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Evolutionary membrane computing is an important research direction of membrane com-
puting that aims to explore the complex interactions between membrane computing and
evolutionary computation. These disciplines are receiving increasing attention. In this
paper, an overview of the evolutionary membrane computing state-of-the-art and new
results on two established topics in well defined scopes (membrane-inspired evolutionary
algorithms and automated design of membrane computing models) are presented. We sur-
vey their theoretical developments and applications, sketch the differences between them,
and compare the advantages and limitations.
1. Introduction

Natural computing is a fast growing interdisciplinary field interested in developing concepts, computational paradigms
and theories inspired from various natural processes and phenomena. A thorough overview of this field has been recently
produced [63]. Membrane computing and evolutionary computations are two nature-inspired theories which are discussed
in this paper. Membrane computing (MC) refers to the branch of natural computing that investigates a class of computing
models, also called membrane systems or P systems, abstracted from the compartmentalized structure and functioning of
biological membranes within a living cell, cell tissues or colonies of cells [55]. The first P system model was introduced
by Gheorghe Păun in 1998, and since then the MC research has been continuously and rapidly progressing. There are, basi-
cally, three main types of P systems: cell-like P systems, tissue-like P systems and neural-like P systems [55]. In all cases,
there are basic components (membranes, cells, neurons, etc.) hierarchically arranged, through a rooted tree, for cell-like P
systems, or distributed across a network, like a directed graph, for tissue-like P systems, with a common environment.
dges the
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Neural-like P systems consider neurons as their cells organized with a network structure as a directed graph. In the past four-
teen years, plenty of research results have been achieved at the theoretical level, for example, various variants of P systems
with Turing computing power have been developed and polynomial or linear solutions to a variety of computationally hard,
NP-complete or PSPACE-complete, problems have been obtained [55]. Applications of MC in various fields, including parallel
and distributed algorithms, graphics, linguistics, economy [10] and more recently in systems and synthetic biology [16], have
been investigated. To date, the applications with a practical or engineering use are intensively investigated and deserve more
attention.

Evolutionary computation (EC) is a branch of natural computing that covers a wide range of problem-solving optimiza-
tion techniques based on principles of biological evolution, such as natural selection and molecular genetics, and the collec-
tive behavior of decentralized and self-organized systems [12]. The main evolutionary paradigms are: genetic algorithm (GA)
[24,23], genetic programming (GP) [34–36], evolution strategies (ES) [65,1], evolutionary programming [15], particle swarm
optimization [32,53], ant colony optimization [11], differential evolution [60] and quantum-inspired evolutionary algorithm
[82]. Each paradigm uses population-based probabilistic search, a powerful tool for broad exploration and local exploitation
of the model space [31]. This strategy improves algorithms for local search and other global search algorithms such as sim-
ulated annealing [33] and tabu search [22]. Also, their stochasticity improves the heuristic artificial intelligence [46,47] and
machine-learning algorithms [44,66]. EC mostly involves meta-heuristic optimization techniques and generally includes two
broad areas: evolutionary algorithms (EAs) and swarm intelligence [4]. These techniques are being increasingly widely
applied to various problems, ranging from practical applications in industry and commerce to leading-edge scientific
research [12]. Amongst various research directions in EC, it is widely acknowledged that the appropriate hybridization of
EC and various techniques is very useful to improve the algorithm performance [3,2,82].

MC has the rigor and sound theoretical development for all variants of membrane systems and provides a parallel-
distributed framework and flexible evolution rules. While EC has outstanding characteristics, such as easy-understanding,
robust performance, flexibility, convenient use for real-world problems and a very large scope of applications. These features
suggest the exploration of the interactions between MC and EC, called evolutionary membrane computing (EMC) in this
paper. Until now, the possible interplay of MC and EC has produced two research topics: membrane-inspired evolutionary
algorithms (MIEAs) and automated design of membrane computing models (ADMCM). On the one hand, MIEAs, initially
called membrane algorithms (MA) [50,94], creates a bridge between MC and various real-world applications. This hybrid
method is considered as the application with a practical use of MC in computer science [55]. It is worth pointing out that
it is more appropriate to use the concept MIEA, instead of MA, to describe this kind of approximate optimization algorithms
in this paper due to three reasons: (1) MA is normally associated with the name of the implementation algorithms of MC
models, instead of the hybrid optimization algorithms; (2) only a small portion of publications on MIEAs used the term
MA; and (3) In Chapter 19 of the collective paper [21], this class of hybrid optimization algorithms has been generically called
MIEA. The automated synthesis of MC models or of a high level specification of them is envisaged to be obtained by applying
various EC algorithms. On the other hand, ADMCM aims to circumvent the programmability issue of membrane based mod-
els for membrane systems [14,30]. The difference between MIEA and ADMCM can be illustrated by using Fig. 1, where they
have different inputs and outputs.

Since the introduction of MC, attention has been paid to EMC. In recent years, research into EMC, a novel and promising
interdisciplinary research direction, has become a rapidly expanding field, as shown in Fig. 2. The preparation of this survey
paper is motivated by the following points:

1. No survey on EMC has yet appeared in the specialized literature. It is necessary to provide an overview of the state-of-the-art
of EMC so as to allow newcomers to the area to obtain a clear understanding of key research problems and developments in
this field, including those that are currently under way.

2. An introduction of EMC to the broader scientific community for research purposes is aimed.
3. Some confusing aspects related to the EMC research that appeared in the current literature has to be clarified.

This paper presents an overview of the state-of-the-art of EMC and new results. The main contributions can be
summarized as follows:
Fig. 1. Difference between MIEA and ADMCM.



Fig. 2. Growth of publications on EMC.
1. An overview of EMC state-of-the-art on two established topics in well defined scopes, MIEAs and ADMCM, are presented.
This is a systematic review of recent efforts to develop a theory of EMC.

2. New research results on MIEAs and ADMCM are provided to show the progress of EMC development.
3. A unified framework is introduced to easily and clearly summarize the EMC investigations on theoretical and application

aspects.
4. In this study, we introduce and discuss basic concepts related to EMC, survey theoretical developments and applications,

sketch the differences between various EMC variants, and compare the advantages and limitations of the manifold
flavors.

5. This work is supplemented with a comprehensive list of pointers to literature on EMC.

The rest of this paper is arranged as follows. Section 2 introduces EMC and provides an overview of the EMC work done so
far. Section 3 presents some recently experimental results on EMC. Finally, some conclusions and some possible further
developments are discussed in Section 4. It worth noting that the acronyms involved in this paper are listed in Appendix A.
2. Evolutionary membrane computing (EMC)

EMC aims to complement the existing set of MC applications [10,16] with others regarding optimizations, learning prob-
lems, based on various meta-heuristics. In this respect, two research topics, MIEA and ADMCM, have been investigated. An
MIEA concentrates on developing new variants of meta-heuristic algorithms for solving complex optimization problems by
using the hierarchical or network membrane structures, evolution rules and computational procedures utilized by P systems
and the methods and well-established techniques employed by EC [94,83]. In various variants of MIEAs, membrane struc-
tures have significant effects on their design. Thus we consider the membrane structure as the criterion to classify a variety
of MIEA approaches into two groups: hierarchical structure based MIEAs and network structure (NS) based MIEAs. The for-
mer is subclassified into four categories: nested membrane structure (NMS), one-level membrane structure (OLMS), hybrid
membrane structure (HMS) and dynamic membrane structure (DMS), and the latter is divided into two subcategories:
statically network structure (SNS) and dynamically network structure (DNS).

The ADMCM investigations cover three key topics: abstract rewriting systems on multisets (ARSM), parameter optimiza-
tion of P system models (POPSM) and automatic design of P systems (ADPS). The topics investigated within the EMC
framework are shown in Fig. 3. Subsequently, the work reported in the literature on the usage of EMC for different problems
is overviewed.
Fig. 3. The unified framework of EMC.



2.1. Membrane-inspired evolutionary algorithms (MIEAs)

MIEAs integrate the membrane structures, evolution rules and computational mechanisms of P systems with the search
principles of various meta-heuristics. Until now two classes of membrane structures, the hierarchical structure of a cell-like
P system (formally, a rooted tree) and the network structure of a tissue-like P system (formally, a directed graph), have been
used to design a variety of MIEAs. In the sequel we will summarize the MIEA with respect to the above structures.

2.1.1. Hierarchical structures
As shown in Fig. 3, the hierarchical structures considered in MIEAs can be grouped into four types: nested membrane

structure (NMS), one-level membrane structure (OLMS), hybrid membrane structure (HMS) and dynamic membrane struc-
ture (DMS). This subsection will first focus on the first two types and then move to briefly introduce the other ones. Finally a
summary on the hierarchical membrane structure based MIEAs is provided.

(1) Nested membrane structure (NMS)
The first version of MIEAs was introduced in [48] and further expounded in [49–51]. For convenience, we call the algo-

rithm membrane algorithms (MA) in this paper. An MA is composed of three components:

(i) An NMS of order q P 1 containing q membranes, which is shown in Fig. 4, where the outermost one is the skin mem-
brane and the innermost one is an elementary membrane, that is, the structure is formally a rooted tree with only one
branch;

(ii) Inside the ith region delimited by the ith membrane, i ¼ 1;2; . . . ; q� 1, a subalgorithm is running and two tentative
solutions of an optimization problem are obtained; inside the innermost region, one can find a subalgorithm and only
one tentative solution;

(iii) Solution transporting mechanisms between adjoining regions.

After the initial setting, MA works as follows:

(i) Inside the ith region, the tentative solutions are updated by the subalgorithm associated with the ith region,
i ¼ 1;2; . . . ; q.

