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THE IDEMPOTENT RADON-NIKODYM THEOREM
HAS A CONVERSE STATEMENT

PAUL PONCET

ABSTRACT. ldempotent integration is an analogue of the Lebesgue in-
tegration wherer-additive measures are replaced dynaxitive mea-
sures. It has proved useful in many areas of mathematicsasuftizzy

set theory, optimization, idempotent analysis, large @t theory, or
extreme value theory. Existence of Radon—Nikodym dekieatiwhich
turns out to be crucial in all of these applications, was pthyy Sugeno
and Murofushi. Here we show a converse statement to thispdem
tent version of the Radon—Nikodym theorem, i.e. we charaetghe
o-maxitive measures that have the Radon—Nikodym property.

1. INTRODUCTION

Maxitive measures, originally introduced by Shilkret|[L8}e defined
analogously to classical finitely additive measures orgdsmwith the supre-
mum operation, denoted, in place of the addition+. More precisely,
a maxitive measuren ac-algebraZ is a mapr : 4 — R, such that
v(0) =0and

V(Bl U BQ) == I/(Bl) D I/(BQ),

for all By, B, € 4. Itis o-maxitiveif it commutes with unions of nonde-
creasing sequences of elementsAf One should note that @maxitive
measure does not necessarily commute vitlrsectionf nonincreasing
sequences, unlike-additive measures.

A corresponding “maxitive” integral, paralleling Lebesgiintegration
theory, was built by Shilkret. It was rediscovered indeparily and gener-
alized by Sugeno and Murofushi [20] and by Maslov [9]. Sirwent, this
integral has been studied and used by several authors withations from
dimension theory and fractal geometry, optimization, cépes and large
deviations of random processes, fuzzy sets and possithiktyry, idempo-
tent analysis and max-plus (tropical) algebra.
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Because of the numerous fields of application just listed,wording
around maxitive measures is not unique. For instance, Masimed the
termidempotent integratiorwhich is also of wide use. Notations may also
diverge; we adopt the choice of Gerritse [8] and wrifgf - dv for the
Shilkret integral of a measurable mgpwith respect to the maxitive mea-
surer on a measurable sét. The indexoc is not an integration bound, it
recalls the fact that the Shilkret integral can be seen amitdf a sequence
of Choquet integrals.

More generally, we shall consider tldempotent>-integral

/Boof ® dv,

where® is apseudo-multiplicationi.e. a binary relation satisfying a series
of natural properties. I is the usual multiplication (resp. the minimum
N), then the idempoter-integral specializes to the Shilkret (resp. Sugeno)
integral.

In all of the fields of application listed above, a Radon—Niym like the-
orem is often essential. For instance, a comprehensiveyttoégossibili-
ties (where gossibility measurés the maxitive analogue of a probability
measure) cannot do without a notionooinditionalpossibility (just like one
needs that of conditional expected value in probabilitptig Its existence
happens to be ensured by that of Radon—Nikodym derivatbreteqsities.
Such a theorem is actually available: it was proved in [20Bogeno and
Murofushi. These authors showed that, iindr arecs-maxitive measures
on ac-algebraz, with r o-©-finite ando-principal, therv is ®-absolutely
continuous with respect toif and only if there exists som&-measurable
mapc : £ — R, such that

v(B) = / c®dr,
B
forall B € A.

Given thator-G-finiteness and-absolute continuity generalize the usual
concepts ob-finiteness and absolute continuity to the setting of theigse
multiplication ®, the assertion looks like the classical Radon—Nikodym
theorem, except that one needs an unusual condition on tméndtng
measurer, namelyo-principality. This condition roughly says that every
o-ideal of # has a greatest element “modulo negligible sets”. Although
o-finite o-additive measures are alwaysprincipal, this is not true foe-
finite o-maxitive measures. For instance, everynaxitive measure is -
absolutely continuous with respect to thenaxitive measuré., defined
on the same-algebraz by 0.(B) = 1 if B is nonempty and(0) = 0;
howevery does not always have a density with respect.to
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After the article [20], many authors have published resoftRadon—
Nikodym flavour for maxitive measures. This is the case of &gb[1],
Akian [3], Barron et al.[[4], and DrewnowskKil[7]. In some casthe authors
were not aware of the existence of idempotent integratienrih In [13],
we explained why these results are already encompassee iButeno—
Murofushi theorem.

