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Designing the way a complex system should evolve to better match customers’ require-

ments provides an interesting class of applications for muticriteria techniques. The models
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required to support the improvement design of a complex system must include both pref-
erence models and system behavioral models. A MAUT model captures decisions related to
design preferences, whereas a fuzzy representation is proposed to model relationships
between system parameters and the fulfillment of system assessment criteria. The way
in which these models are jointly used throughout our entire design procedure highlights
that both models must be used in tandem to address managerial and implementation
issues involved in an improvement project. The iterative improvement process is sup-
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ported by a mathematical model, in add
to be tested in an industrial case study
the improvement design is supported b
most relevant actions to be performed. Th
o a software tool that allows our approach
search for adequate parameters regarding
anch and bound algorithm to compute the
ings confirm the efficiency of the algorithm.
1. Introduction

To satisfy a fluctuating demand and achieve a high level of quality and service, industries must develop and integrate new 
features in order to become or remain market leaders [41]. To deal with the complexity of current industrial contexts, new 
management strategies intended to bring about continuous improvement must take two imperatives into account: complex 
systems need to be tailored to an evolving context; and improvement assessment proves to be a thorny issue due to its 
dependence on multiple decisional aspects [4,18]. When designing improvement measures for complex systems, multiple 
decisions need to be considered [3]. Examples include military information architecture [47] and industrial device 
performance improvement [5,34]. Such settings increase the multidisciplinary design complexity regarding the fulfillment 
of functional, technical, environmental, economic and security requirements. In this setting, industries focus more intently 
on optimization and evaluation activities during the design process in order to improve and adapt complex systems. 
Reynoso-Meza et al. [48] explains that it is common to state a design problem as an optimization statement, where a specific 
cost index must be optimized. However, many real world problems require the fulfillment of a set of requirements and 
specifications. It is not possible to consistently transform heterogeneous factors into one single scale (e.g. cost) – this mindset 
is called arithmo-morphism [49]. In that case, all concerns must be taken into consideration explicitly. This is an important 
issue as some objectives might conflict with others, and a trade-off solution is sought.
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When company designers/operators choose a new architecture to improve their system, they must first ensure that their
solutions do not violate any constraints and check whether they satisfy customer needs and technical specifications, as well
as the company’s strategic goals and interests. Furthermore, these issues are obviously not devoid of budgetary constraints.
Two extreme approaches can be adopted. In the first one, as each concern is associated with a different discipline and
division within the company, the optimization regarding the different concerns can be sequentially performed after ordering
the concerns according to their importance. There is no possible backtrack in this approach: the decisions made at one level
(concern) are considered as requirements at the following levels. There may be conflicting requirements among the different
concerns. In practice, experience is then used to try to minimize these conflicts and reach acceptable solutions [55].

The second potential extreme approach is concurrent optimization. It involves considering all concerns at the same time
(concurrently) rather than considering them one at a time [28,53,38]. Then conflicting requirements, tradeoff relationships
among system parameters are taken into consideration in a relevant way. This yields a single global optimization problem
where the variables are the system parameter values. However, this global approach is not suited to situations where the
mapping from the system parameter values to the fulfillment of strategic goals is not explicitly known, and its evaluation
is very costly. Moreover, industries are more inclined to accept continuous improvement of their system rather than a more
thorough perturbation of system parameters. The approach proposed in the paper is thus somewhat in-between the stan-
dard empiric sequential way (that is often conducted) and concurrent optimization. The empiric sequential approach is used
in many industries for the design of complex systems. The outcomes are satisfactory (even-though sub-optimal) as designers
and architects take return on past experiences and expertise into account. We propose a sequential approach, but in which
backtracking is allowed. We thus propose in this work to proceed by successive improvements from an existing situation.
We propose a set of possible actions on the system, where each action modifies the value of one or several system
parameters.

In order to bypass the difficulty of the unknown mapping from the parameter values to the fulfillment of strategic goals,
the idea is to use a behavioral model based on experience on past designs. The behavioral model of the system helps provide
a simple and interpretable approximation of it, which is very useful for both operators and managers [1]. Such a model
already exists in different domains: engineering (e.g. [29,20,19]), industry design [11], qualitative Bayesian networks [43].
As we are ultimately interested in improvements, we propose a behavioral model that relates the actions to improvements
or degradations on the goals. This influence model is provided by experts and expresses their experience [37]. It has been
applied to risk management and stock trading [46]. Even if two experts may theoretically come up with two different mod-
els, we do not expect large discrepancies at this stage. Apart from the influence model, two other inputs are also necessary to
relate the actions to the overall impact on the satisfaction of the system. The first one synthesizes the results of the influence
model. Assume that two actions are performed, the first one improves a goal and the second one is detrimental to the same
goal. Then what is the overall impact on the goal? This depends on the attitude of the decision maker regarding the risk [44].
The first input describes this attitude. The second input weighs up goals and produces an overall satisfaction of the system. It
is based on a multi-criteria model to aggregate the goals [52,24,25]. These two inputs are subjective and represent the
decision maker’s preferences.

In order to identify the set of actions that allows the decision maker to improve the overall satisfaction of the system in
the most efficient way, we propose to separately deal with the multi-criteria model and the influence model (and its
synthesis). The reason for this separation is that only a behavioral model of the influence of the system parameters on
the fulfillment of strategic goals is known. First (at the strategic level) we start by identifying the goals for which it would
be more rewarding to improve the system. Then (at the operational level) we aim at finding, through a branch-and-bound
algorithm, the set of actions that would improve these goals as much as possible at the minimum cost. Although two steps
are considered, backtracking is allowed when there is no set of actions that could improve the goals identified in the first
step. In this case, the first step generates other goals to be improved and the optimization algorithm is launched once more.

This paper is organized as follows. Section 2 outlines a formal model for the problem of interest here. It begins by mod-
eling the search for outputs to be improved as a multi-criteria optimization problem, before integrating this proposal into an
iterative system improvement procedure. A general algorithm, based on two functions (FindCoalitions and FindActions) is
proposed. Section 3 then describes function FindCoalitions: it identifies the coalition of goals/criteria to be improved first.
Section 4 describes the influence model and the subjective model to synthesize its results. A branch-and-bound algorithm
(function FindActions) is implemented in Section 5 as an efficient solution step. The numerical efficiency of function
FindActions is analyzed in Section 6. Section 7 proposes a case study inspired from the adaptive management of a manufac-
turing plant. Section 8 discusses some works related to improving the competing architectures available in a multidimen-
sional assessment context. Finally, a nomenclature of the main definitions and notations is given in Appendix A.
2. Description of the optimization algorithm

2.1. List of concepts

For starters, a complex system is characterized by input parameters c1; . . . ; cp, e.g. the accurate definition of all entities in a
military force and its ties, or industrial device control parameters. The set of all possible parameter vector values of
ðc1; . . . ; cpÞ is denoted by: C ¼ C1 � � � � � Cp. A system is thus defined by an element c 2 C. Not all elements of C lead to



admissible systems for the customer since some customer requirements must generally be met. The set of elements CAdm # C
for which the associated system satisfies these requirements yields the feasible input parameter values.

The company that designs or operates a complex system must therefore first satisfy the functional requirements of its
customers. All elements of CAdm satisfying customer requirements are not, however, indistinguishable from the designer’s
and customer’s standpoint. The company has its own set of goals, priorities and strategic reasons that may favor choosing
one system over another. The company then needs to construct a preference model based on criteria in line with its own
goals and the customer satisfaction. Such criteria behave in a way that refines the customer’s requirements within the
improvement design process. The selection of a ‘‘best’’ solution for the company from among the set of satisfactory solutions
for the customer then becomes a matter of strategic decision-making.

The set of attributes relative to the decision-making criteria are denoted: X1; . . . ;Xn. These are the system’s observable out-
puts. We set N ¼ f1; . . . ;ng. Each vector of attribute values ðx1; . . . ; xnÞ represents a different alternative; the set of alterna-
tives is then: X ¼ X1 � � � � � Xn. For a military architecture, these attributes serve to quantify the way the operational
mission proceeds and are obtained by large-scale simulations on systems architectures [47]. For industrial processes, these
attributes might be: the work-in-progress level, flow synchronization, supplier’s service rate, etc. [4]. In the industrial con-
text, multi-criteria approaches have been, for instance, applied to flexible production lines in the manufacturing industry
[44], or to portfolio selection [6].

Let T : CAdm ! X be the transformation that yields values on system attributes obtained from a vector c 2 CAdm of input
parameters. We write, for c 2 CAdm; TðcÞ ¼ ðT1ðcÞ; . . . ; TnðcÞÞ, with Ti : CAdm ! Xi. TiðcÞ highlighting the impacts of the specific
configuration on the attributes. On the examples given above, the transformation T cannot be precisely known in a complex
system. It requires complex simulations or experiments, which are costly and time consuming. Hence transformation T gener-
ally needs to be approximated by a qualitative model. Some examples of such qualitative models are given in Sections 4.1 and 8.

The attributes must then be interpreted in terms of satisfaction with regard to the company’s goals: a product rejection
rate of 3% may be considered satisfactory for one company, whereas it remains intolerable for another, whose aim might be
to achieve ‘‘zero defect’’ production in order to obtain a standard certification. Moreover, all goals are not ascribed the same
relative importance in company policy. This expression of preferences tends to be complex and an elaborated multi-criteria
model is required to facilitate decision-making. Among these criteria, operational and monetary criteria are typically
included. From the company’s standpoint, product performance is mandatory: low cost cannot compensate for poor
operating performance. Consequently, the operational criteria act as a veto (a bad assessment on this criterion cannot be
saved by good evaluations on the other criteria). Many other interactions among criteria, such as the conditional relative
importance of criteria, are quite often encountered.