(ii) The ith membrane (2 6 i 6 q� 1) sends the copies of the better and worse solutions into its adjoining inner and outer
regions, respectively. The innermost membrane, membrane q, only collects the copy of the better solution coming
from the ðq� 1Þth region.

(iii) The next population in each region is constructed by selecting the two best individuals from the solutions left in the
region and received from the adjacent regions.

(iv) Steps (i)–(iii) are repeated until the termination condition is satisfied.
(v) The computing result is collected in the innermost membrane.

In MIEAs with NMS, several meta-heuristic approaches were used as subalgorithms. For the convenience of description,
this paper introduces the concept of algorithm in membrane (AIM) to unify various subalgorithms, algorithm components and
an independent algorithm in a membrane into one single concept. In [48–50], a tabu search was considered as AIM to solve
traveling salesman problems (TSP). In [52,51], Brownian and genetic algorithms (GA) were applied to design AIM for the
solution of TSP and job-shop scheduling problems (JSSP). In [77], a DNA sequence design problem was successfully solved
by using GA as AIM. The authors in [38] also used GA and a local search as AIM to design two versions of MIEAs, membrane
algorithm for min storage (MA4MS) and MA4MS with a local search (MA4MS LS), to solve min storage problems. It is worth
noting that these problems, TSP, JSSP and min storage problems, are well-known NP-hard optimization ones. In [72,79], an
MA was constructed by applying NMS and GA to solve function optimization problems and the proton exchange membrane
fuel cell model parameter estimation problems. In [97], an improved bio-inspired algorithm based on membrane computing
(IBIAMC) was combined with a sequential quadratic programming (SQP) algorithm to design an MA with NMS to solve com-
plex constrained problems and the gasoline blending scheduling problem (GBSP). Additionally the applications of MIEAs
with NMS and results regarding the performances of algorithms are listed in Table 5.
q

Fig. 4. A nested membrane structure.



Remarks: NMS-based MIEAs were designed by integrating NMS and transport rules of a cell-like P system with several
meta-heuristic approaches. AIMs are separated by membranes and communications are performed only between adjacent
regions. So this class of algorithms can be easily implemented in parallel, distributed, or grid computing systems. Empirical
studies have shown that NMS-based MIEAs have better performance than several traditional approximation techniques,
such as simulated annealing (SA) and GA, with respect to a given problem [50,51].

The existing work on NMS mainly considered GA and local search techniques, such as tabu, Brownian and SQP, as AIM. As
mentioned in [49], AIM can be designed by using other meta-heuristic approaches such as SA, evolution strategy, particle
swarm optimization (PSO); however, some meta-heuristics do not fit the framework, for example, most of differential evo-
lution (DE) algorithms are not suitable for NMS as more than two individuals are needed in the process of evolution. Until
now AIM is the same for all the membranes, but one can consider distinct algorithms as well. Experimental investigations in
the literature also indicate that the choice of AIM is of great importance to the algorithm performance and the way AIM is
chosen, to a large extent, depends on the problem.

(2) One-level membrane structure (OLMS)
The class of MIEAs with OLMS was first presented in [88] when a quantum-inspired evolutionary algorithm (QIEA) was

considered as an AIM. OLMS is a special hierarchical membrane structure coming from a cell-like P system. In [88], the P
system-like framework consists of a membrane structure, as shown in Fig. 5. The membrane structure has m elementary
membranes, labeled as 1;2; . . . ;m, placed inside the skin membrane, denoted by 0. The rules are composed of two types:
evolution rules in each of the compartments 1 to m which are transformation-like rules for updating an individual according
to the evolutionary mechanism of a meta-heuristic approach and communication rules which send the best fit individual
from each of the m regions delimited by m elementary membranes into the skin membrane and then the overall best fit indi-
vidual from the skin back to each region.

The steps for implementing MIEAs with OLMS can be described as follows.

(i) Construct OLMS, as shown in Fig. 5.
(ii) Randomly allocate n individuals of a population into m elementary membranes (m 6 n) so that there is at least one

individual in each elementary membrane. Thus, the number of individuals in an elementary membrane varies from
1 to n�mþ 1.

(iii) Determine the number of iterations for the subpopulation inside each elementary membrane to independently per-
form a meta-heuristic approach. To be specific, the number gi ði ¼ 1;2; . . . ;mÞ of iterations for the ith elementary
membrane is generated randomly between 1 and a certain integer number.

(iv) Inside each elementary membrane, the evolutionary process of the meta-heuristic approach is independently
performed.

(v) The communication rules are used to exchange specific information between regions. For instance, the fittest individ-
ual from each elementary region is sent into the region delimited by the skin membrane and the overall fittest one
within the skin membrane is communicated to each region.

In MIEAs with OLMS, the initial population of individuals is scattered across the membrane structure. The number
ni;1 6 i 6 m, of objects for each region is randomly chosen. In any step the current generation is assessed compartment
by compartment to select the best fit individual. Every gið1 6 i 6 mÞ generations for each compartment, the communication
rule is performed once. The process will stop when the best fit solution will remain unchanged for several generations (we
must fix in advance that number).

OLMS has been combined with several meta-heuristics, such as QIEA [88], PSO [99,75,76,58], GA [96,78], differential evo-
lution (DE) [8], ant colony optimization (ACO) [87], quantum shuffled frog leaping algorithm [17] and quantum particle
swarm optimization [18], to design various variants of MIEAs for solving various problems. In [88,87,91,94,83], three classes
of well-known NP-hard problems, single-objective knapsack problems, satisfiability problems and traveling salesman prob-
lems, were used as application examples to verify the algorithm performance. In [89], OLMS was applied to construct a
multi-objective optimization algorithm to solve multi-objective knapsack problems. In [42,99,8,13,6,78,75,76], benchmark
functions were used to test the introduced methods. Moreover, MIEAs with OLMS were also used to solve some real-world
applications: radar emitter signal processing [94,8,99,43], digital filter design [42], broadcasting problems of P systems
(BPoPS) [93], controller design [74], GBSP [96], image segmentation [73,58], image decomposition [87] and spectrum allo-
cation problems of cognitive radio systems [17,18]. It is worth noting that the membrane algorithm with quantum-inspired
Fig. 5. A one level membrane structure.



subalgorithms (MAQIS) in [87] used multiple distinct components of QIEA, instead of identical subalgorithms, as AIM in dif-
ferent compartments. The applications of MIEAs with OLMS and their results obtained are listed in Table 5.

Remarks: OLMS is different from the star topology defined in [81]: which has a center node and therefore communications
are performed only between each sub-node and the center node; the communication in a star topology is a local process.
OLMS has no center node and the communication is usually a global process and it can be executed between any two or more
elementary membranes. OLMS can be extended to a dynamic structure with active membranes, such as membrane division
and dissolution [84]. Thus a star topology might be regarded as a special case of OLMS. The investigations on OLMS, espe-
cially the comparative analysis of dynamic behaviors of quantum-inspired evolutionary algorithms based on P systems
(QEPS) with its counterpart algorithm, QIEA, in [90,86], show that OLMS-based MIEAs have better optimization performance
than their counterpart approaches because of their improved capacity of balancing exploration and exploitation, which is
derived from their better balance between convergence and diversity. As compared with NMS, OLMS usually has much smal-
ler number of membranes and cross-membrane communications and therefore is more suitable for a parallel distributed
implementation, and this is something to be considered by further research. NMS is a linear topology structure, in which
the communication or information exchange between adjacent regions is a local process. According to the comparative
experiments conducted on knapsack problems in [88], NMS is inferior to OLMS when a QIEA is used as AIM. The OLMS
approach is used in some other contexts [6,73], but the authors seem not to be aware about its original definition provided
in [88].

The use of OLMS approach in MIEA is in its initial stage and further investigation should clarify better its role. Some fur-
ther research avenues can be:

(i) Apart from QIEA, DE, PSO and ACO, some other meta-heuristic approaches could be used as AIM to design approximate
optimization algorithms.

(ii) Further investigations should be conducted on OLMS-based MIEAs and their counterpart methods to better reveal the
role of a P system in the hybrid optimization algorithms.

(iii) More real-world problems, such as multi-objective or constrained complex problems, should expand the application
areas of OLMS-based MIEAs.

(iv) Implementations of these algorithms onto parallel distributed hardware platforms are expected to reveal the
improved performance of them.

(v) So far each region is associated with the same AIM, but different algorithms can be used across the regions of the P
system structure. The first study is reported in [87].

(3) Hybrid membrane structure (HMS)
HMS, as the name suggests, could be achieved by combining various features. In [95,26,67,27], HMS was constructed by

putting two NMS inside the skin membrane, where AIM was designed by using GA or PSO and rules consisting of transfor-
mation, communication, rewriting, splicing and/or uniport. In [57], HMS was designed by using m NMS, each of which has
two membranes, inside the skin membrane. In this work, differential evolution (DE) was used as AIM and transformation and
communication rules are adopted. The two types of HMS could be thought as the hybridization of NMS and OLMS. In [98],
two layers of OLMS were applied to design the membrane structure. In [81], NMS and a star topology were combined with
DE to establish two variants of MIEAs, respectively.

HMS-based MIEAs were applied to solve four sorts of problems. In [95,26,57,98], benchmark functions were discussed. In
[26,27], optimal controllers for a marine diesel engine and a time-varying unstable plant were designed by applying a single-
objective and a dynamic multi-objective MIEA, respectively. In addition, an image segmentation problem was solved in [57].
These applications are shown in Table 5.