The purpose of this paper is to prove a converse to the Suiyurofushi
theorem. Aco-maxitive measure has theRadon—Nikodym properiy ev-
ery o-maxitive measure>-dominated byr has a density with respect to
Put together with the Sugeno—Murofushi theorem, our masaltas the
following:

Theorem 1.1. Given a non-degenerate pseudo-multiplicationa o-max-
itive measure satisfies the Radon—Nikodym property withesto the
idempotent-integral if and only if it iso-®-finite ando-principal.

This result ensures the minimality of the conditionscef-finiteness
ando-principality. We shall prove it with the help of the “quatiespace”
associated with the-maxitive measure, i.e. we shall get rid of negligible
sets by an appropriate equivalence relation. Such a cleaization will
be useful in a future work to try to investigaspaceqlike modules over
the idempotent semifiel®?> = (R, @, x)) with the Radon—Nikodym
property; see the discussion in [14].

The paper is organized as follows. We introduce pseudoHpfiaiitions
® and some of their properties in Sectidn 2; we also recall tt®ns ofo-
maxitive measure and idempotentintegral and their basic properties. In
Sectior B we recall the Radon—Nikodym type theorem for tleeniplotent
®-integral proved by Sugeno and Murofushi. In Secfibn 4 wendefhe
guotient space associated with-amaxitive measure and characterize max-
itive measures satisfying the Radon—Nikodym property. U&gal multi-
plication x and the minimurm\ are particular cases of the general binary
relation®, so our main result specializes to both the Shilkret and tigee80
integrals.

2. PRELIMINARIES ON MAXITIVES MEASURES AND IDEMPOTENT
INTEGRATION

2.1. Pseudo-multiplications and their properties. In this paper, we con-
sider a binary relatiorv defined orR . x R, with the following properties:

associativity;
continuity on(0, co) x [0, o0];
continuity of the map — s ® ¢ on (0, o], for all ¢;

monotonicity in both components;
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e existence of a left identity elemeit, i.e.1, ® t =t for all ¢;

e absence of zero divisors, i.e® t = 0 implies0 € {s,t}, for all
s, t;

e 0 is an annihilator,i.e0 ®t =t ® 0 = 0, for all ¢.

We call such a» a pseudo-multiplicationNote that the axioms above are
stronger than in [20], where associativity is not assumed.

We consider the map : R, — R, defined byO(¢) = inf,.os ® t.
An elementt of R, is ©-finiteif O(¢) = 0 (andt is @-infinite otherwise).
We conventionally writ¢ <, oo for a ©-finite element. If O(1,) = 0,
we say that the pseudo-multiplicationis non-degenerateThis amounts
to say that the set ab-finite elements differs fror0}.

In what follows, we shall use the three following results firoofs of
which are given in a separate note (see Poncet [15]).

Lemma 2.1. Given a non-degenerate pseudo-multiplicationthe follow-
ing conditions are equivalent for an elemént R, :

t is ©-finite;

s Ot K oo for somes > 0;

s®t < 1p for somes > 0;

t®s < 1p for somes’ > 0;

t® s <, oo for somes’ > 0.

Theorem 2.2. Given a pseudo-multiplicatio®, the following conditions
are equivalent:

e (©is non-degenerate, i.e¢ is ®-finite;

e there exists some positi¢efinite element;

e the monoid[0, 15|, ®) is commutative;

e the setl, of ®-finite elements is eithef, oo] or of the form[0, ¢)
for somep € (15, o0].