The interpretation of attributes with regard to company goals can be formalized through utility functions. Moreover, the
relative importance of goals or their preferential interactions between one another can be handled within the Multi-
Attribute Utility Theory (MAUT) framework [15,16,30]. MAUT consists of finding a real-valued utility function U such that
for any pair of alternatives x; x0 2 X; UðxÞP Uðx0Þ if and only if alternative x is at least as good as x0 for the decision maker
relative to all of his concerns. The most widely used model is the decomposable model developed by Krantz et al. [31],
whereby U assumes the form Uðx1; . . . ; xnÞ ¼ Fðu1ðx1Þ; . . . ;unðxnÞÞ, with ui : Xi ! ½0;1� being real-valued utility functions in
½0;1� and F : ½0;1�n ! ½0;1� an aggregation function [24,25]. For xi 2 Xi; uiðxiÞ is the extent to which the goal associated with
criterion i is satisfied by xi. For x 2 X, we set uðxÞ ¼ ðu1ðx1Þ; . . . ;unðxnÞÞ.

A modification of input parameters from c0 2 CAdm to c 2 CAdm improves criterion i if uðTiðcÞÞ > uðTiðc0ÞÞ. The system c0 is
improved regarding utility function U once the new system c satisfies UðTðcÞÞ > UðTðc0ÞÞ.

All of these concepts involving c; T;X;ui;U; F are summarized in Fig. 1 (Labels L1–L5).
This formal model clearly distinguishes two points of view in the design of complex system improvements. Labels L1–L3

capture the operational viewpoint and the behavioral description of a complex system, while labels L4–L5 correspond to the
strategic point of view and the preference model.

2.2. Description of the optimization problem

There are basically two high-level goals to be achieved: increased performance and minimized costs. Two alternative
improvement problems can thus be derived: achieve expected overall performance at minimal cost, and maximize perfor-
mance under budget constraints. Each of these optimization problems is developed in the following subsections.

2.2.1. Achieve expected overall satisfaction at minimal cost
Given the existing system characterized by parameter value c0 2 CAdm, the problem is to find an improved solution

c 2 CAdm that reaches a minimum expected overall degree of satisfaction Umin for UðTðcÞÞ. Yet the company will also consider
the practical cost cðc0; cÞ to improve the system c0 into c. Ultimately, the company would like to determine the solution that
achieves an expected overall satisfaction at the lowest cost.
min cðc0; cÞ under
c 2 CAdm

UðTðcÞÞP Umin

� ð1Þ



Fig. 1. Diagram of the concepts used in the evaluation of complex systems, with L1: parameter space; L2: restrictions in conjunction with the operational
constraints; L3: attribute space; L4: individual satisfaction degree w.r.t. criteria; and L5: overall satisfaction. From L1 to L2: admissible systems are filtered;
from L2 to L3: attributes are computed from configurations thanks to the T transformation; from L3 to L4: attributes are interpreted into satisfaction
degrees; and from L4 to L5: the overall satisfaction of a configuration is computed from individual satisfaction degrees.
Solving the optimization problem stated in (1) involves performing concurrent optimization. Concurrent optimization has
been successfully applied in many industrial fields [55,53,10,27,51]. For instance, genetic algorithms have been applied to
find the Pareto front of optimal solutions [10]. Yet concurrent optimization has not been applied to all industrial engineering
problems because concurrent engineering requires a model of the relationship between the system parameters and the
goals. This corresponds to function T (going from the system parameters to the decision indicators) in Eq. (1). The main point
of the paper is that there are many situations in which T is not explicitly known, and running T is very costly (it involves
major simulation, or real experimentation, or changing the parameter values in a production chain – which one cannot
do very often). In this case, concurrent optimization (global optimization) is not used as this would require many applica-
tions of function T, which we do not want.

In order to reduce the number of calls of function T, we propose to approximate T by a qualitative model. Such a quali-
tative model is widely used in engineering goal-oriented models (e.g. [29,20,19]), industry design [11], qualitative Bayesian
networks [43]. The qualitative model considered here concerns improvements. It will be described later (see Section 4).

Using the qualitative model, we aim to perform successive improvements on the solution from the existing solution c0. In
some domains, the user directly modifies the system by changing the parameter values c. But in other applications, the user
does not directly adjust the parameters, but he can apply some improvement actions. We thus introduce the set A of system
improvement actions. These actions can be direct individual parameter modifications. Examples of actions having a more
indirect impact on parameters are given in Section 7. Each action affects some change in some parameter(s) (e.g. increasing
the value on a system parameter). Often several actions must be applied to be able to significantly improve the overall
satisfaction.

The optimization problem formulated in (1) is thus turned into an iterative approach in which at each iteration one aims
at finding the set of actions which maximizes the improvement on the overall satisfaction and minimizes the cost increase.
When applying these actions, c is changed. Then one computes UðTðcÞÞ. The process continues until UðTðcÞÞ reaches the min-
imal expected value Umin. This approach can be seen as a kind of steepest descent method.

The qualitative model actually directly relates each individual action to each criterion, in terms of the extent of belief that
an improvement or a decrease regarding the criterion occurs. There is no direct information on the intensity of the increase/
decrease that is expected. It is thus impossible to assess the impact on the overall evaluation. Hence the set of actions which
maximizes the improvement of the overall satisfaction and minimizes the increase of the cost is determined in two separate
steps – represented by functions ‘‘FindCoalition’’ and ‘‘FindActions’’:

� First, at the strategic level, we identify the criteria whose value can be modified to achieve the greatest reward. Given
c 2 C, we first compute the vector uðTðcÞÞ ¼ ðu1ðT1ðcÞÞ; . . . ;unðTnðcÞÞÞ 2 ½0;1�N providing the satisfaction values on n cri-
teria. Function FindCoalitionðB;uÞ determines the coalition I� of criteria belonging to the set B of acceptable coalitions, for
which the improvement of uiðTiðcÞÞ on all criteria i in I� improves the overall satisfaction in the most efficient way. We
start with B ¼ 2N , with 2N being the power set of N. This takes both the aggregation function F and the cost of the
improvement into account.
� Second, at the operational level, one searches for the set of actions which allows improvement of all criteria in I� with the

best expectation. Function FindActionsðA; I�Þ returns several alternative sets of actions to be performed. The operator is
asked to select the most appropriate one.



Algorithm 1. General algorithm GeneralProcessðA;Umin ; cÞ, where A is the set of actions, Umin is the minimal satisfaction and c is the initial system
parameter value. Initially, we call GeneralProcessðA;Umin; c0Þ.
This two-step approach is described in Algorithm 1. FindCoalition and FindActions are described in Sections 3 and 5,
respectively.

The main original feature of Algorithm 1 is that it provides the possibility of exploring several subsets I� (in the Repeat-
until loop), which permits backtracking. This avoids incompatibility between ‘‘FindCoalition’’ and ‘‘FindActions’’. More pre-
cisely, it might be possible that there is no set of actions that improves all criteria I� identified at the first step. In this case,
another coalition I� has to be found. If it is not possible to improve all criteria in I� at the same time, it will not be possible to
improve all criteria in a superset of I�. Hence all supersets of I� are discarded from the list of admissible sets of criteria for B.

2.2.2. Maximize satisfaction under budget constraints
The company may alternatively prefer to determine the solution that maximizes performance under budget constraints:
max UðTðcÞÞ under
c 2 CAdm

cðc0; cÞ 6 Cmax

� ð2Þ
Algorithm 1 can easily be modified to address the optimization problem stated in (2) (see Algorithm 2). Hereafter we will
focus on the optimization problem stated in (1) and Algorithm 1.

In Algorithm 2, an operational cost copðaÞ is associated with each action a. More precisely for a subset ap of actions, copðapÞ
is the sum of the operational cost of each action in ap : copðapÞ ¼

P
a2apcopðaÞ.

Algorithm 2 finds successive actions to be performed, while keeping the improvement cost under Cmax. Note that condi-
tion c þ copðapÞ 6 Cmax is automatically satisfied for every ap 2 FindActionsðA; I�Þ if this function is called with
budget ¼ Cmax � c (see Section 5).

3. Function FindCoalition: improvement recommendation at the strategic level

The MAUT framework merely deals with designers’ preferences without any further considerations regarding the mate-
rial constraints beyond improvement implementation. Given a solution described by vector u 2 ½0;1�n of scores w.r.t. criteria
satisfaction degrees, the function FindCoalitionðB;uÞ returns the set I� of criteria for which it is the most rewarding to
improve the solution, independently of any operational constraints. The set I� results from a benefit to cost ratio analysis.
On the one hand, as I� increases the benefit increases thanks to aggregation function F. On the other hand, as I� increases
the cost to perform an improvement increases for all criteria in I�. The difficulty here is that the intensity of the improvement
actions on criteria is unknown. Hence for each subset I # N, an indicator that assesses the average benefit to cost ratio of
improving criteria in I will be defined. Then I� is defined as the subset I for which the associated indicator is maximal. Let
us first consider when there is no improvement cost.

An index (called worth index) denoted xIðFÞðu) and quantifying the worth of improving vector u in criteria among I # N,
and subject to the evaluation function F, has been proposed in [33]. As exhibited in the following example, subsets I should
not be restricted to single entries. Let us consider the case of a highly intolerant designer, as described by the min aggregation
function: FðuÞ ¼ mini2Nui. Should all the criteria be equally satisfied, then improving just one criterion will not alter the over-
all evaluation. Hence, it is fruitless to work on a single criterion and instead it is worth improving all criteria simultaneously.



Algorithm 2. Variant of the general algorithm, for the optimization problem formulated in (2).
Let V be the set of piecewise continuous functions defined on ½0;1�n. This space is endowed with the norm
8H 2 V ; kHkV ¼ supx2½0;1�n jHðxÞj. The index xI is considered as an operator from V into itself. The index xI is defined axiom-
atically for any F 2 V . First, if F is constant over criteria in I, then xIðFÞðuÞ ¼ 0. Moreover, if F is independent of criterion i, then
xI[figðFÞðuÞ ¼ xIðFÞðuÞ. Another requirement whenever F can be decomposed into n functions Fi for each criterion, is to
provide a description of an optimistic decomposability of xIðFÞ from the xiðFiÞ. Lastly, an invariance property xIðFÞ for
f0;1g-valued functions F is described. Previous requirements combined with linearity, symmetry and continuity
(i.e. supF2V ;F–0

jjxIðFÞkV
kFkV

<1) serve to uniquely define xI [33]:
xIðFÞðuÞ ¼
Z 1

0
Fðð1� sÞuI þ s1I;uNnIÞ � FðuÞ
� �

ds ð3Þ
where 1I is the identity function. For every d 2 ½0;1�n, ðdI;uNnIÞ denotes a performance vector, with a component of d on cri-
teria in I, and the components of u on the other criteria. With the notation dI ¼ ð1� sÞuI þ s1I , the right hand side of Eq. (3)
gives the mean value of the gain FðdI;uNnIÞ � FðuÞ only for improvement vectors dI on the segment from the current perfor-
mance values uI (for s ¼ 0) to the best possible improvement in I, i.e. 1I (for s ¼ 1). Eq. (3) therefore yields the mean impact
generated by uniformly improving all criteria in I simultaneously, at which point it may be assumed that all possible levels of
improvement (from sticking to uI until reaching the ideal vector 1I) have the same probability of occurring. The diagonal
from uI to 1I is considered since it has been assumed that the improvements on all criteria are homogeneous.

