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In the social web, people use social systems for sharing content and opinions, for communicating with friends, for tagging, etc. People 
usually have different accounts and different profiles on all of these systems. Several tools for user data aggregation and people search 
have been developed and protocols and standards for data portability have been defined. This paper presents an approach and an 
algorithm, named Cross-System User Data Discovery (CS-UDD), to retrieve and aggregate user data distributed on social websites. It 
is designed to crawl websites, retrieve profiles that may belong to the searched user, correlate them, aggregate the discovered data and 
return them to the searcher which may, for example, be an adaptive system. The user attributes retrieved, namely attribute-value pairs, 
are associated with a certainty factor that expresses the confidence that they are true for the searched user. To test the algorithm, we ran 
it on two popular social networks, MySpace and Flickr. The evaluation has demonstrated the ability of the CS-UDD algorithm to 
discover unknown user attributes and has revealed high precision of the discovered attributes. 
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1. INTRODUCTION 

In the last decade, the issue of user data sharing, exchange and discovery has grown in importance, both for users and for 
systems of the social web.  

Users are interested in managing the large amount of their data scattered over different repositories on the web: they 
would like to easily share their data over different websites, to avoid having to enter the same profile data several times 
and they would also like to monitor and control the shared data.  In addition, users are often interested in the data of other 
users: friends, friends of friends and people participating in a community or involved in a transaction. Systems and 
applications are also interested in users’ data. They collect and manage user data for different reasons: for marketing 
microformats, for advertising, for customer support and for personalization of services to the users’ constraints, needs and 
preferences. Thus, the retrieval and exchange of user data is a critical activity. Research and industry communities 
responded to these needs by developing standards for data representation and interoperability, protocols for user data 
portability and tools for user data retrieval and aggregation.  

In this paper we present an approach and an algorithm, named Cross-System User Data Discovery (CS-UDD), to 
retrieve and aggregate data about users by exploiting their public data available on the web. Unlike most of the current 
people search engines, CS-UDD is targeted to systems and works as a crawler that browses social websites, identifies 
users on such websites (by exploiting heuristic techniques to identify and correlate their profiles), aggregates the user 
attributes discovered on different sources and provides them in answer to the searcher. For each retrieved profile and for 
each specific user attribute derived from the aggregation, it computes a certainty factor of identification. 

When websites use standards for data representation such as Friend of a Friend (FOAF), Microformats and Resource 
Description Framework in Attributes (RDFa) to represent the user data1, or when they expose APIs for user data access 
and portability, CS-UDD uses these to retrieve the user profile data. However, CS-UDD can operate with sites that do not 
use APIs or data representation standards and it does not require user authentication, since it is designed to work by using 
public data on social systems. When APIs are not available, CS-UDD parses user profile pages on the social website to 
collect user data. 

The algorithm has been designed to be implemented in two main solutions: as a web service queried by applications, 
or as a specific module of a system aimed at enriching profiling of its users (for example a module of an adaptive system 
used supporting user modeling). Besides these two solutions, a third possibility is to implement the algorithm as a search 
engine which can be queried by people to monitor their data scattered on the web or to find out about friends and other 
people.  

CS-UDD differs from retrieval and aggregator tools, such as people search engines, since most of them typically 
return all the profiles they find and do not correlate them. They often organize the retrieved profiles according to user-
oriented criteria, such as the type of social system. In contrast, CS-UDD identifies users on different websites, links them 
and automatically estimates a certainty factor for each profile and for the user attributes discovered.  

Compared to similar works in the literature that match and link profiles on different social systems [e.g., 30, 32, 45, 
47, 55], the main features that distinguish our approach are the following: i) in addition to linking profiles and providing a 
certainty factor of identification, CS-UDD retrieves the attributes of the linked profiles and integrates them using 
heuristics, if necessary; ii) in our approach, metrics used for assessing the likelihood that two user profiles belong to the 
same person are built by using context information concerning the crawled social system. This makes the metrics usable 
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that will be mentioned in the paper. 



on social systems with different features (e.g., different policies for nickname composition, different cultures and name 
patterns, etc.). Specifically, we consider the context of the social systems being crawled to compute the frequency of 
attributes’ values, their frequency of variation and the frequency of nickname types. 

The algorithm presented in this paper is the result of research which lasted two years. Several tests have been 
performed to tune and refine the algorithm. Compared to previous versions, reported in [10, 12], the algorithm for 
matching the input profile to retrieved profiles has been greatly revised and improved. Furthermore, the algorithm has 
been extended with two new processes: a process for clustering the user profiles retrieved on different social systems, 
based on the cross-linking of their attributes, and a process for discovering and inferring new user’s attributes, by 
applying a set of rules.  

For the final evaluation, we used a real-world dataset of user profiles obtained by parsing Profilactic2, an identity 
aggregator used by people to manage their profiles in a single control panel. We tested the ability of the CS-UDD 
algorithm to discover new data of a searched user, given a set of known user data (both input and output data in the form 
of <attribute-value> pairs). To compute precision and recall of the discovered user attributes we chose a ground truth 
composed of triplets of profiles on MySpace3, Flickr4 and Profilactic owned by the same person. For each Profilactic 
profile in the dataset, CS-UDD was ran on MySpace and Flickr, trying to retrieve the other two profiles of the same 
person and subsequently retrieve the set of unknown <attribute-value> pairs. The results reported in this paper 
demonstrate very good performance of the algorithm, showing an average precision of 99.5% for an average recall of 
53.2% for the retrieval of three unknown attributes. This means almost no false positives in discovered attributes, which 
is our first objective. A contribution of the paper is to show that, by adopting specific heuristics for the inference of user 
attributes, it is possible to gain values of precision and recall higher than those for the identification of user profiles. In 
fact, considering profiles, we can obtain the same level of precision only by a recall level lower than 30%.  

As a last remark, notice that, even though the CS-UDD algorithm originates from the idea of exploiting the large 
amount of public data available on social systems, the approach is quite flexible, since it can be easily implemented 
within a specific framework of co-operating systems, institutions and organizations. In this case, the distributed profiles 
that can be crawled can include not only public data, but also all data the service that implements CS-UDD is authorized 
to access. 

The paper is organized as follows. Section 2 positions the approach with regard to other similar works and describes 
objective and use cases; Section 3 presents an overview of the CS-UDD algorithm, while Section 4 precisely details every 
phase. Section 5 presents a prototype we developed to show how the algorithm works and Section 6 concerns the 
experimental evaluation of the algorithm. Section 7 discusses related approaches and finally Section 8 concludes the 
paper. 

2. MOTIVATION AND BACKGROUND 

User profiles are closely related to user identity. This has been explored in a variety of fields, such as philosophy, 
psychology, sociology, computer science, security and criminology [21, 32]. A user profile may include personal 
information (e.g., name, date and place of birth, interests), personal identifiers (e.g., social security number, passport 
number), physical descriptions (e.g., height, weight) and biometric information (e.g., fingerprint, DNA). CS-UDD deals 
with user profiles containing personal information in social systems. 

The goal of the project was to help systems to profile their users and in particular to help them manage the collection 
and update of user data. These are relevant problems in user modeling and adaptive systems [1, 2, 4, 27]. A system could 
solve these problems in several ways: by asking users directly, by requiring users’ data from other systems and services, 
by tracking users’ actions and using reasoning techniques to infer user data. The CS-UDD algorithm deals with the 
second approach mentioned above. Thus it manages the collection of user data from other services. 

CS-UDD was designed to help systems to: 
• overcome the cold-start problem by acquiring data about new users;  
• discover user data that they could not otherwise obtain; 
• collect data from users with whom they have a discontinuous relationship;  
• ensure that their user data is valid and up to date; and  
• identify their  users on other systems. 

In user modeling, the advantage of this approach is the opportunity to collect data about users from the various 
systems they interact with, benefiting from those systems’ user profiling. This increases the coverage of the user profile, 
since more aspects of user’s identity can be covered by aggregating different user profiles [4]. Moreover, the large 
amount of data in the social web (e.g., Del.icio.us5, Flickr, YouTube6, etc.) and mobile applications (e.g., iPhone and iPod 
family) opens wide possibilities for user data exchange and cross-system user profiling [1]. 

As well as such advantages, automatically searching data about user profiles across systems shows some challenges 
such as the management of attribute matching and of possible conflicts between values [2, 27], users’ control of personal 
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data exchanged across systems [33] and, most important, the unique identification of users whose data are exchanged 
among systems. 

Techniques for identifying users are closely associated with those developed for record linkage or entity resolution 
because understanding if two identities belong to the same user in different social systems is equivalent to identifying 
whether two strings or record refer to the same real-world entity [19, 20]. Variants of the approach are known as entity 
matching, tuple matching, deduplication and mention matching, among others [52].  

This issue has been regarded as very relevant in different fields, such as information integration, natural language 
processing, information processing on the World-Wide Web, on the Semantic Web and in the AI, database, data mining, 
and web communities [52].  

In the computer science literature, different approaches have been proposed and adopted over the years to perform 
entity matching. Examples are rule-based methods, unsupervised learning methods, supervised learning methods and 
string-matching methods7. Despite this great variety of methods, it has been demonstrated that, especially for structured 
data, there is no single “best” matching algorithm. This is true especially because of the large variety of possible data 
sources. In fact, different matching approaches can achieve different results in different domains and for different 
purposes.  

It is worth noting that many works have focused on exploiting syntactic similarities (e.g., those between two names or 
two addresses) to match mentions. However, when the entities to be matched are user profiles and not only single strings, 
these approaches seem to be not sufficient. Indeed, Kopcke and Rahm [35] envision the necessity of combining several 
methods to improve matching quality, e.g., by considering the similarity of a number of attributes or by considering the 
relationships between entities. Following this assumption, we compare user profiles by calculating a similarity measure 
that takes into account a set of user attributes and we cross-link profiles by considering their common attributes.  

The approach of combining the information from different sources to assess the matching between entities has been 
pursued in projects having different goals, or dealing with different context or exploiting different user data. Wang et al. 
[58] use a record comparison algorithm for detecting deceptive identities by comparing four personal features (name, date 
of birth, social security number, and address) and combine them into an overall similarity score. Brown and Hagen [7] 
propose a data association method for linking criminal records that possibly refer to the same suspect. This method 
compares two records and calculates a total similarity measure as a weighted sum of the similarity measures of all 
corresponding feature values. Shen et al. [52] assume that each individual to be identified is associated with a set of 
attributes. They match individuals by using the values of their attributes. The authors propose a probabilistic approach to 
entity matching that exploits some domain constraints, in the form of heuristic rules, which can be either learned from the 
data or specified by a domain expert or user. Semantic modeling techniques can also be used for entity matching, 
exploiting similarity measures based on ontologies and lexical databases, such as WordNet, as in [13, 23]. 

The majority of the studies on entity matching rely only on personal identity features to make matching decisions. 
More recent approaches take into consideration other kinds of features to match profiles. For example, Iofciu et al. [30] 
suggest identifying users across online tagging systems by combining explicit profile information (username) and implicit 
feedback (the set of tag assignments performed by the user). These measures are then combined through a weighted sum. 
Vosecky et al. [55] calculate the similarity between profiles by computing a similarity score between each corresponding 
attribute and then combining such scores using a weighted sum, with weights optimized on a training dataset. Motoyama 
and Varghese [45] parse profiles on Facebook8 and Myspace and extract a set of basic attributes. They train a classifier 
using “boosting methods” to identify profiles that may belong to the same user. Perito et al. [47] use just usernames to 
link profiles. To demonstrate that usernames are unique enough to identify profiles across networks, they train a machine 
learning classifier using Markov Chains and TF*IDF. Li et al. [32] consider an identity matching technique that considers 
both personal identity features and social identity features that represent the social behavior of the target individual. 

All these works are similar to our approach as regards the basic principle of comparing sets of profile attributes. 
Specific differences with our approach will be detailed in the description of the algorithm, below.  

3. OVERVIEW OF THE CS-UDD ALGORITHM 

CS-UDD is an algorithm for retrieving user data by exploiting the great amount of information that users make available 
in social systems. At a high level of description, CS-UDD receives as input a variable set of input attributes (such as age, 
gender, city, etc.) concerning the user who is being searched for and returns as output further user attributes collected by 
crawling a variable set of social systems and combining the data found in them. 

Notice that above and in the following, we use the term “attribute” to refer to <attribute-value> pairs. Thus, 
- “ input attributes ” means the set of <attribute-value> pairs that a system or a user provide to CS-UDD to initialize the 

search, 
- “discovered attributes” means the set of <attribute-value> pairs that CS-UDD returns as a result of its search and 

that do not belong to the input attributes. They are also called “new discovered attributes” or “new attributes”. 
Finally, notice that we use the acronym OSN (Online Social Network) to refer in general to social systems which manage 
user profiles. 
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Scenario. To describe the phases of the CS-UDD algorithm we will use the example of a personalized system (e.g., an e-
commerce website, a music recommender, or an education tutoring system) which queries a people search service based 
on the CS-UDD algorithm. We refer to this system as “the Searcher”. Imagine that its users can log in by using the 
account on another system (e.g., Facebook, MySpace, openID9, etc.) or by creating a new account on the system. Suppose 
that, in this second case, users are asked to specify a nickname and a password, plus a set of other data, some of which are 
mandatory and others optional. A consequence of offering these registration methods is that the user’s attributes known 
by the Searcher are not uniform. For example, for the user with nickname marlonwayans, the Searcher may know the 
gender, the age, the country and the profession, while for the user with nickname monica_white, the Searcher may know 
just the age and country. Collecting further attributes about monica_white would allow the Searcher to fill in her profile, 
offering a more personalized service and avoiding the boring activity of filling in data she probably already provided to 
plenty of other websites. 

