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Abstract—In this paper, we present a novel algorithm for The simplest piecewise linear function is either a convex
piecewise linear regression which can learn continuous aseV  or a concave piecewise linear function which is represented
as discontinuous piecewise linear functions. The main |de$ as a maximum or minimum of affine functions. A generic
to repeatedly partition the data and learn a liner model in . ise i ion functi b tead
each partition. While a simple algorithm incorporating thi s idea piecewise finear regression unc_ lon C_an _e represer_1 as
does not work well, an interesting modification results in a god Sum of these convex/concave piecewise linear functiohs [7]
algorithm. The proposed algorithm is similar in spirit to k-means [8], [9].
clustering algorithm. We show that our algorithm can also be |n this paper we present a novel method of learning piece-
viewed as an EM algorithm for maximum likelihood estimation of wise linear regression functions. In contrast to all thestng

parameters under a reasonable probability model. We empigally thod h i ble of | ing di i
demonstrate the effectiveness of our approach by comparings methoas, our approach IS capable of learning discontinuous

performance with the state of art regression learning algoithms ~ functions also. We show, through empirical studies, that th
on some real world datasets. algorithm is attractive in comparison to the SVR approach as

Index Terms—Piecewise Linear, Regression, Mixture Models, well as the hinge hy.perpl.anes method which i_S among the best

Expectation Maximization, Learning. algorithms for learning piecewise linear functions.
Existing approaches for piecewise linear regression iegrn
can be broadly classified into two classes. In the first set
. INTRODUCTION of approaches one assumes a specific form for the function
and estimates the parameters. Form of a regression function
thn be fixed by fixing the number of hyperplanes and fixing
the way these hyperplanes are combined to approximate the
regression surface. In the second set of approaches, time for
of the regression function is not fixed apriori.

In fixed structure approaches we search over a parametrized
.ﬁfﬁily of piecewise linear regression functions and the pa-
11 o1 1 - Mneters are learnt by solving an optimization problem to,
problems [1], [2], [3], [4], [3]. In the least squares appzba typically, minimize the sum of the squared errors. Some ex-

nonlinear regression functions can be leamt by using us thles of such methods are mixture of experts and hierachic
specified fixed nonlinear mapping of feature vectors fromixture of experts[10],[11],T12] models

original space to some suitable high dimensional spacegiou In the set of approaches where no fixed structure is assumed,

this could be computationally expensive. In support Vea?érgression tree[13], [14] is the most widely used method.

regression (S.VR)’ kern_eI functions are _used for _non_hr_1eg regression tree is built by binary or multivariate recuesi
problems. Using a nonlinear kernel function, SVR implicitl artitioning in a greedy fashion. Regression trees spht th

transforms the examples to some high dimensional space qogd .o space at every node in such a way that fitting a

finds aSICEaL regrelssmn funcpor}:l in the dhlgh dlmﬁnstlocr;. dg}ar regression function to each child node will minimize
space. as a large margin flavor and has well SUdigl, ¢, m of squared errors. This splitting or partitioning is

perf?rm?nce ?u;rarlt(etﬁs. 'F‘ .gelnferatl, SVR solfuthn 'S Rk applied to each of the child nodes. The process corgtinue
easily Interpretable in the original teature space for " until the number of data points at a node reaches a user-

problgms. ) ) i specified minimum size or the error becomes smaller than
. A _d|fferent approach to learning a npnlmear rggressflormfunsome tolerance limit. In contrast to decision trees wheaé le
tion is to approximate the target function by a p|e<_:eW|sedm nodes are assigned class labels, leaf nodes in regressam tr
function. Piecewise linear approach for regression proble 5.0 5qqaciated with linear regression models. Most of the

provides better understanding of the behavior of the regyas orithms for learning regression trees are greedy inreatu

: L |
surface in the original feature space as compared to tEé)any node of the tree, once a hyperplane is learnt to sit th

kernel-based approach of SVR. In piecewise linear appmer\‘eature space, it can not be altered by any of its child nodes.

