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Abstract

We consider a machine that is maintained via two types of maintenance
action: (i) continuous (minor) maintenance that curbs natural degradation
of the machine; and (ii) overhaul (major) maintenance that takes place at
certain discrete time points and significantly improves the condition of the
machine. We introduce an impulsive stochastic differential equation to mod-
el the condition of the machine over the time horizon. The problem we
investigate is to choose the continuous maintenance rate and the overhaul
maintenance times to minimize the total cost of operating and maintain-
ing the machine, where probabilistic state constraints are imposed to ensure
that the machine’s state and output meet minimum acceptable levels with
high probability. This impulsive stochastic optimal control problem is first
transformed into a deterministic optimal control problem with state jumps
and continuous inequality constraints. We then show that this equivalent
problem can be solved using a combination of the control parameterization
technique, the time-scaling transformation, and the constraint transcription
method. Finally, we illustrate our approach by solving a numerical example.
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1. Introduction

In any industrial setting, maintenance is paramount to ensuring reliable
machine operation. Although maintenance operations are sometimes costly
and onerous, ignoring maintenance will increase the likelihood of machine
failure, thus potentially leading to major disruptions in production at some
future time. Hence, effective maintenance policies are essential for production
planning purposes.

Maintenance policies in the literature can be classified into three type-
s: (i) failure-based, where the maintenance is performed after failure of the
machine; (ii) time-based, where maintenance is scheduled at fixed times; and
(iii) preventive-based, where maintenance is scheduled depending on the ma-
chine’s state. An importance part of preventive maintenance is the modeling
of the machine’s deterioration process. The condition-based maintenance ap-
proach that we propose in this paper models the state of the machine using
a stochastic process, which allows for the random noise and disturbances
present in any real-life system. Maintenance overhauls are scheduled so that
there is a sufficiently high probability that the machine’s state will always
be above a minimum acceptable level.

Previous research on machine maintenance has typically studied the per-
formance of different maintenance and production policies separately, even
though these two activities are intrinsically linked (Wang (2013), Fitouhi and
Nourelfath (2012)). However, in recent years, more researchers have begun
to design production and maintenance policies simultaneously (Widyadana
and Wee (2012), Pan et al. (2010), Chen (2009)). Graves and Lee (1999)
considered the simultaneous optimization of production together with pre-
ventive maintenance and scheduling decisions, but their model allows just
one maintenance activity during the planning horizon. Similarly, the main-
tenance scheduling model studied by Hsu et al. (2013) also allowed for just
one maintenance activity throughout the planning horizon. Qi et al. (1999)
allowed for multiple maintenance activities, but neglected the downside risk
of not performing maintenance. Cassady and Kutanoglu (2005) improved on
the studies in Graves and Lee (1999) and Qi et al. (1999) by explicitly in-
corporating the risk of not performing maintenance. However, they assumed
that the duration between maintenance times is constant, and that preventive
maintenance restores the machine to an ‘as good as new’ condition, which is
not always a realistic assumption.

Batun and Azizoglu (2009) considered a model involving multiple main-



tenance activities of known start times and durations, where several non-
resumable production jobs need to be scheduled optimally. Sbihi and Varnier
(2008) improved on this model by relaxing the assumption of fixed mainte-
nance time intervals, and imposing limits on the machine’s maximum con-
tinuous working time. Pan et al. (2010) considered machine degradation
and variable maintenance times. However, as with Cassady and Kutanoglu
(2005), they assumed that preventive maintenance activities are able to re-
store the machine to an ‘as good as new’ condition. Fitouhi and Nourelfath
(2012) make the same assumption, but allowed for the machine’s failure rate
to increase with time. Wang (2013), too, allowed for a time-dependent fail-
ure rate by using a Weibull distribution to model the time to failure of the
machine.

This paper improves on existing models by allowing flexible maintenance
time intervals while ensuring the probability of machine failure is below a
minimum specified value. The optimal interval lengths between maintenance
overhauls are decision variables, which must be chosen to ensure that the like-
lihood of machine failure is small and that a given production target is met.
We formulate this problem as a special type of stochastic impulsive optimal
control problem, where the state impulses are due to overhaul maintenance
activities occurring at a set of discrete time points.