Assume that, in this scenario, the Searcher queries a search engine that implements the CS-UDD algorithm (or, 
alternatively, the Searcher itself implements the CS-UDD algorithm) to collect further attributes about monica_white. The 
Searcher performs the query by entering: the nickname monica_white, her age, 32, and country, GB.  

The CS-UDD algorithm exploits these data to crawl a set of OSNs, retrieves profiles that match the input data and 
applies heuristics to check if the searched user has a profile on these OSNs. If one or more profiles are retrieved with a 
sufficient confidence, their attributes are aggregated and returned to the Searcher. In this example, as a result of the query, 
CS-UDD returns the attributes below, with an associated certainty factor (CF), which expresses the confidence of the 
identification: 

Gender: female (CF=1), City: Cardiff (CF=1), Profession: lawyer (CF=1), Hometown: Bristol (CF=0.92), 
Website: www.bwhite.com (CF=0.92) 

The Searcher can now use these data for personalization tasks. 

Steps of the algorithm. The algorithm is composed of four main processes, which are run in sequence. They are shown 
in Figure 1, where x is the user to be searched and profile Pi is the input profile, namely the set of input attributes used 
by the Searcher to perform the query.  

The Searcher will at least know the nickname used by x to log on. In addition, it might know other nicknames of x 
(e.g., Twitter10 nickname) and even user’s full name or part of it. For reasons that we explain later, we use the term 
nickname to refer to both usernames and full or partial name of the user. Therefore, more than one nickname can be 
known by the Searcher. 

Besides the nickname(s), the Searcher could know other data about x, which we call user attributes. Thus, the Input 
profile Pi is composed of the nickname(s) and other optional attributes of x.  

 

 
 

Figure 1. Processes of the CS-UDD algorithm (x is the user to be searched; profile Pi is the input 
Profile for the query. Pi is composed of input nickname(s) and other optional input attributes). 

 
Below we describe the main processes of the algorithm shown in the figure. 
1. Profile crawling. The search process starts by providing the algorithm the input profile Pi. Given the 

name/nickname(s) and the attributes of the input profile Pi, a set of parsers11 are used to support the search for 
similar user profiles. The result is a set of profiles, named retrieved profiles, Pr (Sec. 4.1). 

2. The set Pr is passed to the process Matching of profile attributes, which computes, for each Prj∈Pr, a 
MatchScore expressing the degree to which Prj is similar to Pi (Sec. 4.2).  

                                                           
9  See Sec. 7. 
10  http://www.twitter.com 
11  The set of parsers depends on the specific implementation of the algorithm. 
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3. The cross-linking process looks for attribute values shared by the retrieved profiles Pr and uses a heuristic to revise 
their MatchScores when the profiles are estimated as linked (Sec. 4.3). 

4. The set Pr, with revised MatchScores, is passed to the User Attribute Discovery Process. This process clusters the 
profiles that are over a threshold into groups of compatible profiles and then applies a set of rules to infer <attribute-
value> pairs of the searched user. The discovered attributes, if any, and the associated profiles are finally returned 
with a confidence score (certainty factor CF). Therefore, even without a unique identification of the searched user, 
the algorithm can make some inferences about her/his attributes and is able to return their values coupled with a CF 
(Sec. 4.4). 

 
More formally the CS-UDD algorithm pseudocode is the following. 
 
Pseudocode 1 – The CS-UDD Algorithm 

 

function CS-UDD (INPUT: one or more nicknames and a set of input attributes) returns (ATT: a set of attributes 
associated with a value and a CF) 
PROF= a set of crawled user profiles, initially empty; 
CLUS= a set of clusters, initially empty; 
 
PROF=crawl(INPUT); //Described in Sec 4.1 
foreach Prj in PROF { 

Prj[MatchScore]=compute_MatchScore(Prj,INPUT); //Described in Sec 4.2 
} 

PROF =cross-linking(PROF); // Described in Sec. 4.3 
CLUS = cluster_profiles(PROF); //Described in Sec 4.4.1 and 4.4.2 
return extract_attributes(CLUS); //Described in Sec 4.4.3 
 
Notice that in this paper, we use P to denote Profile and not Probability. Therefore, we use Pi for input profile and Pr for 
retrieved Profile.  

4. USER IDENTIFICATION AND ATTRIBUTE DISCOVERY 

In this section we present our approach performing entity matching (i.e., user profile matching) by describing in detail 
each step of the algorithm sketched in the previous section. 

4.1 Profile crawling 

The initial step is the process that crawls a set of OSNs and returns a first set of candidate user profiles Pr. Considering 
OSNs with millions of user profiles, it is reasonable to apply some sort of filtering make the search computationally 
feasible. For this reason, the first step of the algorithm retrieves a selection of profiles to which formula (1), described in 
the next section, can be applied. This first selection is based on names/nicknames included in the input profile Pi or a set 
of its variations that is computed dynamically. Should the algorithm be used to identify users on smaller domains, this 
step could be skipped or it could use a different combination of user data. In our approach, we use nickname and its 
variations. Recall that we use the term nickname to refer to usernames, as well as users’ full and partial names. 

We consider nickname variations since  people tend to be conservative in choosing nicknames, thus it is very likely 
that they use a similar nickname on different systems. We will discuss this point further in Sec. 4.2.1.  

Variations are produced by manipulating the initial nickname with heuristics and possibly dividing it into 
subsections. For example if the nickname is composed of different parts like “bill_smith”, variations might include 
“billsmith”, “bill.smith”, “bill-smith”, “bill” or “smith”. If the nickname terminates with a numerical series like 
“lauragreen2010” it may generate a variation without it, such as “lauragreen”. A practical way to split the nicknames that 
mention both name and surname is using Google search suggestion. Thus for example, from the nickname “billsmith” it 
is possible to produce variations as “bill smith”, “bill.smith” and so on. 

The choice of which OSNs are crawled depends on the specific implementation of the algorithm. For example, a 
system in the education field could implement the CS-UDD algorithm limiting the search to the set of the OSNs most 
used in education (e.g., diig.com, linkedin.com, etc.). If this would not be sufficient to give a high chance of finding the 
searched user, the set of OSNs could be enlarged. 

An OSN can be crawled by exploiting the APIs and search tools it provides, if any, or by building a parser that 
analyses the OSN’s user profile pages and returns the profiles that match the nickname(s) of the searched user. This last 
solution has the problem that changes in the HTML code of the OSN’s pages require changes in the parser, but often it is 
the only solution available, as discussed in other related works (e.g., [5, 39]).  

It is worth underscoring that, when the web page displaying the profile is annotated by using a specific standard, such 
as Microformats and RDFa, the parsers use this to extract the user attributes, similar to other projects (e.g., 
DataPortability, described in Sec. 7). This reduces the problem of HTML changes in web pages. Notice, however, that the 
standards mentioned above are still not widespread. For example, new MySpace profile pages use Microformats, but old 
profile pages do not. Our algorithm is designed to crawl websites, whether they support such standards or not.  



To speed up the querying process or, alternatively, to increase the chance that all the user’s profiles are retrieved, we 
developed an adjustable deepness mechanism for the search process. Higher deepness gives greater recall but increases 
the running time of the query.  

The deepness of the search process is controlled by many factors that can be tuned and optimized according to the 
specific implementation. The most important are: 
- the maximum number of variations generated by the algorithm for each input nickname  
- the maximum number of profiles to be retrieved on an OSN for each nickname variation 
- the MatchScore threshold (step 2) over which the algorithm can jump to the last step of the algorithm for attribute 
discovery (smart-stop technique).  

The higher these values, the more accurate, but slower, will be the crawling. To simplify deepness level setting, we 
defined 5 deepness levels. Level 1 gives very fast but superficial crawling, level of 5 results in complete but slow 
crawling. The default deepness level is the intermediate level of 3. To developers implementing this step of the algorithm, 
we defined specifications to create parsers for crawling different OSNs.  

A more sophisticated technique to manage deepness would be to define heuristics that generate name variations, based 
on their likelihood/importance, and order them according to the deepness level chosen for the search. The challenge is to 
design heuristics that are effective but also computationally lightweight at low deepness levels.   
 
Example from the scenario 
The scenario described in Sec. 3 concerns a system, the Searcher, that needs to identify a user and to obtain more data 
about her. The Searcher queries CS-UDD, providing an input profile Pi composed of: nickname: monica_white, age: 
32; country: GB. For the sake of simplicity, we assume that the algorithm is run on two social systems only, OSN.1 and 
OSN.2.  

The result of the crawling process is the following set of profiles  (Pr) retrieved on OSN.1 and OSN.2. Notice that 
all the results in this example are variations of “monica” OR “white” (boolean or).  
 
 Profiles Pr Nickname(s) within 

the profile 
User attributes within the profile 

OSN.1 

1 Monica_white gender: female; age: 32; city: Cardiff ; country: GB; profession: lawyer  

2 Moniwhite gender: female; city: Liverpool ; country: GB; profession: journalist   

3 […] […] 

OSN.2 

1 monicawhite02 country: GB; profession: journalist   

2 monicawhite99 country: GB 

3 moni.white07 city: Cardiff ; country: GB; hometown: Bristol ; website: www.bwhite.com 

4 monicaW country: GB 

5 […] […]  

Table 1 - Example of a set of retrieved profiles. Square brackets […] suggest that in a realistic situation we would have to process a much 
higher number of profiles than those in this simplified scenario. This notation will be implicit in the next tables. 

 

4.2 Matching Profile Attributes: Computation of the  MatchScore 
The second step of the algorithm is matching each retrieved profile Prj against the input profile Pi to evaluate if they 
belong to the same user. This gives a Matchscore to each pair <Pi, Prj>, representing the likelihood that Pi and Prj 
belong to the same user.  

As illustrated in Sec. 2, the issue of identifying users by matching their attribute-value pairs can be seen as a specific 
type of entity resolution, or record linkage problem. Our approach compares the profiles by matching i) the nicknames in 
the profiles and ii) the set of other attributes. The scores computed by matching nicknames and attributes are then 
combined into a global score. Similarly, Iofciu et al. [30], combine the scores obtained by computing the similarity of 
usernames with the score obtained by matching the tag-based user profiles.  
 
For each Prj, the MatchScore is computed according to the following formula: 
 

ssss ANANMatchScore ++=)Pr,Pi( j , (1)

   
where,  
Ns   = Nickname score, is the score of the match between the nickname(s) in Pi and the nickname(s) in each Prj;  

As  = Attribute score, is the score of the match between the other user attributes in Pi and the corresponding users 
attributes in Prj;  



This formula also scores profiles that have almost no attribute in common but share a complex and rare nickname like 
“Pool_Antraxys1985”. In such a case, the MatchScore would be based only on the Nickname score, similarly to the 
approach of Perito et al. [47]. To define formula (1) we evaluated some alternatives, moving from the union of the scores 
and testing some variants, suitable to a range wider than 0-1. Adding NsAs to Ns and As best fits our needs since it 
rewards the profiles with high scores on both Ns and As. 

Normalization is not applied at this stage since Ns and As have no predefined upper bound. The alternative would have 
been to estimate an upper bound (as for example in [30]); however we would have to estimate the upper bound of both 
measures. This would have introduced an error risk higher than estimating this value once, at the end of the process. The 
MatchScore will be normalized between zero and one in step 4 (Sec. 4.4.1), while in step 3 we use the MatchScore in its 
original form. 

In the following we describe the algorithms for calculating the Nickname score Ns and the Attribute score As used in 
formula (1).  

4.2.1 Computation of the Nickname score 

Nicknames have been used in several studies. Some of these have demonstrated that nicknames are sufficient to identify 
users in online communities [e.g., 47, 61]; others have used them in combination with other parameters [30, 55]. Indeed, 
nicknames are at the same time relevant and difficult attributes to be managed in user identification. They are generated 
by the user and are closely related to him/her, which makes them useful for identification. However, there are many cases 
where the same nickname does not necessarily guarantee the same identity. For example, while a specific nickname such 
as Monica_1980_White might represent the same identity, more common nicknames such as MonicaWhite can be used by 
several users in various communities and do not necessarily represent the same person.   

A practical reason for using nicknames in our approach is that the Searcher usually has this information and many 
times this is the only information it knows (by analyzing a random sample of 5000 profiles collected from Skype and 
Delicious, respectively 29.16% and 82.3% profiles contain only the user’s nickname [10]). A deeper reason that makes 
them relevant in profile matching is that people tend to be conservative in choosing nicknames and thus it is very likely 
that they use the same nickname on different systems. This hypothesis has been confirmed in several studies. Zafarani 
and Liu [61] show that nearly 60% of users in their sample use the same username in at least two online communities and 
if they create new usernames they tend to use one of their usernames in different communities. The same result has been 
found by Perito et al. [47] who show that users tend to choose a small number of related usernames and use them across 
many services.  

However, even though people tend to be conservative, they often introduce variations to nicknames, and this makes 
nickname matching hard. Variations are often a consequence of constraints imposed by the system, such as the 
impossibility of choosing an already existing nickname, or the requirement of using a minimum number of characters or a 
combination of numbers and letters, and so on. Examples of variations are the addition of suffixes or prefixes to 
usernames discussed above [61].  

Another feature that makes nicknames interesting attributes to be matched for user identification is that they are 
characterized by different levels of rarity and complexity. We name this property nickname specificity. The idea of 
considering the nickname specificity in the algorithm for profile matching is that, given two profiles with the same 
nickname, the chance of belonging to the same user is much higher if the shared nickname is rare and complex. We 
started to investigate this issue in 2009 [10] and a similar idea has been formulated by Perito et al. [47], who call it 
uniqueness. The basic principle is that usernames with low entropy are more common, while usernames with high entropy 
have less chance to be chosen by multiple users and refer, in the vast majority of the cases, to unique users (they compute 
it by using language models and Markov Chain techniques, see Sec. 2). 

