.4and equation (28). O
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8. Forward bisimulation equivalent automata

Let A = (A,64, 0%, 1) and B = (B, 58,05, 78) be automata. If there exists a complete and surjective
forward bisimulation from A to B, then we say that A and B are forward bisimulation equivalent, or briefly
FB-equivalent, and we write A ~rp B. Notice that completeness and surjectivity of this forward bisimulation
mean that every state of A is equivalent to some state of B, and vice versa. For any automata A, B and C
we have that

A~ A, A~ B= B~ A; (A ~pp BAB~p C) = A~p C. (66)

Similarly, we call A and B backward bisimulation equivalent, briefly BB-equivalent, in notation A ~pp B, if
there exists a complete and surjective backward bisimulation from A to 8.

First we prove that every automaton A is FB-equivalent to the factor automaton of A with respect to
any forward bisimulation equivalence on A.

Theorem 8.1. Let A = (A, 5%, 04, 1) be an automaton, let E be an equivalence on A, let g be the natural function
from A to A/E, and let A/E = (A/E, 5/F, 6/E, TAIE) be the factor automaton of A with respect to E.

Then @ is both a forward and a backward simulation.

Moreover, the following conditions are equivalent:

(i) Eis a forward bisimulation on A;
(ii) @k is a forward bisimulation;
(iii) @ is a backward-forward bisimulation.

Proof. Note that for arbitrary a;,a, € A we have that pg(a1) = E,, (i-e., (11, Es,) € @g) if and only if (a1,a,) € E.
For arbitrary x € X and 1,4, € A we have that
(a1,Es,) € 52 0 pr & (Jaz € A) (a1, a5) € 52 A (a3, Eay) € )

& (a3 € A) ((a1,a3) € 5 A (a3,) € E)
& (a1,a) €4 o F
= (a1,80) €E0d2oE=EoEod40E (67)
& (a3 € A) ((a1,83) € E A (a3,a) € (E0 57 0 E))
& (a3 € A) (a1, Eay) € 9k A (Eay, Eay) € 5F)
& (a1,Eq) € pp o 647F,

and hence, &4 o ¢ C @ 0 57'F. In a similar way we prove that @plo g C 5F o Pp.
Furthermore, for any a € A we have that

aedt = EuEUA/E/\(Eu,a)E(pgl = aeaA/EO(pgl,

AJE

whence 0 € 0/E 0 !, and

E,ectopr & (€A ad e AN@,E)eqpr © (' € A)a’ e’ AN(@',a) €E
& aec’oE & E,ed'E,
what yields 0# o pr C ¢/E. In a similar way we show that ¢! o 74 C t4/F and 4 C g o T4/,
Therefore, we have proved that ¢ is both a forward and a backward simulation.
Moreover, we have that the opposite implication in (6Z) holds (i.e., ;' is a forward simulation) if and
only if E is a forward bisimulation on A. This proves the equivalence of the conditions (i), (ii), and (iii). O

Now we state and prove the main result of this section.
21



Theorem 8.2. Let A = (A, 54,04, 1*) and B = (B, 58, 68, 18) be automata, and let E and F be the greatest forward
bisimulation equivalences on A and B.
Then A and B are FB-equivalent if and only if factor automata A/E and B[F are isomorphic.

Proof. Let A and B be FB-equivalent automata, i.e., let there exists a complete and surjective forward
bisimulation 1) € A X B. According to Theorem then there exists the greatest forward bisimulation ¢
from A to B, and ¢ is a partial uniform relation. Since 1) is complete and surjective, and ¢ C ¢, then ¢ is
also complete and surjective, what means that ¢ is a uniform forward bisimulation.

By Theorem[Z2, EY, and E}, are forward bisimulation equivalences on A and 8B, and ¢ is an isomorphism
of factor automata A/E and B/E}. Let P and Q denote respectively the greatest forward bisimulation
equivalences on A/E%, and B/EY. By the fact that ¢ is an isomorphism of A/EY, onto B/E} we obtain that
P and Q are related by

(a1,02) € P & (Plar), @) € Q, forallay, az € A/ES,

so we can define an isomorphism & : (A/ Ei) /P — (B/ Eg) /Qby &(Pa) = Qga), for every a € A/ Ef\.
Now, according to Corollary[Z5], P = E/E and Q = F/Ej, and by Theorem BT we obtain

AJE = (AJE?)/P = (B/ED)/Q = BIF,

what was to be proved.
The converse follows immediately by Theorem[7.3] O

As a direct consequence of previous two theorems we obtain the following.

Corollary 8.3. Let A be an automaton, let E be the greatest forward bisimulation equivalence on A, and let FIB(A)
be the class of all automata which are FB-equivalent to A.
Then A/E is the unique (up to an isomorphism) minimal automaton in IFIB(A).