Impulsive optimal control problems arise in many applications (Lin et
al. (2014)). Li et al. (2009) present an impulsive optimal control model for
designing optimal trajectories of horizontal oil wells. Loxton et al. (2009)
also apply impulsive optimal control methodologies to determine the opti-
mal switching instants for a switched-capacitor DC/DC power converter. In
another paper, Wu and Teo (2006) consider the optimization of a general
impulsive system that can be used as a model for many real-life systems such
as robots, locomotives, hybrid power generators and biochemical reactors.
However, none of these papers consider impulsive optimal control models for
machine maintenance scheduling. This paper represents the first attempt at
applying optimal control techniques for impulsive systems in the machine
maintenance area.

The remainder of the paper is organized as follows. In Section 2, we
formulate the maintenance scheduling problem as an impulsive optimal con-
trol problem with stochastic disturbances. Then, in Section 3, we discuss a
transformation technique for converting the stochastic problem into a deter-
ministic problem. In Sections 4 and 5, we apply the time-scaling transfor-
mation and the constraint transcription technique to solve this deterministic



problem. A numerical example is provided in Section 6. Section 7 concludes
the paper.

2. Problem formulation

Let z(t) denote the state of the machine at time ¢, and let y(¢) denote
the total output produced by the machine up to time ¢. The machine’s state
and output are governed by the following system of stochastic differential
equations:

dx(t) = (u(t) — kp)x(t)dt + kedw(t), (1)
dy(t) = ksx(t)dt, (2)

where u(t) denotes the continuous maintenance rate; w(t) denotes the stan-
dard Brownian motion with mean 0 and covariance given by

Cov{w(ty),w(ty) } = min{ty,t2}; (3)

and k1, ko and k3 are given constants representing, respectively, the machine’s
natural degradation rate, the propensity for random fluctuations in the ma-
chine’s condition, and the extent to which the machine’s state influences
production. We impose the following bound constraints on the continuous
maintenance rate:

0 <wu(t)<aky, t>0, (4)

where a € (0,1) is a given constant.
The initial state of the machine and the initial production level are given
by

2(0) = * + 0o, (5)
y(O) =0, (6>

where 9y is a normal random variable with mean 0 and variance k4. Note
that z(¢) ~ 2* indicates that the machine is operating in an almost perfect
condition.

Let N be the number of overhauls. Furthermore, let 7; denote the time
of the ith overhaul, with 7. referring to the final time (the time at which



the machine is replaced). We impose the following constraints:
Ti — Ti—1 Zpa Z:1a7N+1a

where p > 0 denotes the minimum duration between any two consecutive
overhauls, and

TN+1 Z tmin-

The first constraint ensures that overhauls do not happen too frequently. The
second constraint ensures that the final replacement time 71 is greater than
or equal to a pre-set minimum time #,,;,.

We assume that the time required for each overhaul is negligible compared
with the length of the time horizon. Hence, at each overhaul time, the
machine’s state improves instantaneously while the output level stays the
same. This results in the following jump conditions:

(") = ksx(7, )+ 05, i=1,...,N, (7)
y(r.") =y(r7), i=1,...,N, (8)

where ks is a positive constant and ¢§; is a normal random variable with
mean 0 and variance kg. We assume throughout this paper that the Brow-
nian motion w(t) and the random variables §;, ¢ = 0,..., N, are mutually
statistically independent.

There are two operational requirements that the machine needs to meet.
First, there must be a high probability that the machine’s state is always
above a minimum acceptable level. This motivates the following probabilistic
state constraint:

PT{ I(t) Z xmin} 2 D1, te [OuTN—i—l]? (9>

where x,;, is the minimum acceptable level of the machine’s state and p; is
a given probability level.