Based on the observations above, we defined a measure Ns (Nickname score) to compute the score of the match between 
the nicknames in the input profile Pi (Pi[N]) and in the retrieved profile Prj (Prj[N]), 
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where, 
Similarity measures the degree of match between the nicknames: Pi[N] and Prj[N]. 
Specificity measures the degree to which the longest common substring of the nicknames Pi[N] and Prj[N] is complex 
and rare within the OSNs considered. 

 
Before explaining these measures, in formula (2a) we provide a more specific definition of Ns, which includes cases 

where Pi and/or Prj contain more than one nickname. To manage these cases, we compute the Ns for each pair of 
nicknames in Pi and Prj and combine them as follows: 
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where Pi[k] is the k-th nickname of Pi, Prj[l] is the l-th nickname of Prj, n and m are respectively the number of 
nicknames of Pi and Prj. Dividing by the square root of n·m reduces the effect of the summation, in case of multiple 
nicknames12.  

Similarity is the extent to which two nicknames match, e.g., a nickname included in another or nicknames that differ in some 
character. For example, the nickname bill.green in OSN1, may correspond to bill_green in OSN2 or BillGreen in OSN3 and 
so on.  
 
To account for all these cases, we compute the Similarity between two nicknames as: 
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where L is the Levenshtein distance, a metric for measuring the amount of difference between two strings by considering the 
minimum number of edits needed to transform one string into the other [40]. If two nicknames are identical, L is 0. The 
Similarity has value 1 when L is 0 and has value 0 when the two nicknames have no character in common. 
 
Notice that nickname includes both usernames and full or partial name of the user. Managing all these data as nicknames 
reflects the nature of data in OSN profiles (full names are often filled in as usernames and vice-versa), thus it increases 
the chance of finding a match between names and usernames of the same user. This approach is used also by Vosecky et 
al. [55], who manage usernames and full names together and use a set of string matching functions to calculate a 
similarity score between corresponding attributes. Their matching algorithm is designed for full and partial matches of 
names consisting of one or more words. 

By taking into account partial matches, and not only exact matches, it is possible to detect also the variations a nickname 
may have. Gae-won You et al. [22] report that selecting only those accounts where the user’s full name exactly matches 
the query name finds only a limited fraction (16.5%) of real matches. Considering also partial matches increases the 
matching result to 97.26% in their sample.  

As a final point, notice that, when nicknames to be matched are composed of more than one word, we carry out simple 
preprocessing of nicknames. Guessing that such a nickname might be a full name, we invert the order of the words in the 
nickname and compute the metric with different combinations of words, selecting that one with higher similarity score. 
Other techniques could be integrated in our approach specifically to manage full name matching, for example the approach 
used in [55].  
 
Specificity measures the degree to which the longest common substring of nickname in Pi and Prj is complex and rare 
within the context of use.  
Considering the context of use distinguishes our approach from the previous approaches to measuring the similarity 
between nicknames. Nickname specificity is defined as a function of the relative length of the nickname (long nicknames 
are considered more specific than shorter ones) and of the rarity of the nickname in the specific context of the OSN of the 
retrieved profile Prj.  
The relative length is the ratio between the length of the nickname and the average length of the nicknames in the OSN 
considered. With time, the length of nicknames tends to increase since OSNs usually do not accept already existing 
nicknames. Using the relative length instead of simply the length may penalize old short nicknames but reduces the risk 
of false positives for recent long nicknames. 

Rarity is managed in a similar way. We believe that basing the measure on local contexts gives more precise scores 
since the rarity score can be biased by the constraints and composition style of the nickname in different OSNs and even 
by the layout of the registration form.  
For instance, we observed that in Twitter most nicknames (including full name and nickname) are one-word strings 
composed mostly of lowercase letters, while on MySpace it is more common to have double-word mixed-case 
nicknames. This could depend on the layout of the registration form: both systems require the full name, but MySpace 
uses two fields while Twitter uses only one, leading the user to type a nickname or a partial one-word name instead of a 
full name. As another example, consider that in some contexts nicknames with a numerical sequence may be more 
common. This could be due to the suggestions provided by the OSNs (Twitter, for example, proposes as nickname a 
string composed of the full name typed by the user plus some numbers, if the fullname string already exists).  

Knowing this information can help to assess the rarity of a nickname more accurately: nicknames in general might be 
less rare in a particular context.  

To validate our hypothesis that the OSN context influences the composition of nicknames depending on the criteria 
above, we defined a set of categories of nicknames, considering all the combinations of letters (α), numbers (n) and 
                                                           
12 Notice that other and further formulas could be conceived to manage the match of multiple nicknames. For example, we could define formulas that 
emphasize the match between exact nicknames or we could define a priority among nickname kinds (e.g. a full name exact match may yield a higher weight 
than an exact match of nicknames). 



special characters (s): α, n, s, αn, αs, ns, nα, αnα, αsα, etc. and also the combinations with uppercase and lowercase letters. 
Then we calculated their frequency on a set of OSNs on a sample of 300,000 nicknames on each of them. Some of the 
nickname types, e.g., αnα, had very few occurrences, others are dominant. Considering for example the MySpace sample, 
19% belong to the type α-min (nickname composed only of lower-case letters, such as “bill”), while only 0.04% of them 
belong to the category nα-min (a numeric series followed by lower-case letters, such as “33john”). To compute rarity, we 
took into account only the categories with significant differences across OSNs.  

The rarity is then computed as follows: 
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where f is the frequency of the nickname type in a certain context and m is a weight determined by the length of the 
numerical sequence (n). If the nickname string in common includes a numerical sequence shorter than three digits, then 
m=1; otherwise, it is a value proportional to the number of digits. 

In this way, given a nickname such as MonicaWhite1980, the measure is able to: 
1) provide to MonicaWhite1980 a rarity score higher than MonicaWhite, due to its alphanumeric composition, which is 
less frequent than a pure letter-based composition; 
2) weight the rarity score in the context of the specific OSN, avoiding biases due to its nickname composition policies.  
 

Notice that the average length of nicknames and the frequency of nickname types are not required to be computed on-
the-fly for each query and on each whole OSN. Depending on the size of the OSN and on the rate of change of its 
profiles, this data can be periodically processed off-line and representative samples can be used. Time intervals have to be 
set by estimating the time required before significant changes occur in average values. 

A final observation concerns the analysis of Perito et al. [47] about the uniqueness of nicknames. They compared the 
distribution of information surprisal (related to nickname entropy) across different social systems and found similar 
curves. However they suggested differences in account creation interface as a probable cause: “Google offers a feature 
that suggests usernames to new users derived from first and last names. Probably this is the reason why Google 
usernames have a higher Information Surprisal. It must also be noted that both services (Google and eBay) have hundreds 
of millions of reported users. This raises the entropy of both distributions” [47]. Their study provides new evidence that 
there exist differences in nickname composition between OSNs, which may bias the rarity of nicknames. It would be 
interesting to investigate if the rarity and relative length we compute could mitigate these differences. 
 
Evaluation. We evaluated our method to compute the nickname score, and in particular the contribution of the rarity, by 
comparing it with a set of well-known string similarity metrics.  
In particular we considered: 

1. the full Nickname Score, as described here and used in CS-UDD, 
2. Similarity, as described here, 
3. longest common substring (LCS), 
4. the percentage of characters in common (Similar text), 
5. non-normalized Levenshtein distance (NNL), 
6. Jaro-Winkler distance 

 
For the comparison we used the Mean Reciprocal Rank (MRR). This is a statistical measure that indicates at which rank 
the correct profile occurs on average, weighted by the metric value. In this way, when the value of the metric is high, 
errors are emphasized. This is consistent with the objective of this evaluation: when the Nickname score is high, it can 
strongly influence CS-UDD identification process, therefore an error should be considered more severe. 

We built a sample of 9582 pairs of nicknames owned by the same person, from MySpace, Flickr, Twitter and 
Profilactic. The nicknames were crawled on Profilactic, an identity aggregator that allows users to collect the content 
from their profiles on several social networks in a dashboard. On this aggregator, each user has a Profilactic profile 
associated with her profiles on other OSNs. We excluded nicknames that were the same on both OSNs, since they were 
not very useful in discriminating the performance of the different metrics. 
 
Figure 2 shows that Nickname Score and Similarity seem to perform better than the other metrics. In particular, there are 
statistically significant differences between Similarity and LCS (paired two-tailed t-test p=7*10-4), Similarity and Similar 
Text (p=10-3), Similarity and NNL (p=1.8*10-5), Similarity and Jaro-Winkler distance (p=6*10-6). Most important, there are 
also statistically significant differences also between the full Nickname score, which combines similarity with nickname 
specificity, and the approach without nickname specificity (p = 0.01). It thus appears that knowledge of the local context of a 
nickname can significantly improve the identification of an online user. 
 



Figure 2 – Comparison of the performance (MRR) of six 
different metrics for identifying a user by nickname on a 
sample of 9582 pairs of nicknames. 
 

 
Figure 3 – Increment of identification when the Nickname 
score uses the nickname specificity based on the local 
context of a nickname pair. P=Profilactic, M=MySpace, 
F=Flickr, T=Twitter. Letter order in a pair is not relevant. 
 

 
Figure 3 shows the contribution of knowledge of local context by highlighting the percentage increase in performance of 
the Nickname score metric when it uses nickname specificity. It appears that Flickr and Twitter are the most sensitive to 
this technique; indeed when taking into consideration pairs made by a nickname of Flickr and a nickname of Twitter, we 
were able to get a 13.9% increase. Also pairs made by Twitter/MySpace and Flickr/MySpace performed reasonably well, 
yielding an identification increase of 9.7% and 6.2%, respectively. 
In the future, we plan to develop our approach by studying other patterns that can identify other nickname types. For the 
moment we note that knowledge of the local distribution of a nickname type, as defined above, can make a valuable 
contribution to user identification techniques. 

4.2.2 Computation of the Attribute score 

Nickname matching is a useful measure of identity matching. However, when nickname specificity is low and there are 
considerable variations between nicknames, the Nickname score can be low, even for nicknames that belong to the same 
user. To compensate for this, As (the second parameter of equation 1) is the score from matching the attributes in the input 
profile Pi and the corresponding attributes in the retrieved profile Prj.  

As described in Sec. 2, the approach of matching several attributes of profile pairs is also used by other authors (e.g., 
[32, 45, 55]). The underlying idea is that more similar attributes are more likely to belong to the same user. Irani et al. [31] 
show also that the likelihood of user identification increases as the number of profiles owned by a user and revealing the 
same attributes grows.  

In our approach, we take into account positive matching between attribute values in Pi and Prj (which increases the 
likelihood that the searched user with profile Pi corresponds to the user with profile Prj) and also the number and the 
kind of non-matching attributes (which lowers it). The kind of attribute is considered since attributes with different 
characteristics should contribute differently to user identification. For example, age is more discriminant than gender in case 
of a positive match and it should get a greater weight. From this principle, we derive the equation for As. It is computed as a 
difference between weights assigned to matching attributes and to non-matching attributes: 
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where, 
i and j represent the matched <attribute-value> pairs in Pi and Prj, whose values respectively match or do not match:  

- positive match (p)  if Pi(i(value))=Prj(i(value)),   
- non-match (n) if Pi(j(value))≠Prj(j(value)). 

∑Wp(i) = sum of the Weights W assigned to each attribute if the match is positive  (Wp)  
∑Wn(j) = sum of the Weights W assigned to each attribute if values do not match (Wn) 
Profiles with negative As are discarded.  

The rest of this section describes the method and the metrics used to compute attribute weights.  
 

Computation of the weights W assigned to attributes 
Several factors have been considered to compute these weights. We express these factors in two parameters: 1) the 
frequency of variation of the attribute and 2) the frequency of each value of the attribute in the given population.  

 



1) Frequency of variation of the attribute (ε) 
It is common for the value of an attribute to differ between profiles that belong to the same user. For example a user 
might declare different values for the attribute city in different OSNs. Reasons can be that she moved or that she 
sometimes enters the small town where she lives and sometimes the big city nearby. It is not so uncommon to find also 
“ironic” values like city: “In the sky”. Conversely, an attribute like gender or age13 is usually the same in different 
profiles.  
Clearly, the higher the variability of the attribute, the lower its reliability and, consequently, the lower the weight that 
should be assigned for positive matches and for non-matches.  
Variability depends first of all on the persistency of the attribute, i.e., whether the value of the attribute can or cannot vary 
through time for a given user. Examples of persistent attributes are full name, birth date and gender, while examples of 
non-persistent attributes are city, interests, etc. While persistent attributes may differ only due to the errors or false data, 
and thus have a low variability, non-persistent attributes have a much higher likelihood of variation.  
When disambiguating between individuals, persistent attributes are very relevant [59], especially when the values do not 
match. If the value of a persistent attribute in Pi is different from its value in Prj, this is a strong indicator that the 
searched user is not the owner of the profile Prj. For example, if two profiles have different gender, this information is 
almost a trigger to exclude a match between such profiles. Conversely non-persistent attributes (such as city) are never 
strong indicators in case of non-match, since different values may simply reflect an out-of-date profile. False data and 
errors are a second factor influencing the variability of the attribute. 

A way to express the variability of an attribute, and thus its reliability, is to compute experimentally its frequency of 
variation ε in a given population. This combines all the possible factors of variability. 