Proof. Let 8 be any minimal automaton from FIB(A), and let F be the greatest forward bisimulation equiva-
lence on B. According to Theorem[8.Tland (66), B/F also belongs to FB(A), and by minimality of 8 it follows
that F is the equality relation. Now, by Theorem[8.2we obtain that 8 = B/F = A/E, proving our claim. O

According Theorem[8.2] the problem of testing FB-equivalence of two automata A and B can be reduced
to the problem of testing isomorphism of their factor automata with respect to the greatest forward bisimu-
lation equivalences on A and 8. It is worth of mention that the isomorphism problem for nondeterministic
automata is equivalent to the well-known graph isomorphism problem, the computational problem of deter-
mining whether two finite graphs are isomorphic. Besides its practical importance, the graph isomorphism
problem is a curiosity in computational complexity theory, as it is one of a very small number of problems
belonging to NP that is neither known to be computable in polynomial time nor NP-complete. Along with
integer factorization, it is one of the few important algorithmic problems whose rough computational com-
plexity is still not known, and it is generally accepted that graph isomorphism is a problem that lies be-
tween P and NP-complete if P£NP (cf. [51]). However, although no worst-case polynomial-time algorithm
is known, testing graph isomorphism is usually not very hard in practice. The basic algorithm examines
all n! possible bijections between the nodes of two graphs (with n nodes), and tests whether they preserve
adjacency of the nodes. Clearly, the major problem is the rapid growth in the number of bijections when
the number of nodes is growing, which is also the crucial problem in testing isomorphism between fuzzy
automata, but the algorithm can be made more efficient by suitable partitioning of the sets of nodes as
described in [51]. What is good in our case is that the isomorphism test is applied not to the automata A and
8B, but to the factor automata with respect to the greatest forward bisimulation equivalences on A and 8.
The number of states of these factor automata can be much smaller than the number of states of A and B,
which can significantly affect the duration of testing.

According to Lemma [5.2] FB-equivalent automata are language equivalent, but the converse does not
hold, as the following example shows.
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Example 8.4. Let A = (4,5%,04,7%) and B = (B, 6%, 6%, 7P) be automata with |A| = 3, |B| = 2 and X = {x},
whose transition relations and sets of initial and terminal states are represented by the following Boolean
matrices and vectors:

100 0 01 0
=10 o0 1,aA=[o 1 0], “=|0|, &= ,aB=[1 o], =]
“loo o 1 T 1

These automata are language-equivalent, both of them recognize the language L = {x}. On the other
hand, the greatest forward bisimulation equivalences E on A and F on 8 are equality relations, so A/E = A
and B/F = B. But, A and B have different number of states, and hence, they are not isomorphic. Therefore,
according to Theorem[8.2] A and B are not FB-equivalent.

9. Uniform backward-forward bisimulations

In this section we consider uniform backward-forward bisimulations. We will see that they have certain
properties similar to the corresponding properties of uniform forward bisimulations, but we will also show
that there are some essential differences.

First we prove the following analogue of Theorem[7.2]

Theorem 9.1. Let A = (A, 6%, 04, t4) and B = (B, 5, 6, 18) be automata and let p C A X B be a uniform relation.
Then ¢ is a backward-forward bisimulation if and only if the following hold:

(i) EY is a forward bisimulation equivalence on A;
(ii) Eg is a backward bisimulation equivalence on B;

e —~ . . . (p (P
(iii) ¢ is an isomorphism of factor automata A/E}, and B/Ey,.

Proof. For the sake of simplicity set E = EY and F = E}. According to Theorem[B.2 we have that E = p o ¢!
andF=¢log.
Let ¢ be a backward-forward bisimulation. Then
Eoé?oE:q)o(p_lo(S?ogoo(p_l =(Pog0_1o(poéfO(P_1 =g006§og0_1 :6?0@0@_1 =6?0E,
EoTA :(PoqfloTA =@o@7lo@073 =(PoTB :TA,
FosjoF =g lopodiopop=glodiopoplop=qTodlop=¢Topod=Fod,
gBongBo(p_lo(p:aAo(po(p_lo(p:aAo(p:c;B,
Hence, E = EY, is a forward bisimulation equivalence on A and F = EY is a backward bisimulation equiva-
lence on B. As in the proof of Theorem[Z.2l we show that ¢ is an isomorphism of automata A/E and B/F.

Conversely, let (i), (ii), and (iii) hold. For every ¢ € FD(¢), & € PD((p’l), a1,ap € A, b;,bp e Band x € X,
as in the proof of Theorem[Z.2lwe show that

(a1,a2) € (E0 84 0 E) & (Y(@), ¥(a2)) € (Fo &E o F),
(b1,b2) € (Fo 6E o F) & (&(b1), &(b2)) € (E 0 2 0 E),

and by (i) and (ii) we obtain that

Siop=0iopoplop=05loEop=EodioEop=Eob;og,
podi=poplopodi=poFos=poFodioF=qodioF.
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Now, for alla € A and b € B we obtain that

(@,b)edlop o (a,b)eEodtop o (Aa; € A) ((a,a1) € Eo &% A (a1,b) € @)
© (a; € A) ((a,a1) € E0 62 A (a1,E(b) €E) & (a,E(b)) € E0 64 o E
& (Y(), Y(EDb) € Fody oF & (P(a),b) e Fo oy o F
& (Aby € B) ((Y(a), b1) € F A (by,b) € 68 o F) & (Iby € B) ((a,b1) € @ A (b1,b) € 85 o F)
& @b epodloF e (a,b)epodd,

and hence, 6 o ¢ = ¢ 0 68. As in the proof of Theorem[Z2 we prove that 7 = ¢ o 7%, and analogously we
obtain that ¢ o ¢ = ¢®. Therefore, ¢ is a forward-backward bisimulation. [

We can also prove the following analogue of Theorem 7.3

Theorem 9.2. Let A = (A,6%,04,14) and B = (B, 5%,6%,7P) be automata, let E be a forward bisimulation
equivalence on A and F a backward bisimulation equivalence on B.