Let us now introduce the cost in Eq. (3). The cost at the strategic level going from satisfaction profile u to u0 is denoted
cstr(u;u0).

Note that this cost may be correlated with decisive factors that do not necessarily entail monetary considerations, they
might actually be correlated with risk appraisal, temporal requirements, resources availability, etc. In such cases, no relation-
ship whatsoever exists between cost functions cstr(u;u0) and cðc; c0Þ, and cstr(u, u0) ensures an additional degree of freedom in
the improvement design.

Eq. (3) can be generalized by replacing the benefit factor by a benefit to cost ratio:
xIðFÞðuÞ ¼
Z 1

0

Fðð1� sÞuI þ s1I; uNnIÞ � FðuÞ
� �

cstrðu; ðð1� sÞuI þ s1I; uNnIÞÞ
ds ð4Þ
Under the linear assumption cstr(u;u0Þ ¼
P

i2Nðu0i � uiÞuci
str, with uci

str being a unit cost related to criterion i. Hence
cstrðu; ðð1� sÞuI þ s1I;uNnIÞÞ ¼ s

P
i2Ið1� uiÞuci

str. When cstrðu;u0Þ is related to monetary considerations, value
cstrðu; ðð1� sÞuI þ s1I;uNnIÞÞ will be considered as a mean cost for improving u into ðð1� sÞuI þ s1I;uNnIÞ, which is assessed
independently of any particular improvement action. This value can only be produced when the designer’s/operator’s
know-how is available. For example, an experienced designer/operator is assumed to be capable of assessing the cost related
to employee training as a yearly average without precise knowledge of the allocated training actions.



Finally, the subset I� of criteria that maximizes the worth index
FindCoalitionðB;uÞ ¼ Arg max
I2B

xIðFÞðuÞ ð5Þ
indicates the mean satisfaction to cost ratios that it would be most beneficial to improve first.

4. Concepts for improvement recommendations at the operational level

The operational constraints were ignored during the identification of I�. In function FindActionsðA; I�Þ, these operational
constraints are considered, one aims at finding how the designer/operator should modify system c in order to improve
criteria in I�.

Before defining FindActionsðA; I�Þ, the qualitative influence model has to be specified.

4.1. Goals-actions relationships

According to our approach, system improvements are carried out through system improvement actions. The set of actions
is denoted A. In order to improve a subset of criteria, several actions generally need to be performed simultaneously. As there
are some constraints among the actions, some of them cannot be performed together: they are said to be mutually exclusive.
An action plan is a set of actions that can be performed together. Let us begin by specifying the action plan concept.

Definition 1. An action plan ap is a subset of non-exclusive actions, i.e. ap # A. The set of all action plans is denoted AP # 2A.
In general, the set of actions and action plans can be defined independently of the system parameters. However, actions

can be defined directly as modifications of the system parameters.

Example 2. Let us consider the case when two actions are related to each parameter cj: this value can be increased or
decreased. The two actions ‘‘cj increase’’ and ‘‘cj decrease’’ are mutually exclusive. Thus, 2p potential actions are available in
A. Action plans are subsets of actions that concern different parameters.

We are interested in system improvements. Hence, instead of defining the complex transformation T : CAdm ! X that
yields the values on system attributes obtained from a vector c 2 CAdm, experts are asked to provide the relationship between
actions in A and the goals (criteria) in a qualitative way, as is often the case in goal oriented models (e.g. [18,20,19]). We will
use a fuzzy behavioral model. Indeed, as the gathered information originates from the experts’ or managers’ perception
rather than being factually measured, it is intrinsically imprecise [54,37].

Our proposal is based on the pioneering work of [11]. Felix’s fuzzy relationship model introduces two fuzzy subsets to
distinguish actions with positive or negative impacts on performance [13].

Definition 3. Consider a criterion i 2 N and an action a 2 A. Let SiðaÞ be the degree of belief to which action a can positively
affect criterion i. When SiðaÞ > 0, we say that action a satisfies i. Let DiðaÞ be the degree of belief to which action a can
negatively affect criterion i. When DiðaÞ > 0, we say that action a distracts i. In other words Si (resp. Di) can be seen as the
fuzzy subset of actions which support (resp. distract) i. Action a has no influence on i when SiðaÞ ¼ 0 and DiðaÞ ¼ 0. The
influence of an action is either positive, negative or nul: minðSiðaÞ;DiðaÞÞ ¼ 0.

By considering the influence of actions over criteria directly without explicitly going through the system parameters, we
do not need to take constraints among parameter values into account.

From our perspective, this fuzzy model would seem to match the genuine expertise [1] generally available as a result of
transforming u � T into a complex system: the impact of an action on system performance can typically only be described in
a qualitative and non-deterministic manner.

The fuzzy model described in Definition 3 can be represented through a digraph between A and N, such that (see example
in Fig. 2): the arc between action a and criterion i is equal to
Influenceða; iÞ ¼
þSiðaÞ if SiðaÞ > 0
�DiðaÞ if DiðaÞ > 0

�
ð6Þ
4.2. Combining the influences of several actions: reasoning framework

The qualitative action–criteria relationship needs to be extended to action plans. The major difficulty is that for an action
plan ap and a criterion i, several actions in ap may affect i positively and several other actions in ap may affect i negatively.
Then what is the resulting effect of ap on criterion i?

This problem could be solved by asking the experts to provide the degree of belief to which an action plan is supported to
directly affect a criterion. This is not realistic in practice due to the huge size of AP. The estimation of the merged impact of an
action plan naturally depends on the system behavior, as well as on the designer’s/operator’s decisional behavior: a pessi-
mistic attitude (whereby a risk aversion position will focus attention on the most highly negative merged impacts of the



Fig. 2. Digraph of action–criteria relationships.
action plan) vs. an optimistic attitude (whereby risk acceptance will focus attention on the most highly positive merged
impacts). Hence the combination of positive and negative impacts cannot be solved objectively and is equivalent to a prob-
lem of decision under uncertainty.

Consider an action plan ap 2 AP and a criterion i 2 N. We wish to define the resulting effect of ap over i. This will be based
on actions AS

i ðapÞ (resp. AD
i ðapÞ) that have a positive (resp. negative) effect on i:
AS
i ðapÞ ¼ fa 2 ap : SiðaÞ > 0g and AD

i ðapÞ ¼ fa 2 ap : DiðaÞ > 0g ð7Þ
The influence is basically bipolar as we can distinguish between positive (support) and negative (denial) influences. We do
not wish to directly synthesize these contradictory stimuli. Hence we are in the bivariate context, where the resulting effect of
ap over i is first assessed using two separate scales [22]: one for positive stimuli in favor of supporting i, and one for negative
stimuli in favor of denial.

Definition 4. The bivariate scale is denoted by the pair ðSiðapÞ;DiðapÞÞ, where SiðapÞ (resp. DiðapÞ) is the degree to which ap
satisfies (resp. denies) i.

This bivariate scale is for instance used in [19]. SiðapÞ (resp. DiðapÞ) results from an aggregation of numbers
fSiðaÞ; a 2 AS

i ðapÞg (resp. fDiðaÞ; a 2 AD
i ðapÞg). The choice of aggregation functions for the satisfaction/denial parts depends

on the attitude of the designer/operator regarding risk.

Definition 5. Let us give two standard risk behaviors:

� Under Drastic Reasoning Framework (DRF), we have
SDRF
i ðapÞ ¼ min

a2AS
i ðapÞ

SiðaÞ and DDRF
i ðapÞ ¼ max

a2AD
i ðapÞ

DiðaÞ

According to DRF, the lowest belief in a positive impact value is to be compared to the highest belief in a negative impact
value on i. The designer’s/operator’s behavior represents a serious risk aversion and also indicates a pessimistic attitude.
� Under Flexible Reasoning Framework (FRF), we have
SFRF
i ðapÞ ¼ max

a2AS
i ðapÞ

SiðaÞ and DFRF
i ðapÞ ¼ max

a2AD
i ðapÞ

DiðaÞ

According to FRF, the highest belief in a positive impact value is to be compared to the highest belief in a negative impact
value on i. In this instance, the designer’s/operator’s behavior more willingly accepts being exposed to the risk of
committing an estimation error. This framework describes an optimistic attitude.

Other aggregation functions are of course possible, but we will stick to the previous two examples as they represent the
most standard forms. Note that FRF is chosen in [19].

We now need to quantify the degree of belief to which an action plan is expected to improve a subset of criteria in I�.

Definition 6. Consider an action plan ap 2 AP and a criterion i. The resulting degree of belief to which ap should contribute to
the improvement of i is:
siðapÞ ¼
SiðapÞ if SiðapÞ > DiðapÞ
0 else

�
ð8Þ
Note that condition ‘‘SiðapÞ > DiðapÞ’’ can be replaced by a more drastic condition such as ‘‘SiðapÞ > DiðapÞ þ g’’ (where
g > 0 is a threshold). Definition 6 concerns a single criterion but can be extended to any subset of criteria. We will define
the degree of belief sIðapÞ to which ap should improve all criteria in I. Two proposals are put forward.
Definition 7. Consider a subset of criteria I # N and an action plan ap 2 AP. The resulting degree of belief to which ap should
contribute to the improvement of I is



~sIðapÞ ¼ min
i2I

siðapÞ ð9Þ
The previous definition can be enhanced, by requiring no degradation on the remaining criteria N n I.
Definition 8. Consider a subset of criteria I # N and an action plan ap 2 AP. The resulting degree of belief to which ap should
contribute to the improvement of I while not deteriorating the other criteria is
ŝIðapÞ ¼
min

i2I
siðapÞ if 8j 2 N n I; ½SjðapÞ > DjðapÞ or AD

j ðapÞ ¼ ;�

0 else

(
ð10Þ
In other words, ŝIðapÞ > 0 if any criterion in I is improved by ap, whereas no criterion stated in N n I is deterred. For
criterion j in N n I, note that the condition in (10) is fulfilled when AD

j ðapÞ ¼ AS
j ðapÞ ¼ ;.