Second, the machine’s output over the entire time horizon must be such
that there is a high probability that the accumulated output level is greater
than or equal to a specified minimum level. This requirement can be formu-
lated as follows:

PT{ y(TN—i—l) Z ymin} Z b2, (].O)

where y,in denotes the minimum output level and py is a given probability



level. Note that constraint (10) is only imposed at the final time, while
constraint (9) is imposed at all times in the time horizon.

Let 7 = [r1,...,7n41]" denote the vector of overhaul times. Furthermore,
let T be the set defined by

T:{TERN+1: Ti_Ti—IZp, izl""’N+1;TN+12tnlin}‘

A vector 7 € T is called an admissible overhaul time vector. We assume
for simplicity that the continuous maintenance rate is constant between con-
secutive overhauls (however, our approach can be easily extended to the
case where the continuous maintenance rate assumes several different con-
stant levels between overhauls). For a given 7 € T, any piecewise-constant
function u : [0,00) — R that is constant on the intervals [r,_1,7;), @ =
1,..., N + 1, and satisfies (4) is called an admissible control. Let U(T) be
the class of all admissible controls corresponding to 7 € 7. Then any ele-
ment (7,u) € T x U(T) is called an admissible pair. Any admissible pair
satisfying constraints (9) and (10) is called a feasible pair.

Our goal is to determine an optimal maintenance policy. To measure op-
timality, we need an appropriate cost function. The cost function we choose
consists of four components—the operating cost, the continuous maintenance
cost, the overhaul cost, and the salvage value—and is expressed by

mir) = [ el L) + L) Y

Operating cost Continuous
maintenance cost
N
+>e{wmeE) - B} D
. — —
i=1 Overhaul cost Salvage value

where £ denotes the mathematical expectation.
We assume that the functions in (11) satisfy the following assumptions.

e L1:R— Rand ¥y: R — R are quadratic.

e L5: R — R is continuously differentiable with respect to each of its
arguments.

e U;: R — Ris linear.

The problem of determining the optimal continuous maintenance rate and

6



the optimal overhaul times may now be formulated naturally as the following
stochastic optimal control problem.

Problem (Pg). Given the stochastic system (1)-(2) with the initial condi-
tions (5)-(6) and the jump conditions (7)-(8), find an admissible pair (T,u) €
T X U(T) such that the cost function go(T,u) defined by (11) is minimized
subject to the constraints (9) and (10).

Problem (Py) is a stochastic impulsive optimal control problem with prob-
abilistic state constraints. This problem involves determining the times at
which the major overhauls take place (the jump points) and at what level
the continuous maintenance effort should be kept (the piecewise control func-
tion). Conventional optimal control techniques cannot deal with this problem
directly because of the stochastic disturbance in the state equations (1)-(2).
In the next section, we will develop a novel technique for transforming Prob-
lem (Py) into an equivalent deterministic problem, which can be solved using
the time-scaling transformation and the constraint transcription method.

3. Deterministic transformation

In this section, we transform Problem (Py), a stochastic optimal control
problem, into a new deterministic optimal control problem. First, define

pa(t) = E[z()], 1y (t) = Efy(1)],
(t) = Var [m(t)}, oyy(t) = Var [y(t)],
(t) = 0ya(t) = Cov{z(t), y(t)}.

Let ®: R x R — R2?*2 denote the principal solution matrix of the following
homogeneous system:

a(I)(t, S) u(t) — kl 0
p ( ks 0 ®(t,s), t>s,

®(s,s) =1,

O’Z‘ﬂ?

Ozy

where

Dyi(t,s) Pialt,s)
B(t,5) = ((D21(tv s) Pao(t, 8)) |

Then it follows from the results in Adivar (2011) and Liu et al. (2009) that
for each ¢ = 1,..., N + 1, the solution of the stochastic impulsive system
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(1)-(2) on (7;-1,7;) can be expressed as follows:

This can be written as:

z(t) = Oy (t, 7i1)x(7 ) + Pra(t, 7io1)y(7i ) +/ ko®11(t, s) dw(s), (12)

and
y(t) = CI)21 (t, TZ'_1>ZE(T7;—E1> + @22@7 Ti—l)y<7-it1) + / k?gq)gl(t, S) dw(s) (].3)