In Sec. 6.2 we analyse the variability of user attributes, considering the profiles owned by the same person on two 
different OSNs (MySpace and Flickr). Table 10, column 3 shows the frequency of variation for a given set of attributes 
available on the profiles of both the OSNs. For example, the value of country does not match in the 8.1% of profiles and 
city in 33% of profiles, while the value of gender does not match in just 2.3% of profiles (confirming that it is a persistent 
attribute).  

These data can be obtained by means of identity aggregators, which are services that aggregate profiles of the same 
user, thus allowing the variation frequency of the different attributes to be computed. For this task we used Profilactic 
(see Sec. 6.2). Other aggregators used to compare the profiles of a same person are ClaimID14, FindMeOn15, and 
MyOpenID16 [31] and also Google profiles17 [1, 47]. The frequencies of variation showed in this paper were obtained by 
examining data about MySpace and Flickr on Profilactic. Where it is not possible to compute the exact frequencies of 
variation ε for a specific population, they can be estimated by using the data obtained from similar OSNs.  

The frequencies of variation estimated for each attribute contribute to the weights W assigned to attributes (formulas 
(6) and (7) below).  

 
2) Frequency of each value of an attribute in the given population (φ) 
Let us consider two profiles taken from two popular OSNs, e.g., from Netlog18 and from Facebook19, both with the 
attribute age = 89, and two other profiles with age = 25. We intuitively see that the former pair of profiles have a higher 
chance of belonging to the same person than the latter, since, on the mentioned OSNs, there are more people 25 years old 
than 89 years old. Assigning a weight to a matching age attribute, without considering the specific value of the attribute, 
would not allow this difference to be taken into account. In our previous work [10, 12] we simply considered the 
persistency of an attribute to compute the weights; in this version of the algorithm we calculate the frequency φ of each 
value of each attribute in the OSNs considered. Table 2 and Table 3 show the use of these frequencies.  
 
� Finally, ε and φ are used to compute the weights W for each value of each attribute in case of positive match (Wp) and 
of non-match (Wn). 

In the following, we describe how ε and φ are used to define matrices of Wp and Wn, such as those displayed in Tables 
2-4, which are used to calculate the attribute score As in formula (5). Since their value is dynamic they have to be 
recomputed periodically.  
 
Given 
ε = frequency of variation of an attribute   
φ = frequency of an attribute’s value   

 

we calculate the weight for positive match (Wp) for each value of each attribute, combining φ and ε: 

                                                           
13  Notice that age is a “computed attribute”, based on the birth date and current date. 
14  http://claimid.com/ 
15  http://www.findmeon.com/ 
16  http://www.myopenid.com/ 
17  http://profiles.google.com/me 
18  http://www.netlog.com 
19  http://www.facebook.com 
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gives an inverse relation between x (in this case ε or φ) and the weight associated to such attribute. The functions 
asymptotically approach  +∞ as  φ  or ε tend to 0, and approach 0  as  φ  or ε tend to +1 (when all users in a context share 
the same value for an attribute, its discriminatory power is 0). The value of the constant 0<α<1 determines the convexity 
of the resulting curves. Setting this value modifies the behavior of the functions, making the weight more or less sensitive 
to the variation of the frequency. 

 
The weight for non-match (Wn) for each attribute is computed by using only the variability of the attribute:  

),(fWn εβ= . (7) 

In this case we cannot estimate how informative a shared match is, as values do not match. Since a non-match is an 
indicator more important than a positive match, it is reasonable to have β > α.  
In this way, if the value of the attribute in Pi does not correspond to the value in Prj, and if the variability of the 
attribute is very low, the weight for a non-match Wn will be high. For example, if the value of the attribute birthdate/age 
in Pi does not correspond to the value in Prj, given that the variability of this attribute is low, the weight for non-match 
Wn will be high. As a consequence, the attribute score As will be drastically reduced (see formula 5), lowering the 
MatchScore and thus indicating that the owner of profile Pi is not the owner of Prj. Conversely, a weight associated to 
a non-match of an attribute with a high variability, such a city or profession, will be lower. In this second case the 
MatchScore will be not reduced by much.  

The behavior of the logarithmic functions is shown in Figure 4.  
In the following, we show an example of weight computation for positive matches and for non-matches between 
attributes’ values. 
Table 2 shows the weights assigned to the values of the attribute “age” for a positive match on the popular OSN 
MySpace: these weights are used to compute equation (6) when the age value of the input profile Pi corresponds to that 
one of a profile Prj retrieved on MySpace.  
Table 3 shows the weights assigned to the values of the attribute “country” for a positive match on MySpace. 
Table 4 shows the weight for non-match between the attributes on MySpace: these weights are used to compute equation 
(7) when an attribute of the input profile Pi does not match the corresponding attribute of a profile Prj retrieved on 
MySpace. 

 

 
Figure 4 – The logarithmic functions f (c, x), where x is ε or φ, used for the computation of the weights20.   

                                                           
20 We set  α=0.04 and β=0.2 as in our prototype (Sec. 5), since these values allow the weights to be very sensitive to variations on the x-axis and thus to 
discriminate better in the range of frequency of most of the input attributes and of the attribute values we considered. 



 
Attribute: 
AGE  
 

Percentage frequency of variations for age (εεεε) 

 4.6 

Weights of the attribute age for positive match 
between Pi and Prj 
Wp(age) = f(α, φ)  ∗  f(α, ε)  
(with α=0.04) 

Age values Percentage frequency of age values on MS  (φφφφ) 

20 4.39 0.357 
23 4.89 0.328  
26 4.82 0.331 
29 4.45 0.353 
32 3.20 0.453 
35 2.61 0.522 
38 2.00 0.621 
41 1.39 0.772 
44 0.71 1.087 
47 0.37 1.425 
50 0.24 1.661 
53 0.17 1.854 
56 0.11 2.100 
59 0.09 2.215 

Table 2 – Wp computation of the age attribute21 for positive match  between Pi and Prj on MySpace (MS). 
 

 

Attribute: 
COUNTRY   
 

Percentage frequency of variations for 
country (εεεε) 

8.1 

Weights of the attribute country for positive 
match between Pi and Prj 
Wp(country) = f(α, φ)  ∗  f(α, ε) 
(with α=0.04) 

Country values 
Percentage frequency of country values on 
MS (φφφφ) 

US 70.56  0.006 
GB 4.48 0.217 
IT  3.28 0.275 
BR 2.3 0.351 
AU 1.83 0.405 
DE 1.76 0.415 
CA 1.56 0.446 
FR 1.45 0.465 
ES 1.23 0.510 
MX  1.09 0.544 

Table 3 – Wp computation of the country attribute for positive match  between Pi and Prj on MySpace (MS). 
 

 

Attribute  Percentage frequency of variations (εεεε)))) Weights of the attributes for non-match 
between Pi and Prj 
Wn = f(β, ε)  
(with β=0.2) 

Gender 2.3 2.272 
Age 4.6 1.677 
City 33.3 0.470 
Province 17.9 0.750 
Country 8.1 1.244 

Table 4 – Wn computation of a set of attributes for non-match  between Pi and Prj on MySpace (MS). 

 
Example from the scenario 
To show the result of the process, let us continue the example described in Sec. 4.1. We recall that the input profile Pi 
was composed of: nickname: monica_white age: 32; country: GB. Profile crawling (the first step of the process) returned 
the set of profiles Pr displayed in Table 1. Now, running the algorithm for the MatchScore calculation on this set, we 
obtain the results summarized in Table 5. 
 
 

OSN Pr profiles retrieved 
in step 1  

Ns (Nickname Score) 
 

As (Attribute Score) MatchScore of Prj 
(Ns+As+ Ns*A s) 

OSN.1 
1 – Monica_white 0.64 0.649 1.71 
2 – moniwhite 0.39 0.19 0.65 

OSN.2 

1 – monicawhite02 0.44 0.254 0.81 

2 – monicawhite99 0.44 0.254 0.81 

3 - moni.white07 0.39 0.254 0.74 
 4 – monicaW 0.27  

 
0.254 0.59  

 
Table 5 – Example of profile retrieval and MatchScore calculation. 

 
From Table 1, used to build Table 5, we see that the profile Monica_white (OSN1.1) has all the attributes matching the 
input attribute and a very similar nickname (the only difference is the use of capital letters). Thus, both Ns and As are very 
                                                           
21 Notice that tables 2 and 3 show, for illustrative purposes, only a set of the attribute’s values. 



high and this profile deserves the highest MatchScore. Profiles like monicawhite02, monicawhite99, moni.white07 and  
moniwhite have an acceptable Ns but a low As since only the country attribute is matching. Finally monicaW, having the 
same As as the four previous profiles, but an inferior Ns, achieves an even lower MatchScore.  
 

4.3 Cross-linking of the retrieved profiles 
In OSNs, the term link is typically used to mean the connection between user accounts (friends, followers, etc). The social 
network is represented as a graph and each user account is a node linked to other nodes. There are studies that try to 
identify individuals in different OSNs by calculating the overlap of their sub-graph structure [25, 37, 41], other studies 
combine the sub-graph structure with information about nodes [62].  

In contrast, in record linkage terminology, linking two records means estimating the probability that they correspond 
to the same entity. Perito et al. [47] use this term to link user accounts on the basis of their username. We use the term 
link in a similar way, but considering more attributes. In the cross-linking step of the algorithm, we check whether there 
are links between the Pr profiles retrieved on different OSNs. The concept of cross-linking is similar to that of entity-
linkage in [29].  

The previous Section explained how the algorithm estimates the degree of matching between each pair of profiles 
(Pi,Prj) by computing their MatchScore, as specified in formula (1). Up to now, we have taken into account only binary 
relationships between the retrieved profiles and the initial one. In this step, we consider also the relationships among the 
retrieved profiles and their attributes. In particular, it seems useful to analyze information from the new attributes 
included in the retrieved profiles. We refer to the non-input attributes of the retrieved profiles as  discovered attributes. 

For example, we could find that three profiles, retrieved from different OSNs, share the same value for a set of input 
attributes and the same value for a non-input attribute such as city: San Diego. Intuitively, this can be used to infer some a 
relationship between the profiles: we can say that they have a certain likelihood of being owned by the same user, i.e., 
that they are linked. If the MatchScore of the linked profiles is low, this relationship is not relevant since they could be 
profiles of a user different other than the searched one. However, if one of the linked profiles has a high MatchScore, and 
thus more chance of belonging to the searched user, we claim that the other profiles of this group deserve more 
consideration than profiles that have the same MatchScore but are not related to a high-scoring profile. It is important to 
note that, for this to be true, the profiles must have no contradicting attributes. Contradicting attributes are defined as in 
[6]: they are attributes used to describe the same property having different non-null values (differences such as “f” vs 
“female” are normalized in the parsing phase). 

Let us assume that we have profile Pr1 {fullname: Bill Smith, age:23, gender: male, city: San Diego} from OSN1 with 
a MatchScore of 0.9 and the profiles Pr2 {fullname: Bill Smith} and Pr3 {fullname: Bill Smith, city: San Diego} from OSN2 
with a Match Score 0.3. If we look only at the MatchScore we have no reason to prefer Pr2 or Pr3. But we observe that Pr3 
has a stronger relationship with Pr1 through the non-input attribute city: San Diego. Thus we can identify a link between 
Pr3 and Pr1. If more non-input attributes were in the profiles, we would repeat the same line of reasoning for each one to 
identify the whole set of attributes with the same value in the profiles. This would increase the strength of the link. 
Given this link between Pr1 and Pr3 , we can assign a bonus to Pr3 since it is likely to be owned by the same person that 
also has a high-scored profile. We say that Pr1 is the puller of Pr3 (below we provide a formal definition of the Prpuller). 

The cross-linking process makes this kind of inference. First, it identifies the (Prpuller, Prj) pairs. Then, it gives a 
bonus to the lower-scored profile, rewarding its link to the higher-scored puller. Of course, this score will never be higher 
than the difference between the MatchScore of the two profiles. This heuristic allows us to exploit the information 
coming from different networks and to correct the score computed in the previous step. 

We define Prpuller of a profile Prj to be the profile having: 

– no contradicting <attribute-value> pairs with Prj  
– a link with Prj, i.e. at least one non-input <attribute-value> pair in common with Prj  
– max(MatchScore, weight) among the other pairs of profiles that satisfy the points above. 

The MatchScore estimates the importance of the Prpuller in terms of identification; the weight defines the strength of the 
link between Prpuller and Prj.  The weight is the sum of the Wp (weight for positive match) of all the matching <attribute-
value> pairs in Prpuller and Prj. 

The Bonus is computed as follows: 
 

,  (8) 

 
where, 

Prpuller[MatchScore]-Prj[MatchScore] is the difference between the MatchScore of the linked profiles.  

Since the profiles have no contradicting attributes, by definition, weight is also equal to the Attribute Score  As(Prpuller, 
Prj) as defined in Sec. 4.2.2, formula (5), and taking as context both the OSNs. The underlying principle is that the higher 
the frequency of the attributes and their values, the weaker the link and thus smaller the bonus. The Attribute Score fits this 

Bonus( Pr j , Pr puller ,weight)= (Pr puller[ MatchScore]− Pr j [ MatchScore])�min(1,weight)



principle since it is in inverse proportion to such frequencies. It is also possible to multiply it by a constant to control the 
magnitude of the MatchScore reassessment. 

Notice that the bonus cannot be negative. While it is fine to say that a profile that is linked to one with a higher 
MatchScore should receive a bonus, we cannot “punish” any profile for not being linked to any other profile.  
The pseudocode of the cross-linking algorithm is the following. 
 