Then there exists a uniform backward-forward bisimulation ¢ C A X B such that EY, = E and E}, = F if and only
if factor automata A/E and B/F are isomorphic.

Proof. This theorem can be proved in a similar way as Theorem[7.3] O

In Theorem 8.1 we proved that for any equivalence E, its natural function ¢ is a forward bisimulaton
if and only if it is a backward-forward bisimulation. Now we prove a more general theorem, which shows
that this holds for an arbitrary function.

Theorem 9.3. Let A = (A, 64,04, 74) and B = (B, 5%, 08, 1) be automata, let ¢ : A — B be a function, and let
E= E:i be the kernel of . Then the following conditions are equivalent:

(i) @ is a forward bisimulation;
(ii) @ is a backward-forward bisimulation;

(iii) E is a forward bisimulation equivalence on A and the function ¢ : A/E — B given by ¢(E;) = ¢(a), for each
a € A, is a monomorphism of the factor automaton A/E into B.

Proof. Let C = Im ¢ and consider the subautomaton C = (C, 6%, 0%, 7°) of B.

(i)=(iii). According to Lemma5.7] ¢ € A X C and ¢ is a forward bisimulation from A to C. We also
have that ¢ is a surjective function from A onto C, and hence, it is a uniform relation from A to C. Now, by
Theorem [Z2l we obtain that E = EY, is a forward bisimulation equivalence on A, E{. is the equality relation
on C, and ¢ is an isomorphism from A/E to C/ Eg = C. If we identify C/ E;’; and C, then it is easy to see that
@ can be represented as ¢», where ¢ is defined as in (iii), so ¢ is a monomorphism of A/E into B.

(iii)=(i). This is a direct consequence of Theorem [Z.2] since E‘g is the equality relation and ¢ and ¢ can
be identified.

(i)&(ii). This follows immediately by Theorems[Z2land 0.1} since E is the equality relation on C, and it
is both a forward and backward bisimulation equivalence. [

10. Weak simulations and bisimulations

In this section we introduce and study two new types of bisimulations, which are more general than
forward and backward bisimulations.
Let A = (A4, X, 6%, 04, 7") be an automaton. For each u € X* we define subsets 02 and 72 of A as follows:

A _ A A
u=0 oéu/

=60 o7h (68)
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Moreover, for each a € A, the right language T a(a) and the left language fﬂ (a) of the state a are languages
— . A — .
La@={ueX lact?), La@={ueX |acdl). (69)

In other words, the right language of a is the language recognized by the automaton obtained from A by
replacing 0/ by {a}, and the left language of a is the language recognized by the automaton obtained from
Aby replacing t by {a}. When the automaton A is known from the context, we omit the subscript A, and
we write just I)(a) and (f(a).

Now, let A = (A, 5,04, t4) and B = (B, 6%, 6%, t%) be automata and let ¢ C A X B be a non-empty relation.
We call ¢ a weak forward simulation from A to B if

¢ lotl c1B, foreveryue X, (70)

cd cofo (p’l, (71)
and we call ¢ a weak backward simulation from A to B if

oo CoB, foreveryue X', (72)

™ Cporbh. (73)

We call ¢ a weak forward bisimulation if both ¢ and ¢! are weak forward simulations, that is, if it satisfies

0), (71), and
o8 C TA, for every u € X7, 74
poTy u y
o®coto Q, (75)

and we call ¢ a weak backward bisimulation if both ¢ and ¢! are weak backward simulations, that is, if it

satisfies (Z2), (Z3), and
oBop™ cof, foreveryue X, (76)
8 ¢ qo’l ot (77)
For the sake of simplicity, we will call ¢ just a weak simulation if it is either a weak forward or a weak backward

simulation, and just a weak bisimulation if it is either a weak forward or a weak backward bisimulation.
First we prove the following two lemmas.

Lemma 10.1. Let A = (A, 6%,0%4, 1) and B = (B, 58, 68, 1B) be automata, and let o C A x B be a relation. Then
(@) If  is a weak simulation, then L(A) C L(B).
(b) If @ is a weak bisimulation, then L(A) = L(B).
(c) If @ is a forward (resp. backward) simulation, then it is a weak forward (resp. backward) simulation.
Proof. (a) Let ¢ be a weak forward simulation. Then for every u € X* we have that
ctodtort =0t ot <P opTlotd <oBorl =0P0Borb,

and by (22) we obtain that L(A) C L(B). Similarly, if ¢ is a weak backward simulation, then L(A) C L(B).

(b) This follows immediately by (a).

(c) Let ¢ be a forward simulation. From (30) it follows immediately that (7)) holds, and by (32) we obtain
that (Z0) holds for u = €. Suppose that (Z0) holds for all words of length 7, for some natural number 7, and
consider a word u € X" of length n + 1, i.e., u = xv, for some x € X and v € X" such that v has the length n.
Then

ploth =g ot oth Coloplort Collorl = oh

Hence, by induction we obtain that (Z0) holds for every u € X*. In a similar way we prove the assertion
concerning backward simulations. [
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Lemma 10.2. Let A = (A,5%,04,74) and B = (B, 6%, 6®, 1) be automata. A relation o C A X B is a weak backward
bisimulation from A to B if and only if it is a weak forward bisimulation from A to B.