Moreover, in the case whetg,, = [0, ¢), then¢ satisfiesO(¢) = ¢ and
top=0¢p0t =09, forall0 <t < ¢. In particular, ¢ is idempotent, i.e.
PO 9= 0.

Corollary 2.3. Given a pseudo-multiplicatio®, it is not possible to find
t < ¢ andt’ > ¢ such thatt © t' = ¢, if ¢ denotes the supremum of the set
of ®-finite elements.

2.2. Definition of maxitive measures. Let £ be a nonempty set. A col-
lection # of subsets of¥ containingZ, closed under countable unions and
the formation of complements issaalgebra A o-ideal of ac-algebraZ is

a nonempty subsef of % that is closed under countable unions and such

thatA C Be ZandA € Zimply A € 7.
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Assume in all the sequel th&# is ac-algebra onE. A set functionon
% is amapy :  — R, equal to zero at the empty set. A set function
w is monotonef p(B) < wu(B’) for all B, B" € % such thatB C B'. A
monotone set functiop is @-finite if u(E) < oo, ando-G-finite if there
exists some countable famify3,, },.cn of elements of”Z coveringE' such
thatu(B,) < oo for all n; a subsetV of E is u-negligibleif it is contained
in someB € % such thay(B) = 0.

A maxitive (resp.o-maxitivg measureon 4 is a set functionv on %4
such that, for every finite (resp. countable) fam{ili; } ;c; of elements of
B,

1) v(|J Bj) = @ v(B;)).

JjEJ JjeJ
Examples of §-)maxitive measures were collected(in|[13, Chapter I].

2.3. Reminders on the idempotent>-integral. The first extension of the
Lebesgue integral, among many others, was proposed by Mid] who
replacedr-additive measures by some more general set functions.desca
later, the Choquet integral (see Choquet [5] for the definjtwas born,
with the same idea of using “capacities” instead of measures

Inspired by Choquet, many authors have intended to replpestons
(+, %), which are the basic algebraic framework of both the Lebe s
the Choquet integrals, by some more general pairx) of binary rela-
tions onR, or R,. In the case wheré+, x) is the pair(max, x), one
gets theShilkret integraldiscovered by Shilkref [19]. If+, x) is the pair
(max, min), one gets th&ugeno integrabr fuzzy integradue to Sugeno
[19]. In the general case, one talks about pla@-integralor seminormed
fuzzy integralsee e.g. Weber [23], Sugeno and Murofushi [20], Wang and
Klir [22], Pap [11,[12]. In this paper, we shall limit our attén to the
case wherel- is the maximum operatiomax = @ and x is a pseudo-
multiplication (i.e. a binary relatior® satisfying the properties given in
g[2.3).

Amapf: E — R, is #-measurabléf {f >t} :={z € E: f(x) >
t} € A, forallt € R,.

Definition 2.4. [20] Let v be a maxitive measure @&, and letf : £ — R
be a#-measurable map. Thdempotento-integral of f with respect ta/
is defined by

2 V(f)z/f@dl/:@t@V(f>t).
E teR4
The occurrence ofo in the notation/* is not an integration bound, see

[13, Theorem I-5.7] for a justification.
5



Proposition 2.5. Let v be aco-maxitive measure oB. Then, for all.%-
measurable mapg, g : £ — R, and allr € R, B € %, the following
properties hold:

e v(1p) =v(B),

e homogeneityv(r ® f) =r ® v(f),

e o-maxitivity: v(®,, ) = D.v(f.), for every sequence oB-

measurable mapg, : £ — R,
e B— [Ff ®dvisac-maxitive measure o#,

Proof. See Sugeno and Murofushi |20, Proposition 6.1]. O

Further properties of the idempotentintegral might be found in [18],
[2], [16], [6], and [13] in the case where is the usual multiplication, i.e.
where the Shilkret integral is considered. For the Sugetegral, see e.g.
[19].