Pseudocode 2 – The cross-linking algorithm 
 
function cross-linking(PROF: a set of retrieved profiles) returns (PROF: a set of retrieved profiles with reassessed 
MatchScore)  
Link= new Map();   

for (i=0; i<= PROF.len; i++) { 
for (j=i+1; j<= PROF.len; j++) { 

if ( (PROF[i][OSN] != PROF[j][OSN]) 
AND (PROF[i] and PROF[j] have no contradicting attributes and share the same value for at least one 

non-input attribute) {  
Link[PROF[i]][PROF[j]]= sum of the Wp  for any matching attribute/value pair ; 
Link[PROF[j]][PROF [i]]= Link[PROF [i]][PROF[j]];  

} 
} 
Prpuller=the profile linked with PROF[i] with MAX (MatchScore * weight); 
if (PROF[i][MatchScore] < Prpuller [MatchScore]) { 

weight = Link[PROF [i]][PROF [j]]; 
PROF [i][MatchScore]= PROF [i][MatchScore] + BONUS(PROF [i], Prpuller ,weight) 

}  
} 
return PROF; 
 

Example from the scenario 
To make reading easier, in Table 6 we have reported data from  Table 1 and Table 5 of the previous section. Observe 
that user profile 1 in OSN.1 and user profile 3 in OSN.2 share, together with all the correct values of the input attributes, 
the value of the discovered attribute city (in Table 6). Moreover, user profile 2 in OSN.1 and user profile 1 in OSN.2 
share the value of the discovered attribute profession (underlined in Table 6).  
 

 

OSN Profiles Pr MatchScore User attributes within the profiles 

OSN.1 
1 – Monica_white 1.71 gender: female - age: 32 - city: Cardiff  - country: GB – profession: lawyer  

2 – moniwhite 0.65 gender: female - city: Liverpool – country: GB - profession: journalist  

OSN.2 

1 – monicawhite02 0.81 Country: GB - profession: journalist  

2 – monicawhite99 0.81 Country: GB 

3 – moni.white07 0.74 
 

city: Cardiff  - country: GB - hometown: Bristol – website: 
www.bwhite.com 

4 – monicaW 0.59  
 

country: GB 

Table 6 – Example of cross-linking 
 
According to the cross-linking process and bonus formula, the MatchScores in Table 6 can be reassessed as in Table 7. 
The calculations are made using Wp=0.4 for  city: Cardiff and Wp=0.45 for Profession: journalist. 

 
OSN Profiles Pr MatchScore Link attribute Bonus Reassessed MatchScore 

OSN.1 
1 – Monica_white 1.71  city: Cardiff  - 1.71 

2 – moniwhite 0.65 Profession: journalist  + 0.07 0.72 

OSN.2 

1 – monicawhite02 0.81 Profession: journalist - 
 

0.81 

2 – monicawhite99 0.81 - 
 

- 0.81 
 3 - moni.white07 0.74  

 
city: Cardiff  + 0.39 1.13 

4 – monicaW 
 

0.59  
 

-  
 

-  
 

0.59  
 

Table 7 – Example of reassessed MatchScore according to cross-linking process 
 
Because of this technique, moni.white07 becomes the profile with the highest MatchScore in OSN2. 

 
 



4.4 User attribute discovery 
The actions performed in this last step are the following: 
1. The MatchScore of each Prj is transformed into a value that expresses, on a 0-1 scale, the confidence in the 

association of the retrieved profile with the searched user. We call this value the Certainty Factor of identification 
(4.4.1). 

2. The profiles are aggregated into homogenous clusters of compatible profiles (4.4.2). 
3. Rules are applied to extract attributes from the clusters (4.4.3). 
The result is the aggregation and merging of user attributes into a more complete profile, returned to the Searcher. 

4.4.1 Certainty Factor computation 

The MatchScore does not provide any intuitive information about the confidence of the identification. Although not 
necessary for the algorithm to work, the conversion of the MatchScore into a more significant value, which represents the 
confidence of identification on a 0-1 scale, can be useful since it allows the Searcher to define its policies for trusting the 
data returned by the CS-UDD algorithm. We call this value as Certainty Factor (CF). 
To convert the MatchScore into a 0-1 CF scale, we need to build a curve that associates each MatchScore with its 
precision of identification. This can be done by performing an experimental evaluation that identifies the MatchScore 
value for which the precision [49] of the identification is 1, with false positives near to zero. We did this using our 
prototype implementation of the CS-UDD algorithm (described in the next section). We studied how the precision of four 
discovered attributes (profession, hometown, zodiac sign and education) varies as a function of the MatchScore value 
(from 0.0 to 3.5). The dataset we used for the experimental evaluation is the same used for the final evaluation (see details 
in Sec. 6.1). We found that the MatchScore value 1.2 appears to be a suitable reference over which the precision of 
identification is close to 1. In a real application scenario, with attributes and OSNs that may change, it is necessary to 
train the algorithm periodically with different combinations of input and output attributes and different combinations of 
OSNs. However, as we will discuss in Sec. 6.1.3, the precision is not strongly influenced by the variations of the set of 
input attributes, which mainly impact on recall. Thus the threshold value should be relatively stable. 

We thus compute the CF using the function min(MatchScore/1.2, 1) which returns 1 for all the MatchScores higher 
than 1.2 and the ratio of MatchScore over 1.2 for the others. 
 
Example from the scenario 
 
Table 8 shows the result of CF computation applied to the data of our scenario. 
 
 

OSN Profiles Pr MatchScore CF 

OSN.1 
1 – Monica_white 1.71 1 

2 – moniwhite 0.72 0.6 

OSN.2 

3 – moni.white07 1.13 0.94 

1 – monicawhite02 0.81 0.67 

2 – monicawhite99 0.81 
 

0.67 

4 – monicaW 
 

0.59 
 

0.49 

Table 8 – Certainty (CF) of identification for the Pr profiles retrieved in the example scenario. 
 

4.4.2 Profile clustering 

The profiles retrieved by CS-UDD can include alternative profiles of the same user as well as profiles of different users. 
There can also be profiles with contradicting attributes that can either be different profiles of the same user (some of them 
being out of date or containing errors) or profiles of different users with similar attributes.  

Selecting the profiles with a CF near to 1 gives the highest precision of identification, excluding profiles that do not 
belong to the searched user. However this choice may also exclude profiles of that user that have a lower CF, which may 
happen for several reasons: for example, if the nickname of the user is not very specific (decreasing the Nickname score), 
the profile is partially filled in (decreasing the Attribute score), the values of the filled attributes are very frequent and 
thus not very significant (decreasing the Attribute score), etc. 

To overcome this problem, we shift our goal from unambiguously identifying the user on the OSNs to discovering 
his/her attributes, without necessarily associating him/her to a specific profile. This is a radical change compared to other 
works in the literature (see Sec. 7 about related works).  

To this end, the algorithm aggregates profiles into clusters of compatible profiles, including in a cluster all the 
profiles having no contradicting attributes. Of course, profiles linked together during the cross-linking phase will be part 
of the same cluster. Profiles that are compatible with more than one cluster are included into each one of them (this is 
known as non-exclusive clustering).  

In order to reduce noise, we set an entry limit eL for the admission of a candidate profile into clusters. This limit is 
defined as a linear function based on the highest CF among the Pr profiles. A candidate profile can enter a cluster if: 



 CFcandidate ≥ eL  

where, 
CFcandidate is the CF of the candidate profile, 
eL = k* CFmax, with 0≤k≤1. A high value of k favors precision over recall and vice versa (Sec. 6.1). In the following 

example and in the prototype used for the evaluation, k=0.75 
CFmax is the highest CF among the retrieved profiles. 

 
The pseudocode of the clustering algorithm is showed below. It includes also the computation of CF by normalizing the 
MatchScore as discussed in the previous section. 

 
 

Pseudocode 3 – The cluster algorithm 
function cluster_profiles (a set of retrieved profiles PROF) returns (a set of clusters CLUS)   
CLUS = empty set of clusters; 
eL = the entry limit for admission to clusters; 
 
// certainty factor calculation as shown in Sec. 4.4.1 
foreach Pri in PROF { Pri [CF]= min (Pi [MatchScore]/ normalization_factor , 1)  }  
 
// inclusion into existing clusters or cluster creation, in case no one cluster fits the attribute values of Pri  
foreach profile Pri in PROF {  

test=true; 
 if ( Pri[CF] ≥ eL) {  

foreach cluster Cj in CLUS  { 
  if (Pri has no contradicting attributes with all the profiles in Cj) 

{INSERT(Pri, Cj); test=false; }  
} 
if (test) 

{ new_cluster = CREATE_CLUSTER(Pri); INSERT(new_cluster, CLUS);  } 
} 

} 
return CLUS; 

4.4.3 Rules for attribute discovery 

The goal of this last phase is to return to the Searcher new discovered attributes of the searched user. At the start of this 
step, profiles have a CF and are grouped in clusters. The <attribute-value> pairs within each profile inherit the CF of the 
profile they belong to. Therefore, several critical issues have to be tackled to return new discovered attributes and their 
CF. The main issues are: the inference of attributes when there are clusters whose attributes contradict and the uncertainty 
in inference when combining different CF of an attribute. These are typical issues of information fusion, that is the 
integration of information from different sources [51]. How should one manage a case where a cluster has Hometown: 
Dallas and another one has Hometown: San Antonio, or when they have different CF for a same value? Several fusion 
techniques have been proposed to deal with reasoning under uncertainty and achieve reliable data processing. They can 
be classified [38] into qualitative [42, 46], quantitative, the most used [16, 18, 26, 50, 60], and hybrid approaches [8, 28]. 
The basic problem for all the techniques is to assess to what degree some uncertain events are believed to occur, in order 
to discover which are more likely to happen. Deciding strategies choose a preferred value among the existing values, 
while mediating strategies can produce an entirely new value, derived from the combination of the original values [6]. 
There are also conflict avoidance strategies that apply decisions which avoid the need to manage conflicts. When values 
contradict, we use the following strategy, where possible. Just in some cases we apply a mediating strategy. For 
contradictory CF for attribute values, we use a heuristic approach inspired by the CF model [2], but specifically designed 
to avoid false positives. 

To return the discovered attributes and associate to their value a CF we define three heuristic rules. 
 
1st Rule 
If all the profiles are in one cluster, we can assume that they are compatible with the searched user. Since we have no 
contradicting clusters, we can extract each attribute’s value and return these values with a CF depending on the CF of the 
profiles they belong to. Each attribute’s value inherits the CF of the profile with the highest CF among those profiles that 
contain the attribute. While in the CF model [26] we should apply the equation CF = CF1 + CF2 × (1 - CF1), which 
returns a CF greater than CF1 and CF2, our approach is more prudent, given the requirement of avoiding false positives. 
 
 
2nd Rule  
The second rule concerns the case of profiles in more than one cluster. For example, we could have a cluster claiming 
age:22 and another claiming age:33. The CF suggests which result is more reliable; however it is very risky to use it to 



choose one cluster over the other. Thus, we require that any value returned by the algorithm must take into account the 
whole set of clusters, since the searched person may belong to one cluster or another and we cannot know which. The 
possibility that the person does not belong to any of the extracted profiles is embedded into the certainty factors thus, if 
there is more than one cluster: 
2.a)  the attributes with equal values in all the clusters can still be inferred, as in the case above of one cluster, applying 

the mechanism of rule 1 to calculate the CF of the attribute’s value; 
2.b)  the attributes that present contradicting values among clusters cannot be returned, except as a list of alternatives. 
 
3rd Rule 
In case (2.b) above, when the attributes have contradicting values, the algorithm tries to return at least some basic 
information about the searched user. Under some conditions, it combines the attributes values either into ranges of values 
or by using ontological generalization. This technique makes the predicted value less specific, but it avoids errors that 
could occur when using other methods to merge the attribute values.  

3.a) If the attribute is numerical, the algorithm returns a range of values instead of a specific value. The ranges could be 
static or dynamic. They are static if they are predefined and dynamic if their boundaries are given by the lowest and 
highest values in the clusters (with constraints about the maximum range extension). For instance, if we have two 
clusters, one with age 23 and the other with age 27, the algorithm could return an age range 23-27. An alternative 
could be deciding fixed age brackets and returning the age bracket which includes the range, if any. Providing a 
range is less informative than providing the logical disjunction of the two values in the example, but the value of 
this option has to be considered in the perspective of information fusion aimed at returning a unified user profile. 

3.b) If the attribute and its values can be mapped to an ontology or lexical database, basic reasoning mechanisms can be 
run over the attribute values in the clusters. In particular, the algorithm includes mechanisms to find out if the values 
of the different clusters are synonyms or if they are hyponyms of a unique hyperonym. In this case, the hyperonym 
is returned as value of the attribute. For instance, consider two clusters, one with city “Dallas” and the other with 
“San Antonio”: the inference process exploits a geographical ontology, so that it can infer the value “Texas” for the 
attribute province and “USA” for the country, while it cannot infer anything for the city attribute, except as 
specified in rule (2.b).  

In both cases, heuristics are used to establish a reasonable width for brackets (3.a) and a reasonable amount of 
generalization (3.b), according to the type of attribute. For some attributes it might be very hard or impossible to establish 
a reasonable range or upperclass.  
If (3.a) or (3.b) is satisfied, the returned generalized value is assigned a CF depending on the CF of the profiles it is 
derived from. Given that each source value fits the new generalized value, the CF of the generalized value can inherit the 
highest CF among those profiles which contain the attribute (case 3.a), or the attributes used to infer the new one (case 
3.b).  