Proof. We can easily show that ¢ is a weak backward simulation from A to B if and only if ¢! is a weak
forward simulation from B to A, and ¢! is a weak backward simulation from 8 to A if and only if ¢ is a
weak forward simulation from A to B. O

According to the previous lemma, for any statement on weak forward bisimulations which is univer-
sally valid (valid for all nondeterministic automata) there is the corresponding universally valid statement
on weak backward bisimulations. For that reason, we will deal only with weak forward bisimulations.

It is easy to show that the following is true.

Lemma 10.3. The composition of two weak forward simulations (resp. bisimulations) and the union of an arbitrary
family of weak forward simulations (resp. bisimulations) are also weak forward simulations (resp. bisimulations).

Now we state and prove fundamental results concerning weak forward simulations and bisimulations.
The first of them is a theorem that gives a way to decide whether there is a weak forward simulation between
two automata, and whenever it exists, provides a way to construct the greatest one.

Theorem 10.4. Let A = (A, 64,04, 1) and B = (B, 6%, 6®, 1) be automata and define a relation A C A x B by
@bel & VueX)aet = berbd), (78)

forallae Aand b € B.
If A satisfies (Z1), then it is the greatest weak forward simulation from A to B. Otherwise, if A does not satisfy
(ZD), then there is no any weak forward simulation from A to B.

Proof. Let A satisfy (Z1). If b € A~! o 7/}, then there exists a € 7/ such that (b,a) € 17!, and by (78) we obtain
that b € 78. Therefore, A™! o T4 C 78, and since A satisfies (ZI), we conclude that A is a weak forward
simulation from A to B.

Let ¢ be an arbitrary weak forward simulation from A to B, and let (a,b) € ¢. For an arbitrary u € X,
ifa € 7/ then b € ¢! o 4 C 15, Therefore, we have proved that (a,b) € A, which means that every weak
forward simulation from A to B is contained in A. Therefore, A is the greatest weak forward simulation
from A to B.

Suppose that A does not satisfy (ZI). If ¢ is an arbitrary weak forward simulation from A to B, then
o4 CoPogp! CoPoA™l, whatisin contradiction with the assumption that A does not satisfy (71). Therefore,
we conclude that there is no any weak forward simulation from A to 8. [

The greatest weak forward simulation can also be represented in the following way.

Corollary 10.5. Let A = (A, 54,04, 74) and B = (B, 58, 08, 18) be automata such that there exists at least one weak
forward simulation from A to B, and let A be the greatest weak forward simulation from A to B. Then

— -
(a,b)e A & L(a) < L(b), (79)
forallae Aand b € B.
Proof. This is an immediate consequence of (Z8) and the fact that u € _L)(a) ifand only ifa € . 0O

The next theorem gives a way to decide whether there is a weak forward bisimulation between two auto-
mata, and if it exists, provides a way to construct the greatest one.
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Theorem 10.6. Let A = (A, 64, 04,7) and B = (B, 58, 68, ©8) be automata and define a relation p C A x B by

@beu o VueX)aet o berb (80)

uls

forallae Aand b € B.

If u satisfies (Z1) and (Z3), then it is the greatest weak forward bisimulation from A to B, and it is a partial
uniform relation. Otherwise, if i does not satisfy (1) and (75, then there is no any weak forward bisimulation from
Ato B.

Proof. This theorem can be proved in a similar way as Theorems[10.4/and O
Also, the greatest weak forward bisimulation can be represented as follows.

Corollary 10.7. Let A = (A, 54,04, 14) and B = (B, 5%, 68, P) be automata such that there exists at least one weak
forward bisimulation from A to B, and let u be the greatest weak forward bisimulation from A to B. Then

@bey & L@ =Lw), (81)
forallae Aand b € B.

Proof. We can prove this corollary in a similar way as Corollary[10.5l O

Let A = (A, 64,04, 7") be an arbitrary automaton. A weak forward bisimulation from A into itself will
be called a weak forward bisimulation on A (analogously we define weak backward bisimulations on A). The
family of all weak forward bisimulations on A is non-empty (it contains at least the equality relation), and
according to Theorem there is the greatest weak forward bisimulation on A, which is defined as in
(80), and it is easy to check that it is an equivalence (cf. [52]). Weak forward bisimulations on A which
are equivalences will be called weak forward bisimulation equivalences (analogously we define weak backward
bisimulation equivalences). The set of all weak forward bisimulation equivalences on A we denote by &V (A).

Note that condition (71) is satisfied whenever A = B and ¢ is a reflexive relation, and hence, it is satisfied
whenever A = B and ¢ is an equivalence. Therefore, an equivalence E on A is a weak forward bisimulation
on A if and only if

A

Eotd ct, foreveryueX", (82)

or equivalently,

A _ A
EoTu_Tu/

for every u € X". (83)
Analogously, an equivalence E on A is a weak backward bisimulation on A if and only if
ol oECof, foreveryue X', (84)

or equivalently,

o oE =04, foreveryue X" (85)

In TheoremB.8we proved that forward bisimulation equivalences on an automaton form a complete join-

subsemilattice of the lattice of equivalences on this automaton. For weak forward bisimulation equivalences
we show even more, that they form a principal ideal of the lattice of equivalences.