3. THE IDEMPOTENT RADON—NIKODYM THEOREM

3.1. Introduction. In this section, we recall the Sugeno—Murofushi the-

orem, which states the existence of Radon—Nikodym deviatfor the

idempotento-integral [20, Theorem 8.2]. Heré& still denotes ar-algebra.
Let v and 7 be maxitive measures o®. Thenv has a density with

respect tor if there exists somes-measurable map (calledkensity ¢ :

E — R, such that

3) v(B) = /ch ®dr,

for all B € %. Note that, ifv has a density with respect tq thenv
is ®-absolutely continuous with respect t9 according to the following
definition.

Definition 3.1. [20] Let v, 7 be monotone set functions gA. Thenv is
©-absolutely continuous with respectitg¢or 7 ©-dominates’), in symbols
v <L T, ifforall B € # such thatr(B) be ®-finite, v(B) < oo ® 7(B).

Absolute continuity, although necessary in Equatldn (8gnss a priori
too poor a condition for ensuring the existence of a density. instance,
everyo-maxitive measure is ®-absolutely continuous with respect to the
o-maxitive measuré, defined on the same-algebra by 6.(B) = 1
if B is nonempty and(0) = 0; however,v does not always have a den-
sity with respect td ., and this latter measure is nefprincipal in general.
We shall understand ig[3.3 that®-absolute continuity is actually a nec-
essary and sufficient condition for the existence of a dgngitlenever the

dominating measure is-©-finite ando-principal.
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3.2. ®-Finiteness of the density.A set functionv : 4 — R is semio-
finiteif v(B) = @acpv(A) for all B € %, where the supremum is taken
over{Ae #:AC B,v(A) <z oo}.

Proposition 3.2. Let v, 7 be o-maxitive measures o®. Assume that
is semie-finite and admits a densitywith respect tor. Thenv admits a
©-finite-valued density with respectto

Proof. In the case where is degenerate, the fact thatbe semic-finite
impliesv = 0; then the result is clear. So for the rest of the proof we
assume thab is non-degenerate. Lét = {z € £ : ¢(x) < oo} and let

1 = c® 1. By Theorenl Z2F is a measurable set, 8pis Z#-measurable
(and®-finite-valued). Let us show that is still a density ol with respect
tor. Let B € #. Then

) V(B)Z/C@dT:/Cl(DdT@ O dr.

B B BNE\F
We first assume that( B) is ®-finite, and we show that(BN E \ F') = 0.
With Equation [(#) this will implyv(B) = [5c @ dr. Let F, denote the
set of ©-finite elements. Iff, = [0,00], thenE \ F is empty, so that
T(BNE\ F) = 0. Now suppose thaty, = [0,¢). Sincet © 7(BN E'\
Fn{c>t}) <v(B) <y oo forallt > 0, we have by Lemmia 2.1 thais
o-finiteorr(BNE\ Fn{c>t}) >0,forallt> 0. Consequently,

5) / coOdr=¢or(BNE\F).
BNE\F
If s := 7(BNE\ F) > 0, then by Equation(5) and Theorédm12.2 this
implies¢ > v(B) > ¢ ® s > ¢, a contradiction. Thus, we have again
T(BNE\F)=0.
If v(B) is ®-infinite, we use the fact thatis semi<-finite. We get

v(B) = P v(A) = P /mq@dfg/wcl@df,
ACB AcB’A B

where the supremum is taken ovet € # : A C B,v(A) < o0}, SO

thatv(B) = [5c; © dr, forall B € A. O

3.3. Principality and existence of a density. A monotone set functiop

on % is o-principal if, for everyo-ideal .# of 4, there exists some € .7

such thatS'\ L is u-negligible, for allS € .#. Proposition 411 will justify
this terminology. Sugeno and Murofushi [20] proved a Raddikedym

theorem for the idempotert-integral when the dominating measurersis
©-finite ando-principal.



Theorem 3.3(Sugeno—Murofushi)Letv, 7 be o-maxitive measures o#.
Assume that is o-©-finite ando-principal. Thenv <, 7 if and only if
there exists som&-measurable map : £ — R, such that

v(B) = /OOCQ dr,

B
forall B € £A.