For example, given CF(San Antonio)=0.9, CF(Dallas)=0.7, Texas inherits the CF of San Antonio and of Dallas in 
two different clusters. This case satisfies rule (3b), therefore CF(Texas)=0.9. 
Similarly, given CF(23)=0.9, CF(27)=0.7, a range which includes each value inherits the parent CF (notice that this works 
for the range and not for each specific value within the range). This case satisfies rule (3a) as above. Therefore 
CF(range)=0.9  

If the user has no profile on the crawled OSNs, the previous steps of the algorithm should guarantee that the returned 
attributes have such a low CF that the Searcher can discard them. The low CF is determined by the strict MatchScore 
calculation process and by the limit for entering into a cluster, which is designed to avoid false positives even at the risk 
of losing true profiles.  

Using these three rules, the algorithm can handle any situation and collect the greatest amount of information without 
any “hazardous” assumption.  
More formally, the algorithm to extract attribute values from the cluster set is the following. 
 
Pseudocode 4 – Attribute value extraction 
function extract_attributes (CLUS a set of clusters of retrieved profiles) returns (ATT a set of attributes associated with a 
value and a CF)   
ATT = empty list of attributes-value pairs; 
foreach Ak in CLUS { // for each attribute we may be able to extract  

V = empty list of value-CF pairs for each cluster Ci; 
foreach cluster Ci in CLUS { 

if (Ak value in the profiles of Ci is not null) { 
V[Ci][value]= the Ak value in the profiles of Ci;  
V[Ci][CF max]= the max CF of the profiles in Ci that contain the Ak  attribute; 

} 
} 
if (all values in V are the same) { // first and second rule 

ATT[Ak][value]=  the common value of V; 
ATT[Ak][CF]= max CF in V; 



} 
else {    // third rule 

if (values in V satisfy the conditions for generalization) {  
ATT[Ak][value]= GENERALIZE_VALUE(V); 
ATT[Ak][CF]= max CF in V; } // the generalized value includes all the values in V 

}  
} 

return ATT; 
 
Example from the scenario  
In our scenario, by applying the clustering process we obtain that: 
- the profiles with a CF lower than the entry limit eL are discarded (in our example, k=0,75, CFmax=1, thus eL=0,75, given 
that eL = k* CFmax), 
- the two remaining profiles, Monica_white from OSN.1 with a CF of 1  and moni.white07 from OSN.2 with a CF of 
0.92, have attributes that do not contradict each other; thus, they are assigned to a single cluster (matching the condition 
for the activation of Rule 1).  
Given this, Rule 1 can be fired to extract the new attributes. The result is shown in Table 9. The Input attributes used to 
perform the search (age:32, country:GB and nickname:monica_white) are not included in the table since it reports only 
the newly discovered attributes. As the table shows, the attributes derived from Monica_white get  CF=1, while the 
attributes derived from moni.white07 get CF=0,92.  City=Cardiff, derived from both the profiles, gets assigned the max 
CF in the cluster, according to the first rule. 
 

 
Attribute Inferred value CF Source Profile/s 
Gender Female 1 Monica_white 

City Cardiff 1 MonicaWhite - moni.white07 

Profession Lawyer 1 MonicaWhite 

Hometown Bristol 0.92 moni.white07 

Website www.bwhite.com 0.92 moni.white07 

Table 9 – Example of Inferred Attributes and their corresponding CF. 
 

5. PROTOTYPE IMPLEMENTATION OF THE ALGORITHM 

For the experimental evaluation (described in Sec. 6), we developed a prototype that implements the CS-UDD algorithm. 
A production implementation would not require a user interface, since the algorithm is designed to be used as a service 
queried by applications (e.g., by means of REST APIs); however, to show more clearly how it works, we also developed 
a web-based user interface, displayed in Figure 5.  

Figure 5 shows the set of user attributes that can be provided as input for the query: the nickname or the full name of 
the searched user and some demographic attributes, such as city, province, country, gender and age. It is also possible to 
select which OSN to crawl for user data (this demo implementation includes parsers for Myspace, Flickr, Netlog, Skype 
and Facebook). The depth of the search can also be set, which controls search accuracy (see the explanation in Sec. 4.1). 
For the evaluation described in the following section, we set the medium (and default) level 3. 

When the user presses "search", the process described in the previous section starts. At the end of the search, the engine 
returns all the attributes discovered for the searched user. As displayed on the left side of Figure 6, each discovered 
attribute and its value is coupled with the computed CF and with the OSNs of the profiles they come from. The right side 
of the figure provides the list of retrieved profiles with their web address and the computed CF. The bold profiles are 
those used to infer the attributes, while the others are the profiles with a CF lower than the entry limit eL, depending on 
the highest CF of the retrieved profiles. They are displayed but not used to draw inferences. Since the user profiles (and 
consequently the inferred attributes) can change over time, the date and time of the search is provided together with the 
results. 

Finally notice that, as displayed in Figure 5, it is possible to set a further parameter for the search: the recursive 
search trust level, that is a CF threshold over which the algorithm marks a discovered attribute as trustworthy and uses it 
to start a new query. This mechanism is still in the course of testing, but it promises to be very powerful since it allows 
the algorithm to learn more and more about the user following the cascade of queries originated by it. We did not use this 
technique in the experimental evaluation. 
 
 

 



 

 

 

Figure 5 - Web-based user interface of the CS-UDD 
prototype. 

Figure 6 - Example of returned results by using the CS-
UDD prototype 

 

6. EXPERIMENTAL EVALUATION 

The CS-UDD algorithm evolved through a multiple-step, recursive definition-evaluation-tuning process. 
The objective of this section is to report on the final experimental evaluation we carried out to test the ability of the 

CS-UDD algorithm to discover the attributes of a searched user on the basis of known user data. To this aim, we 
developed the prototype described above and ran the algorithm on a set of social networks. 

After presenting the experimental test, we discuss the results and illustrate the analysis we performed on the user 
attributes of the dataset. This analysis (reported in Sec. 6.2) is aimed at computing the maximum percentage of attributes 
that can be recovered within our dataset and is therefore useful for interpreting the evaluation results.  

6.1 Experimental test 
To prove the effectiveness of CS-UDD in retrieving unknown user attributes, we ran it on two OSNs: MySpace and 
Flickr. We simulated an application that queries the CS-UDD algorithm and provides, as input data for the search, a set of 
known data about its users. Afterwards, we computed the precision and recall of the discovered attributes. 

6.1.1 Dataset and settings  

As input for the search, we provided attribute values extracted from a repository of real-world user profiles. The 
repository is Profilactic. As already mentioned, it is an identity aggregator that allows users to collect in a dashboard the 
content of their profiles on several social networks. Each user has a Profilactic profile linked to her/his social network 
profiles.  

Using this repository, we selected a homogeneous dataset of 600 Profilactic profiles linked to profiles on both Flickr 
and Myspace and having a specific set of filled-in attributes. In this way, we could use a dataset of 1200 matching profiles 
composed of Profilactic-MySpace pairs and Profilactic-Flickr pairs, for a total of 1800 profiles (considering MySpace, 
Flickr and Profilactic profiles).  

For the first step of the algorithm, we built crawlers to search MySpace and Flickr. As explained in Sec. 4.1 we did 
not search only for the exact input nickname/full name, but we also applied simple rules to generate a set of typical 
variations (considering frequent nickname types and frequent special characters). For example if the nickname was 
billgrey92 we also searched for variations like “bill grey”, “bill.grey”, “bill_grey”, “bill-grey”, “g rey bill” and so on. We 
were able to split the nicknames that mention both name and surname using Google search suggestions. The first step of 
the algorithm retrieved around 121,000 profiles. 

We chose deepness level 3, a middle level that balances the need to enlarge the initial set of retrieved profiles Pr with 
speed of retrieval. Each level specifies the thresholds for the maximum number of nickname variations and the maximum 



number of profiles that can be retrieved for each variation of nickname. In particular, level 3 limits to 15 nickname 
variations and, for each variation, a maximum of 200 retrievable profiles for each OSN. On average, considering 
variations, we retrieved 203 different profiles for each input Profilactic profile. This number is much lower than the upper 
bound given by thresholds above, for two reasons: 1) some input profiles had a very specific nickname, from which we 
obtained very few results and 2) level 3 sets at 1.5 the MatchScore threshold over which the algorithm can jump to the 
last step of the algorithm for attribute discovery (smart-stop technique) to reduce the computation time, as explained in 
Sec. 4.1. 

For computing the frequencies of the nickname types and of the attribute values, we extracted and analyzed a sample 
of 60,000 profiles on MySpace and Flickr. The frequencies of attribute variations were computed as described in the next 
section and used to populate the matrices for the MatchScore calculation. Finally, using the approach described in Sec. 
4.4, the normalization factor was set to 1.2, and the entry limit eL for the admission of candidate profiles was set at 
eL=0.75* CFmax.  

6.1.2 Methodology and description of the tests 

CS-UDD performs its search and returns the discovered attributes and their values, with an associated Certainty Factor 
(CF). For each query, we compared the discovered attributes with the true ones and we calculated the precision and recall 
of the results [49].  

Precision and recall are standard metrics in information retrieval and are often used in entity matching and user 
identification [1, 22, 29, 32, 35, 44, 47, 52]: 
• Precision = (true discovered attributes or profiles)/(discovered attributes or profiles) 
• Recall  =  (true discovered attributes or profiles)/(relevant attributes or profiles) 

Discovered attributes are the set of attributes returned by CS-UDD that were not included in the input profile submitted 
as query parameters. 

Relevant attributes are the set of attributes that should be retrieved by CS-UDD in the experimental test. We know the 
value of these attributes thanks to the identity aggregator which links the Profilactic profiles, used as input, to the 
user profiles on MySpace and Flickr. Thus, relevant attributes are composed of true discovered attributes plus 
attributes not retrieved by CS-UDD (false negatives).  

Both recall and precision are computed by means of the micro-averaging method. 

To test the accuracy of the algorithm in situations with various input user attributes, we ran a number of tests with 
different combinations of attributes provided as input profile Pi. We performed three tests, the first concerning precision 
and recall of the retrieved profiles, used to infer the user attributes, and the second and third concerning specifically 
precision and recall of the discovered attributes. In detail: 
 (i) In the first test, we computed precision and recall of the profiles retrieved at the end of the third phase and used for the 
attribute discovery phase (see Section 4.4). CS-UDD was provided with the basic attributes in the Profilactic profiles 
(nickname, gender, age and city). 

(ii) In the second test, we computed precision and recall of one of the three basic attributes, using as input attributes for 
the query different combinations of basic attributes. The input was pairs of basic attributes (age+city, age+gender, 
city+gender), together with nickname, to obtain the value of precision and recall for the third.  

(iii) In the third, we computed precision and recall of three non-basic attributes (hometown, zodiac sign and profession), 
using, as input attributes for the query, three combinations of the basic attributes (age+city, age+gender, city+gender), 
together with nickname. 

 
Notice that, precision and recall will be plotted as functions of CF thresholds: attributes/profiles are only considered if 
their CF is greater than the threshold. Computing the precision and recall for incremental CF thresholds is useful since it 
allows a Searcher to choose the most appropriate CF. An automatic application that has no other means to check the 
correctness of the results will have to choose a high threshold value, which gives high precision but low recall. A lower 
CF threshold might be a more appropriate choice when the Searcher is a person who has other means (e.g., matching of 
photos in the profiles) to control the correctness of results, so is ready to accept more false positives in exchange for 
higher recall (this approach is followed by popular people search engines on the web: see Sec.7). 

6.1.3 Results 

 
TEST (i) 
Figure 7 shows the precision and recall of the profiles that are selected for the subsequent attribute discovery phase. As 
the left panel highlights, the CF is a good predictor for precision, yielding a Pearson linear correlation coefficient r = 0.99 
with the bisector. The right panel shows recall and precision as a function of increasing CF thresholds. Specifically, the 
horizontal axis represents CF thresholds of the discovered profiles so that, for example, for a 0.8 CF threshold, the 
vertical axis represents the recall and precision of discovered profiles with CF at least 0.8. 



Different trade-offs are possible. With a CF threshold of 0.4, the precision of the profiles is 84% and the recall 61.5%. 
With a CF threshold of 0.7, the precision grows to 90%  but recall decreases to 50%. 

  

Figure 7 – On the left: precision of the retrieved profiles as a function of CF. On the right: recall and precision of the 
retrieved profiles as a function of CF thresholds. 

 
TEST (ii) 
Figure 8 displays the precision and recall of the discovered attributes as a function of increasing CF thresholds. It has to 
be noticed that, in this case, the precision is high even at lower levels of CF because the user attribute discovery phase 
adopts the strict heuristic rules discussed in Section 4.4.3. This is a relevant contribution of the paper, since it shows that, 
by adopting specific heuristics for the inference of user attributes, it is possible to achieve values of precision and recall 
higher than those for the identification of user profiles. For a CF equal to 1, precision is at least 97% in all the 
combinations of input attributes, while recall is above 70% for the discovery of the attribute gender (g) and between 40% 
and 50% for city (c) and age (a). The difference between the recall of g+a and g+c is not statistically significant (chi-
square test p = 0.50), suggesting that using city or age as input attribute has a similar effect on algorithm performance. In 
contrast, the differences between a+c and the curves g+c and g+a are statistically significantly (p<10-23): using both city 
and age yields a good increment in recall. The main reason for very high recall of gender is that this attribute can be often 
inferred without identifying a correct profile. In fact the full name and the nickname of a profile often carry implicit 
information about the gender of the searched person and the gender is the most filled-in attribute (see the analysis in Sec. 
6.2). Therefore this attribute will be often shared by all the retrieved profiles Pr, even if they do not belong to the same 
person. Thus, by applying heuristic 2, we can infer the gender value even at CF levels that are too low to identify an 
individual profile. 