Theorem 10.8. Let A = (A, 54,04, 1) be an automaton.
The set EV(A) of all weak forward bisimulation equivalences on A forms a principal ideal of the lattice E(A) of
all equivalences on A generated by the relation E¥™ on A defined by
@ad)eE"™® & VueX)(aet o a 1), (86)

u

foralla,a’ € A.
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Proof. 1t is clear that E¥' is an equivalence. For arbitrary u € X* and a € A, by a € E"® o 74 it follows that
(a,a’) € E"™® and a’ € 14, for some a’ € A, and by (86) we obtain that a € 7. Therefore, E*® € EVP(A).
Consider an arbitrary E € E(A). If E € EV®, then Eo t4 € EV o 12 C 74, s0 E € EVP(A). Conversely, let

E € & (A),ie., Eot C 14, foreachu € X*. For arbitrary (a,4’) € Eand u € X*,ifa € 1/}, thena € Eot} C 74,

and by symmetry, if a’ € 72, then a € 72 By this it follows that (a,4’) € E*®. Therefore, E C E¥® if and only
if E € &¥P(A), and consequently, E¥*(A) is the principal ideal of E(A) generated by E¥®. [

11. Uniform weak forward bisimulations

In this section we study weak forward bisimulations which are uniform relations. Within the class of uni-
form relations, weak forward bisimulations can be characterized as follows.

Theorem 11.1. Let A = (A, 5,04, t4) and B = (B, 5, 6%, 18) be automata and let @ C A X B be a uniform relation.
Then @ is a weak forward bisimulation if and only if the following hold:

otop=0opop, dtopogp =dtop™, (87)
¢ lotd =18, foreachue X, ™ =qotl, foreachueX". (88)
Proof. Let ¢ be a weak forward bisimulation. According to (7I) and (75) we have that
ctopcoloplopcCotopoplop=ctog,
and hence, 0 0 ¢ = 6 0 ¢! 0 @. In a similar way we prove that 6® o ™! =4 0 p 0 7.
Next, by reflexivity of ¢~! o ¢, for each u € X* we have that

B~ -1 Be -1, A
TSP opoT, S oTy,

and by this and (Z0) we obtain that 75 = ¢! o 2. Similarly we prove that 4 = @ o 75.
Conversely, let (87) and (88) hold. It is clear that (88) implies both (Z0) and (74), and by reflexivity of
@ o@~'and ¢! o ¢ we obtain that
A Ccotopopl=afog, Fcafoplop=ctop,
and hence, (71) and (75) hold. Therefore, ¢ is a weak forward bisimulation. [

Further we prove two very useful lemmas.

Lemma 11.2. Let A = (A, 6%, 0%, t4) be an automaton, E an equivalence on A, and AJE = (A/E, 5V/E, cAE, 7A/E)
the factor automaton of A with respect to E. If E is weak forward bisimulation equivalence, then

E, et o gerd, (89)

forallu e X*anda € A.

Proof. The claim will be proved by induction on the length of the word u.
According to (25) and the hypothesis of the lemma, the claim is true if u is the empty word. Suppose
that the claim is true for some word u, and consider arbitrary x € X and a € A. Then we have that

E,e tAE = s4E o tAE o (Ad’ € A) ((Ea Ew) € 62/ A Ey € 7VF)
& (A’ €A)((@a)eEod2oE A a eth)

© a€EodloEotd =Eodl o) =Eotd, =74

Xu:*

Therefore, the claim is true forallu € X* anda e A. O
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Lemma 11.3. Let A = (A, 54,04, 1) be an automaton, let E be an equivalence on A, let @ be the natural function
from A to A/E, and let A/E = (A/E, 5", cA/E, TAIE) be the factor automaton of A with respect to E.

Then E is a weak forward bisimulation equivalence on A if and only if @ is a weak forward bisimulation between
Aand AJE.

Proof. Let E be a weak forward bisimulation equivalence on A. According to Lemma [11.2} for arbitrary
u € X* and a € A we have that

E,€pplott & (A €A)((E,a)epsl ANa'etl) & (A €A)(E,=Ey A Eyetl/f) = E,e)/r,

and hence, (pgl ol C T‘,:V E Moreover, we have that 64 C 62 o E, by reflexivity of E, and according to (24), for
eacha € Abya € 0* C o” o E it follows E, € ¢//F, and since (E,, a) € ¢!, we obtain thata € 0/F o ;1. Thus,
o/ € 0o ;. In the same way we show that ¢g o 4/E C 14 for eachu € X*, and 04/F C 6% o . Therefore,
@k is a weak forward bisimulation between A and ‘A/E.

Conversely, let ¢ be a weak forward bisimulation between A and A/E. According to this assumption
and (2D), for arbitrary u € X* and a € A we have that

A A/E

4 o E et = (a,E)eqr A EgetE

AJE

a€Eort = acqppot,’t ctl

Thus E o 4 C 74, and we have proved that E is a weak forward bisimulation equivalence on A. [
Let A = (A,64,0%,1) and B = (B, 5,05, 7%) be automata, and let ¢ : A — B be a bijective function.
If ¢ satisfies

A o ¢a)ed®, foreverya € A, (90)

net! o P(a) € 8, forallu e X*anda € A, 91)

aco

then it is called a weak forward isomorphism between A and B. Similarly, if ¢ satisfies

neot o P(a) € a5, forallu e X*anda € A, (92)

aet o ¢ et?, foreveryacA, (93)

then it is called a weak backward isomorphism between A and 8. It is easy to check that the inverse function
of a weak forward (resp. backward) isomorphism is also a weak forward (resp. backward) isomorphism.