Remarks: HMS is a very flexible membrane structure because there are many possibilities of building a model for such an
approach, but at the same time it is a complex and hard to construct model due to difficulties in getting a good intuition
behind selecting its features and formulating reasonable explanations for the choices made. It is obvious that HMS is more
complex than NMS and OLMS. Further work on HMS could be focused on convincing comparisons of HMS-based MIEAs with
their counterpart algorithms, theoretical analysis and comparisons with NMS and OLMS.

(4) Dynamic membrane structure (DMS)
DMS is a membrane structure that changes with the number of iterations in the process of evolution. In [25,41,39,40], the

membrane structure was constructed at the beginning by placing a certain number of membranes inside the skin mem-
brane; as the number of iterations increases, all the membranes inside the skin membrane merge into one membrane by
using the merge rule of a P system and then the membrane inside the skin membrane is divided into a certain number of
membranes by applying the division rule of a P system; the two processes of merging and division are repeated until the
computation halts. This use of the dynamic structure is different as show below. In [25], the initial membrane structure
and the one obtained through recurrent division operations consist of a certain number of NMS contained in the skin mem-
brane. While in [41,39,40], DMS is a changing OLMS, i.e., the initial membrane structure and further divided regions are all
elementary membranes inside the skin membrane, whereas the result of merging the regions is an elementary membrane
inside the skin membrane. In [80], the initial membrane structure used a star topology and when a membrane is dissolved
another one is divided and overall the number of regions is kept constant. In this structure, communication, export, import,
dissolution and division rules were used. In [84], the DMS of a P system with active membranes was used to design an



Table 1
Comparisons of MIEAs with hierarchical structures.

Types Structures Similarities Differences Features Suggestions

NMS Fig. 4 Linear topology Simple, easy realization
in parallel

Systematic analysis, parallel implementation,
more applications

OLMS Fig. 5 Derived from a
cell-like

Connected membranes and
star topologies

Simple, easy realization
in parallel

Extension, parallel implementation, more
applications

HMS P system No predefined topology Complex, diverse Systematic analysis, more applications
DMS Variable topology Complex, Variable Systematic analysis, more applications
approximate optimization algorithm, where the number of elementary membranes inside the skin membrane varies with
the number of iterations in a non-deterministic way by using membrane separation and merging rules. At each iteration,
the number of elementary membranes inside the skin membrane is variable. In these circumstances, three meta-heuristic
approaches were considered. In [25,39,80], GA was used as AIM. In [40], cellular automata and chaotic search are combined
to design AIM. While in [41,84], AIM was designed with QIEA. In the skin membrane of DMS in [84], a local search, tabu
search, was applied to finely tune the current best solution.

Applications of DMS-based MIEAs mainly focused on S-boxes in cryptographic algorithms [80], radar emitter signal anal-
ysis [41], benchmark functions [39,25,40] and satisfiability problems [84]. Table 5 summarizes these applications.

Remarks: The dynamic structure of the underlying P system is the key difference between DMS and previously presented
methods, namely NMS, OLMS and HMS. This feature might have a direct influence on the population diversity of the algo-
rithms involved. The diversity has, on the other hand, an impact on the algorithms performance as the dynamic structure
will help getting a balance between exploration and exploitation. Especially for a multi-objective problem, the better the
population diversity is, the more Pareto solutions can be obtained. It seems that DMS might be beneficially used in solving
a multi-objective optimization problem, however, this needs to be further analyzed and more solidly proved. The potential of
DMS over NMS, OLMS and DMS has to be further investigated in order to be confirmed.

(5) Summary of MIEAs with hierarchical structures
This subsection summarizes the four types, which are reported in the literature, of hierarchical membrane structures

derived from a cell-like P system. The comparisons between NMS, OLMS, HMS and DMS based MIEAs are drawn in Table 1,
where similarities, differences, features and suggestions for further work are summed up. The hierarchical membrane struc-
ture of a cell-like P system can be used in many other ways and variants of MIEAs for solving various problems can be
devised. One might also think at using other types of evolution rules that appear normally in cell-like P systems.
2.1.2. Network structures
Except for the hierarchical membrane structure based MIEAs, the other types of MIEAs are inspired from network struc-

ture (NS) of a tissue-like P system, as shown in Fig. 3. NS is divided into two categories: SNS and DNS, which are reviewed
below. Finally the network membrane structure based MIEAs are summarized.

(1) Static network structure (SNS)
Two types of SNS were reported in the literature. In [28,29], SNS was constructed by applying seven cells1 to solve multi-

objective optimization problems. In this structure, three cells are used for different single objective optimizations and three cells
are applied for optimizing all objectives simultaneously; the seventh cell collects the results; the channels between the cells
were prescribed and the communication rule of a tissue-like P system was applied; AIM was designed by using GA. The other
variant of SNS was designed by placing five cells in a common environment. In this method, fully connected channels between
the five cells were established to fulfill the communications; each cell contains a representative and widely used variant of a
differential evolution (DE) algorithm; each DE algorithm independently evolves inside one cell according to its own evolution-
ary mechanism and at the same time communicates with other cells through channels; transformation and communication
rules of a tissue P system are considered.

Four types of problems were solved by applying SNS based MIEAs. In [28,29], multi-objective benchmark functions were
used to test the algorithm performance. In addition, simulated moving bed and controller design were considered as appli-
cation problems in [28] and in [29], respectively. In [85], twenty-one manufacturing parameter optimization problems
(MPOP) with various types of constraints were discussed to show the advantages of the presented algorithm over
twenty-two optimization algorithms recently reported in the literature. The applications are listed in Table 5.

Remarks: A tissue-like P system provides numerous variants of SNS, but only two types were considered in the design of
MIEAs in the literature. More possible SNS could be used to construct more MIEAs. Except for GA and DE, many other meta-
heuristics might be considered to be AIM. Moreover, the applications of SNS-based MIEAs need to be expanded. More deeply,
a systematic analysis on SNS-based MIEAs is of great importance to explore how to more appropriately combine a tissue-like
P system with various meta-heuristics. For instance, what is the reason of introducing SNS like in [28,29]? It is worth
1 The authors used the concept membrane, instead of cell.



pointing out that SNS could be suitable for a small-scale network as its computational complexity increases rapidly when the
problem size grows.

(2) Dynamic network structure (DNS)
As a special tissue-like P system, a population P system has a dynamic membrane structure. In [92], DNS was designed

with three cells for organizing three types of QIEAs, where communications between cells are performed at the level of
genes, instead of the level of individuals reported in the existing MIEAs in the literature. If the communication between
any pair of cells will be performed, a channel can be dynamically built. Extensive experiments conducted on knapsack prob-
lems and a real-world application, a distribution system reconfiguration problem in a power system, show the effectiveness
and superiority of the introduced approach. The applications are shown in Table 5.

Remarks: This research direction is very new and promising because the communication channel will be dynamically
established if necessary in this structure and therefore could be extended to a complex structure with a number of cells
to solve high dimensional, multi-modal optimization problems. As compared with SNS, DNS is more suitable for integrating
many distinct meta-heuristic approaches. Additionally, systematic analysis, more variants of MIEAs and more applications
need to be investigated.

(3) Summary of MIEAs with NS
The comparisons between SNS and DNS based MIEAs are drawn in Table 2, where similarities, differences, features and

suggestions for further work are summarized. Further work could be focused on parallel implementation, deep analysis,
more algorithms and more applications.

2.1.3. Summary of MIEAs
As a hybrid approximate optimization algorithm integrating P systems with meta-heuristic approaches, MIEA provides a

fertile research direction with a well-defined scope, a set of open questions, and therefore further studies are necessary to
prove the usefulness of P systems-based approaches for real-world applications. This direction is the only one with a prac-
tical use in computer science and aims to explore the great potential of membrane computing as a distributed processing
mechanism [61,55]. The summarization of the MIEA work is shown in Table 5, where the first column lists the abbreviations
for various algorithms studied in the literature; the third and fourth columns highlight the main membrane structure (MS)
flavors and the meta-heuristic approaches applied inside the membranes or cells, respectively; the last two columns sum up
the problems MIEAs have been applied to and the comparative results provided in the corresponding literature. Furthermore,
the classification of the MIEA applications in terms of the problem characteristics is summarized as shown in Table 6. Future
research questions may address issues regarding various membrane structures, systematic analysis of the roles of a P system
in a MIEA, novel combinations of the MC and EC, and the exploration of problem-oriented or meta-heuristic-oriented mem-
brane structures.

2.2. Automated design of membrane computing models (ADMCM)

To circumvent the programmability issue of membrane-based models for complex systems, ADMCM is envisaged to
obtain the automated synthesis of membrane computing models or of a high level specification of them by applying various
meta-heuristic search methods. In this respect, the work done in the literature could be classified into three categories:
ARSM, POPSM and ADPS. They will be reviewed in the sequel.

2.2.1. Work on ADMCM
(1) Abstract rewriting system on multisets (ARSM)
The preliminary ADMCM work can be dated back to the early 2000. Suzuki and Tanaka made the first attempts [69,70,68]

to introduce a genetic programming approach into artificial cell systems via a cell-like P system model called ARSM, a rewrit-
ing membrane computing model consisting of a multiset of symbols, a set of rewriting rules (reaction rules) and membranes
arranged in a hierarchical structure (a rooted tree). ARMS are particular types of P systems and exhibit complex behaviors
such as non-linear oscillations. In ARSM, the rewriting rule promoting a reaction was regarded as an enzyme and the evo-
lutionary mechanism of genetic programming was applied to evolve the system. The fitness of an enzyme was defined as the
number of steps to reach the solution. Thus the best enzyme that can solve a problem within the smallest number of steps
can be obtained. ARSM were used to model and analyze an ecological system in [68]. This investigation looks very natural
and it is expected that some further continuations will appear.
Table 2
Comparisons of MIEAs with NS.