It appears also that gender is less useful as an input attribute than city or age. A first reason is that the gender is often 
implicit in the nickname. Moreover it appears that the differences between the precision curves for the three tests are not 
statistically significant (p=0.99). Thus, it is not very effective in discriminating or identifying profiles. This fact is taken 
into consideration by the formula for the weight to be given to an attribute in positive matches (see Sec. 4.2.2): a high 
frequency of the value of an attribute in the population yields a low weight.  

It is important to point out that, for all combinations of input attributes, the precision of retrieval, even if different at 
low CF thresholds, tends to converge toward a common high value as the threshold approaches 1. Moreover it appears 
that the differences between the precision curves for the three tests are not statistically significant (p=0.99). This behavior 
indicates that, especially at high CF, the precision is barely influenced by the variations of the set of input attributes, 
which mainly impact on recall. Indeed, even when the input attributes are not very discriminatory (such as gender), the 
CF formula and the strict rules for attribute extraction allow very good precision. Recall is more sensitive to the input 
attributes chosen as query parameter. In fact, if the combination of input attributes does not allow an attribute to be found, 
the true discovered attributes decrease and false negatives increase. This impacts recall much more than precision. This 
impacts much more on recall than on precision. Moreover, if the input attribute is not very discriminatory, it yields a 
lower weight in positive matches, reducing the CF. Since the profile clustering process excludes profiles with a CF below 
a threshold, recall is reduced too. 

Notice, finally, that a CF threshold around 0.8 represents a good balance between high precision and fair recall. This 
could be a useful fact for a Searcher that has to choose a CF threshold over which the attributes returned by CS-UDD can 
be trusted. In fact 0.8 offers an average recall of 64.4%, against a limited risk of false positives (2.4%). However the 
choice of the CF depends on the intended use of the discovered attributes. 
 



  
Figure 8 – Recall and precision for all the values of CF greater or equal to the CF threshold for three sets of basic 

attributes. The solid line refers to “gender (g)” (input attributes: “age” and “city”); the dotted one to “city”  (c) (input 
attributes: “gender” and “age”); the dashed one to “age” (a)  (input attributes: “gender” and “city”). 

 
TEST (iii) 
The results of the third test are even more encouraging. Figure 9 shows precision and recall of hometown, profession and 
zodiac sign for the best combination of input attributes (age+city+gender). For a precision level of 99%, recall is 65.2% 
for hometown, 67.1% for zodiac sign and 63.9% for profession. If a slightly lower precision (about 97%) is deemed 
sufficient, CS-UDD is able to recover almost 75% of the data.  
The differences between the precision curves derived in the three tests are not statistically significant (p=0.99), 
confirming that the precision of our technique correctly depends on the CF threshold and not so much on the input 
attributes. Also the recall values of the three discovered attributes (hometown, zodiac sign and profession) are not 
statistically significant (p=0.99), hinting that they are more affected by the choice of the input attributes (the same for the 
three curves) than by the discovered attribute itself. 
 

 
Figure 9 - Recall and precision for all values of CF greater or equal to the CF threshold. Input attributes: “age”, “city” 

and “gender”. Discovered attributes: “hometown”, “zodiac sign”, “profession”. 

 
It is interesting to note that, as in test (ii), the recall and precision plotted as a function of the CF threshold do not 

cross each other. In this case the recall is never higher then 76% while the precision remains over 92% even for a very 
low CF threshold. The recall has a ceiling because CS-UDD crawls the social networks by using the nickname/fullname 
and some of its variations, and the nickname/fullname on diverse profiles may be completely different. For example, if 
we seek the MySpace profile of a person with nickname “Bob25” on Profilactic and “B_Smith” on MySpace, this last 
profile will never be retrieved. In this case, identification is impossible for any CF threshold. Thus, the recall can never be 
higher than the percentage of profiles with a similar nickname/full name to the one being searched for. On the other hand, 
the precision of the discovered attributes is high for all the CF thresholds thanks to the three heuristics for attribute 
extraction and the Entry Limit eL. Profiles with low CF are less reliable and, in many settings, this causes low levels of 
precision, since they could include false positives. However, our algorithm uses these profiles to infer attributes only 
when they are not contradictory or, in the case of a shared attribute, when they agree unanimously about it. These 
conditions allow the extraction of some data even from low CF profiles but are strict enough to ensure good accuracy. 
When the profile with maximal CF has a low score, the set of candidate profiles will seldom be not contradicting and, in 
most cases, CS-UDD will not risk inferring an attribute. 

 



 
 

 
 

 

  

Figure 10 - Recall and precision of the three attributes “profession”, “hometown” and “zodiac sign” for two different CF 
thresholds and different combinations of input attributes (city+gender, age+gender, age+gender+city). 

 
This is also the reason why the curves shown are usually flat for CF less than around 0.3. In contrast, profiles which share 
a high CF will usually contradict each other or agree about a good set of attributes, and are often different identities of the 
same person. The aim of this strategy is to reduce the risk of false positives as much as possible, even at the expense of 
reducing recall. 

Figure 10 provides more details for different combinations of input attributes in Test (iii). It shows, in four panels, the 
precision and recall values for two CF thresholds: 0.8 and 1. It may be seen that choosing a CF threshold of 1 gives a 
mean precision of 99.5% and recall of 53.2% for non-basic attributes. These results attest to the efficiency and reliability 
of CS-UDD. Using a CF ≥ 0.8 brings a 7.2% average increase in recall while the precision loses 1.3%. In the best case 
(input attributes age+gender+city) we obtain even a precision of 99.7% and recall of 64.6%. 

We can also observe that using city as input attribute slightly reduces precision but increases recall. As indicated by its 
high frequency of variation (33% as Table 4 shows), city is a non-persistent attribute, and thus it tends to become 
obsolete. Using a potentially obsolete attribute as input introduces more noise, increasing the number of non-matching 
attributes and thus reducing the CF, therefore making identification less accurate. However, CS-UDD computes the 
MatchScore giving less weight to attributes with frequent variation. Therefore, the impact of non-matching obsolete data 
on the precision for a certain CF threshold is very limited. Indeed, our evaluation shows that, by including city in the 
input attributes (in addition to age and gender), with a CF threshold = 0.8, we lose 0.8%, on average, precision of the 
discovered attributes, while we increase recall by 17.3%. For a CF threshold of 1, we lose a bare 0.3% in precision while 
gaining 23.4% in recall. 

6.1.4 Discussion 

A first important observation is that the tests described above aim to evaluate the ability of CS-UDD to recover data on a 
given set of OSNs and its capability to avoid false positives. For this reason, these tests were performed in a context in 
which users are guaranteed to have a profile on both crawled OSNs. 

In a real context, only some of the searched users will have profiles on both systems. This means that, if we run the 
algorithm on the OSNs used for the evaluation, but searching for users who do not necessarily have an account on the 
crawled OSNs, we are likely to obtain lower recall. However, false positives should not be increased by the fact that the 
searched user might not have a profile on some of the crawled OSNs.  

Another observation about the behavior of the algorithm is the influence of the number of crawled OSNs on its 
performance. We observe that a large number of crawled OSNs could slightly reduce the precision of the attributes with 
an associated low CF, since a greater number of similar profiles can be available. However, while the CF of the retrieved 
profile increases towards 1, the precision tends to converge to a maximum less than 1. This behavior depends on the 
strictness of MatchScore calculation, which is specifically designed to avoid false positives for high levels of CF, as may 



be seen in Figure 8 and Figure 9. Clearly, the number of correct results also depends on the availability of the true 
attributes among the crawled profiles. Broadening the range of the crawled systems to include, for example, the most 
popular social networks, increases the chance that at least one of the crawled systems will have an account of the person 
being searched for. 

Changing some features of the crawled OSNs may also affect the performance of the algorithm. Consider, for 
example, how the attribute entry method (e.g., list box of options or free text) or the usage of the profiles (e.g., user data 
sharing vs simple account) may affect the behavior of the user when they fill in their profile, concerning their motivation 
to provide true and precise data, and so on. Using metrics based on contextual frequencies aims to reduce the variability 
of performance due to differences like those mentioned above. 

Another important point to discuss concerns contradictory attributes between different profiles of a single user. 
Contradictory values can be seen as environmental constraints that influence the performance of the algorithm and in 
particular the recall values. To evaluate their impact, we performed an analysis that will be described in the next section: 
for each user in the Profilactic sample, we analyzed the attribute values within the profiles associated with the user, we 
then aggregated these data to calculate the “retrievability” of an attribute (based on the fact that its value is filled in and 
consistent in the different user profiles). The “retrievability” represents an upper limit for the recall value that we could 
have obtained in the experimental evaluation of the algorithm.  

6.2 User attribute analysis 
By analyzing the user attributes in the Profilactic sample, we discovered many contradictions between the values of 
corresponding attributes in MySpace and Flickr profiles. There are three main causes of contradicting values: accidental 
errors, false or funny data (for example city: “in the sky”) and obsolete data. 

To estimate the percentage of attributes that might be recovered, given our dataset, we analyzed the profiles: for each 
user in the sample (identified by Profilactic profile), we searched for all null or contradictory attributes in the MySpace 
and Flickr profile.  

In Table 10 we report the results of the analysis: column 1 lists the attributes considered, column 2 shows the 
percentage of attributes with values filled-in within our sample of profiles, column 3 shows the percentage of the 
contradictory values for the same attribute on MySpace and Flickr for a specific user (in Sec. 4.2.2 we called these 
variations ε). Finally, column 4 calculates the percentage of filled-in attributes with no variations. This value represents 
the percentage of retrievable attributes, namely those which may be retrieved in the best case. Thus, it expresses the 
greatest possible recall in the experimental evaluation. This “retrievability” limit of each attribute may influence recall in 
two ways: it may impact on the recall of the attribute itself but also on the recall of other attributes when this attribute is 
used as input for the query.  

The attribute with the highest percentage of variations is city (33.3%), since this attribute can change rather frequently 
and thus easily become obsolete, especially when users are young. Besides city, attributes entered as free-form text, such 
as profession have a high chance to vary and thus to result in inconsistencies in different profiles. Even the full name, 
which is presumably invariant, is affected by this problem, since some users choose to use nicknames or omit their last 
name.  

 
 

Attribute Filled in  (%) Variations (%)* ( ε)ε)ε)ε) Retrievable (%) 

Gender 
 

99.3 2.3 97.0 

Country 98.7 8.1 90.7 

Age 95.0 4.6 90.7 

City 94.0 33.3 62.7 

Full name 85.3 14.1 73.3 

Zodiac sign 80.0 N/A.** 80.0 

Province 76.3 17.9 62.7 

Hometown 71.3 15.4 60.3 

Profession 69.3 25.5 51.7 

Website 68.0 N/A.** 68.0 

Education 52.3 N/A.** 52.3 

Height 52.0 N/A.** 52.0 

Religion 40.0 N/A.** 40.0 

Table 10 – Percentage of filled-in attributes in the sample profiles, of their variations ε  and of retrievable attributes. 
(*)The percentage of variations is computed on the sample of attributes whose value is filled in. 

(**) N/A. Attribute present in only one of the OSNs. 
 

Finally, we remind the reader that, as explained in Sec. 4.2.2, the frequency of variation of each attribute (ε) is used to 
assign the weights Wp and Wn for positive matches and for non-matches between attributes according to formulas (6) and 
(7) in Sec. 4.2.2.  



7. RELATED WORKS 

The CS-UDD algorithm is closely related to entity matching, discussed in Sec. 2. However, other research topics are 
related to our project, such as data portability, user modeling, user identity retrieval and user data aggregation. They 
define the context of application of the algorithm. 
In recent decades, a dedicated data integration industry has worked on data portability and exchange, simplifying the 
access, search, movement and management of data on distributed repositories. Standards such as ACORD22 (Association 
for Cooperative Operations Research and Development), FIX/FLP23 (Financial Information Exchange/ FIX Protocol 
Limited), OFX24 (Open Financial Exchange) and many others have been used specifically to leverage data portability. 
Since 2006, the rise of Web 2.0 and the Social Web has brought new types of Internet-based applications, known as 
social applications. These applications enable people to maintain profiles, to interact with other users and to create and 
post content [46]. As in enterprise computing, a strict requirement in Web 2.0 applications is to allow the sharing, 
synchronization, management and safe access to data stored in scattered repositories. However, a difference from 
enterprise environments is that the platform in Web 2.0 applications is the whole Internet. In this new context, the 
existing data portability solutions are not sufficient, since users need to access data easily. Therefore, new web data 
portability solutions have been proposed. One of the most relevant projects is Dataportability25 which originally aimed to 
let users control their own data, shared in different Internet-based applications. More recently, the organization has begun 
to advocate open standard representation of data to make web data portability more feasible. There are numerous open 
standards that work in this direction, such as OpenID, OAuth, microformats, FOAF, Activity Streams, RDFa, SIOC 
(Semantically-Interlinked Online Communities), SKOS (Simple Knowledge Organization System). 

OpenID26 is an identification protocol developed in the spirit of the Web 2.0, which provides authentication to allow 
users to log on different services using the same digital identity. It has been adopted by several providers, such as Yahoo, 
AOL, Google, Microsoft, MySpace, Orange, and France Telecom.  

OAuth27 is an open protocol that allows secure API authorization for data sharing across services.  Through Oauth, a 
user can authorize one service to access a limited subset of user-related information maintained by another service.  