Note nevertheless that when the vector of criteria satisfaction degrees is Pareto optimal, improving criteria in I will
necessarily give rise to a negative impact with regard to certain other criteria, and then the constraint in equation stated
in (10) cannot be satisfied. For example, in the DRF framework, a slight negative impact can be tolerated for criteria in a
subset I0 # ðN n IÞ and then constraint ½SjðapÞ > DjðapÞ or AD

j ðapÞ ¼ ;� is maintained in Eq. (10) only for criteria in N n ðI [ I0Þ.
Hereafter, sIðapÞ will be equal either to ŝIðapÞ or to ~sIðapÞ.

Definition 9. An action plan ap 2 AP is admissible on I� if sI� ðapÞ > 0. ap is admissible with degree a 2�0;1� if sI� ðapÞP a.
4.3. Aim of function FindActionsðA; I�Þ

Designers/operators focus on solutions with degrees of admissibility at least as high as a threshold a0 and whose cost does
not exceed the budget constraint (budget threshold). Nevertheless, they would naturally prefer the solution with the highest
degree of admissibility at an identical cost; conversely, they would prefer the least costly solutions should the degree of
admissibility be the same. An order of preference on action plans is defined in order to represent this behavior. To develop this
order, let us consider the non-dominated Pareto action plans with respect to these two metrics: degree of admissibility sI� ðapÞ
and operational cost copðapÞ; cop is defined in Section 2.2.2. Since the preferences governing these two metrics lie in opposite
directions, we apply the Pareto order with respect to the couple sI� ðapÞ;�copðapÞ

� �
. We make the following assumptions
a0 > 0; budget > 0; 8a 2 A copðaÞ > 0 ð11Þ
Let us define the Pareto order 	 over action plans admissible of AP as:
ap 	 ap0 () sI� ðapÞ;�copðapÞ
� �

	Pareto sI� ðap0Þ;�copðap0Þ
� �

() ½ðsI� ðapÞ < sI� ðap0ÞÞ and ðcopðapÞ
P copðap0ÞÞ� or ½ðsI� ðapÞ 6 sI� ðap0ÞÞ and ðcopðapÞ > copðap0ÞÞ� ð12Þ
Action plan ap is dominated by action plan ap0 if ap 	 ap0. The search for efficient admissible action plans, with a cost
lower than budget and admissibility greater than a0, can then be stated as:
max
ap2AP:sI� ðapÞPa0 and copðapÞ6budget

ðsI� ðapÞ;�copðapÞÞ ð13Þ
5. Function FindActions: improvement recommendation at the operational level

The objective of this section is to determine a set of admissible action plans at minimum cost and maximum degree of
admissibility. In practice, the Pareto front of solutions for the problem stated in Eq. (13) is computed. This section will also
present a branch-and-bound algorithm with appropriate heuristics in order to efficiently solve this problem [8]. These
heuristics depend on the adopted reasoning framework (DRF or FRF – see Definition 5).

Furthermore, several framework-dependent definitions are to be introduced in order to help explain the algorithm
heuristics.

Definition 10. Let i 2 N
� improvement: for i 2 N n I�, action plan ap improves criterion i when AD
i ðapÞ ¼ ; or SiðapÞ > DiðapÞ. For i 2 I�; ap improves i

when SiðapÞ > DiðapÞ,
� hindrance: action plan ap hinders criterion i if AD

i ðapÞ – ; and SiðapÞ 6 DiðapÞ,
� compensation: action a compensates for hindering actions in action plan ap on criterion i if SiðaÞ > maxa02AD

i ðapÞDiða0Þ,
� restriction: an action a is restrictive if DiðaÞ < a0 for i 2 I� and in case FRF, a does not compensate for any hindering actions

for performances in N n I�. An action a is also restrictive if copðaÞ > budget.



5.1. The general branch and bound principle

The branch and bound algorithm explores the set AP of action plans. We assume here that there is no constraint among
the individual actions such that AP ¼ 2A. Relaxing this assumption would require the use of Constraint Solving Problem (CSP)
techniques. We decided to not consider this option because it would considerably lengthen the paper.

Introducing heuristics into the branch-and-bound algorithm allows selection of a relevant representation to efficiently
derive solutions while cutting irrelevant branches as quickly as possible.

The general branch-and-bound algorithm (SOLVE) (see Algorithm 3) computes efficient admissible action plans by
constructing and returning the Pareto front of solutions (Eq. (13)). The SOLVE function parameters are: B (set of remaining
actions, i.e. potential candidate actions not yet included in the action plan); I� the set of criteria to be first improved; ap (the
action plan under construction, such that ap \ B ¼ ;); and S (the Pareto front of previously known solutions). It is initially
launched as FindActionsðA; I�Þ ¼ SOLVEðA; I�; ;; ;Þ.

According to Algorithm 3, the few lines just after r update the Pareto front of solutions when ap is added. IS_ADMISSIBLE
basically computes ðsI� ðapÞP a0Þ ^ ðcopðapÞ 6 budgetÞ. In the algorithm, we also add the fact that FRF is used to this condi-
tion. Indeed, even if ap is admissible its admissibility degree can be increased by adding some actions to ap under FRF.
CHOOSE introduces heuristics to select and return the action to be chosen at the current node (Section 5.2). Lastly, REDUCE
introduces heuristics to cut branches as quickly as possible by reducing the set of remaining candidate actions (Section 5.3).

5.2. Action selection (CHOOSE)

The purpose of action selection CHOOSEðB; apÞ is to enhance the search by choosing a relevant candidate action capable of
leading to a conclusion (whether positive or negative) as quickly as possible. Heuristics are then used to select such an action
with minimal computations. In DRF, the action selected is the one that generates the most drastic constraints to enable
branch-cutting as quickly as possible. In FRF, supplementary heuristics related to the model specificities are added. An action
selected with these heuristics hinders at least one criterion in N, with as few as possible remaining actions capable of
compensating for this hindrance. In both cases, the selected actions will severely constrain the next selections when added
to ap, hence reducing the search complexity of this branch. More precisely, two sets are introduced.

Definition 11. For a 2 B, set DISða; ap;BÞ ¼ fi 2 N : a 2 AD
i ðBÞ and DiðaÞ > maxðSiðapÞ;DiðapÞÞg, where AD

i ðBÞ is defined in Eq. (7).
DISða; ap;BÞ is the set of criteria such that a acts negatively on i (a 2 AD
i ðBÞ) with a degree greater than that involved in

SiðapÞ and DiðapÞ.
Algorithm 3. Determination of the Pareto front of solutions S.



Lemma 12. For every i 2 DISða; ap;BÞ, condition Siðap [ fagÞ > Diðap [ fagÞ does not hold.
Proof. Let i 2 DISða; ap;BÞ and denote ap0 ¼ ap [ fag. Firstly, as a 2 AD
i ðBÞ, then AD

i ðap0Þ – ; (note that a 2 AD
i ðap0Þ). Secondly,

we have in both frameworks DRF and FRF: Siðap0Þ ¼ SiðapÞ < DiðaÞ ¼maxb2ap0DiðbÞ ¼ Diðap0Þ. Hence Siðap0Þ > Diðap0Þ does not
hold. h
Lemma 13. Let b 2�0;1�; i 2 N, and set IMPði; b; B; apÞ ¼ fa 2 B : a 2 AS
i ðBÞ; SiðaÞP b and SiðapÞ < bg. Let a0 2 B such that

a0 2 AD
i ðBÞ, actions in IMPði;Diða0Þ;B; apÞ can compensate for hindering action a0 when ap cannot guarantee the compensation.
Proof. Obvious. h

The two previous sets in Lemmas 12 and 13 allow us to define, for B and ap:
CoðB; apÞ ¼ fa 2 B : 9i 2 DISða; ap;BÞ s:t: IMPði;DiðaÞ;B; apÞ– ;g

and (where MCo stands for Most Constraining selection)
MCoðB; apÞ ¼ argmin
a2B

min
i2DISða;ap;BÞ

jIMPði;DiðaÞ;B; apÞj
Finally, CHOOSEðB; apÞ returns any element in MCoðB; apÞ.

5.3. Reducing the set of remaining actions (REDUCE)

REDUCE aims to remove ineffective actions from the remaining set of actions. Each time an action is deleted, the search
complexity of the particular branch is halved. REDUCE is based on several iteratively applied elementary reductions that are
mutually exclusive, non-compensable, expensive, Pareto, or else related to the cardinal of ap. Some reductions may depend
on the choice of reasoning framework among DRF or FRF and of synthesis function among ~s and ŝ. To avoid lengthening this
paper, we only present five elementary reductions.

5.3.1. Cardinality reduction

Lemma 14. Let ap be an action plan improving criteria in I�. If japj > jNj, then there exists ap0# ap with jap0j 6 jNj such that
ap 	 ap0.
Proof. For every i 2 N, the action a 2 ap that achieves maxa2apSiðaÞ is denoted aðiÞ.
Let us define J as follows: when ŝ is used, set J ¼ fi 2 N n I� : AS

i ðapÞ– ;g; and when ~s is used, set J ¼ ;. Let
ap0 ¼ faðiÞ : i 2 I� [ Jg. Clearly jap0j 6 jNj and thus copðap0Þ < copðapÞ.