Taking the expectation of z(t) and y(t) gives

pia(t) = Pua(t, 7o) e (1,1) + Prolt, 7))y (7374, (14)
fy(t) = oy (t, Tim1 ) (T 1) + oo (t, i )y (757 1). (15)

By differentiating (14)-(15) with respect to ¢, we obtain
fo(t) = (ult) = ka) (@ua(t 7o) (775) + Paa(t i)y (75))
= (u(t) = k1)pa0) (16)

and

fy (1) = ks (q)n(ta Tio ) (7,0 1) + Pualt, Tz’—l)My(TL))
= kapta(t). (17)

Now, the variances are:
Oua(t) = q)%l (t, Ti—l)am(ﬂtﬁ + (I)%z(@ Ti—l)ayy(Tz‘tﬂ

t
+2(1)11@:7_1'—1)(1)12@’Ti—1>awy(7—i—tl)+/ k3@, (t, s) ds, (18)
Ti—1



and

Uyy(t) = q)%l(tv Ti—l)gﬂcx(Ti—tl) + (I)gQ(ta Ti—l)ayy(ﬁ:ﬂ

t
+2‘1)21(15,%'—1)‘1’22(75,Tz‘—l)%y(ﬂtﬁ+/ k3®3,(t, s) ds. (19)
Ti—1

Furthermore, the covariance is:

ny(t> - ny(t)
= Oy (¢, 7i-1)Por (t, Ti1) 00z (T 1)
+ ((bn(t,ﬁfl)qhz(t, Tifl) + (I)lz(t,7'2'71)‘1)21@7Tz‘f1))Uzy(T;£1)

+ D19t Ti1)Paa(t, Tio1) 0y, (757)

t
+ / ]{fgq)u(t,S)(DQl(t,S) ds. (20)
Ti—1

Differentiating (18)-(20) with respect to time, we obtain

02 (t) = 2(u(t) — k1) (‘b%l(tﬁifl)am(ﬂtﬁ + (I)%2(ta Tifl)ayy(ﬂtl))
+4(u(t) = k) @ua(t, 7io1)Pro(t, Ti1) oy (17 1)

t
+2(u(t) — k) / ka®? (t,s)ds + k3

= 2ult) — k)owal) + 1)
Tyy(t) = 2k3 P11 (¢, 7-1)Por (¢, Ti-1) 00 (7771)
+ 2k3®1o(t, 7i-1) Pa(t, Ti1) 0y, (T 1)

+ 2ks (‘1)11@; Ti—1)Poo(t, Tim1) + Pra(t, 7—1)Poy (¢, T¢—1)>ny(7'lt1)

t

+ 2]{?3 / k’gq)ll(t, S)(Dgl (t, S) ds
Ti—1

= k304, (1), (22)



and

Tay(t) = (u(t) — k) P11 (t, 7i1) Por (£, Ti—1) 0 (1,7 1)

+ (u(t) — k1) (‘I)n(t, Ti—1)Poo(t, Ti—1)

+ Qo (t, Tim1) Pan (¢, Ti&))%y(ﬂtl)

+ (u(t) = k1) @ra(t, 7i1) Poa(t, Ti-1) 0y (1371)

t

+ (u(t) — ky) / k2D, (t, 8) Do (t, 5) ds

+ ks ((I)%l (t, Tifl>‘7:m(7'zt1) + (I)%2<t7 Tifl)ayy<7'i+—1)>
t

+ kg (2@11@, Tifl)q)lg(t, Tifl)o'my(lritl) + / k;q)%l(t, S) dS)

= (u(t) — k1)0uy(t) + k3044 (t). (23)

The mean, variance and covariance of the initial conditions (5)-(6) are:

12(0) = 2%, 1y (0) =0, (24)
00e(0) = iy 0 (0) =0, 04,(0) = 0,0(0) = 0. (25)
At the overhaul times ¢t = 7;,7 = 1,..., N, the mean, variance and covariance

of the state jump conditions (7)-(8) are:

1o (7;7) = hspia(7;7), (7)) = py (1), (26)
Oua(T; ) = kgam(n_) + ke, Uyy(T;r) = 0yy(7;), (27)
Uﬂcy(TiJr) = ny(7i+) = k50uy(7; ) (28)

Equations (16)-(17) and (21)-(28) constitute a system of ordinary differen-
tial equations with jump conditions. This new system replaces the original
stochastic system consisting of (1)-(2) and (5)-(8).