Types Similarities Differences Features Suggestions

SNS Derived from a
tissue-like P
system

Static structure Suitable for a small-scale
network

Systematic analysis, parallel implementation, more
applications

DNS Dynamic
structure

Suitable for a large-scale
network

Extension, parallel implementation, more applications



(2) Parameter optimization of P system models (POPSM)
More recently, new research on applying evolutionary algorithms to estimate the structure and parameters of a system in

cell systems biology modeling based on P systems has been developed. In [62,5], a nested evolutionary algorithm (NEA) was
introduced to optimize the automated design of biological models comprising the optimization of the model structure and
its stochastic kinetic constants. The models were built by using stochastic P systems. A distributed evolutionary algorithm
(DEA) is composed of two layers, both of which are realized as GA. The outer layer evolves the model structure by combining
different modules taken from a predefined module library, while the inner layer fine-tunes the parameters of the model, i.e.,
the associated stochastic kinetic constants. In [62], three case studies including molecular complexation, enzymatic reactions
and autoregulation in transcriptional networks were discussed. In [5], four case studies of increasing complexity including
negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detec-
tor were considered to test the algorithm performance. Moreover, the way the evaluation functions are constructed was also
discussed. In [19,64], the task was to find the optimal parameters for a P system model. In [19], it is discussed a continuous
backward problem and the comparisons of five real-valued parameter optimization algorithms. In [64], it is applied PSO to
optimize the parameters of a MC model of a synthetic autoinducer-2 (AI-2) signalling system in genetically engineered Esch-
erichia coli bacteria. The model is a non-deterministic in silico model of Autoinducer-2 Quorum Sensing formalized by using P
systems. These investigations prove the suitability of the use of EAs to design P system models in the field of executable biol-
ogy by tuning their structure and parameters.

(3) Automatic design of P systems (ADPS)
This research direction is to obtain a successful P system for fulfilling a specifically computational task or solving a prob-

lem by applying an automated method. This is a quite complex problem as it involves a great number of parameters (struc-
tures, rules and objects) and numerous semantic constraints associated with membrane systems. To date, ADPS is focused on
the use of EAs to automatically design a cell-like P system. In general, the design problem can be described as follows:

Formulating a computational task, automatically produce a computational model, in the case a P systems – this can
successfully fulfill the task, which is intuitively illustrated in Fig. 1(b). More specifically, a cell-like P system P for a given
computational task can be described as
P ¼ ðV ;l;W;R; ioÞ
where

– V is an alphabet of objects;
– l is a hierarchical membrane structure with m (m P 1) membranes labeled by the elements of a given set

H;H ¼ f0;1; . . . ;m� 1g, and the skin membrane is labeled as 0;
– W is the vector of initial multisets w0; . . . ;wm�1 over V associated with the regions 0;1; . . . ;m� 1 delimited by l, i.e.,

W ¼ fw0; . . . ;wm�1g;
– R is the set of evolution rule sets R0; . . . ;Rm�1 associated with the regions 0;1; . . . ;m� 1 of l, i.e., R ¼ fR0; . . . ;Rm�1g;
– io is the output membrane of P.

In this system, V is predefined; l;W and R need to be designed; io = 0, i.e., the output result is inside the skin membrane.
More precisely, the problem we aim to solve is the automatic design of a P system, by using an EA approach, i.e.:

Considering a family P of P systems, P ¼ fpigi2N , where N is the set of natural numbers and each P system pi has param-
eters l;W and R, where l;W and R are tuned by an EA. W and R, coming from the alphabet V, are generated in the process of
design. Finally, the best P system for successfully solving the given computational task will be obtained. It is worth pointing
out that these P systems can work in deterministic or non-deterministic manner. The design problem is solved by applying
the following steps:

Step 1 Designing the membrane structure l: a hierarchical membrane structure with m membranes is considered in the
cell-like P systems.

Step 2 Definition of an alphabet V: As usual we choose a certain number of letters from English alphabet so that it covers
the needs of the initial objects wi and evolution rules Ri; i ¼ 0;1; . . . ;m� 1.

Step 3 Designing the evolution rule set R: The evolution rule set R is obtained by using an EA, where the maximal number of
evolution rules in Ri, i.e. the length of Ri, and the types of evolution rules need to be considered.

Step 4 Designing the initial object set W: The initial objects inside each membrane wi (i ¼ 0;1; . . . ;m� 1) are obtained by
using an EA, where the maximal number of initial objects inside each membrane wi (i ¼ 0;1; . . . ;m� 1) need to be
prescribed.

Step 5 Designing an EA: This step has to consider three points: (1) an encoding technique for membrane structure l, evo-
lution rule set R, and initial object set W; (2) a fitness function for evaluating a candidate P system; (3) the choices of an EA
and its parameter setting.

In this direction, the work started from a simplified version, i.e., considering a family P of P systems, P ¼ fpigi2N , where
each P system pi has a pre-defined l and W, but R is obtained by using an optimization approach from a prescribed set of
redundant rules R. In [14], a GA was used for finding a simple P system for calculating 42, where the membrane structure l
and initial object set W are settled and the genetic evolution only corresponds to the selection of the subset of rules. A
population of P systems was considered and two genetic operators, crossover and mutation, performed the evolution of



the population. This study was extended to a more general P system which computes n2 in [30] by introducing a QIEA, where
the set of rules were encoded by a binary string and evolutionary operations (quantum-inspired gate (Q-gate) update) were
performed on genotypic individuals (quantum-inspired bits (Q-bits)), instead of phenotypic individuals (binary bits) or evo-
lution rules of P systems. This approach avoids the difficulty of designing evolutionary operators in the phenotypic space,
such as crossover and mutation ones. In [71], several P systems, such as the one generating a language a2n

b3n

, were designed
by applying different sets of rules and several evaluation methods for a candidate P system were discussed. In [45], the P
system computing 42 was designed by applying a clonal selection algorithm. In [7], it is presented an automatic design
method of a cell-like P system for performing five basic arithmetic operations including addition, substraction, multiplica-
tion, division and power. These investigations concentrated on how to design a redundant rule set R and how to select a
proper subset R from it. As usual the set R was built by referring to some related papers and by using experts’ experiences.

The further work on ADPS has been extended in [54] by considering three types of design problems for calculating 42 as
follows:

(i) Type 1: Considering a family P of P systems, P ¼ fpigi2N , where each P system pi has a pre-defined l, and variable W
and R which are obtained by using a GA from the alphabet V and from a prescribed set of redundant rules R,
respectively.

(ii) Type 2: Considering a family P of P systems, P ¼ fpigi2N , where each P system pi has a pre-defined l, and variable W
and R, where both W and R are obtained by using a GA from the alphabet V. It is worth pointing out that R is generated
in the process of design.

(iii) Type 3: Considering a family P of P systems, P ¼ fpigi2N , where each P system pi has variable l;W and R which are
attained by using a GA. W and R coming from the alphabet V are generated in the process of design.

It can be seen from the studies above that automatic design of P systems (ADPS) has produced the first step and many
problems remain to be addressed. For instance, how to extend the third case in [54] from 42 to a more complex computation
or the solution of an NP-hard problem, how to encode a P system and how to evaluate a P system are other specific issues to
be addressed.
2.2.2. Summary of automated design of membrane computing models (ADMCM)
The three categories, ARSM, POPSM and ADPS, are compared and shown in Table 3, where similarities, differences, fea-

tures and suggestions of further work are listed. Subsequently the main work on ADMCM is generalized as shown in Table 7.
3. New results on MIEAs and ADMCM

This section will present some experimental results to show some recent progresses on MIEAs and ADMCM.
Table 3
Comparisons of three ADMCM categories.

Types Similarities Differences Features Suggestions

ARSM Evolving artificial cell systems Related to executable
biology

Extension, more applications

POPSM Design of cell-
like P systems

Optimization of structures and parameters Related to executable
biology

Reduction of computing time, design
of more complex systems

ADPS Design of three elements: membrane
structure, objects and evolution rules

Flexible, possible to design
various P systems

Extension, semantics, designing real-
world systems

Table 4
Tasks, evaluation functions and successful P systems for eight cases.

No. Task Evaluation function f ðtÞ ¼ f ðt � 1Þþ Successful P systems

1 f2ðn� 1Þjn P 1g jnc � 2ðt � 1Þj R11;R12;R13;R14;R15;R16

2 f2n� 1jn P 1g jnc � 2t þ 1j R21;R22;R23;R24;R25;R26

3 fn2jn P 1g jnc � n2
b j þ jnb � tj R31;R32;R33;R34;R35;R36, R37;R38;R39

4 1
2 ðn� 1Þ2 þ ðn� 1Þ
h i

jn P 2
n o

nc � 1
2 ½ðt � 1Þ2 þ ðt � 1Þ�
n o��� ��� R41;R42;R43;R44

5 ðn� 1Þ2 þ ðn� 1Þ
h i

jn P 2
n o

jnc � ðt � 1Þ2 � ðt � 1Þj R51;R52;R53

6 ðn� 1Þ2 þ 2n þ 2
h i

jn P 1
n o

jðt � 1Þ2 þ 2t � 2� nc j R61;R62;R63

7 a2n
b3n

jn > 1
n o

jna � 2t�1j þ jnb � 3t�1j R71;R72;R73;R74;R75

8 1
2 ð3

n � 1Þjn P 1
� �

jnb � 1
2 ð3

t � 1Þj R81;R82;R83;R84



Table 5
Summarization of the MIEA work (‘>’ means better than). The acronyms are referred to Appendix A.