As ap is then admissible for every i 2 I� [ J, every a 2 AS
i ðapÞ, and for propagation models DRF and FRF:

� For DRF:
min
a2AS

i ðap0 Þ
SiðaÞP min

a2AS
i ðapÞ

SiðaÞ > max
a2AD

i ðapÞ
DiðaÞP max

a2AD
i ðap0 Þ

DiðaÞ

� For FRF:
max
a2AS

i ðap0 Þ
SiðaÞ ¼ max

a2AS
i ðapÞ

SiðaÞ > max
a2AD

i ðapÞ
DiðaÞP max

a2AD
i ðap0 Þ

DiðaÞ

When ŝ is used, if i 2 N n ðI� [ JÞ, we have AD
i ðapÞ ¼ ; since ap is admissible and AD

i ðap0Þ ¼ ;. Hence sI� ðap0ÞP sI� ðapÞ in
propagation models DRF and FRF. h

This implies that branches with more than jNj elements are cut.

5.3.2. Locking Action reduction (LA)
Let us define LAðB; apÞ as follows: when ~s is used, we set
LAðB; apÞ ¼ a 2 B : 9i 2 I� s:t: DiðaÞP max
a02B[ap

Siða0Þ
� �
and when ŝ is used, we set
LAðB; apÞ ¼ a 2 B : 9i 2 N s:t: DiðaÞP max
a02B[ap

Siða0Þ
� �



Each locking action in LAðB; apÞ would distract from criteria in N which could be compensated for by any action in B or ap.
Indeed any action plan containing such an action will not be an admissible action plan due to the relations stated in formulas
(9) and (10). Hence the following result is shown.

Lemma 15. There does not exist any ap0# B [ ap with ap # ap0 and LAðB; apÞ \ ap0 – ; which is admissible.
5.3.3. Cost reduction (LC)
Let LCðB; apÞ ¼ fa 2 B : copðap [ fagÞ > budgetg. None of the actions in LCðB; apÞ can be added to ap without exceeding the

maximal allowed cost budget. Hence the following result is shown.

Lemma 16. There does not exist any ap0# B [ ap with ap # ap0 and LCðB; apÞ \ ap0 – ; which is admissible.
5.3.4. Incompatible Admissibility Reduction (INC)
This reduction only applies in framework DRF. Let INCðB; apÞ ¼ fa 2 B : 9i 2 N; 9a0 2 ap s.t. Siða0Þ 6 DiðaÞ or Diða0ÞP SiðaÞg.

Lemma 17. There does not exist any ap0# B [ ap with ap # ap0 and INCðB; apÞ \ ap0 – ; which is admissible.
Proof. Adding a 2 INCðB; apÞ to ap implies that there exists i 2 I� such that

� in the case where there exists a0 2 ap s.t. Siða0Þ 6 DiðaÞ, then SDRF
i ðap \ fagÞ 6 Siða0Þ 6 DiðaÞ 6 DDRF

i ðap \ fagÞ;
� in the case where there exists a0 2 ap s.t. Diða0ÞP SiðaÞ, then SDRF

i ðap \ fagÞ 6 SiðaÞ 6 Diða0Þ 6 DDRF
i ðap \ fagÞ.

In both cases, ~sI� ðap \ fagÞ ¼ 0 and ŝI� ðap \ fagÞ ¼ 0. Under DRF, adding other actions cannot improve sI� . h

5.3.5. Pareto Reduction (PAR)
Under DRF, we define PARDRFðB; ap;SÞ by
ap0 2 S : min
fi2I�=AS

i ðapÞ–;g
SDRF

i ðapÞ < sI� ðap0Þ
!
^ copðapÞP copðap0Þ
� �" #(

_ min
fi2I�=AS

i ðapÞ–;g
SDRF

i ðapÞ ¼ sI� ðap0Þ
!
^ copðapÞ > copðap0Þ
� �" #)
Lemma 18. If PARDRFðB; ap;SÞ – ; then for all ap00# B [ ap where ap 
 ap00 and ap00 is admissible, there exists ap0 2 S such that
ap00 	 ap0.

Proof. Let ap00# B [ ap where ap 
 ap00 and ap00 is admissible. As PARDRFðB; ap;SÞ– ;, there exists ap0 2 S such that:
� ðsI� ðap00Þ6 min
fi2I�=AS

i ðapÞ–;g
SDRF

i ðapÞ< sI� ðap0ÞÞ^ ðcopðap00Þ> copðapÞP copðap0ÞÞ then ðsI� ðap00Þ< sI� ðap0ÞÞ^ ðcopðap00Þ> copðap0ÞÞ

� Or ðsI� ðap00Þ6 min
fi2I�=AS

i ðapÞ–;g
SDRF

i ðapÞ¼ sI� ðap0ÞÞ^ ðcopðap00Þ> copðapÞ> copðap0ÞÞ then ðsI� ðap00Þ6 sI� ðap0ÞÞ^ ðcopðap00Þ> copðap0ÞÞ
In both cases, we have ap00 	 ap0. h

Thus, if PARDRFðB; ap;SÞ – ;, adding any action in B to ap cannot yield a Pareto non-dominated solution.
Pareto reduction in FRF requires a more complex partial order to define PARFRFðB; ap;SÞ but the demonstration is similar.

These heuristics are denoted PARðB; ap;SÞ when the framework is not specified.

5.3.6. REDUCE function
Finally, we have REDUCEðB; apÞ ¼
B n ðLAðB; apÞ [ LCðB; apÞ [ INCðB; apÞÞ if ðjapj 6 jNj ^ PARðB; ap;SÞ ¼ ;Þ
; else

�

5.3.7. Properties of the algorithm

Theorem 19. Whatever the choice of the reasoning framework among DRF or FRF, and of synthesis function among ~s and ŝ,
Algorithm 3 terminates and returns a vector S containing the Pareto non-dominated action plans in the sense of 	, and satisfying
conditions sI� ðapÞP a0 and copðapÞ 6 budget.



Proof. First, condition ðsI� ðapÞP a0Þ ^ ðcopðapÞ 6 budgetÞ is necessarily satisfied for every element in S as it corresponds to
IS_ADMISSIBLE.

The selected order of actions (function CHOOSE) exerts no influence on any of the algorithm’s termination, completeness
and consistency properties.

Termination is obvious as we use a branch and bound algorithm and the size of the search space is finite. Thus we just
have to show that the algorithm does not deter from reaching a better action plan. To demonstrate the non-deterioration, we
just need to prove two proposals:

Assertion 20

Any action plan ap minimal in the sense of the Pareto order on the action plans is necessarily an element of the set of
solutions S.
Proof. Let ap be non-dominated. There are several cases in which the branch leading to ap is cut:

� Assume that ap is never reached because of the IS ADMISSIBLE condition, which cuts the branch that yields ap. This
means that there exists ap0 
 ap such that ap0 is admissible (IS ADMISSIBLEðap0; I�Þ is true). We need to consider the
two frameworks DRF and FRF:
– Under DRF: as ap0 is admissible, we have sI� ðap0ÞP a0 > 0. Hence as ap0 
 ap; sI� ðapÞ 6 sI� ðap0Þ. This holds for both ~s and

ŝ. Moreover, copðapÞ > copðap0Þ (see (11)). Therefore
ðsI� ðap0Þ;�copðap0ÞÞ 	 ðsI� ðapÞ;�copðapÞÞ;

which contradicts the fact that ap is Pareto non-dominated.
– Under FRF, ap cannot be blocked because the IS ADMISSIBLE condition does not prevent us from exploring the sub-

tree.
� Assume that we obtain solution ap which fulfills the IS ADMISSIBLE condition, but in the instructions after r; ap is not

kept. This implies that there exists ap0 2 S such that ap 	 ap0, which contradicts the fact that ap is non-dominated.
� Assume that ap is stored in S, but it is removed from S later (see instruction after r). This means that a new admissible

action plan ap0 dominated ap in the sense of 	, which is again impossible.
� Assume that ap is cut because of the REDUCE function. We are after s.

According to Lemmas 15–17, actions in LAðB; apÞ; LCðB; apÞ and INCðB; apÞ can be removed from B without changing the
Pareto front of solutions.
Moreover, when japjP jNj or PARðB; ap;SÞ– ;, adding any action to ap yields action plans that are necessarily dominated
in the sense of 	 (see Lemmas 14 and 18) and thus cannot belong to the Pareto front of solutions. Hence reductions in the
REDUCE function do not prevent us from obtaining Pareto optimal solutions.

Finally, ap is never cut unless it is stored in S. h
Assertion 21. There is no element in S that dominates another one in S in the sense of 	.
Proof. We have to prove that S only contains elements which are not dominated by another element of S. Algorithm SOLVE
is called recursively. We prove this property by induction on the calls of algorithm SOLVE. First of all, the first time the algo-
rithm is called with S ¼ ;, which clearly satisfies the property. Hence we only need to show that if algorithm
SOLVE(B; I�; ap;S) is called, where S satisfies the property, then S0 that is returned also satisfies the property.

Let us consider a call SOLVE(B; I�; ap;S) where S satisfies the property.

First consider the instructions just after r. Then ap is added to S if there is no ap0 2 S such that ap 	 ap0. In this case, all
elements in S that are dominated by ap are removed. Then S0 is set at either S or ðS [ fapgÞ n fap0 2 S : ap0 	 apg. Thus S0 also
satisfies the property.

S0 can also be changed in the instructions after u. By the induction assumption, as S0 satisfies the property, then S00 also
satisfies the property. We repeat this reasoning for the instruction after v. Hence, S0 ultimately satisfies the property. h

When combining Assertions 20 and 21, the result of the algorithm contains exactly all the non-dominated action plans in the
sense of 	. h The following result provides some conditions under which it is certain that Algorithm 1 produces suc-
cessive improvements (the overall satisfaction cannot decrease).
Corollary 22. Under DRF and ŝ, if, after each iteration of ‘‘GeneralProcess’’ in Algorithm 1, the set S is not empty, then the overall
satisfaction UðTðcÞÞ can decrease over the iterations.

Note that this result is also true for Algorithm 2.



Table 1
Domain of digraphs covered and resolution parameters.