the feature space is partitioned into disjoint regions & fry,e greedy nature of the method can result in convergence to
every partition a linear regression function is learnt. Gloal a suboptimal solution

here is to simultaneously gstimate.the optima! partitiond a A more refined regression tree approachhisging hyper-
linear mo.del for_each partition. This problem is hard and Elane method [7], [15] which overcomes several drawbacks
computationally intractable [6]. of regression tree approach. A hinge function is defined
, _ as maximum or minimum of two affine functions![7]. In
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number of hinge functions are not fixagriori. The algorithm the partitions and the corresponding linear models. Thioug
starts with fitting a hinge function on the training data gdime empirical studies we show that this algorithm is very effec-
hinge finding algorithm[[7]. Then, residual error is caldath tive for learning piecewise linear regression surfaces i&nd
for every example and based on this a new hinge functicompares favorably with other state-of-art regressiorction
may be added to the model (unless we reach the maximilgarning methods.
allowed number of hinges). Every time a new hinge function The rest of the paper is organized as follows. In Section
is added, its parameters are found by fitting the residuat.erfll] we discuss K -plane regression algorithm, its drawbacks
This algorithm overcomes the greedy nature of regressiand possible reasons behind them. We then propose modified
tree approach by providing a mechanism for re-estimation &f-plane regression algorithm in Sectifn] Ill. We also show
parameters of each of the earlier hinge function whenevettat modified K-plane regression algorithm monotonically
new hinge is added. Overall, hinge hyperplanes algoritles tr decreases the error function after every iteration. IniSect
to learn an optimal regression tree, given the training.dataVl we show the equivalence of our algorithm with an EM
A different greedy approach for piecewise linear regresigorithm in limiting case. Experimental results are given
sion learning isbounded error approachlg], [17], [18]. In Section\. We conclude the paper in Section VI.
bounded error approaches, for a given bound>( 0) on
the tolerable error, the goal is to learn a piecewise linear Il. K-PLANE REGRESSION

regression function such that for every point in the tragnin e begin by defining ak-piecewise affine function. We

set, the absolute difference between the target value the notation that a hyperplaned is parametrized by
the predicted value is less than This property is called w = [w? BT € R wherew € R¢ andb € R

bounded error property. Greedy heuristic algorithms [[13] Definition 1: A function f : ®¢ — R, is called K-

have been proposed to find such a piecewise linear func“?)ribcewise affineif there exists a set ofk hyperplanes
These algorithms start with finding a linear regression fiomc with parametergwi, by),. .., (wi, bi) € R (wi, by) #

Wh_ich §h0u|d sa_ti_sfy the bounded_ error property for_as ma %j,bj),z’ £ j), and setsS,..., Sk C R (which form a
points in the training set as possible. This problem is kno rtition of R%), such thatf (x) = wx + by, ¥x € Sy
3 - k ) .

as maximum feasible sub-system probl@#AX-FS) and is .0 the definition above, itis clear tr(aztzJTx+bj—f(x))2 >

shown to be NP-hard [16]. MAX-FS problem is repeated o WTx + by — f(x))2 = 0,x € $..Vj £ k. Also, note that a

the remaining points until all points are exhausted. So fa}% . : . . . .
! . -piecewise affine function may be discontinuous.
there are no theoretical results to support the quality ef th

solution of these heuristic approaches.
Most of the existing approaches for learning regressidh-Plane Regression
functions find a continuous approximation for the regrassio Let S = {(xi1,%1),...,(xn,yn)} be the training dataset,
surface even if the actual surface is discontinuous. In thithere (x,,y,) € R x R. Letx, = [xI 1]7, n=1...N.
paper, we present a piecewise linear regression algorittifplane regression approach tries to find a pre-fixed number
which is able to learn both continuous as well as discontisuoof hyperplanes such that each point in the training set is
functions. close to one of the hyperplanes. L&t be the number of
We start with a simple algorithm that is similar, in spirithyperplanes. Letvy, k¥ = 1... K, be the parameters of the
to the k-means clustering algorithm. The idea is to repeatediyperplanesk -plane regression minimizes the following error
keep partitioning the training data and learning a hypemlafunction.

for each partition. In each such iteration, after learnihg t N

hyperplanes, we repartition the feature vectors so that all E©) = Z min (Wi X, — yn)?

feature vectors in a partition have least prediction erriaghw =y kell.K}

the hyperplane of that partition. We call/f-plane regression where © — {%1,...,Wx). Given the parameters of

algorithm. Though we are not aware of any literature Whefﬁ/perplanes
such a method is explicitly proposed and investigated fanmie .= {Xn | k = argmin, (W %, — yn)?} where
ing regression functions, similar ideas have been prop'ursec{ie break ties by puttingcnjeir‘{lli.h'é(]éetg'k with leastk. The
related contexts. For example, a similar problem is add[bsssetssk are disjoint. We can now writ&(0) as

in the system identification literaturé_[16]. A probabilist '