Methods Refs. MS AIM Rules Problems Compared results

MA [48–50] NMS Tabu search Transport TSP >GA,SA,TPSA,ACO,NN
[51] NMS Brownian + GA Transport TSP
[52] NMS Brownian + GA Transport JSSP
[77] NMS GA Transformation,

communication
DNA sequence
design

>MOEA, QCSEA

MA4MS,
MA4MS-LS

[38] NMS GA Transport Min Storage
problems

>greedy,Min,Max,MaxMinMax, MinMaxMin,
MaxMinMaxMin, MinMaxMinMax, Best Fit

HBS [97] NMS IBIAMC + SQP Transformation,
communication

Functions,
GBSP

BIPOA [79] NMS GA Transformation,
communication

Functions,
parameter
estimation

>PSOPS,GA,RGA,HGA,SGA

BCMC [72] NMS GA Transformation
with catalyst,
communication

Functions >MC,GA

QEPS [88,90,86] OLMS QIEA Transformation,
communication

Knapsack
problems

>bQIEAo,bQIEAm,bQIEAn, bQIEAcms,
QEPS with NMS

[43] OLMS QIEA Transformation,
communication

Radar emitter
signals

>QIEA, Greedy algorithm

[91] OLMS QIEA Transformation,
communication

SAT >QIEA

MAPS [42] OLMS QIEA + LS Transformation,
communication

Functions,
digital filter
design

>rQIEA,NQGA,GA

MOMA [89] OLMS QIEA Transformation,
communication

Knapsack
problems

>HLGA,NPGA,VEGA,NSGA, SPEA,QIEA

PSOPS [99] OLMS PSO Transformation,
communication

Functions,
radar emitter
signals

>PSO

[74] OLMS PSO Transformation,
communication

Controller
design

>PSO,Z-N,SGA, dsDNA-MC

MQEPS [94] OLMS QIEA Transformation,
communication

SAT, radar
emitter signals

>QEPS,QIEA,Greedy algorithm

ACOPS [83] OLMS ACO Transformation,
communication

TSP >ACO, Nishida’s MA

DEPS [8] OLMS DE + Simplex
method

Transformation,
communication

Functions,
radar emitter
signals

>DE, Greedy algorithm

HPSOPS [93] OLMS HPSOWM Transformation,
communication

BPoPS >HPSOWM, GA

MDPS [13] OLMS PSO Transformation,
communication

Functions

MCCOP [6] OLMS GA Transformation,
communication

Functions >HCVEGA,DMS-PSO, SMES

BIAMC [96] OLMS GA Communication,
transition,
abstraction

GBSP >IEA,OGA,OEGA,BLXGA, UEGA, GA

[75] OLMS PSO + Neighborhood
search

Communication,
transition

MPOP >Coello00,Coello02,QPSO,CA

HMEA [76] OLMS PSO Communication,
transition

Functions >CRGA,PSO,ABC

MA [73] OLMS GA Transformation,
communication

Image
Segmentation

>Otsu,GA-Otsu,P-Otsu, Ksw,GA-Ksw, P-Ksw

MCOA [78] OLMS GA Transformation,
communication

Functions

MQSFL [17] OLMS QSFL Transformation,
communication

spectrum
allocation

>GA,PSO,QGA,CSGC

MQPSO [18] OLMS QPSO Transformation,
communication

spectrum
allocation

MA [58] OLMS PSO Transformation,
communication

image
segementation

>GA,PSO,ICM

MAQIS [87] OLMS Distinct components
of QIEA

Transformation,
communication

Knapsack
problems,
image
decomposition

>QEPS,QRG1,QRG2, QRG3,QRG4,QRG5

MA [95] HMS GA Transformation, Functions >SGA,DE,FADE



Table 5 (continued)

Methods Refs. MS AIM Rules Problems Compared results

communication
[57] HMS DE Transformation,

communication
Image
Segmentation

>PSO,GA

MCBPSO [67] HMS PSO Transport Parameter
selection of LS-
SVM

>PSO, CPSO, PSOPDE, CBPSO

DNAMC [26] HMS GA Rewriting, splicing,
uniport

Functions,
controller
design

GA, PSO, H.T.Toivonen, SA, CA, CHAT, IEA, OEGA,
UEGA, TEGA, BLXGA, BOA, OGA

DMOAP [27] HMS GA Transformation,
communication

controller
design

DEA [81] HMS DE Transformation,
communication

Functions

MOBIAMC [98] HMS GA Transformation,
communication

Functions >NSGA-II,SAEA,DNAMOGA

DAIMC [80] DMS GA Communication,
export, import,
assimilation,
division

S-boxes

RQEPS [41] DMS rQIEA Transformation,
communication,
mergence, division

Radar emitter
signals

>QEPS, Greedy algorithm

MOMC [39] DMS GA Communication,
division,
dissolution

Functions >SPEA2,PAES,NSGA-II

EMA [40] DMS cellular automata &
chaotic search

Communication,
division,
dissolution

Functions >GA,PSO,DE

QEAM [84] DMS QIEA + tabu search Transformation,
communication,
division, mergence

SAT >QIEA,QEPS

PMOA [25] DMS GA Communication,
mergence, division

Functions >FFGA,HLGA,NPGA,NSGA, SOEA,VEGA

TPS algorithm [28] SNS GA Transformation,
communication

Functions,
Simulated
Moving Bed

>IMOEA,NSGA,NSGA2,SPEA, SPEA2

[29] SNS GA Transformation,
communication

Functions,
controller
design

>FFGA,HLGA,NPGA,NSGA, SOEA,VEGA,SPEA

DETPS [85] SNS Distinct DE variants Transformation,
communication

MPOP HIHC,GAIS,GAINM,TLBO, M-ES,PESO,CDE,CoDE, ABC,
(l+k)-ES,UPSO,CPSO, PSO-DE,ABCA,MDE,MA-MDE,
rand/1,rand/2,best/1, best/2, CTB/1, MDE-IHS

PSMA [92] DNS Distinct QIEA
variants

Transformation,
communication

Knapsack
problems, DSR

>QIEA02,QIEA04,QIEA07, QIEA08,QEPS,ACS,HPSO,
IIGA,VSHDE,ACO,SA + TS, MTS,PSO
3.1. Recent results on MIEAs

The investigations on various variants of MIEAs, as displayed in Table 5, show that this class of hybrid optimization
approaches has good performance, however, since the first version of MIEAs was introduced in 2004, the question about
the role of a P system in an MIEA is reconsidered. Here we attempt to explore additional insights into the MIEA performance
by experimentally investigating the balance capability between population diversity and convergence.

In the experiment, quantum-inspired evolutionary algorithm based on P systems (QEPS) and its counterpart quantum-
inspired evolutionary algorithm (QIEA), are used to solve a knapsack problem with 800 items. The description of the knap-
sack problem appears in Appendix B. Population diversity considers two measures: Hamming distance ðDhbwÞ between the
best and worst phenotypic individuals (binary solutions) in a population and mean Hamming distance ðDhmÞ of all
phenotypic individuals in a population. The convergence is evaluated by using two measures: the best genotypic individual
(Q-bit individual) convergence ðCqbÞ and the best fitness convergence ðCfbÞ. Dhbw and Dhm are described as
Dhbw ¼
Xm

i¼1

ðxbi � xwiÞ ð1Þ

Dhm ¼
2

nðn� 1Þ
Xn

i¼1

Xn

j¼iþ1

Xm

k¼1

ðxik � xjkÞ
( )

ð2Þ



Table 6
Application-based reference classification. The acronyms are referred to Appendix A.

Problems Numeric Combinatorial Single-objective Multi-objective

TSP [48–51,83] [48–51,83]
Benchmark functions [38,81,28,25,29,42,95,99,96,

39,40,8,13,6,78,72,98]
[97] [38,81,42,95,99,96,40,8,97,

13,6,78,72]
[28,25,29,39,98]

Knapsack problems [88–90,87,92,86] [88,90,87,92,86] [89]
Radar emitter signals [43,99,41,94,8] [43,99,41,94,8]
Controller design [29,26,27,74] [26,74] [29,27]
SAT [91,94,84] [91,94,84]
Simulated Moving Bed [28] [28]
S-boxes [80] [80]
JSSP [52] [52]
Digital filter design [42] [42]
Parameter selection of LS-SVM [67] [67]
GBSP [96,97] [96,97]
MPOP [85,75] [85,75]
Image decomposition [87] [87]
Image Segmentation [57,58,73]

[57,58,73]
DNA sequence design [77] [77]
DSR [92] [92]
BPoPS [93] [93]
Parameter estimation of PEMFCM [79] [79]
Spectrum allocation problem [17,18] [17,18]

Table 7
Summarization of the ADMCM work (‘>’ means better than).

Methods References Main work Compared results

ARSM [69,70,68] Developing artificial cell systems by using genetic programming

POPSM [62] Optimizing the structure and parameters of stochastic P systems by using a NEA
[5] Optimizing the structure and parameters of stochastic P systems by using a NEA
[19] Optimizing P system model parameters by using evolutionary based search algorithms >CMA-ES, DE, ODE,GA, VNS-

ECs
[64] Adjusting parameters of a MC model by applying PSO

ADPS [14] Evolving the 42 P system by using GA to select evolution rules
[30] Evolving the n2 P system by using QIEA to select evolution rules >GA in [14]
[71] Evolving the n2 and a2n

b3n

P systems by using GA to select evolution rules >GA in [14] and QIEA in [30]

[45] Evolving the 42 P system by using clonal selection algorithm to select evolution rules
[9] Evolving a P system by using GA based on a trace >GA in [14]
[7] Evolving five arithmetic P systems by using QIEA to select evolution rules
[54] Evolving the 42 P system by using GA to tune membrane structures, initial objects and

evolution rules
where xbi and xwi are the ith bits in the best and worst phenotypic solutions, respectively; m is the number of bits in a phe-
notypic solution; n is the number of individuals in a population; the symbol ‘�’ is exclusive OR operator; xik and xjk are the
kth bits in the ith and jth phenotypic solutions, respectively. The values of Dhbw and Dhm vary between 0 and m. Larger values
of Dhbw and Dhm indicate more varieties between the best and worst phenotypic individuals, and each pair of phenotypic indi-
viduals in a population, respectively.