Digraph domain Resolution parameters

jAj jNj %jNNAj %jNNAPj a0 budget

10–200 (step by 5) 5–30 (step by 5) 10–50% (step by 5) 25–60% (random) 0.2–0.9 [1–5] � jNj

For each jAj; jNj, %jNNAj, about 100 digraphs are randomly generated. Then, %jNNAPj is randomly associated with each digraph.
Proof. Whatever the action plan ap 2 S chosen by the user, all criteria in I� are satisfied at least to a degree a0. Under DRF
and ŝ, we are sure that no criterion in N n I� is deteriorated: 8i 2 N n I�; uiðTiðcÞÞP uiðTiðc0ÞÞ and 8i 2 I�; uiðTiðcÞÞ > uiðTiðc0ÞÞ
where c0 is the initial system and c the system associated with the application of ap. Hence, the satisfaction over each
criterion is non-decreasing. By the monotonicity condition on the aggregation function F, the overall satisfaction
UðTðcÞÞ ¼ Fðu1ðT1ðcÞÞ; . . . ;ukðTkðcÞÞ; . . . ;unðTnðcÞÞÞ is non-decreasing from one iteration to the next one:
UðTðcÞÞ > UðTðc0ÞÞ. h
6. Experiments related to the FindActions function efficiency

6.1. Experimental setting and results

Experiments were carried out upon a set of about 156,000 automatically generated problems. Each problem is defined by
a digraph structure. jAj ranges from 10 to 200, and jNj from 5 to 30 in the benchmark domain. Let NNA ¼
fða; iÞ 2 A� N : maxðSiðaÞ;DiðaÞÞ > 0g (arcs with non nul effect) and NNAP ¼ fða; iÞ 2 A� N : SiðaÞ > 0g (arcs with positive
effect). A program was developed to randomly generate digraphs whose parameters are: jAj; jNj, the percentage of NNA,
the percentage of NNAP among NNA. Finally, several values of a0 and allocated budget were also included in the tests. The
range values for all of these parameters are provided in Table 1. The cost of an action a was defined as the number of positive
arcs that connect it to performances. A minimal influence degree threshold was set at 0:2.

Each generated digraph was then solved for both the DRF and FRF. Note that the aim of these experiments was to test the
algorithm’s efficiency instead of the implementation optimization which is beyond the scope of this paper (see perspectives
of the section). Consequently, the evaluation of the complexity of the resolution was done by counting the number of times
the CHOOSE method is called (number of explored nodes) instead of the execution time which depends on the implemen-
tation optimization. This provides an estimation of the speed of the algorithm which is independent of the CPU speed. Let ntc
denote this number, which is to be compared to a maximum of 2jAjþ1 which is the complexity of the problem to be solved (see
Section 5.1). For a given value limit, let unsðlimitÞ denote the number of unsolved problems1 after at most limit calls of the
CHOOSE method, and nsðlimitÞ the number of problems among unsðlimitÞwhere no solution (i.e. a0� admissible action plan with
cost lower than budget) has been found after limit calls of the CHOOSE method.

Remark 23. On a single CPU, ntc ¼ 106 explorations are performed in less than 10 min for the domain of problems which is
covered by the test.

First we observe that the algorithm, when searching for the Pareto front of solutions, gives good results especially for DRF.
Indeed, 85% of the digraphs are solved with ntc < 103, and 97:4% are solved with ntc < 106 (i.e. only 4055 problems among
156,000 remain unsolved: unsð106Þ ¼ 4055). Finally, only 3291ð2:1%Þ exceed the limit 2 � 106 : unsð2 � 106Þ ¼ 3291 (see
Table 2). The results are less relevant with FRF but the algorithm is still efficient: 66% are solved with ntc < 103 and only
2957 among 70,651 (4.2%) problems exceed the limit 2 � 106 : unsð2 � 106Þ ¼ 2957. Relaxation of constraints due to the
FRF specificities mainly explain these results. This relaxation makes preliminary reductions inefficient and other reductions
arise late in the search tree (see Table 3 for more details concerning the preliminary reductions).

If we only focus on finding one solution2 instead of searching for the Pareto front, the results are much better for both
frameworks (See Table 2). Note that for DRF, only 22 among 156,000 (0:015%) problems exceed the limit 2 � 106:
nsð2 � 106Þ ¼ 22 and 268 among 70651 (0:3%) for FRF. This also means that the number of problems without solution that
remain unsolved is very low since these values (22 resp. 268) are the upper limits respectively for DRF (resp. FRF). Thus most
of the remaining unsolved problems have solutions (more than 99:3% resp. 90%). In the following, we will focus on these.

In Figs. 3–6, several functions are plotted: choose is mean(ntc), sol, min and max are respectively mean, min and max

(number of explored solutions), comb is mean
PminðjNj;jBjÞ

i¼0
jBj
i

� 	� 	
(where

PminðjNj;jBjÞ
i¼0

jBj
i

� 	
is the upper bound of ntc when

considering that the cardinality of an action plan shall not exceed jNj according to the Cardinality reduction – see Sec-
tion 5.3.1), red is mean(number of reductions) and canonic is mean(2jBjþ1). These figures use logarithmic scale (base 2). Figs. 3
and 4 show that choose and sol have approximately the same behavior. By examining them in further detail, we find a
1 Problems for which the algorithm neither proves their inconsistency nor finds the whole Pareto front of solutions after ntc calls to CHOOSE.
2 The algorithm stops when the first admissible solution is found.



Table 2
Pareto resolution and finding one solution speed

Nb Exp limit 0 102 103 104 105 106 2 � 106

DRF 156,000 uns 49,848 31,682 23,439 14,818 7079 4055 3291
ns 49,848 3056 1590 930 607 435 22

FRF 70,651 uns 39,713 31,593 23,889 15,336 8340 3781 2957
ns 39,713 12,522 10,129 6724 4011 2222 268

Table 3
Slope of linear relations.

a0 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

DRF 0:28 0:63 0:77 0:85 0:92 0:93 0:96 0:98
FRF 0:29 0:31 0:35 0:39 0:48 0:52 0:63 0:80

Values obtained for a0 ¼ 0:2 apply for any a0 < 0:2 as it is the minimal influence degree of each positive arc of the experiments.

Fig. 4. Behaviors of choose, sol, min, max, comb, red and canonic related to the number of actions for FRF.

Fig. 3. Behaviors of choose, sol, min, max, comb, red and canonic related to the number of actions for DRF.



Fig. 5. Behaviors of choose, sol, min, max, comb, red and canonic related to the number of performances for DRF.

Fig. 6. Behaviors of choose, sol, min, max, comb, red and canonic related to the number of performances for FRF.
polynomial relation between them such that choose 6 ðsolÞk (See Figs. 7 and 8). The average value for k is 1:8 (resp. 1:9) for
DRF (resp. FRF).

Remark 24. We limit the number of performances jNj to a maximum of 30 because, as shown in Figs. 5 and 6, the average
complexity (choose) of problems decreases when the number of performances increases.

Now, let us examine the efficiency of the algorithm and its heuristics in greater detail. We can distinguish three kinds of
reductions:

� canonical or preliminary reductions: these preliminary reductions (Locking Actions and Restricting Actions reductions) are
performed before any exploration of the search space and allows us to reduce the problem into its canonical form, which
depends on a0. Several a0 were tested for both frameworks and in each case the mean number of eliminated actions had a
linear relation with the initial number of actions. Table 3 shows the slope of the linear relation for each a0 (mean percent-
age of eliminated actions). These reductions may be very significant: e.g. in DRF, a mean of 63% of the actions are elim-
inated for a0 ¼ 0:3. This suppresses 2jAj � 20:37�jAj nodes (about 1:6 � 1060 for jAj ¼ 200 with a canonical problem size
reduced to about 1:9 � 1022). For this reason, the efficiency of the heuristics applied after this step are related to the size
of the canonical problem (see Figs. 3–6),



Fig. 7. Relationship between the number of choose and the number of found solutions for DRF.

Fig. 8. Relationship between the number of choose and the number of found solutions for FRF.
� structural reductions: the only one is Cardinality Reductions. It is only linked to the size of the problem (jAj and jNj). It will

reduce the amount of the search space to be explored to
PminðjNj;jAjÞ

i¼0
jAj
i

� 	
instead of 2jAj. Cardinality Reductions are applied

during the exploration of the search space and limits the exploration depth. In fact, they are usually not needed during the
search because other reductions have already cut the branches before reaching N. Figs. 9 and 10 show its impact on the
reduction of the search space: it provides the mean number of reductions as a function of jAj,
� semantic reductions: they consist of Cost, Locking Actions, Incompatible Actions and Pareto reductions. Figs. 9 and 10 show

their impact on reducing the search space.

At first sight, Incompatible Actions and Locking Actions seem to be the main contributors to the reductions. In fact, they act
as the garbage collector of the algorithm: when complex deductions have suppressed or chosen an action, then they reduce
the problem. Thus reductions are mostly attributed to them whereas they are not the genuine initiators. In addition Cost,
Cardinality and Pareto reductions occur later during the exploration which limits their contributions.

6.2. Experiment summary

About 100 days of equivalent single CPU computing time were required for the experiments described in this section (30
real days for 3 CPUs). The experiments covered the entire (resp. half) digraph domain of the experiments for DRF (resp. FRF)



Fig. 9. Mean number of reductions w.r.t. jAj for DRF.

Fig. 10. Mean number of reductions w.r.t. jAj for FRF.
in accordance with the parameter variations in Table 1. 156,000 digraphs for DRF and 70,651 for FRF, i.e. more than 225,000
were solved. These experiments highlighted the efficiency of the algorithm. Indeed, it did not manage to find at least one
solution after 2 � 106 iterations (ntc) for only ð22þ268Þ

226;651 ¼ 1:28 � 10�3. Furthermore, for most of these problems, the whole set

of solutions (the Pareto front) was found in less than 2 � 106 iterations. This is to be compared to the real complexity of
the problem which initially ranges from 250 � 1015 for the smallest problems to 2200 � 1060 for the biggest ones.

Several directions may be considered to further enhance the algorithm’s performances, as detailed in the final conclusion.
7. Case study

Our case study concerns the adaptive management of a manufacturing plant. Strategic improvement priorities evolve
over time, depending on the competitive context, and new improvement actions must be continuously planned to compen-
sate for contextual disturbances. This illustrative example has not yet been conducted in a real enterprise setting. It may thus
have a lack of some industrial constraints. For example, certain constraint relationships between actions are concealed in the
model because they would require further knowledge regarding industrial improvement methods.

The improvement actions specified in this case study may be improvement methods (e.g. Kanban) or strategic schedules
(e.g. staff training). This ambiguity could be criticized from a purely industrial engineering standpoint, although a full under-
standing of this illustrative example does not require any further attention.