Since the state equations (1)-(2) and the jump conditions (7)-(8) are
linear, z(t) and y(t) are normally distributed random variables (Liu et al.
(2009)). Thus, the probabilistic state constraints (9) and (10) can be written
as follows:

[ e ooy = (€Dl 29

min
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/°° 1 exp { —(1n = py(Tn41))? } 0> po. (30)

(27T‘7yy(TN+1))1/2 Qayy(TNH)

Ymin
Constraint (29) is a continuous inequality constraint in terms of the new
state variables u, and o,,, and constraint (30) is a terminal state constraint
involving the new state variables 1, and oy, .

As the functions £4(-) and Wy(-) appearing in the cost function (11) are
quadratic, we can express &[L1(z(t))] and € [Wa(z(7n+1))] in terms of the
new state variables by replacing € [z(t)] and € [x(t)?] with 1, (¢) and 0., (t) +
2 (t), respectively. We denote the resulting functions by Li(pz(t), 0aa(t))
and @2(,%(77\;“), 022(Tn11)), respectively. Similarly, since Wy is linear, we
have E[W(z(7;7))] = W1 (ue(7;7)). Thus, the cost function (11) can be writ-
ten as

go(T,u) = /OTN+1 {ﬁl(lux(t), 04(t)) + Eg(u(t))} dt
D Wi (pa(7)) = Walptalrin), Oas(rven)). (31)

We are now able to state the transformed problem as follows.

Problem (P;). Given the dynamic system (16)-(17) and (21)-(23) with the
initial conditions (24)-(25) and the jump conditions (26)-(28), find an ad-
missible pair (T,u) € T xU(T) such that the cost function (31) is minimized
subject to constraints (29) and (30).

4. Time-scaling transformation

In Problem (P;), the machine’s state experiences N instantaneous jumps
during the time horizon. The times at which these jumps occur are actually
decision variables to be optimized. It is well known that optimizing variable
jump times in a nonlinear dynamic system is a difficult task from a compu-
tational point of view (Lin et al. (2013); Lin et al. (2014)). Thus, in this
section, we apply the time-scaling technique in Teo et al. (1999) to map the
variable jump times into fixed time points in a new time horizon.

We first introduce a new time variable s ranging from 0 to N+1. Our aim
is to map the old time scale ¢ € [0, Ty11] into the new time scale s € [0, N +1]
in a judicious manner so that the variable jump points are mapped into fixed

11



jump points. This mapping is realized by the following differential equation:

N+1
diz(ss SLCE Z ViX(i-1)(8), (32)

where v, =7, — 1,1 > pforeacht=1,... N+ 1, v1+ -+ vns1 > twin,
and x[i—1,)(s) is the indicator function defined by

(s) 1, ifseli—1,9),
i—1,)\S) =
Xli=10) 0, otherwise.

Note that v; denotes the time duration between the (i — 1)th and ith jump
times. We collect the duration parameters into a vector v = [vq,...,v N+1}T €
RN*L. Let

V:{UERNH: v > P, izl,...,N+1;v1—|—-~-—|—'UN+1ztmin}.

A vector v € V is called an admissible duration vector. From (32)-(33), we
have, foreach i =1,..., N +1,

t(1) = t(0) + /Oif)(s)ds =t0)+vi 4+ +v, =T

This equation shows the relationship between the variable jump points ¢ =
Ti,t=1,..., N+ 1, and the fixed jump points s =1¢,i=1,..., N + 1.