Proof. See [20, Theorem 8.2] for the original proof, and![13, Chafitp
for an alternative proof in the case whevas the usual multiplication. OJ

If ® is the usual multiplication, the hypothesis @f®-finiteness ofr
cannot be removed: consider for instance a finite/5eind letv = 4 and
T = 00 - 04 beo-maxitive measures defined on the power setofThenr
is o-principal andv is absolutely continuous with respectitpbut never
has a density with respect to

After the article [20], many authors have published resoftRadon—
Nikodym flavour for maxitive measures. This is the case of égb[1],
Akian [3], Barron et al.[[4], and DrewnowskKi|[7]. In some caséhe au-
thors were not aware of the existence of the Shilkret integia [13],
we explained why these results are already encompassee iBueno—
Murofushi theorem, and we also gave another proof of thisrtra with
the help of order-theoretical arguments.

4. THE QUOTIENT SPACE AND THERADON—NIKODYM PROPERTY

In this section, we characterize thosemaxitive measures with the
Radon—Nikodym propertye. such that alb--maxitive measures that are
dominated by- have a density with respect to At first, we shall introduce
the quotient space associated with

Let 7 be ac-maxitive measure o8. On % we define an equivalence
relation~ by A ~ Bif AUN = BUN, for somer-negligible subset. We
write B for the equivalence class &f € #. The quotient set derived from
~ is called thequotient spacassociated with, and denoted by /7. The
guotient space can be equipped with the structure @fcamplete lattice
induced by the partial ordeg defined byA™ < B" if A ¢ BUN, for some
7-negligible subselv.

The next proposition, partly due to Sugeno and Murofusharatter-
izeso-principal o-maxitive measures defined orvaalgebra. A maxitive
measure onZ satisfies thecountable chain conditioor is CCQ) if each
family of non-negligible pairwise disjoint elements &f is countable. (A
CCC maxitive measure is sometimes calledecomposablebut this ter-
minology should be avoided, because of possible confusitimtixe notion

of decomposability used e.g. by Webler![23].)
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Proposition 4.1. Let 7 be ac-maxitive measure og. The following con-
ditions are equivalent:

(1) 7 is o-principal,

(2) 7 satisfies the countable chain condition,

(3) the quotient spaceg/r is o-principal, in the sense that evepy
ideal of #/7 is a principal ideal,

(4) there is some-principal o-additive measure, on % such that, for
all Be #,m(B)=0<« 7(B) =0.

Proof. (4) = (@) This implication is clear.

(@) = (2) Assume that is o-principal, and lete be a family of non-
negligible pairwise disjoint elements &. Let .7 be thes-ideal generated
by <7, and letL € .# such that-(/ \ L) = 0 forall I € .#. We can choose
L of the form L = (J,en An, With A, € &7 for all n. Now let us show
that.s = {A,, : n € N}, which will prove thate/ is countable. So let
A € o/, and assume that # A, for alln. ThenANn A, = () for all n, i.e.
A C E\ L. Moreover, the definition of. implies7(A \ L) = 0, so that
7(A) = 0, a contradiction.

(@) = (@) This was proved by Sugeno and Murofushil[20, Lemma 4.2]
with the help of Zorn’s lemma.

(@) = @) Letm be the map defined o by

=@ > r(BnB)

T B'em

where the supremum is taken over the set of findeartitionst of E.
Thenm, called thedisjoint variationof 7, is the least-additive measure
greater tham (see e.g. Pap [11, Theorem 3.2]). Moreovér3) > 0 if and
only if m(B) > 0. Let us show thatn is o-principal. If .# is ac-ideal
of 4, there exists somé € .# such thatr(B\L) = 0 forall B € .7. If
B e #,thent (BN B'\L) =0forall B' € %, sinceBN B’ € .. Hence
we havenm(B\L) = 0.