Table 4
Influence matrix.

Improvement method SC TD PP RP PQ

Kanban �0:5 þ0:5 þ0:9 þ0:6 þ0:2
SMED �0:5 þ0:8 0: þ0:7 þ0:3
POK þ0:5 þ0:2 �0:3 �0:4 þ0:6
6R �0:2 þ0:5 �0:2 0: þ0:8
TQM þ0:1 �0:3 �0:2 0: þ0:9
TPM 0: þ0:8 þ0:3 þ0:4 0:

SRM þ0:6 þ0:7 �0:4 þ0:7 0:
PR �0:8 0: þ0:9 0: �0:5
ST þ0:9 0: �0:6 þ0:5 þ0:7
TP þ0:3 þ0:2 �0:2 �0:3 þ0:8
CNP 0: �0:3 �0:5 �0:4 þ0:8
The company’s overall objective is to increase customer satisfaction. On the one hand, four criteria are established by the
company to assess its overall satisfaction: RP: Product Range, PP: Product Pricing, PQ: Product Quality, and TD: Delivery Time;
these are then complemented by an internal criterion: SC: Social Climate. On the other hand, actions involved in the relation-
ships with such criteria are possible, which may correspond to implementing industrial performance improvement methods.
First, six classical improvement methods will be examined: Kanban (Kanban is related to lean and just-in-time production),
SMED (Single-Minute Exchange of Die provides a rapid and efficient approach to convert a manufacturing process from pro-
ducing the current product to producing the next product), Poka-Yoke [35] (denoted POK – a Poka-Yoke is any mechanism
within a lean manufacturing process that helps an equipment operator avoid mistakes; it aims to eliminate product defects
by preventing, correcting or signaling human errors as they occur), Six Sigma (denoted 6R – Six Sigma seeks to improve the
quality of process outputs by identifying and removing the causes of defects and minimizing variability in manufacturing
and business processes), TQM (Total Quality Management is a set of management practices introduced throughout the orga-
nization and geared to ensuring that the organization consistently meets or exceeds the customer requirements), and TPM
(Total Predictive Maintenance is a new way of looking at maintenance, according to a proactive approach that is essentially
aimed at preventing any slack before it occurs). Strategic schedules can then be envisaged: SRM (supplier relationship man-
agement), PR (partial relocation in search of less expensive labor), ST (staff training), TP (traceability policy), and CNP (respect
of standards and conformity with new policies).

These six industrial improvement methods and five strategic schedules define the set of actions (jAj ¼ 11) in our frame-
work. They may be combined with design action plans, as proposed in Section 4 to improve the satisfaction of the industrial
system. In this case study, it is assumed that these actions are not mutually exclusive and that there is no constraint regard-
ing their joint application, their respective response time and precedence temporal rules: they may be carried out indepen-
dently of one another to improve the criteria. This assumption might be discussed from an operational standpoint but would
induce further difficulties in our approach. Indeed, additional constraints would merely reduce the combinatorial of action
plan computation on one hand, whereas additional criteria could be introduced s.t. ‘‘time to produce the effect’’ to take tem-
poral requirements into account on the other hand. In our framework, it is assumed that each improvement method or stra-
tegic schedule may be associated with an industrial system parameter but it is not necessary to specify this connection.

Table 4 provides the influence Influenceða; iÞ of actions over criteria (see (6)). As an example, action PR should probably
have a positive impact on PP, whereas it should clearly have a negative impact on SC within the company.

Let us suppose that the company’s overall satisfaction is defined as the aggregation of the individual satisfaction degrees
with respect to the five criteria (see Section 2.1), where F is a Choquet integral aggregation function [23]. The family of
Choquet integrals provides aggregation functions that accommodate both the relative weighting of criteria and their
interactions; it covers a wide range of preference models. In this application, we consider a particular case of Choquet
integrals, based on the so-called 2-additive measure [26,21]: according to this simplified model, only interactions by pairs
of criteria are considered. The 2-additive Choquet integral can then be expressed for an element ðy1; . . . ; ynÞ 2 Rn interpret-
able form as follows [36]:
CIðy1; . . . ; ynÞ ¼
Xn

i¼1

mi � yi �
1
2

X
i>j

Iij � jyi � yjj
with the property that (ðmi � 1
2

P
i–jjIijjÞP 0) and where the mi are the Shapley indices, representing the importance of each

criterion relative to all the others, where
Pn

j¼1m1 ¼ 1; Iij denotes the interactions between pairs of criteria ði; jÞ with values
contained in the interval ½�1;1�. A value 1 indicates full complementarity between the two criteria (which are expected
to be simultaneously satisfied), a value of �1 indicates full redundancy, and a null value means that the criteria are
independent.

Table 5 lists the company’s initial vector of satisfaction degrees uðTðc0ÞÞ, along with the Shapley index of each criterion.
The approximate average cost required to improve the satisfaction degree from 0 to 1 (uci

str) for each criterion is also pro-
vided in Table 5. The interactions between criteria are given in Table 6. In the context relative to uðTðc0ÞÞ, the preference



Table 5
Weights, costs and initial satisfaction degrees.

Indicators Shapley index(v i) uci
str uðTðc0ÞÞ

1 Social Climate (SC) 0.10 1000k€ 0.7
2 Delivery Time (TD) 0.10 3000k€ 0.8
3 Product Pricing (PP) 0.25 4000k€ 0.4
4 Product Range (RP) 0.05 2000k€ 0.7
5 Product Quality (PQ) 0.50 4000k€ 0.4

Table 6
Interaction coefficients.

Improvement method SC TD PP RP PQ

SC 0. 0. 0. 0. 0.
TD 0. 0. 0. 0:05 0:1
PP 0. 0. 0. 0:05 0:45
RP 0. 0:05 0:05 0. 0.
PQ 0. 0:1 0:45 0. 0.

Table 7
xIðCIÞðuðTðc0ÞÞÞ for several coalitions I.

I xIðCIÞðuðTðc0ÞÞÞ

fPP; PQg 1:0137E�4
fSC; PP; PQg 1:0129E�4
fSCg 1E�4

Table 8
Pareto front for all possible choices among DRF/FRF and ~sI� ðapÞ/ŝI� ðapÞ. For each Pareto set, we show
in brackets the vector ðsI� ðapÞ;�copðapÞÞ.

DRF FRF

~sI� ðapÞ {Kanban} ð0:2;�1Þ {Kanban} ð0:2;�1Þ
{TQM,PR} ð0:9;�2Þ {TQM,PR} ð0:9;�2Þ

{Kanban,TQM} ð0:9;�2Þ

ŝI� ðapÞ {PR,ST} ð0:7;�2Þ {PR,ST} ð0:7;�2Þ
{Kanban,ST} ð0:7;�2Þ
{Kanban,TQM,SRM} ð0:9;�3Þ
{Kanban,TQM,ST} ð0:9;�3Þ
model embedded in the Choquet integral could be synthesized with a rule of the following type: the company pays special
attention to quality and product pricing policies, yet these policies must be accompanied by adequate services relative to the
product range and delivery time in order to be truly attractive (positive interactions). Moreover, the company must preserve
its social climate (independence). In this illustrative example, we assume that all actions yield the same cost, say copðaÞ ¼ 1
for all a 2 A. We assume that the decision maker’s expectation is Umin ¼ 0:85. Moreover, a0 ¼ 0:2 and budget ¼ 5.

Let us look at the first two iterations of Algorithm 1.
Iteration 1 starting from c0:

� uðTðc0ÞÞ ¼ ð0:7;0:8;0:4;0:7;0:4Þ and thus UðTðc0ÞÞ ¼ CIðuðTðc0ÞÞÞ ¼ 0:454. As UðTðc0ÞÞ < Umin, we need to find a suitable
action plan to improve the satisfaction degrees uiðTiðc0ÞÞ.
� FindCoalitionð2N;uðTðc0ÞÞÞ: For profile uðTðc0ÞÞ, the coalition on which xIðCIÞðuðTðc0ÞÞÞ is the largest is fPP; PQg (cf.

Table 7). This result is completely natural as these two criteria have the worst scores and also the greatest importance.
Moreover, there is a strong positive interaction among them. Hence, it is more rewarding to improve both PP and PQ
rather than any of them individually (xfPPgðCIÞðuðTðc0ÞÞÞ ¼ 1:058E�5 and xfPQgðCIÞðuðTðc0ÞÞÞ ¼ 7:967E�5). The recom-
mendation to improve fPP; PQg is just ahead of that for SC alone because of the relative costs of improving PP and PQ .
� FindActionsðA; I�Þwith I� ¼ fPP; PQg. The results of the algorithm SOLVE (Algorithm 3) are presented in Table 8 for all pos-

sible choices among DRF vs. FRF and ~s vs. ŝ. Assume that the decision maker chooses to implement TQM,PR, which is sup-
posed to improve the impact on PP; PQ , but slightly decrease the satisfaction on SC; TD.



Table 9
xIðCIÞðuðTðc1ÞÞÞ for several coalitions I.

I xIðCIÞðuðTðc1ÞÞÞ

fSCg 1E�4
fSC; PP; PQg 8.75E�5
fPP; PQg 8.4375E�5
Iteration 2 starting from c1:

� uðTðc1ÞÞ ¼ ð0:6;0:7;0:8;0:7;0:8Þ and thus UðTðc1ÞÞ ¼ CIðuðTðc1ÞÞÞ ¼ 0:7575. As UðTðc1ÞÞ < Umin, we need to find a suitable
action plan to improve the satisfaction degrees uiðTiðc1ÞÞ.
� FindCoalitionð2N;uðTðc1ÞÞÞ: xIðCIÞðuðTðc1ÞÞÞ is maximal for SC (see Table 9).
� FindActionsðA; I�Þwith I� ¼ fSCg. This time, the decision maker decides to use DRF and ŝ (he does not want any decrease in

satisfaction on the criteria). The application of algorithm SOLVE gives Kanban,ST (with ð0:9;�2Þ) and PR,ST (with
ð0:9;�2Þ).