Convergences Cqb and Cfb are depicted as
Cqb ¼
1
m

Xm

j¼1

maxfjabjj2; jbbjj
2g ð3Þ
Cfb ¼ max
i2f1;2;...;ng

fiðxÞ ð4Þ
where ½abjbbj�
T is the jth Q-bit in the best genotypic individual corresponding to the best fitness in a population; m is the

number of Q-bits in a Q-bit individual. fiðxÞ is the fitness of the ith individual. The best Q-bit individual convergence Cqb

in a population is used to observe how much Q-bits approach 0 or 1 in the searching process. 0:5 6 Cqb 6 1.



The changes of the two population diversities, Dhbw and Dhm, in the evolution are shown in Fig. 6. The changes of Cqb and
Cfb are shown in Fig. 7. In these figures, the comparisons of QEPS and QIEA for the knapsack problem with 800 items are illus-
trated. Each subfigure in Figs. 6 and 7 provides results of 30 independent random runs (green solid lines for QEPS and cyan
solid lines for QIEA) and the mean values over 30 runs (black bold solid lines for QEPS and black bold dash-dot lines for QIEA).
The values of Dhbw;Dhm;Cqb and Cfb in Figs. 6 and 7 are obtained by setting population size to 20 and the maximal number
20,000 of function evaluations (NoFE) as the stopping condition.

From the results, shown in Figs. 6 and 7, regarding the comparison between population diversity and convergence of QEPS
and QIEA, we can draw the following conclusions:

(i) The Hamming distance Dhbw between the best and worst binary individuals and the mean Hamming distance Dhm of all
binary individuals show a clear picture of QEPS having a greater potential to preserve the population diversity than
QIEA. More specifically, QEPS and QIEA have almost the same initial values and decreasing values for changes of
Dhbw and Dhm with respect to the number of function evaluations (NoFE), but QEPS maintains a much higher level
of population diversity than QIEA throughout the evolutionary process. The two subfigures in Fig. 6 also demonstrate
that QIEA loses population diversity too fast and very quickly goes down to a small value close to 0 when NoFE reaches
values around 10,000, which implies that the individuals in QIEA become nearly identical and therefore lose explora-
tion capability. When NoFE increases to 20,000, QEPS still has one-fourth of initial values of Dhbw and Dhm.

(ii) It can be seen from the results shown in Fig. 7(a) that QIEA converges much faster in Q-bit space than QEPS and quickly
arrives at the maximal value 1, which implies that no further improvement of solutions in QIEA can be gained at the
second half of evolutionary processes. The drastic convergence easily makes QIEA trapped in local extrema and con-
sequently a premature end of the evolutionary process appears. On the contrary, Cqb of QEPS go up much slower than
those corresponding to QIEA with respect to NoFE and finally mount up to around 0.9 for values of NoFE in the region
of 20,000, which suggests that the solutions can be further improved if more NoFE is provided.

(iii) In Fig. 7(b), QIEA has faster increase of Cfb than QEPS and then stays at a relatively flat level after a certain NoFE, while
QEPS goes through a slower start than QIEA and then rapidly goes beyond QIEA and keeps an ascending trend. Thus
QEPS obtains better solutions than QIEA. Additionally, it is worth noting, according to the results in Fig. 7(b), that QEPS
has better performance than QIEA in terms of the consistency of the results obtained for 30 independent runs when
mean values are considered. This suggests that QEPS has better robustness properties than QIEA.
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The convergence and population diversity are often conflicting features for population-based search methods. Rapid con-
vergence usually results in a fast loss of population diversity, whereas better varieties of individuals produce more possibil-
ities to improve solutions. The loss of population diversity means that the algorithm will fail to further explore the solution
space. The diversity and convergence analysis above indicate that QEPS can achieve a better trade-off between convergence
and diversity than QIEA, i.e., better balance between exploration and exploitation than QIEA. This better balance of these two
essential features of any evolutionary approach is the principal explanation of the fact that QEPS achieves high quality solu-
tions, better than QIEA if NoFE is large enough. For example, NoFE is greater than 10,000 for the knapsack problems with 800
items, which corresponds to 100 evolutionary generations.

3.2. Recent results on ADMCM

In [14], given a membrane structure and initial multisets, a redundant rule set R1 with 18 evolution rules was constructed
to design a P system for performing a simple mathematical problem 42 by using a genetic algorithm and finally one success-
ful P system was obtained. In [30], given the same membrane structure, initial multisets and the redundant rule set R1 as in
[14], seven successful P systems were achieved by introducing a binary encoding technique; and a modified version, R2, of
R1, was used to design a P system for performing n2. R2 also consists of 18 evolution rules and finally 12 successful P systems
were gained. In [71], given a membrane structure and initial multisets, a redundant rule set R3, differing from R2, with 18
evolution rules was constructed to design a P system for calculating n2 and finally two successful P systems were obtained;
another redundant rule set R4 with 18 evolution rules was applied to design a P system for computing a2n

b3n

. These studies
seem to indicate that a specific redundant rule set might be constructed for fulfilling the design of P systems for a specific
computational task, such as 42;n2 or a2n

b3n

. However, we can find out from these studies that there are some common rules
in the four rule sets, R1;R2;R3 and R4. It is natural that we think of such a problem:

For a class of problems with some common goals – in this case it is about computing some integer values through known for-
mulas, like power or exponential – we might have some models, they might have as expected some common set of rules, we do not
know whether these models are complete, optimal or redundant and we aim to extract solutions, i.e., complete models which are
also optimal.

This problem is important when we aim to solve similar problems and might have some algorithms for them, but it is not
clear how good these are.

In what follows, we consider eight computational tasks, shown in Table 4, each of which has successful P systems, i.e.,
solutions, with a certain number of evolution rules. These solutions shall be non-minimal, maybe incomplete or redundant.
The solutions are provided by non-halting systems and after n steps, or something related to n, we get a solution. We can
combine their evolution rules into one redundant rule set R to produce better solutions. This process lead to R with 48 rules.
R ¼

r1 : s½ �2 ! bcx r2 : s! ab½ �2 r3 : s½ �2 ! abc

r4 : s! cx½ �2 r5 : s! abc½ �2 r6 : s! abx½ �2
r7 : s! abxc½ �2 r8 : s! a2bx

� �
2 r9 : s½ �2 ! abcx

r10 : a! a2
� �

2 r11 : a! a2x
� �

2 r12 : a½ �2 ! ½� a

r13 : a½ �2 ! ½� b r14 : a! ab½ �2 r15 : b! b3
h i

2

r16 : b! b3x
h i

2
r17 : b! ab2

h i
2

r18 : b½ �2 ! ½� b

r19 : b½ �2 ! b½ �c r20 : b½ �2 ! ½� a r21 : c½ �2 ! c

r22 : c! ab½ �2 r23 : x½ �2 ! x r24 : x½ �2 ! cx

r25 : x½ �2 ! ½� abc r26 : x½ �2 ! x2
� �

c2 r27 : x½ �2 ! k

r28 : a! b½ �1 r29 : a! bc½ �1 r30 : a! ab½ �1
r31 : a! cx½ �1 r32 : a! ac½ �1 r33 : a! bx½ �1
r34 : a! ax½ �1 r35 : a! abc½ �1 r36 : a! bcx½ �1
r37 : b! x½ �1 r38 : b! bc½ �1 r39 : b! a½ �1
r40 : b! bc2

h i
1

r41 : b! ab½ �1 r42 : b! bc2x
h i

1

r43 : x! bcx½ �1 r44 : x! ab½ �1 r45 : x! ac½ �1
r46 : x! a½ �1 r47 : x! xc½ �1 r48 : x! bc½ �1
r49 : x! bx½ �1 r50 : x! ax½ �1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
We consider a family of P systems P ¼ ðO;H;l;w1;w2;R; ioÞ, where l ¼ ½½�2�1; w1 ¼ ; and w2 ¼ s; O ¼ fa; b; c; x; sg;
H ¼ f1;2g; io ¼ 1; R is a subset of R and is decided by using an optimization algorithm.

We use QIEA in [30] to design six deterministic and non-halting P systems for computing all even numbers, all odd num-
bers, the square of a natural number and three arithmetic operations, respectively, and two non-deterministic and halting P
systems for generating a language and calculating an arithmetic operation. They are labeled as Nos. 1–8, as shown in Table 4,



where the evaluation function for each case is also presented. In this table, t is the current number of steps; na;nb and nc are
the numbers of the objects a; b and c in the output membrane io, respectively. In the experiments, the population size, the
number of Q-bits and the maximal number of iterations in QIEA are assigned as 30, 50 and 500, respectively. The indepen-
dent runs are 100. The successful P systems obtained for each case are listed in Table 4, where f ð0Þ ¼ 0 and the P systems Rij

(i and j represent the index of the eight cases and the index of the successful P systems obtained for each case, respectively.)
is detailedly shown in Appendix C.