(3) = (@) Let.¥ be ac-ideal of #, and let/ = {B” : B € .#}. Then
I is closed under countable suprema, andif< B™ with B € .#, then
A C BU N for some negligible subset € #4. HenceAn (E\ N) C B,
sothatAnN (E\ N) € #. SinceAn (E\ N) ~ A, this implies that
A" € I. Thus,I is ac-ideal of /7. SinceZ/r is o-principal, there is
somelL € . such thatB™ € [ if and only if B < L7. We deduce that
7(B\ L) = 0forall B € .7, which proves that is o-principal.

(@ = (@) Let! be ao-ideal of /7. Then.¥ = {B € # : B™ € I}
is ao-ideal of 4. Sincer is o-principal, there is somé € .# such that
T(B\L)=0forall Be .#. ThenB” € [ ifandonly if B” < L7,i.e.lis

a principal ideal. O
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Following Segall[1]7], a monotone set functipron 4 is localizableif,
for everyo-ideal .7 of 4, there exists someé € 4 such that
(1) S\ Lis u-negligible, for allS € .7,
(2) ifthere is somd3 € # such thatS\ B is u-negligible for allS € .7,
thenL \ B is u-negligible.
In this case,.# is said to belocalizedin L. It is clear that a monotone
set function is localizable if and only if the associated tiprt space is a
complete lattice. Note also that localizability is weaksario-principality.
Here comes the characterization of the Radon—Nikodym prppe

Theorem 4.2. Given a non-degenerate pseudo-multiplicatiopna o-max-
itive measure- on 4 satisfies the Radon—Nikodym property with respect to
the idempotent-integral if and only ifr is o-®-finite ando-principal.

Proof. The ‘if’ part of this theorem is due to Sugeno and Murofusti,[2
Theorem 8.2]. The ‘only if’ part is proved in six steps. Lete ao-
maxitive measure satisfying the Radon—Nikodym property.

Claim 1: 7 is localizable.

Let .7 be ac-ideal of %, and letv be defined o by

v(B)= @@ r(BNI).
Ies
Thenv is ac-maxitive measure ogg, ©-absolutely continuous with respect
to 7, hence we can write
v(B) = / c®dr,

B
for some#-measurable map: £ — R,. DefiningL = {c # 0} € A,
one can see that is localized inL.
Claim 2: 7 is o-principal.
Let .7 be ac-ideal in 4, and letL € £ localizing.# with respect tor.
We define the non-decreasing familysoideals(_#;),~ by

I={IUB:1e ¥ Be % 1(B)<t}]
Now letr be the map defined o by
v(B)=inf{t > 0: B e #},

for all B € 4. Then, by a result due to Nguyen et al.[[£02] we know
thatv is ac-maxitive measure (see also [14]). Moreovd3) < 7(B) for
all B € 4, so thatv <, 7, hence we can write

(6) v() = [Tcadr

for some%-measurable map: £ — R,. If I € .7, thenv(I) = 0, hence,

using Equation[(6) and the fact that has no zero divisors;(I N {¢ >
10



t}) = 0, for all £ > 0. This implies thatr(/ \ {¢ = 0}) = 0, for all
I € .#. By definition of L, we deduce that(L \ {c = 0}) = 0. Therefore,
v(L) =v(L\{c=0})®v(LN{c=0})=0. The definition ofv implies
thatL € 7, forall ¢ € Q. Thus, we can writd = I,U B, forall ¢ € Q*,
with I, € .# and7(B,) < ¢. Now, one can check thdt = I, U N, with
Iy := Ugeqr Ig andNg := Nyeqr By Sincer(No) = 0, it appears that we
have foundl, € .# such thatv(I \ ) = 0, for all I € ., so we have
proved thatr is o-principal.

Claim 3: 7 has no®-spot.