Now we state and prove the following analogue of Theorem[Z.2l The main difference is that in this case
the factor automata need not be isomorphic, but only weak forward isomorphic.

Theorem 11.4. Let A = (A, 5,04, t4) and B = (B, 6%, 68, 1P) be automata and let @ C A X B be a uniform relation.
Then ¢ is a weak forward bisimulation if and only if the following hold:

(1) Ei is a weak forward bisimulation equivalence on A;
(i) E} is a weak forward bisimulation equivalence on B;

cee —~ . . . [ @
(iii) @ is a weak forward isomorphism of factor automata A/E’ and B/E},.

Proof. For the sake of simplicity set E% = E and Ej, = F. Moreover, let f € FD(¢) be an arbitrary functional
description of ¢.
Let @ be a weak forward bisimulation. Then we have that
Eori=gog ot  Cpor; C1y,
and since the opposite inclusion follows by reflexivity of E, we conclude that Eo 7/ = 7/\. Hence, E is a weak
forward bisimulation equivalence on A. In a similar way we prove that F is a weak forward bisimulation

equivalence on 8.
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Next, for an arbitrary a € A we have that

E,edt @ aec?oE=c"opop =009 & (AbeB)(bed® A (a,b)ep)
& (@beB)(bed® A (fla),b)eF) & fla)ec®oF & Fyyed®F,

and for arbitrary u € X* and a € A we obtain

E,etdf o aetd=por® © (AeB)(@@b)ep Aberd)

& (AbeB)((fa,b)eF Abetl) o fla)eForl =18 & Fryer.

Therefore, we have proved that ¢ : E, = F(, is a weak forward isomorphism between A/ Efﬁ and B/E}.
Conversely, let (i), (ii), and (iii) hold. For an arbitrary a € A we have that

/E F

a€otopopl=0oF & E,ed't & ¢, et o Ff(a)eaB/F & f(a)ed®oF
& (A eB)(beo® A (b fa)eF) & (AbeB)(bed® A (@b eg) © acobogp™,
soctopogp! =cPogp!, and consequently, 64 o p = Ao poplogp = 68 0 p~! 0 p. Moreover, for arbitrary
u € X*and a € A we have

A
u

o Eetyf o pE) e o Ff(a)GTS/F & fla)etB =Ford

& (A eB) ((fa),b)eF A beo®) & (AbeB)((a,b)ep Abed®) @ aegport,

aeT

so 4 = g o 18, which also yields g™l o4 = ¢l opo18 = For8 = 7B, Therefore, according to Theorem [I1.1]
@ is a weak forward bisimulation. [

We can also prove the following.

Theorem 11.5. Let A = (A, 5,04, 74) and B = (B, 5%, 6, 18) be automata, and let E and F be weak forward bisim-
ulation equivalences on A and B.

Then there exists a uniform weak forward bisimulation ¢ C A X B such that E:i = E and E}, = F if and only if
there exists a weak forward isomorphism between factor automata A/E and B/F.

Proof. This theorem can be proved in a similar way as Theorem [Z.3] using Theorem[IT.4 [

Theorem 11.6. Let A = (A, 84,04, 1*) be an automaton, let E be a weak forward bisimulation equivalence on A,
and let F be an equivalence on A such that E C F.

Then F is a weak forward bisimulation equivalence on A if and only if F/E is a weak forward bisimulation
equivalence on A/E.

Proof. For arbitrary u € X* and a € A we can easily check that
E, e (F/E)otdF & aeForl

By this and by Lemma T2 we obtain that (F/E) o 74/% C 74/F if and only if F o 74 C 4, what is precisely
the claim of the theorem. [

Corollary 11.7. Let A = (A, 6%, 04, 14) be an automaton, and let E and F be weak forward bisimulation equivalences
on A such that E C F.

Then F is the greatest weak forward bisimulation equivalence on A if and only if F/E is the greatest weak forward
bisimulation equivalence on A/E.

Proof. This is an immediate consequence of the previous theorem and Theoremd.2l O
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LetA = (A, 5,04, 74) be an automaton. Let us set Ay = {02} | u € X"}, and let us define 6~ : AyxX — Ay
and 74V C Ayx by

6™ (@, %) = o, (94)
olet™ o olot'=1 o dlntt 20, (95)

forallu € X*and x € X. Then Ay = (An, 6V, ac ,T/V) is a deterministic automaton which is language equiv-
alent to A, i.e., L(Ayn) = L(A), and it is called the Nerode automaton of A (cf. [15, 128, 130, 135]). Note that the
Nerode automaton of A is the deterministic automaton obtained from A by means of the determinization
method known as the accessible subset construction. i i

Moreover, let Ay = {17 | u € X'}, and let us define ¥ : Ay x X — Ay and ¥ C Ay by

oM (tf, %) = T, (96)
e o dlotd=1 & Nl #0, 97)

for allu € X* and x € X. Then Ay = (An, 64N, TA AN) is a deterministic automaton which is isomorphic to
the Nerode automaton of the reverse automaton A of (A, and it is called the reverse Nerode automaton of A.

The following theorem gives a characterization of uniform weak forward bisimulations in terms of the
reverse Nerode automata. Let us note that an analogous theorem, given in terms of the Nerode automata,
characterizes uniform weak backward bisimulations.