Define u(s) = u(t(s)). Recall that the continuous maintenance rate is
constant between consecutive overhauls. Thus, the admissible controls are
restricted to piecewise-constant functions that assume constant values be-
tween consecutive jump times. As a result, @(s) can be expressed as

N+1

i(s) = Z hiX(i-1,)(8),
=1

where h;, i = 1,..., N + 1, are control heights to be optimized. In view of
(4), these control heights must satisfy the following constraints:

0<h;<aky, i=1,...,N+1. (34)
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Let h = [hy, ..., hny1]" € RY*L Furthermore, define
H={heR""': 0<h; <ak;,i=1,...,N+1}.

A vector h € H is called an admissible control parameter vector. Further-
more, a pair (h,v) € H x V is called an admissible pair.

Note that it is possible to apply more advanced control parameterization
schemes in which the control can switch value between consecutive jump
times, as well as at the jump times themselves (Lin et al. (2013)). However,
for simplicity, we assume throughout this paper that the control switches
coincide with the overhaul times.

Let

fio(8) = pa(t(s)),  fiy(s) = py (t(s)),
Oaa(5) = Oua(t(5)), Gyy(s) = 0yy(8(s)),  Tay(s) = Gyals) = gay (t(s)).

Then the dynamics (16)-(17) and (21)-(23) are transformed into:

dfis(s)

2 () (s) — h)fia(s), (35)
W) _ )i s) (36)
do..(s) . - - 2

o = ) (20(0) — k() + ). (37)
W) _ ghyi(5)5 ) (38)
d&ZZ(S) _ d&zlxs(s) _ ﬁ(s)«ms) )Gy (5) + kgém(s)). (39)

Furthermore, the initial states become

5%(0) = ku, 6yy(0) =0, &xy(o) = 6yx(0) = 0. (41>

13



For each i =1,..., N, the new jump conditions are

i) = ksjia(i7), 71y (%) = fiy (i), (42)
Gaali) = K26,a(i7) + Koy Gy, (%) = 5, (07), (43)
Gy (i) = i) = ki (7). (44)

The state constraints (29)-(30) become

ot = ju(s)? )
/xmm( 5oz (8)) 72 p{ 5 }anpl, €[0,N+1], (45)

20 4z (S 265,.(5)

b 1 —(n = fi,(N +1))?
/ (216, (N +1))'72 o { 26,,(N +1) } dn = ps. (46)

An admissible pair (h,v) € H x V is said to be feasible if it satisfies the
constraints (45) and (46).

After applying the time-scaling transformation, Problem (P;) becomes
Problem (P3) defined below.

Ymin

Problem (P2). Given the dynamic system (35)-(39) with the initial condi-
tions (40)-(41) and the jump conditions (42)-(44), find a pair (h,v) € H XV

such that the cost function
N+1
o) = [ it >{£1< (5), Gn(s) + Lafii(s))  ds
+qu fiz(i7)) = Ua(fie(N + 1), 6o0(N + 1)) (47)

is minimized subject to constraints (45) and (46).

5. Solving Problem (P-)

Problem (P5) is an impulsive optimal parameter selection problem with
state constraints. To solve such problems using gradient-based optimization
algorithms, we require the gradients of the cost and constraint functions.
However, it is not possible to derive the gradient of the state constraint
(45) because this constraint is imposed at an infinite number of time points.
Thus, we will apply the constraint transcription technique (Jennings and Teo
(1990)) to approximate (45) by a conventional constraint.

14



5.1. Constraint transcription

In the constraint transcription technique, we aim to construct an approx-
imation of constraint (45) that can be handled using conventional optimiza-
tion techniques.

Define

-0 = | sy o

ZLmin

Then constraint (45) is equivalent to the following equality constraint:

/ON+1 min { o(f1z(8),042(5)),0 } ds = 0. (48)

However, because of the min{-, 0} function, constraint (48) is non-smooth
when o(fi,(s),7.:(s)) = 0. Thus, we introduce a smooth approximation
for min{-, 0} defined as follows:

a, if a < —e¢,
pe(a) =9 —(a—¢)*/4e, if —e<a<e,
0, if a > e.