4. Conclusions and future research lines

Both MC and EC are important branches of natural computing and bio-inspired computing. Their interplay is a promising
and fertile field. Until now the interactions between MC and EC have produced two main research directions: MIEA and
ADMCM. In addition, there are also some studies on using EC to solve the problems in MC. For example, in [37], a GA
was applied to solve the broadcasting problem defined within a P system framework, which is regarded as NP-hard combi-
natorial optimization problems; in [56], the use of GAs to distribute membranes in processors. In this paper, we have pre-
sented a systematic review of the recent efforts to develop a theory of EMC. The concepts on EMC were clarified. A unified
framework and a variety of topics in this area were discussed. Given the current increasing research interest in MIEA and
ADMCM, we think it is worth discussing some future research directions in these areas that we envisage to further develop.

(i) Interactions of MC and EC: The interactions between MC and EC need to be further studied. On the one hand, a mem-
brane system has a parallel-distributed framework and various evolution rules; all variants of membrane systems
have a rigorous and sound theory attached to them. On the other hand, EC has been used to solve a broad spectrum
of problems due to its relatively simple set of operations, easy to be understood and implemented, and amazingly
good performance.

– EC state transition: Is it beneficial to use MC transition concept to implement transitions of an EC algorithm? A state

transition in EC may be considered as a configuration in the process of a P system evolution. In this respect, we can
use the P system simulators P-Lingua [20] or MeCoSim [59] to simulate the evolutionary process of individuals per-
formed by evolutionary operators such as crossover or mutation, or to mimic the behaviors of a colony of ants or a
flock of birds.

– Solving MC problems: So far we have seen the use of EC approaches to solving broadcasting problems and it is
expected that they can be also applied for testing P systems in a way similar to testing software. Other types of
problem like tile pasting systems, P systems self-assembly can also be addressed with such methods.
(ii) Extensions and applications of MIEAs: From the survey provided one can see that only a limited number of types of
MIEAs have been considered, but a broad variety can be further investigated.

– Membrane structures: Fixed membrane structures were mainly discussed in the literature. It is very natural to focus

also on dynamic membrane structures of cell-like P systems with active membranes, population membrane sys-
tems with dynamic links, and also on network structures like in tissue-like membrane systems with various
channels.

– Types of P systems: Several types of cell-like P systems were involved in the existing MIEA work. The discussion of a
tissue-like P system in the design of a MIEA has recently started and has shown an enormous research potential for
developing more optimization approaches with good performance. More types of P systems might be applied to
design approximate optimization algorithms to make full use of the characteristics of both MC models and EC.
We have in mind models like cell-like membrane systems with active membranes, tissue-like membrane systems,
population membrane systems, probabilistic/stochatic P systems, numerical P systems and enzyme numerical P
systems.

– Evolution rules: Until now, only several types of evolution rules, namely transformation, communication and divi-
sion rules, have been considered. Actually the kinds of rules in P systems are rich. More rules, such as separation
rules, bond making rules and dissolution rules, may be considered in a proper way to cater for various specific
problems.

– Applications: More real-world application problems, such as power system optimization, power system state esti-
mation, software/hardware co-design, vehicle route plan, fault diagnosis, signal and image processing, can be
solved by using MIEAs.

– Methods: As usual, an EA is regarded as a subalgorithm placed inside a membrane. Actually this idea can be
extended. A membrane structure can be used as a framework of the organization of several different types of evo-
lutionary operators, as shown in [87], or several distinct kinds of evolutionary mechanisms, such as genetic algo-
rithms, evolutionary programming, evolution strategy, differential evolution, particle swarm optimization, ant
colony optimization and estimation of distribution algorithms. This is a synthesis at the level of algorithms. Further
the flexible communication rules can be used at the level of genes, instead of individuals level. A deep performance
analysis and evaluation of MIEAs to reveal the roles of P systems played in the hybrid optimization algorithms
should be made.



(iii) Future work on ADMCM

– POPSM optimization approach selection: In POPSM, the choice of optimization approaches plays an important role in

the automated design of cell models based on P systems for systems and synthetic biology. So the better meta-heu-
ristic methods need to be discussed.

– Design of P systems for simple problems: The first step of ADPS is to design a class of P systems for solving completely
specified and deterministically polynomial-time solvable problems, such as simple arithmetic operations, general
sorting problems and some specific membrane systems with simple evolution rules like in the existing work. In this
design, the three types of P systems, cell-like, tissue-like and neural-like P systems might be considered.

– Design of P systems for computationally hard problems: The next design of P systems will move from simple problems
to completely specified but hard discrete or continuous problems, such as satisfiability problems and knapsack
problems. In this step, more evolution rules like membrane division could be considered.

– Design of P systems for real-world problems: This is a very promising line of investigation as there are already many
applications of P systems that can be further analysed. Some of them, like the models of various biological systems,
are incomplete, others, like those utilized to specify robot controller, might be optimized or the model recallibrated.

– Encoding techniques: In ADPS, how to encode an individual P system with variable membrane structures, objects and
evolution rules is the first key problem because this is the basis of constructing a population of candidate P systems
and evaluating a P system. Except for the binary encoding technique, other methods are worth further exploring.

– Evaluation methods: As the object we aim to produce is a complex sP system with various components and inter-
actions, it is not clear how to assess how good a candidate solution is. Some research for clarifying this aspect is
worth considering.

– Semantics: This is an important aspect of this approach as it requires to assess how much of the behavior of a given P sys-
tem should be considered. More from the semantics of a P system is considered, more complex the optimization process.

– Verification: Producing a solution implies to guarantee that this correct. In this respect some additional mecha-
nisms, like formal verification, can be considered.
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Appendix A. Glossary
ABC
 artificial bee colony

ACO
 ant colony optimization

ACOPS
 ACO based on P systems

ADMCM
 automated design of membrane computing models

ADPS
 automatic design of P systems

AIM
 algorithm-in-membrane

BCMC
 membrane computing optimization method based on the catalytic factor

ARSM
 abstract rewriting systems on multisets

BIAMC
 bio-inspired algorithm based on membrane computing

BIPOA
 bio-inspired P systems based optimization algorithm

BPoPS
 broadcasting problems of P systems

CRGA
 changing range genetic algorithm

DAIMC
 distributed approach inspired by membrane computing

DE
 differential evolution

DEA
 distributed evolutionary algorithm

DEPS
 DE based on P systems

DETPS
 hybrid approach combining DE with tissue P systems

DMOAP
 dynamic multiobjective optimization algorithm inspired by P systems

DMS
 dynamic membrane structure

DNAMC
 algorithm based on DNA computing and membrane computing

DNS
 dynamically network structure

DSR
 distribution system reconfiguration

EA
 evolutionary algorithm

EC
 evolutionary computation



EMA
 evolutionary membrane algorithm

EMC
 evolutionary membrane computing

GA
 genetic algorithm

GBSP
 gasoline blending scheduling problems

HBS
 hybrid optimization method combining IBIAMC with SQP

HMS
 hybrid membrane structure

HMEA
 hybrid membrane evolutionary algorithm

HPSOWM
 hybrid particle swarm optimization with wavelet mutation

HPSOPS
 a membrane algorithm based on HPSOWM and P systems

IBIAMC
 improved bioinspired algorithm based on membrane computing

JSSP
 job-shop scheduling problems

LS
 local search

MA
 membrane algorithm

MA4MS
 membrane algorithm for min storage

MAPS
 memetic algorithm based on P systems

MAQIS
 MA with quantum-inspired subalgorithms

MC
 membrane computing

MCBPSO
 MC based PSO

MCCOP
 constrained optimization evolutionary algorithm based on MC

MCOA
 membrane computing based optimization algorithm

MDPS
 monitored distributed P system

MIEA
 membrane-inspired evolutionary algorithm

MOBIAMC
 multiobjective bioinspired algorithm based on membrane computing

MOMA
 multi-objective MA

MOMC
 multi-objective optimization membrane computing

MPOP
 manufacturing parameter optimization problems

MQEPS
 modified QEPS

MQPSO
 membrane quantum particle swarm optimization

MQSFL
 membrane-inspired quantum shuffled frog leaping algorithm

MS
 membrane structure

NEA
 nested evolutionary algorithm

NN
 neural network

NMS
 nested membrane structure

NoFE
 the number of function evaluations

NP
 non-deterministic polynomial-time

NS
 network structure

OLMS
 one-level membrane structure

PEMFCM
 proton exchange membrane fuel cell model

PMOA
 P system based multi-objective optimization algorithm

POPSM
 parameter optimization of P system models

PSPACE
 polynomial space

PSO
 particle swarm optimization

PSOPS
 PSO based on P systems

PSMA
 a population P system based membrane algorithm

QIEA
 quantum-inspired evolutionary algorithm

QEPS
 QIEA based on P systems

QEAM
 QIEA based on P systems with active membranes

QPSO
 quantum particle swarm optimization

QSFL
 quantum shuffled frog leaping algorithm

RQEPS
 real QEPS

SA
 simulated annealing

SAT
 satisfiability problem

SNS
 statically network structure

SQP
 sequential quadratic programming

TPS
 tissue P system

TPSA
 temperature parallel simulated annealing

TSP
 traveling salesman problem



Appendix B. Description of a knapsack problem in Section 3.1

Knapsack problem, a well-known NP-hard combinatorial optimization problem, can be described as selecting from
among various items those items that are most profitable, given that the knapsack has limited capacity. The knapsack prob-
lem is to select a subset from the given number of items so as to maximize the profit f ðxÞ:
f ðxÞ ¼
XN

i¼1

pixi ð5Þ
subject to
XN

i¼1

xixi 6 C ð6Þ
where N is the number of items; pi is the profit of the ith item; xi is the weight of the ith item; C is the capacity of the given
knapsack; and xi is 0 or 1.