Wi...Wg, define setsS,, £ = 1...K, as

version of such an idea was discussed under thentibeéures K e )
of multiple linear regressioifl, Chapter 14]. E(©) = Z Z (W), Xn = yn) 1)
This K-plane regression algorithm is attractive because it k=1 %, €8

is conceptually very simple. However, it suffers from som# we fix all Sk, thenw,, can be found by minimizing (ove#)
serious drawbacks in terms of convergence to non-optima), .o (W%, —y,)?. However, inE(©) defined in equation
solutions, sensitivity to additive noise and lack of moddfl), the setsS; themselves are function of the parameter set
function. We discuss these issues and based on this insight {w1,...,Wwk}.

propose new and modifiel -plane regression algorithm. In  To find © which minimizeF(©) in (I), we can have an EM-
the modified algorithm also we keep repeatedly partition thiée algorithm as follows. Let, aftet*” iteration, the parameter
data and learning a linear model for each partition. Howeveet beo°. Keepingo* fixed, we first find set$y = {x,, | k =

we try to separately and simultaneously learn the centersaofmin;cy . k) (XF WS —yn)?}, k=1... K. Now we keep



Algorithm 1: K-plane regression (@)

0.5 : ¥
InpUt: {(leyl)a-'-a(xNayN)} 04t .*-* *-*-
Output: {w;...wg} : ¥ *
begin 0.3} X * ]
Step Linitialize w9,k = 1... K, Initialize ¢ = 0. 02 | F W *x =
Step 2:Find setsS§, k=1... K ' ¥ © ! *** T
St ={x, | k= argmin; ey g} (izﬁvj —yn)?} 0.1+ *** g xOs, x
Step 3:Findwit!' k= 1...K, as follows 0F 000000000000000NONIINNINOITD |
e 1t ) 0 0.2 0.4 0.6 08 1
Wi = anes,g ann] [angsj{: ynxn] X
Step 4:Find setsS;t' k=1... K (b)
St = {xn | k = argmingc gy (XIS —y0)?} 04 ¢ 000000000099
Step 5:Termination Criteria 0.3 000 ,
if ScH1 =S¢ k=1...K then ol x N0OXES, .
Stop 02 L o xO Sl' 7§_</
else P o 00X TSy ook |11
c=c+1 0.1+ g x0S) 1
go to Step 3
end 0f ©00000OOOOOONONONONONOOINOIdI0000000 |
end 0 0.2 0.4 « 0.6 0.8 1

Fig. 1. (a) Points sampled from a triangle shaped funcfidfx), (b) function
f(x) learnt usingK -plane regression algorithm given the points sampled from

these setsS;, £ = 1...K, fixed. Thus the error function function f*(z).
becomes

E(0) = ZK: (%% — yn)? = ZK: ES () A. Issues withK -Plane Regression
k=1 x,€5¢ =1 In spite of its simplicity and easy updatek-plane re-
gression algorithm has some serious drawbacks in terms of
where superscrigtdenotes the iteration and hence emphasizesnvergence and model issues.
the fact that the error function is evaluated by fixing thesset 1. Convergence to Non-optimal Solutionl:is observed

Sg,k=1...K, and that the algorithm has serious problem of convergence te non
optimal solution. Even when the data is generated from a
B (W) = Z (WF%p — yn)?. (2) Ppiecewise linear function, the algorithm often fails tortea
X €S the structure of the target function.

Figure[d(a) shows points sampled from a concave (triangle

Thus, minimizing E¢(©) with respect to© boils down to shaped) 2-piecewise affine function on the real line. At the

minimizing each of E§(W;,) with respect tow;. For every horizontal axis, circles represent sgt and squares represent
ke {1,...,K}, a new weight vector&vi*l is found using SetSz, wheresS; and Sz constitute the correct partitioning of

standard linear least square solution as follows. the training set in this problem. We see that convex hulls of
setsS; and S; are disjoint. This 2-piecewise affine function
can be written (as per deffil 1) by choosifig S, to be the
convex hulls ofS; and Ss.
1 Figure[d(b) shows the 2-piecewise linear function learat us
= { Z iniﬂ [ Z YnXn | (3) ing K-plane regression approach for a particular initializatio
Xn €SS xn €S S (represented as circles) afd (represented as squares) are
sets corresponding to the two lines in the learnt functicere;
Now we fix ©¢t! and find new set§,§+1, k=1...K,and K-plane regression algorithm completely misses the shape of
so on. We can now summarizé-plane regression algorithm.the target function. We also see that convex hulls of $gts
We first find setsSg, & = 1...K, for iteration ¢ (using andS) intersect with each other.
wi, k=1...K). Then for eacht = 1... K, we find Gv;“ 2. Sensitivity to Noiselt has been observed in practice that
(as in equatiori{3)) by minimizing (W) which is defined in the simple K-plane regression algorithm is very sensitive to
equation[(R). We keep on repeating these two steps untié théine additive noise in the target values in training set. Wnde
is no significant decrement in the error functi{®©). £(0©) noisy examples, the algorithm performs badly. We illustiait
does not change when the weight vectors do not changelater in Sectiod V.
setsSk, k =1...K, do not change. The complefé-plane 3. Lack of Model Function:The output of theK-plane
regression approach is described more formally in Algarithregression algorithm is a set adk hyperplanes. But this
i1} algorithm does not provide a way to use these hyperplanes