Microformats28 are a set of formats for representing data in XHTML and embedding them directly within web pages. 
These data can then be viewed by users in a human-readable form or used by Internet-based applications which can 
automatically recognize what type of information is being provided, enabling efficient reuse of the data. The latest 
versions of browsers implement them and big portals (e.g., Yahoo), search engines (e.g., Google), social networks (e.g., 
MySpace) and blog communities (e.g., WordPress) are doing the same. 

FOAF29 is a machine-readable ontology describing people, their activities (e.g., photos, calendars, weblogs) and their 
relations to other people and objects. FOAF allows sharing and using information about people and their activities to 
transfer information between web sites, and allows it to be automatically extended, merged and re-used online. 

Activity Streams30 is an open format for syndicating activities performed by users across social web applications 
(e.g., updating their profile, adding photos, hosting events, making new friends, etc.). It is adopted by many social 
systems such as MySpace, Windows Live, BBC, etc. 

RDFa31 is a W3C recommendation for embedding RDF semantics into XHTML documents. It uses XHMTL 
attributes to add semantic extensions and to specify the URI reference to a data model. It allows human-visible text and 
links to become machine-readable, with the aim of enabling data exchange between applications.  

SIOC32 is an ontology for expressing user-generated content with the aim of enabling the integration of online 
community information. It has been adopted by several commercial and open-source software applications, and is often 
used together with the FOAF ontology.  

SKOS33 is a data model for sharing and linking knowledge organization systems, such as thesauri and taxonomies. It 
provides a migration path for porting knowledge organization systems to the Semantic Web. The use of standards such as 
SKOS can make it easier to share, exchange and integrate data coming from different systems, as in the Morpho 
framework [39]. In our approach, this could be useful in the phase of search and comparison between profiles, when the 
crawled OSNs represent data using standards. It could also be used in the last part of the process, when results are 
returned and used by different applications.  

Other organizations promote standardization of Internet data. For example, OASIS34 (Organization for the 
Advancement of Structured Information Standards) has promoted many other standards, such as Content Management 
Interoperability Services (CMIS). CMIS is a standard interface for accessing metadata and content stored in both 
enterprise- and Internet-based content management systems. In addition to the open standards discussed above, other 
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initiatives and protocols, such as OpenSocial35, Open Graph36 and MySpaceID37 aim to allow portability of user profiles 
across systems on the web.  

With regard to standards and protocols for web data portability, CS-UDD aims at working both when the crawled 
website supports such standards and when it does not. As explained in Sec. 4.1, when the web page displaying the profile 
is annotated using a specific standard, the parsers exploit the specifics of the standard to extract user attributes.  

Data portability and exchange is valuable in different areas and for different purposes. Specifically, in user modeling, 
sharing user data is the basis of the so-called cross-system personalization. Already in 2001, Kobsa et al. [34] had 
observed that adaptive systems could use cross-system personalization to speed up the process of user model creation. 
This approach is also useful to users, as it means they avoid repeating the boring process of filling in similar forms for 
different services [54]. Systems that exchange user data exchange can enrich their own profiles and can enrich 
repositories of user profiles [27]. Berkovsky et al. [4] propose a framework to import and integrate user data from other 
recommender systems. Even though there are several obstacles to user data integration, such as different representation 
formats, different context of acquisition, privacy risks, etc., user model mediation can be useful to support personalization 
services. A further problem for cross-system user modeling and cross-system personalization is user identification. 
Sometimes, a specific solution has been proposed to deal with user identification; in other cases, identification was not a 
problem since the systems used a common identification mechanism. In [57], the issue of user identification is managed 
by using OpenID. In [43] user identification is ensured by making the user hold a passport with her/his data, to be 
provided to the personalization systems (s)he interacts with. Other solutions, closer to our proposal, match user features to 
perform the identification, using interoperability standards for describing the user [17], and using the Web Services 
technology to obtain the user data [11].  

All the solutions mentioned above require the system to join a framework or to support appropriate protocols to allow 
cross-system user identification. The approach we present in this paper does not require the implementation of specific 
protocols or the provision of authentication data, because it can just use the public data available on the web. From this 
point of view, the work of Szomszor et al. [53] is very close to our project. They perform a cross-folksonomy profiling 
based on collecting all the tags used by a user on different social systems. For the automatic identification of users on 
different systems, they used the Google Social Graph API38, which includes a matching technique for cross-profiling 
based on the user homepage. Our choice to use a set of user attributes and not only the homepage has the aim of also 
identifying users who do not have a personal homepage or do not want to publicly display this information. Moreover, in 
our approach, user attributes are used not only for user identification, but also for obtaining an aggregated user profile.  

An interesting project regarding the aggregation of data from social networks is SONAR [24], an API for gathering 
and sharing social network information. In particular it focuses on identifying and exploiting relationships between 
individuals, who may be linked in several ways, for example as co-authors of papers or file sharers, or by blog comments, 
etc. FindMeOn39 is another project where relationships between users are found from different OSNs, based on user 
activities on such systems. Started in 2006 and upgraded with time, FindMeOn is an advanced aggregator of profiles 
which allows users to manage and secure their identities and exploits all these pieces of information about user profiles to 
find relationships between them. 

On the web, several other user data aggregators (also called identity aggregators) are available. They can aggregate 
user profile data and  also streaming data, such as messages, contacts, photos, etc., from OSNs that support data 
portability protocols. Meevr40, Vinehub41 and Flavors.me42 are examples of services that aggregate updates from user 
accounts and display them in a single web interface. Profilactic is another user data aggregator, the one we used for the 
experimental evaluation. All of these services require users to create a new account on the aggregator and to authenticate 
to the OSNs where they have an account, to allow the aggregator to access them. 

While aggregators and user data portability protocols allow access to the public and private information of a specific 
user who has an account on the aggregator and on other OSNs, people search engines on the web typically use public data 
to find users and information about them. Examples of people search engines are yoName43, Wink44, Pipl45, 
Snitch.Name46, 123people47 and Folowen48. They typically require as input the user name and last name. Some of them, 
as Wink and Pipl, also allow other data to be entered for the query, such as the gender and country, similar to CS-UDD. 
Most of the search engines currently available are designed to be used by persons, leaving them to judge the precision of 
the retrieval. Conversely, the CS-UDD algorithm is designed to be implemented as a service to be queried by systems, 
though this does not exclude the possibility of implementing it as a service for users too. Typical search engines do not 
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compare the information on the profiles they retrieve. They do not try to discover the linked profiles of a user on different 
OSNs or to aggregate the information retrieved from such OSNs. They leave this task to the user. Thus, their output is 
quite different from that of CS-UDD. They typically return all the profiles they find, aggregating them by the kind of 
OSN or ordering them according to the rank they get in the retrieval process. In contrast, CS-UDD returns attributes 
retrieved by matching and aggregating profile data on different OSNs and estimating a Certainty Factor for each one.  

These differences are highlighted in Table 11, which compares the main people search engines and the CS-UDD 
prototype. The features used to describe the tools are: the search coverage, namely the number of OSNs and other social 
systems crawled to retrieve information; the attributes available as input for the search and the features of the returned 
output. This last set of columns is the most relevant to show the differences. It is split in three features: the kind of 
ranking, the grouping of profiles, if any, and the aggregation of user attributes (the labels of features are explained below 
the table).  

 
PEOPLE 
SEARCH 
ENGINE  

Coverage  
(sources) 

Attributes used as input Output  

  Full 
Name Nickname Ema

il Location Age/ 
Gender Rankingii Profile 

groupingiii  
Automatic merging 

of attributesiv  
yoName 28 Yes Yes Yes No No OL No No 
Snitch.Name 39 Yes Yes No No No OL No No 
Wink  9 Yes Yes No Yes Yes OL No No 
123people 21 Yes No No Yes No OLC No No 
Pipl 28 Yes Yes Yes Yes No OL PG No 
Zabasearch Not specified Yes No No Yes No OL PG No 
Peekyou Not specified Yes Yes No Yes No OL PG No 
Peoplesmart Not specified Yes No No Yes No OL PG No 
Reunion.com Not specified Yes No No Yes Yes OL No No 
CS-UDD 5i Yes Yes No Yes Yes OL+Score PL Yes 

Table 11 – Comparison of CS-UDD with popular people search engines. 
i CS-UDD is not a running service. It is a prototype implementation of the algorithm, with just a basic set of parsers. 
ii OL= ordered list, grouped for OSN,  LC=ordered list, grouped for OSN and content, OL+Score=ordered list grouped for OSN plus a 

ranking score. 
iii  PG= profile grouping (profiles are grouped  by shared attributes; this allows users to refine the search.); PL=profile linking (profiles 

are linked by shared attributes; it is used by the search engine to automatically refine the search). 
iv Attribute merging: automatic aggregation of attributes from linked profiles. 
 
There are several cases where the implementation of the CS-UDD algorithm can be valuable. Let us consider the 
following examples.  

(i) Applications that offer personalized services, such as recommender systems, need user data to accomplish their 
task. Examples of recommender systems are e-commerce systems (Amazon49), navigation support systems (Peach [36], 
iCITY [9]), interactive TV systems (TiVo50, WinTV51), movie systems (MovieLens52), etc.  

(ii) Social bookmarking systems such as Delicious53, Digg54, etc. may benefit from CS-UDD since, knowing user 
data of people who bookmarked a resource would bring to an interesting opportunity: matching the data of the user who 
searches with the data of users who bookmarked that resource, to improve the  rank of returned results. 

(iii) An advertising system typically inserts ads by considering the average target of the channel, program or web site, 
or else it personalizes ads by considering the actions the user performed (e.g., page views, search keywords). However, 
knowing more data about the recipient of the advertisement would make advertising more effective and, in many cases, a 
useful service.  

(iv) Systems, in specific domains, that support data portability protocols may also implement CS-UDD to acquire 
data already entered by the user on specific social systems that do no implement such protocols.  

(v) Our last example of possible exploitation of the algorithm concerns a service targeted to human users. Nowadays, 
user data are shared across vast repositories in the web and it is quite hard for a user to manage and control them. Often 
people create public accounts on social systems, use them for some time and then forget them. CS-UDD can thus be 
implemented as an identity search engine, or an aggregator, that allows users to retrieve their public data, to control and 
eventually hide, update or delete them.  
 

Related to the subject of the last paragraph, we cannot ignore the problem of privacy. This issue is widely debated in 
the literature on data portability, since the user data exchanged between systems may be personal and users may want 
their data to be protected from other systems. As discussed in the first part of this section, the Dataportability project is 
particularly sensitive to this issue. Several standards have been deployed to this purpose (OAuth, for example, is widely 
adopted by social systems) and several projects, such as FindMeOn, mentioned above, face the issue of profile 
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syndication and authorization of data exposition; moreover policies have been defined that ensure that sensitive data are 
not shared with other applications [59].  

A concern in entity matching is the possibility to exploit these techniques for information leakage [31, 62]. When 
public user data are collected, the issue of privacy seems less critical. However, the studies mentioned above and many 
others show that privacy problems could be related to the fact that aggregating scattered user data produces a new profile 
which is more complete than the starting ones, and this richer profile may allow the inference of new user data that was 
not originally made public. These new data could even be used for illegal actions. A good practice for implementing CS-
UDD would be to let systems use the inferred data, but always  allow users to view the inferred profiles, and possibly 
manage them, as in the philosophy of user model scrutability [33]. Notice moreover that, to comply with privacy policies, 
CS-UDD should be implemented as a real-time search service that does not store any user data and automatic systems 
using it should ask for their users’ consent. 

8. CONCLUSION 

In the social web, people use social systems for several purposes: for sharing videos and photos, communicating with 
friends, sharing opinions, for voting, tagging, etc. On these systems, people have different accounts and different profiles. 
User data sharing, exchange and discovery has grown in importance, and several tools for user data aggregation and 
people search have been developed and protocols and standards for data portability have been defined. 

In this paper we presented an approach and an algorithm for retrieving and aggregating data about users, in addition 
to, or as an integration of, data portability protocols. 

The algorithm is designed to crawl OSNs, identify users on these systems, correlate the retrieved profiles, aggregate 
the retrieved data and deliver the user data to the searcher. To estimate the likelihood that two profiles belong to the same 
user, given a set of shared attributes, we defined a number of measures and we use them in the algorithm to weight the 
contribution of each shared or non-shared attribute.  

A contribution of CS-UDD to the field of entity matching and user identification is that metrics for linking profiles are 
built by using context information concerning the crawled social system. This makes the metrics usable on social systems 
with different features (e.g., different policies for nickname composition, different cultures and name patterns, etc.). 
Another relevant feature that distinguishes CS-UDD from competing approaches is that its main objective is to discover 
new user attributes. With the heuristic rules mentioned above, CS-UDD estimates the value of attributes of the searched 
user, even when the user is not identified with certainty. 

The algorithm has been designed to be implemented in a search engine queried by systems, for example adaptive 
systems that require user data for profiling their users. The algorithm could also be implemented as a service for human 
users. In this case, the searcher would be a user who is looking for the profile of another user or who queries the engine to 
monitor her or his data scattered on the web or to discover double identities on the web. In the paper we assumed that the 
searcher is a system, rather than a user. Privacy is an important issue and we discussed this topic above. Here we just 
remark that CS-UDD should be implemented as a real-time search service that does not store any user data. Systems 
using CS-UDD should ask for their users’ consent.  

As future work, we plan to improve the search by extending it to attributes with open fields and with images. These 
require, respectively, text mining and pattern matching techniques to analyze and compare these new data with the 
attributes in other profiles. We also plan to implement CS-UDD as a web service that supports user modeling for adaptive 
systems. First, we would like to experiment with it on the adaptive systems we developed in the past, such as UbiquiTO 
[14], iCITY [9] and WantEat [15], with the goal of speeding up user modeling and reducing the cold start problem that 
affects personalization.  
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