We define a»-spotof 7 as an elemenB, of % such thatr(B,) is ®-
infinite and7(A) is either zero or-infinite for all A C B,. Now assume
that has such a&-spotB,. If .7 is thecs-ideal of # generated by B €
P . T7(B) < oo}, we define ther-maxitive measure by v(B) = 0 if
B e .#,andv(B) = 1, otherwise, wheré, is the left identity element of
®. Sincer <, T, there exists som&-measurable map : £ — R, such
thatv(B) = [5f ® dr, forall B € . Then

(7) lo =v(By) = Pt o glt),
t>0

whereg(t) := 7(By N {f > t}). Thus,t ® g(t) < 1a, S0g(t) is ©-finite
by Lemmd2.1L, for alk > 0. This implies thaty(t) = 0 for all ¢ > 0 by
definition of By, which contradicts Equatiofl(7).

Claim 4: 7(E) < ¢, where¢ is the supremum of the set effinite
elements.

We can suppose that< oo. Recall that, since is supposed to be non-
degenerate, we have > 0. Thanks to the Radon—Nikodym property, we
have

min(r(B), ¢) = /B “codr,

for all B € %, for someZ-measurable map : £ — R,. Assume that
T7(E) > ¢. Sincer({c = 0}) = 0 < ¢, we deduce that(F) = 7({c >
0}) > ¢. This implies that-({c > ty,}) > ¢ for some0 < ty < ¢. Thus,

¢ =min(7(E),p) = to © 7({c > to}) =ty © ¢.

By Theorenl 2Rty ® ¢ = ¢, so thatty © 7({c > to}) = ¢. But this
last identity is not possible by Corollary 2.3. This contcdidn shows that
r(E) < ¢.

Claim 5: 7 is semio-finite.

Let v be the map defined o by v(B) = @acp7(A), where the
supremum is taken ovefA € # : A C B,7(A) <s oo}. Thenwv
is a o-maxitive measure such tha{ B) = 7(B) wheneverr(B) is &-

finite. In particular,y <, 7. Assume thav(B;) < 7(B;), for some
11



B, € #. Letc : E — R, be a%-measurable map such that Equa-
tion (B) is satisfied, and letl, = B; N {¢ > t}. Using Claim 4, we
have¢ > v(B;) > t ® 7(A:), whereg is the supremum of the set of
©-finite elements. So, by Lemnia P.1(A,) is ©-finite, for all ¢ > 0.
Moreover, since/({c = 0}) = 0 andr has no®-spot by Claim 3, we de-
duce that-({c = 0}) is ®-finite. Thus,v({c = 0}) = 7({c = 0}) = 0, so
7(B1) = 7(B1 N {c > 0}) = Byeq- 7(A4y), and the definition of implies
7(B;) < v(By), a contradiction.

Claim 6: 7 is o-®-finite.

Let.# be theos-ideal generated by all € % such that-(A) be ®-finite.
Sincer is o-principal, there is somé < .# such thatr(A \ L) = 0 for
all A € .#. We can choosé of the formL = (J,,>1 A, With 7(4,,) ©-
finite for all n. Sincer is semio-finite, 7(B) = 7(B N L) for all B. In
particular,7(E \ L) = 0, soE' is equal to the union of the famil{A,,),.cx
with Ay := E \ L, and7(A4,) is ®-finite for all n. This proves that is
o-O-finite. O

Corollary 4.3. Let T be ac-maxitive measure o#. Thenr satisfies the
Radon—Nikodym property with respect to the Shilkret irdefrand only if
7 is o-finite ando-principal.

Corollary 4.4. Let T be ac-maxitive measure o#. Thenr satisfies the
Radon—Nikodym property with respect to the Sugeno intégaald only if
T is o-principal.

5. CONCLUSION AND PERSPECTIVES

In this work, we derived a converse statement to the SugenoafMshi
theorem, i.e. we characterized thosenaxitive measures satisfying the
Radon—Nikodym property with respect to the idempotenntegral as be-
ing o-G-finite o-principal. This theorem specializes to the Shilkret (resp
Sugeno) integral when the binary relatiencoincides with the usual mul-
tiplication x (resp. the minimum\). Our result does not exist in classical
measure theory, at least not in such a concise and exact form.
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