Once the improvement becomes more complex, i.e. greater number of criteria to be improved simultaneously, it becomes
obvious that the Optimistic Attitude offers a broader range of admissible solutions. Furthermore, these solutions are consid-
ered with higher degrees of admissibility in the latter case.
8. Related works

As described in Section 2, two challenges arise when designing a system improvement: at the strategic level, where
changes in system outputs would be expected to bring significant improvements, and at the operational level, where system
parameter adjustments should be carried out in order to achieve the expected improvement.

In the Industrial Engineering literature, industrial performance management generates a considerable body of work rely-
ing on preference models. A Performance Measurement System (PMS) consists of a multi-criteria instrument for informing
and supporting decision-makers on diagnosis and improvement activities [4,7,42,32]. From a global standpoint, a PMS is a
multi-criteria instrument for informing decision-makers about a variety of different things, e.g. the performance level, the
reasons for poor or good performance, and the criteria for which improvement is required. A PMS consists of a set of perfor-
mance expressions to be consistently organized with respect to the company’s objectives. For instance, the objectives/per-
formances of the manufacturing workshops contribute to the objectives/performances of the manufacturing plants, which in
turn contribute to the objectives/performances of the company [4].

Given its nature, a PMS thus requires multi-criteria methods [50]. It solely focuses on strategic management consider-
ations and goal-based reasoning. Hence, an alternative standpoint can be found in the Industrial Engineering literature. Felix
criticized the way preference models were established for the purpose of designing improvement projects [11]. According to
his mindset, a preference model must capture the cooperative or competitive nature of goals.

Another thorny issue encountered when designing a complex system improvement pertains to the transformation that
provides expected improvements relative to the system goals obtained from an input parameter vector.

The qualitative model describing relationships between input parameters and goals can be represented by a causal
digraph [39]. Many causality definitions are provided in the literature which generally consider two concepts of causality
that can occur in physical systems: dynamical causality and instantaneous coupling [2]. A vast body of literature exists
on the use of causal digraphs to describe oriented relationships between inputs (e.g. input parameters) and goals within
complex systems [14]. For example, [14] proposes a Bayesian network to define the risk factors and their causal relation-
ships, and then perform security vulnerability propagation analysis in information system security, to determine the prop-
agation paths with the highest probability and the greatest estimated risk value. These relationships constitute relevant
models for both cognitive and explanatory purposes. Cognitive Maps (CM) offer one such trend [45]. Because of their
user-friendly semantics, qualitative causal digraphs appear to be appropriate models for capturing the knowledge available
pertaining to the complex input parameters-to-goals transformation in industrial settings.

The general action concept may be preferred to the parameter adjustment concept in the literature. The influence asso-
ciated with an arc thus corresponds to the notion that actions either support or hinder the achievement of a goal. The purely
qualitative representation of action–goal relationships is proposed in [39]. For cases when the influence of actions can be
more accurately characterized, a fuzzy relationship model has been proposed by Felix [11,12].

The next issue to be addressed pertains to how the influences of actions on a specific goal are combined in an imprecise
and/or uncertain context. Published studies on this issue can be found in Requirements Engineering [35] and Software Engi-
neering [20,19]. In these goal-driven models, the relation derived between an action a and a goal i may be expressed by
degrees of satisfaction and denial for a given goal may be chosen in a qualitative setting [9,19,20]. When several actions
for goal i exist in the digraph, the overall degree of satisfaction (resp. denial) for i is equivalent to the conjunction of degrees
of satisfaction (resp. the disjunction of degrees of denial proof) of the goal’s previous actions in the digraph. This notion is



close to those presented in [40,39], whose authors combined this goal-driven representation with Felix’s goal relationship
model [11,12].

Other works in the field of Model-driven Engineering also require a model of the qualitative impacts between actions on
parameters and system goals, e.g. the Dynamic Adaptive Systems (DAS) community [18]. Since many systems need to be
adapted to an evolving context, Model-driven Engineering approaches are aimed at describing models relative to both their
design time and runtime, thus providing possible DAS configurations. In [17,18], a Domain-Specific Modeling Language
(DSML) has been proposed to represent variability in a system. This language is more general than our representation of
all potential actions. The main objective in all of these works can be summarized as the search for an adequate parameter
configuration that improves the level of satisfaction of a set of goals, possibly prioritized or interacting, whenever the known
relationships between actions and goals are imprecise impacts or uncertain influences.

Our approach differs from others existing approaches in the following way. First, it may be confusing to associate pref-
erential interactions between goals and behavioral influences between actions and goals from a semantic standpoint. This
approach may result in misleading interpretations as regards the improvement project. Secondly, it may be simpler in prac-
tice to break down the improvement process into steps and then distinguish preferential goal-based interactions and action–
goal relationships when the system is overly complex. The formal model presented in Section 2 illustrates this ‘‘will vs. act’’
breakdown and supports the viewpoint defended in this paper.
9. Conclusion

This paper proposes a trade-off between managerial and implementation aspects of industrial improvements. The formal
model detailed in Section 2 distinguishes which choices during the design of an improvement project depend on the oper-
ational constraints of the required system from choices related to the designer’s/operator’s strategic preferences. Based on
this framework, the other sections were dedicated to mathematically supporting the search for an efficient improvement, as
required in a complex system.

The MAUT model enables us to synthesize managerial preferences with respect to the criteria to be improved first. Man-
agerial preferences have been recorded in an analytical form that facilitates the search for strategic improvements relative to
optimization problems, which therefore provides a powerful artifact for recording overall company satisfaction and deriving
a rationale from a managerial perspective. The MAUT model thus helps identify the way in which a system should appro-
priately evolve in order to improve its satisfactions to the greatest extent possible. The preference model is then comple-
mented by other models that take the operational context into account. More specifically, a model of relationships
between the system’s assessment criteria and its input parameters is needed to successfully complete the improvement
implementation component. Our paper thus proposed a fuzzy model in Section 4. The fuzzy digraph not only captures
the system’s behavioral constraints, but it also includes the step of interpreting system attributes in terms of satisfaction
degrees. It must not be considered therefore as a classical behavioral model of a system since its outputs depend on the
designer’s/operator’s risk adversity and his optimistic vs. pessimistic behavior regarding the impacts of actions he intends
to carry out in order to achieve the expected satisfaction. Subjectivity was thus introduced in the behavioral model.

It has also been explained herein how both models must be used in an iterative procedure to design an efficient system
improvement: qualitative knowledge about the system prevents assessing the precise impacts of improvement actions in a
deterministic manner. The iterative improvement process is thus supported by a mathematical model, in addition to a soft-
ware tool that allows testing of our approach on an industrial case study.

In conclusion, the way in which these models are jointly used within our entire design procedure was intended to
show that both models should be used in tandem in order to address managerial and implementation issues involved
in an improvement project. From a modeling standpoint, this framework allows standardization of the formalisms of a
large body of work on complex system control or improvements stemming from many communities, such as goal-driven
engineering, industrial engineering and adaptive systems. From a pragmatic perspective, the challenge herein consists of
developing a consensual transition from motivation to action, between managerial decisions and operational capabilities.
As mentioned previously, the notion beyond this framework is that in any improvement project, executive managers are
seeking the best for their companies, while operatives are doing their best. Meeting this challenge was the basis of our
proposal.

Concerning the experiments, several directions may be considered to further enhance the algorithm’s performances. First,
we aim at introducing new heuristics to improve the results and reduce the number of unsolved problems, especially for FRF
(e.g. Pareto solutions obtained from DRF could be used to initialise the FRF resolution). Then we intend to work on optimi-
zation of the implementation. The ongoing complexity of the algorithm is linear in space3 OðjAj � jNjÞ but quadratic in time for
each call to CHOOSE or REDUCE OðjAj2 � jNjÞ. This means that its time complexity is about OðjAj2 � jNjÞ � ntc. Our studies on the
algorithm show that it could be reduced in time to OðjAj � jNjÞ � ntc by preprocessing and sorting information of the digraph
(Actions, Arcs and Criteria). This one shot preprocessing could be done in OðjAj2 � jNjÞ in time and space. This should signifi-
cantly enhance the resolution time: instead of about 10 min to perform ntc ¼ 106, 5 s would be sufficient with the same CPU.4
3 When jAj > jNj.
4 But will make implementation much more complex.



Appendix A. Main notations
Variable
 Definition
c ¼ ðc1; . . . ; cpÞ 2 C
 Input parameters configuration of the system

C
 Set of all possible configurations

CAdm # C
 Set of all feasible configurations

X1; . . . ;Xn
 Set of attributes (observable outputs) of the system

X ¼ X1 � � � � � Xn
 Set of alternatives, described by one value for each attribute

T : CAdm ! X
 Transformation that yields the values on system’s attributes obtained from a configuration

TðcÞ ¼ ðT1ðcÞ; . . . ; TnðcÞÞ
xi ¼ TiðcÞ 2 Xi
 Impact of configuration c on attribute i

N ¼ f1; . . . ;ng
 Set of n criteria

ui : Xi ! ½0;1�
 Utility function related to attribute i

uiðxiÞ
 The extent to which the goal associated with criterion i is satisfied by xi
F : ½0;1�n ! ½0;1�
 Aggregation function

UðxÞ ¼ UðTðcÞÞ
 Aggregated utility of configuration c (overall satisfaction of configuration c)

UðxÞ ¼ uðTðcÞÞ
uðTðcÞÞ 2 ½0::1�n
 Vector of the satisfaction degrees on the criteria

I; I�# N
 Subsets of criteria on which an alternative needs to be improved

xIðFÞðuðTðcÞÞ
 Worth index quantifying the worth for uðTðcÞÞ to be improved in criteria among I subject to

the evaluation function F

A
 Set of valid actions (e.g. increasing a parameter’s value)

a 2 A
 Elementary improvement action
AP # 2A; ap
 Set of action plans; one action plan (a subset of actions)
SiðaÞ;DiðaÞ; a 2 A
 Degree of belief to which a can positively (resp. negatively) affect criterion i

DRF
 Drastic Reasoning Framework

FRF
 Flexible Reasoning Framework

siðapÞ; sIðapÞ
 Degree of belief to which ap should contribute to the improvement of i (resp. I)

copðaÞ; copðapÞ
 Cost of action or action plan

a
 Admissibility degree (expected degree of belief)

LA
 Locking Actions

INC
 Incompatible Actions

ntc
 Number of times the CHOOSE method is called
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