Theorem 11.8. Let A = (A, 64,04, 1) and B = (B, 5, 68, 1) be automata and ¢ C A X B a uniform relation.
Then @ is a weak forward bisimulation from A to B if and only if it satisfies (Z1) and (Z5), and functions

A -1, .4 B B
Tll = @ ° lel/ lel = @ ° Tl/l’ (98)
for each u € X*, are mutually inverse isomorphisms between reverse Nerode automata Ay and By.

Proof. Consider functions @ : Ay — P(B) and W : By — P(A) which are given by ®(t4) = ¢! o 7/ and
W(tB) = ¢ o 18, for each u € X*.

Let ¢ be a weak forward bisimulation from A to B. By definition, it satisfies (ZI) and (75). According to
Theorem [[1.T] for every u € X* we have that ®(t#) = 15 € By and W(z£) = 14 € Ay, which means that @
maps Ay into By, and v maps By into Ay. According to the same theorem, for every u € X* we have that
W(D(T) =@ o go ot# =18 and ®(W(t)) = ¢! o p o 18 = 78, and hence, ® and V¥ are mutually inverse
bijections from Ay to BN, and vice Versa

Clearly, ®(t*) = 78 and W(7%) = 1. Next, for arbitrary x € X and u € X* we have that

DO (1, 0)) = ©(14,) = 185, = 6% (<L, x) = 5P¥ (@(), x).

A

By Theorem [T} for any u € X* we have that 6* o4 =0 opogplotd =cBoplord =B o1B s0

A B

et o dlotl=1 6 dfof=1 e Be® o o)) e
Hence, we have proved that @ is an isomorphism from Ay to By. In a similar way we prove that W is an
isomorphism from By to Ay.

Conversely, let (Z1) and (@) hold, and let © and WV be mutually inverse isomorphisms from An to By
and from By to Ay, respectively. Since 7 and 7® are the unique initial states of Ay and By, we have that
O(1?) = 78, and hence, p~' o1 = 78 and p 018 = 4. Suppose that (%) = 78, for some u € X*, and consider

an arbitrary x € X. Then
B(z,) = PO™ (1, 1)) = 0PV (®(]), x) = 0 (xy, x) = 73,

Now, by induction on the length of u we obtain that ®(7%) = 72, for every u € X*, and also, ¥(75) = 4, which
means that (88) holds. Therefore, by Theorem[IT.Tlwe 0bta1r1 that @ is a weak forward bisimulation. [
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Note that a similar theorem can be proved for weak backward bisimulations, i.e., a uniform relation ¢
is a weak backward bisimulation from A to B if and only if it satisfies (73) and (Z7), and functions

A
u

B

ol olop, o a0, (99)

for each u € X*, are mutually inverse isomorphisms between Nerode automata Ay and By.

12. Weak forward bisimulation equivalent automata

Let A = (A,64,04,7") and B = (B, 6%, 6%, %) be automata. If there exists a complete and surjective weak
forward bisimulation from A to B, then we say that A and B are weak forward bisimulation equivalent, or
briefly WFB-equivalent, and we write A ~wrp B. Notice that completeness and surjectivity of this forward
bisimulation mean that every state of A is equivalent to some state of 8, and vice versa. For arbitrary auto-
mata A, B and C we have that

A ~wrg A, A ~wrp B = B ~wrp A; (ﬂ ~wrs BA B ~wrsp C) = A ~wrp C. (100)

Similarly, we say that A and B are weak backward bisimulation equivalent, briefly WBB-equivalent, in notation
A ~wee B, if there exists a complete and surjective weak backward bisimulation from A to B.
The following lemma will be useful in our further work.

Lemma 12.1. Let A = (A, 6,04, 7) and B = (B, 55,08, ©%) be automata, let ¢ be a weak forward isomorphism
between A and B, and let E and F be the greatest weak forward bisimulation equivalences on A and B.
Then for arbitrary aq,a, € A the following is true:

(a1,m2) €eE & (P(m), Paz)) € F. (101)

Proof. Let us define a relation F’ on B by
(brbo) € F' & (¢ (b1), ¢ (b)) € E, (102)

for arbitrary by, by € B. It is clear that F’ is an equivalence on B.
Consider an arbitrary u € X*. If by € F' o 78, then there is b, € B such that (by,b,) € F’ and b, € 75, and by

urs wr
(I02) and (@1) we obtain that (¢p~1(b1), p~(b2)) € E and ¢~1(by) € 721. This means that ¢p~1(b1) € Eo 4 C 74,
and again by (@I) we obtain that by = ¢(¢~1(b1)) € 5. Therefore, F' o 18 C 18, for each u € X*, so F’ is a
weak forward bisimulation equivalence on A, whence F’ C F. Now, for arbitrary a;,a, € A we have that
(a1,a2) € E implies (¢(a1), p(az)) € F' C F, so we have proved the direct implication in (I0T). Analogously

we prove the reverse implication. [

Now we state and prove the main result of this section.

Theorem 12.2. Let A = (A,*,04,74) and B = (B, 58, 08, 1B) be automata, and let E and F be the greatest weak
forward bisimulation equivalences on A and B.

Then A and B are WFB-equivalent if and only if there exists a weak forward isomorphism between factor automata
A/E and B/F.

Proof. Let A and B be WFB-equivalent automata. As in the proof of Theorem[8.2l we show that the greatest
weak forward bisimulation ¢ between A and 8 is a uniform relation.