Here, € is a small positive number that controls the accuracy of the approx-
imation. Using ¢, to approximate min{-, 0}, we obtain an approximation of
(48) as follows:

N+1

5y / oo (0(7in (), Fan(s))) ds = 0, (49)

where 8 > 0 is an adjustable parameter that controls the feasibility of the
approximation with respect to the original constraint (45). The following
theorem justifies the use of (49) as an approximation of the original con-
tinuous inequality constraint (45). The proof of this theorem can be found
in Jennings and Teo (1990).

Theorem 5.1. For each ¢ > 0, there exists a corresponding () > 0 such
that for all 5 satisfying 0 < B < [(g), constraint (49) implies constraint

(49).
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Hence, constraint (45) is approximated by constraint (49), where ¢ > 0
and > 0 are adjustable parameters. Note that constraint (49) constitutes
a single restriction on the system, whereas constraint (45) is imposed at an
infinite number of points. Now, Problem (Py) is converted into the following
approximate problem.

Problem (P3). Given the dynamic system (35)-(39) with the initial condi-
tions (40)-(41) and the jump conditions (42)-(44), find a pair (h,v) € H XV
such that the value of the cost function (47) is minimized subject to the con-

straints (46) and (49).

5.2. Solving the approximate problem

Problem (Pj3), the approximate problem, involves minimizing the cost
function (47) subject to the constraints (46) and (49), which are both in
canonical form (Teo et al. (1991)). We now need to determine the gradients
of the cost and constraint functions in Problem (Pj3) so that gradient-based
optimization methods can be deployed to generate an optimal solution.

To begin, we collect all the state variables in Problem (Pj3) into a vec-
tor w(s) = (/lm(s),/ly(s),611(5),5yy(5),6xy(5))T. Let f denote the vector of
functions appearing on the right-hand side of the dynamics (35)-(39):

?7(8)(71(8) - /ﬁ)ﬁx(s)
flw(s),u(s),v(s)) = o(s)(2(a(s) — kl)aacx< )+ k3)
2k30(5)Ty(5)
0(s)((s) = k1)0ay(s) + ks0(5)00(s)

Furthermore, define

where A*(s) is called the kth costate vector and Hjy, is called the kth Hamil-
tonian. The costate vector A¥(s) satisfies the following costate system:

dX*(s) _ [ OHy(w(s),u(s),v(s)) ]T
ds ow ’
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with jump conditions

NF (i) — ANF(ET)

_[8\111(33(i_)_)}—r7 if k= 0,
0, otherwise,

and terminal conditions

X(N +1) = —[a%(ﬂ‘”w +81£’ T N 1) }T,

AN +1)=0,

) Ja [ 1 —( — fiy(N +1))? !
”N“*{a_&/ymin @ty (N 1 D) eXp{ %,,(N + 1) }d”]'

We use g;(h,v) and go(h,v) to denote, respectively, the left-hand sides of
constraints (49) and (46). As before, go(h,v) denotes the cost function. We
now present the following theorem regarding the gradients of the cost and
constraint functions in Problem (P3). The proof of this theorem is similar to
the proof of Theorem 4.3 in Martin and Teo (1994).

Theorem 5.2. For k = 0,1,2, the gradients of the function gx(h,v) with
respect to h and v are given by

0gr(h,v) :/i GHk(cD(s),ﬂ(s),f}(s))d

s, 1=1,....,N+1,

h; Oh
M :/ aHk(w(S)7U(3)7U(S)) ds. i—= 177N_|-1
(91),- i—1 avi

For any given pair (h,v), we can solve the dynamic system (35)-(39)
forward in time, and then use the information obtained to calculate the
values of the cost function and the constraint functions. Then, we can solve
the costate systems backward in time, with the corresponding costates used
in the gradient calculations according to the formulae in Theorem 5.2. This
gradient computation method can be incorporated into any gradient-based
optimization solver to solve Problem (P3). In the next section, we use this
approach to solve a numerical example.
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6. Numerical example

In this section, we consider the stochastic machine maintenance problem
for a brand-new machine costing $10,000. The manager in charge of the ma-
chine plans to replace the machine after 20 overhauls (major maintenance).
Meanwhile, the workers in the factory will perform continuous maintenance
on the machine (minor maintenance) to ensure that it is kept in good work-
ing order. This stochastic machine maintenance problem is a special case of
the problem defined in Section 2. The model parameters are given by

ki =135x 1072, ke =10"3, ky=25, ki=10"" Fk;=1.18,
ke = 1074, a=0.1, ¥ =10, p; =0.8, py=08,
Lmin = 01, Ymin — 500, P = 150, tmin = 400.