~ c+1 o : ~ T~ 2
Wi = argming, g (Wi Xp — Yn)
XnESg



to predict the value for a given test point. In other worAs, As earlier, let the number of hyperplanes B& Here,

plane regression algorithm does not have any model functimnthe modified K-plane regression, we have to lea2i’

for prediction. We expand this issue in the next section. parameter vectors. Corresponding k8 partition, we have
two parameter vectorsw;, € R and p, € R Wy

lIl. M ODIFIED K-PLANE REGRESSION represents parameter vector of the hyperplane associatied w
As we have mentioned, given the training datahe k! partition andu, represents center of thé" partition.
{(x1,¥1),.--, (xn,yn)}, the K-plane regression algorithm Note that we want to simultaneously learn baita and g,
outputs K hyperplanes,w;, k = 1...K. To convert for every partition.

this into a properK-piecewise linear model irfiR?, we The error function minimized by modifieH -plane regres-
also need to have d-partition of ¢ such that in the sion algorithm is
kth  partition, the appropriate model to use would be
w;. We could attempt to get such a partition o by . T 2 2
coknsidering the convex hulls of;, k¥ = 1...K (where E(®) = Z rell i) [(W) % = yn)” + 710 — g I°] (4)
Sy = {xn | k = argmin;(y, — xTW 2. However as "
we saw, under theK-plane regressmn the convex hullavhere® = {(Ww1, p,),..., (WK, ug)} andy is a user defined
of such S} need not be disjoint. Hence another methoparameter which decides relative weight of the two terms.
to get the required partition is as follows. Let: be the Given ©, we define set$;,, k=1...K, as
mean or centroid ofS;. Then, for any pointx € ¢,
our prediction could bgj = x”W?, wherej is such that S := {xn | k = argmin; [(W] Xn — yn)” + 7| |%n —Hj||2]}
|Ix — pil| < llx — pill, Vk # j (break ties arbitrarily). This
would define a proper model function with the hyperplaneghere we break ties by putting, in the setS;. with leastk.
obtained throughK-plane regression. However, this mayThe setsS; are disjoint. We can now writ&(©) as
not give good performance. Often, the convex hulls of sets,
Sg, k = 1...K (learnt using K-plane regression), have Z Z (w! %,
non-null intersection because each of these sets may oontai
points from different disjoint regions oR? (for example,
see Figurd]l). In such cases, if we re-partition the trainingAs can be seen from the above, now, for a data peipt,
data using distances to differepf;, we may get sets muchto be put inSy, we not only needw] x, to be close toy,
different from S} and hence our final prediction on everas earlier, but also need, to be close tou,, the ‘current
training data may have large error. The main reason for thienter’ of S;,. The motivation is that, under such a partitioning
problem with K-plane regression is that the algorithm istrategy, eacls, would contain only points that are close to
not really bothered about the geometry of the s€is it each other. As we shall see later through simulations, this
only focuses onw;, to be a good fit for points in se$;. modification ensures that the algorithm performs well. As
Moreover, in situations where same affine function works feém example of where this modification is important, consider
two or more disjoint clusters;-plane regression will considerlearning a piecewise linear model which is given by same
them as a single cluster as the objective functiorkgflane affine function in two (or more) disjoint regions in the feu
regression does not enforce that points in the same clusipace. For any splitting of all examples from these two regjio
should be close to each other. As a result, the clusterstledrno two parts, there will be a good linear model that fits each
using K-plane regression approach will have overlappingf the two parts. Hence, in th&-plane regression method,
convex hulls and some times even their means may e F(©) function (cf.eql(lL)) would be same for any splitting
very close to each other. This may create problems durinfl the examples from these two regions which means we
prediction. If we use the hyperplane whose correspondiaguld not learn a good model. However, the modifi&d
cluster mean is closest to a point, then we may not pigiane regression approach will not treat all such splits as
up the correct hyperplane. This identification problem afame because of the term involvipg. This helps us learn a
K-plane regression approach results in poor performance. proper piecewise linear regression function. We illustrthis
Motivated by this, we modifyK-plane regression as fol-in Section V.
lows. We want to simultaneously estimage,, £k = 1... K Now consider finding® to minimize E(©) given by
and u;,, k= 1...K, such that if,w, is a good fit fork" equation [[5). If we fix all Sy, then w, and u, can be
partition, all the points irk"" partition should be closer ta,,  found by minimizing (overy, p) . es, (Wxn —yn)? +
than any othep. Intuitively, we can think ofu,, as center of ||x,, — u|[2. However, in E(©) defined in equation[{5),
the (cluster or) set of pointS;.. However, as we saw from ourthe setsS; themselves are functions of the parameter set
earlier example, if we simply makg,, as the centroid of the @ = {(w, u,), ..., (Wg, pg)}.
final Sy learnt, all the earlier problem still remain. Hence, in Tg find © which minimize E(©) in @), we can, once
the modifiedi -plane regression, we try to independently learggain, have an EM-like algorithm as follows. As earlier, let