By Theorem[11.4] Ei’; and E(g are weak forward bisimulation equivalences on A and B, and ¢ is a weak
forward isomorphism of factor automata A/ Efﬁ and B/ EE. Let P and Q be respectively the greatest weak
forward bisimulation equivalences on A/ Ei and B/ E(Bp. Let& : (A/ Ei) /P — (B/ Eg) /Q be a function defined
by &(Py) = Q) foreacha e A/ Ei’;. It is easy to verify that & is a well-defined bijective function, and by (89),

(10T) and the fact that ¢ is a weak forward isomorphism we obtain that ¢ is a weak forward isomorphism.
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By Corollary[I1.7it follows that P = E/ EZ and Q = F/E?, and according to Theorem .1} A/E is isomor-
phic to (A/ E:i) /P and B/F is isomorphic to (B8/ Eg) /Q. As we have already proved that £ is a weak forward
isomorphism between (A/ Ez) /P and (B/ E(g) /Q, we conclude that there is a weak forward isomorphism
between A/E and B/F.

The converse follows immediately by Theorem[I1.5l O

Corollary 12.3. Let A be an automaton, let E be the greatest weak forward bisimulation equivalence on ‘A, and let
WIFIB(A) be the class of all automata which are WFB-equivalent to A.

Then A/E is a minimal automaton in WIFIB(A). Moreover, if B is any minimal automaton in WIFB(A), then
there exists a weak forward isomorphism between A/E and B.

Proof. Let 8 be an arbitrary minimal automaton in WIFB(A), and let F be the greatest weak forward
bisimulation equivalence on 8. According to Theorem [[2.2] there exists a weak forward isomorphism
between A/E and B/F, and by Lemma[I1.3and (I00) it follows that B/F € WFIB(A). Now, by minimality of
B we obtain that F is the equality relation on B, what means that 8/F = 8. Therefore, there is a weak forward
isomorphism between A/F and B, and consequently, A/F is also a minimal automaton in WIFB(A). [

The next example shows that there are automata which are WFB-equivalent, but they are not FB-equi-
valent, and also, that there are automata which are language-equivalent, but they are not WFB-equivalent.

Example 12.4. Let A = (A, 5, 04,74) and B = (B, 6%, 6%, 7P) be automata with |A| = 4, |B| = 2 and X = {x]},
whose transition relations and sets of initial and terminal states are given by the following Boolean matrices
and vectors:

1
oAz[O 1 0 o], 5f=8
0

o oo
S o oo

0 0

1 0 10 0
ol © = 1] o =[1 0, 65:[1 o]' TB:H'
0 0

Computing the relation u € A x B using formula (80) we obtain that
10

|1

H= 10

1

O = O

and we can easily check that u satisfies both (ZI) and (75), and according to Theorem[10.6, 1 is the greatest
weak forward bisimulation between automata A and B.
On the other hand, using the procedure from Theorem[6.3we get the relation

10
1o o
=10 o
0 0

which does not satisfy (30) and (36), and according to Theoreml6.3] there is no any forward bisimulation bet-
ween A and 8. Since p is complete and surjective (i.e., it is a uniform relation), we have that A and 8 are
WEFB-equivalent, but they are not FB-equivalent.

If we change ¢” and ¢ to

oAz[o 0 1 o], aB=[1 1],

then we obtain that u does not satisfy (Z5), and in this case there is no any weak forward bisimulation bet-
ween A and B, i.e., Aand B are not WEB-equivalent. However, A and B are still language-equivalent, i.e.,
we have that L(A) = L(B) (= {&}).
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13. Concluding remarks

In this article we have formed a conjunction of bisimulations and uniform relations as a very powerful
tool in the study of equivalence between nondeterministic automata. In this symbiosis, uniform relations
serve as equivalences which relate elements of two possibly different sets, while bisimulations provide
compatibility with the transitions, initial and terminal states of automata.We have defined six types of
bisimulations, but due to the duality we have discussed three of them: forward, backward-forward, and
weak forward bisimulations. For each od these three types of bisimulations we have provided a procedure
which decides whether there is a bisimulation of this type between two automata, and when it exists, the
same procedure computes the greatest one. We have proved that a uniform relation between automata A and
Bis a forward bisimulation if and only if its kernel and co-kernel are forward bisimulation equivalences on
Aand B and there is a special isomorphism between factor automata with respect to these equivalences. As
a consequence we get that automata A and B are FB-equivalent, i.e., there is a uniform forward bisimulation
between them, if and only if there is an isomorphism between the factor automata of A and 8 with respect
to their greatest forward bisimulation equivalences. This result reduces the problem of testing FB-equi-
valence to the problem of testing isomorphism of automata, which is equivalent to the well-known graph
isomorphism problem. We have shown that some similar results are also valid for backward-forward bisim-
ulations, but there are many significant differences. Analogous results have been also obtained for weak for-
ward bisimulations, for which we have shown that they are more general than forward bisimulations, and
consequently, the WEB-equivalence of automata is closer to the language-equivalence than the FB-equi-
valence.

Similar methodology was used in [17] in the study of bisimulations between fuzzy automata. In further
research, the methodology developed for nondeterministic and fuzzy automata will be applied to weighted
automata over suitable types of semirings, as well as in discussing certain issues of social network analysis.
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