The explicit forms for the functions in the cost (11) are given as follows:
L1(z(t)) = 2.52%(t) — 20x(t) + 40, Lo(u(t)) = —u(t),
1
@1(1'(7'{)) = 1000 — 50033'(7'1-_), \Ilg(l'(TNJrl)) = S.CIT<TN+1) x 10000.

Note that N = 20 is the number of overhaul times, and 10,000 is the original
capital cost of the machine.

We apply the procedures described in Sections 3-5 to yield an approx-
imate problem in the form of Problem (P3). This approximate problem is
solved using the optimal control software package MISER3 (Jennings et al.
(2004)). The optimal value of the cost function obtained is gy = 11,602.7281.
The optimal jump times (the overhaul times) and the optimal terminal time
(replacement time) are given in Table 1, while the optimal continuous main-
tenance rates (minor maintenance) are shown in Table 2. Note that we are
assuming the continuous maintenance rate takes a constant value between
consecutive jump points.

The optimal trajectories of the state variables 1i,(t), 11y (t), 024(t), 04y (%)
and o,,(t) are shown in Figures 6.1-6.5, respectively.

Figure 6.1 shows the mean of the machine’s state over the duration of 400
time periods. The mean starts off at 1, and gradually decreases with time.
However, with each overhaul, the mean of the state of the machine is restored
to a higher value, close to where it was at the previous overhaul.

Figure 6.2 shows the mean of the accumulated output, which gradually
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Table 1: Optimal Jump Times

T T, tOT; 1T ) T 7 T; ) T 1 T

1 15 4 60 7 105 10 150 13 195 16 240 19 285
2 30 5 75 8 120 11 165 14 210 17 255 20 300
3 45 6 90 9 135 12 180 15 225 18 270 21 400

Table 2: Optimal Continuous Maintenance Rate

Interval u(t) Interval u(t) Interval u(t)

1 1.35 x 1073 8 4.6386 x 1073t 15 6.9333 x 10733

1.35 x 1073 13 4.1610 x 10732 20
1.35 x 1073 14 7.7037 x 10734 21

2 1.35 x 107% 9 4.2867 x 107°1 16 0
3 1.35x107% 10 0 17 0
4 135107 11  4.0135x 107 18 0
5 1.35x107% 12 0 19 0
6 0
7 0

increases over time.

Figure 6.3 shows the variance of the state of the machine. The variance
changes with each overhaul performed, then gradually decreases after the
last overhaul.

The variance of the output is shown in Figure 6.4, while Figure 6.5 shows
the covariance of the output with the state of the machine.

To examine the performance of our optimal maintenance policy over a
range of scenarios, 500 sample paths are simulated for the machine state (see
Figure 6.6) and machine output (see Figure 6.7), respectively. The paths
simulated are similar in shape to the paths of mean values as shown earlier.

7. Conclusion

In this paper, we have considered a single machine scheduling problem
with continuous maintenance and scheduled major overhauls. The objective
is to find the optimal maintenance scheduling policy to minimize total cost.
The problem is formulated as a special type of stochastic impulsive optimal
control problem, with flexible maintenance time intervals. The numerical
example shows that the model performs well and the outputs are reasonable
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Figure 6.1: p15(t)
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and realistic. Future research can extend the problem to allow for multiple
machines and nonzero overhaul periods during which the machine undergoing
maintenance is unproductive.
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Figure 6.6: Simulation of x(¢) with 500 sample paths
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Figure 6.7: Simulation of y(¢) with 500 sample paths
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