This paper uses strongly correlated sets of unsorted data, i.e.,
xi ¼ uniformly random½1;X�

pi ¼ xi þ
1
2

X

where X is the upper bound of xi; i ¼ 1;2; � � � ;N, and the average knapsack capacity C is applied.
C ¼ 1
2

XN

i¼1

xi ð7Þ
Appendix C. Successful P systems obtained in Section 3.2
R11 ¼
r6 : s! abx½ �2 r25 : x½ �2 ! ½� abc

r19 : b½ �2 ! b½ �c r32 : a! ac½ �1

( )

R12 ¼
r7 : s! abxc½ �2 r27 : x½ �2 ! k

r19 : b½ �2 ! b½ �c r40 : b! bc2
h i

1

8<
:

9=
;

R13 ¼
r7 : s! abxc½ �2 r25 : x½ �2 ! ½� abc

r21 : c½ �2 ! c r32 : a! ac½ �1

( )

R14 ¼
r4 : s! cx½ �2 r25 : x½ �2 ! ½� abc

r21 : c½ �2 ! c r40 : b! bc2
h i

1

8<
:

9=
;

R15 ¼

r4 : s! cx½ �2 r25 : x½ �2 ! ½� abc

r21 : c½ �2 ! c r32 : a! ac½ �1
r38 : b! bc½ �1

8>><
>>:

9>>=
>>;

R16 ¼

r7 : s! abxc½ �2 r27 : x½ �2 ! k

r13 : a½ �2 ! ½� b r38 : b! bc½ �1
r19 : b½ �2 ! b½ � c

8>><
>>:

9>>=
>>;

R21 ¼
r9 : s½ �2 ! abcx r46 : x! a½ �1
r40 : b! bc2

h i
1

8<
:

9=
;

R22 ¼
r9 : s½ �2 ! abcx r45 : x! ac½ �1
r35 : a! abc½ �1

� �



R23 ¼
r1 : s½ �2 ! bcx r48 : x! bc½ �1
r38 : b! bc½ �1

� �

R24 ¼
r9 : s½ �2 ! abcx r43 : x! bcx½ �1
r31 : a! cx½ �1

� �

R25 ¼ r4 : s½ �2 ! abc r40 : b! bc2
h i

1

n o

R26 ¼ r1 : s½ �2 ! bcx r40 : b! bc2
h i

1

n o

R31 ¼
r9 : s½ �2 ! abcx r29 : a! bc½ �1
r40 : b! bc2

h i
1

r50 : x! ax½ �1

8<
:

9=
;

R32 ¼
r9 : s½ �2 ! abcx r32 : a! ac½ �1
r40 : b! bc2

h i
1

r49 : x! bx½ �1

8<
:

9=
;

R33 ¼
r9 : s½ �2 ! abcx r30 : a! ab½ �1
r40 : b! bc2

h i
1

r47 : x! xc½ �1

8<
:

9=
;

R34 ¼
r9 : s½ �2 ! abcx r31 : a! cx½ �1
r40 : b! bc2

h i
1

r44 : x! ab½ �1

8<
:

9=
;

R35 ¼
r3 : s½ �2 ! abc r40 : b! bc2

h i
1

r35 : a! abc½ �1

8<
:

9=
;

R36 ¼
r1 : s½ �2 ! bcx r40 : b! bc2

h i
1

r43 : x! bcx½ �1

8<
:

9=
;

R37 ¼
r3 : s½ �2 ! abc r42 : b! bc2x

h i
1

r35 : a! abc½ �1

8<
:

9=
;

R38 ¼
r9 : s½ �2 ! abcx r40 : b! bc2

h i
1

r43 : x! bcx½ �1

8<
:

9=
;

R39 ¼
r3 : s½ �2 ! abc r40 : b! bc2

h i
1

r36 : a! bcx½ �1 r43 : x! bcx½ �1

8<
:

9=
;

R41 ¼
r5 : s! abc½ �2 r14 : a! ab½ �2
r19 : b½ �2 ! b½ �c

� �

R42 ¼
r2 : s! ab½ �2 r14 : a! ab½ �2
r19 : b½ �2 ! b½ �c

� �

R43 ¼
r4 : s! cx½ �2 r25 : x½ �2 ! ½� abc

r38 : b! bc½ �1 r35 : a! abc½ �1

� �

R44 ¼
r1 : s½ �2 ! bcx r50 : x! ax½ �1
r39 : b! a½ �1 r32 : a! ac½ �1

� �



R51 ¼

r7 : s! abxc½ �2 r19 : b½ �2 ! b½ �c

r23 : x½ �2 ! x r40 : b! bc2
h i

1

r13 : a½ �2 ! ½�b r49 : x! bx½ �1

8>><
>>:

9>>=
>>;

R52 ¼
r7 : s! abxc½ �2 r40 : b! bc2

h i
1

r24 : x½ �2 ! cx r49 : x! bx½ �1
r14 : a! ab½ �2

8>><
>>:

9>>=
>>;

R53 ¼
r8 : s! a2bx

� �
2 r19 : b½ �2 ! b½ �c

r25 : x½ �2 ! ½� abc r35 : a! abc½ �1
r14 : a! ab½ �2

8><
>:

9>=
>;

R61 ¼
r7 : s! abxc½ �2 r26 : x½ �2 ! x2

� �
c2

r19 : b½ �2 ! b½ �c r22 : c! ab½ �2
r14 : a! ab½ �2

8><
>:

9>=
>;

R62 ¼
r8 : s! a2bx

� �
2 r26 : x½ �2 ! x2

� �
c2

r19 : b½ �2 ! b½ �c r35 : a! abc½ �1
r14 : a½ �2 ! ½� a r38 : b! bc½ �1

8><
>:

9>=
>;

R63 ¼
r8 : s! a2bx

� �
2 r26 : x½ �2 ! x2

� �
c2

r19 : b½ �2 ! b½ �c r14 : a! ab½ �2

( )

R71 ¼

r2 : s! ab½ �2 r10 : a! a2
� �

2

r15 : b! b3
h i

2
r27 : x½ �2 ! k

r11 : a! a2x
� �

2

8>><
>>:

9>>=
>>;

R72 ¼

r2 : s! ab½ �2 r10 : a! a2
� �

2

r15 : b! b3
h i

2
r24 : x½ �2 ! cx

r16 : b! b3x
h i

2

8>>><
>>>:

9>>>=
>>>;

R73 ¼

r5 : s! abc½ �2 r10 : a! a2
� �

2

r15 : b! b3
h i

2
r23 : x½ �2 ! x

r16 : b! b3x
h i

2

8>>><
>>>:

9>>>=
>>>;

R74 ¼

r2 : s! ab½ �2 r10 : a! a2
� �

2

r15 : b! b3
h i

2
r11 : a! a2x

� �
2

r16 : b! b3x
h i

2
r23 : x½ �2 ! x

8>>><
>>>:

9>>>=
>>>;

R75 ¼

r5 : s! abc½ �2 r26 : x½ �2 ! x2
� �

c2

r15 : b! b3
h i

2
r23 : x½ �2 ! k

r11 : a! a2x
� �

2

8>><
>>:

9>>=
>>;

R81 ¼

r5 : s! abc½ �2 r14 : a! ab½ �2
r16 : b! b3x

h i
2

r23 : x½ �2 ! x

r26 : x½ �2 ! x2
� �

c2

8>><
>>:

9>>=
>>;



R82 ¼

r2 : s! ab½ �2 r14 : a! ab½ �2
r16 : b! b3x

h i
2

r27 : x½ �2 ! k

r26 : x½ �2 ! x2
� �

c2

8>><
>>:

9>>=
>>;

R83 ¼

r5 : s! abc½ �2 r14 : a! ab½ �2
r16 : b! b3x

h i
2

r23 : x½ �2 ! x

r15 : b! b3
h i

2

8>>><
>>>:

9>>>=
>>>;

R84 ¼

r2 : s! ab½ �2 r14 : a! ab½ �2
r16 : b! b3x

h i
2

r27 : x½ �2 ! k

r15 : b! b3
h i

2

8>>><
>>>:

9>>>=
>>>;
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[61] G. Păun, M.J. Pérez-Jiménez, Membrane computing: brief introduction, recent results and applications, BioSystems 85 (2006) 11–22.
[62] F.J. Romero-Campero, H. Cao, M. Cámara, N. Krasnogor, Structure and parameter estimation for cell systems biology models, in: Proceedings of the 10th

Annual Conference on Genetic and Evolutionary Computation, 2008, pp. 331–338.
[63] G. Rozenberg, T. Bäck, J.N. Kok (Eds.), Handbook of Natural Computing, Springer, 2012.
[64] V. Sarpe, A. Esmaeili, I. Yazdanbod, T. Kubik, M. Richter, C. Jacob, Parametric evolution of a bacterial signalling system formalized by membrane

computing, in: Proceedings of IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.
[65] H. Schwefel (Ed.), Evolution and Optimum Seeking, A Wiley-Interscience Publication, Wiley, New York, 1995.
[66] E. Smirnov, Conjunctive and disjunctive version spaces with instance-based boundary sets, in: SIKS Dissertation Series, Shaker Publishing, 2001.
[67] Y. Sun, L. Zhang, X. Gu, Membrane computing based particle swarm optimization algorithm and its application, in: Proceedings of the Fifth

International Conference on Bio-Inspired Computing: Theories and Applications, 2010, pp. 631–636.
[68] Y. Suzuki, Y. Fujiwara, J. Takabayashi, H. Tanaka, Artificial life applications of a class of P systems: Abstract rewriting systems on multisets, in: C.
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