both w;, and p;, from the data. To do that, we add an extrghe parameter set aftet” iteration be©@°. Keeping©© fixed,
term to the objective function oK -plane regression approachye find the setsS¢, k=1...K, as follows

which tries to ensure that all the points of same cluster are
close together. Sy = {xn | k = argmin; [(X] W5 —yn ) > +7[|xn—u5|1*]} (6)

n

yn)? % — w2 (5)
k=1x, €Sk



Now we keep these setS; fixed. Thus the error function

Algorithm 2 : Modified K-plane regression

becomes

K
E“(©) SN W% — yn)? k0 — ]

k=1x,€S],

K
> B (Wi, )
k=1

where superscript denotes the iteration and emphasizes the
fact that the error function is evaluated by fixing the sets

Sg, k 1...K. Thus minimizing E€(©) with respect to
O boils down to minimizing each af’g (W, pt;,) with respect
to (W, py,). Each E(Wy, ;) is composed of two terms.
The first term depends only of; and it is the usual sum of
squares of errors. The second term depends only p@and
it is the usual cost function ok-means clustering. Thus, the

Input: {(x1,91) ... (xn,ynN)}
output: {(W1, ;) ... (Wi, )}
begin
Step l:nitialize (wQ, u?), k=1...K.c=0.
Step 2:Find S,k =1... K, as follows
S = {%n | k = argmin, [(XTW5 —y,)? +| %0 —ps][*]}

Step 3:Find wit! uitt k =1... K, as follows

-1
~ 41 ~ ~T ~
wi+ = [ g ann} [ g ynxn]
xnesg anSg
1
c+1
e 51,2,
k Xn €S}

Step 4:Find S¢™ k&
St ={xn | k

1...K, as follows

update equations for findin@;+1 andu;“, k=1...K, are argminj[(igvvj?ﬂ — )% + 7 |xn — th:_+1||2]}
K Step 5:Termination Criteria
wetl argming, Y E°(W;, ;) if s;,;;lpz S¢,Vk then
j=1
. T else
= argming Z (W% — yn)? c=c+1
*n €5k X go to Step 3
S - end
= [ Z X"Xﬂ [ Z Ynn] ) end
Xn €SE Xn €S}
K
c+1 : C(r
ptt = argming Y E(Wj, ) Proof: We have
j=1 K
. 1 T~
= argming D b —plP =g DL %8 B0 =3 D [(RKiWi—un)” +yllxn — wil ]
xn €S kl x,esg k=1x,€ES§
Once we comput®“*?, we find new setsg ™',k =1...k, CGven the sets 55, —k = 1...K, parameters
and so on. (Withuet™), k = 1...K, are found using equation

In summary, the modifieds-plane regression algorithm (Z) and [8), in the following way.

works as follows. We first find set§p, & = 1...K, for
iterationc (using (w¢, u5), k = 1...K) as given by ed.(6).
Then for eachk = 1...K, we find (Wit ui™) (as in
equation[(¥V) and(8)) by maximizingg (wy, p;,). We keep on
repeating these two steps until there is no significant deen

Wit = argming, Y (Wi%n —yn)’
XnESg

pit = argming, Z %0 — b I?
xTLGS,‘;

in the error functionE(©). The complete description of Thus, we have

modified K -plane regression approach is given in Algorithm

2

Monotone Error Decrement Property
Now we will show that modifiedk -plane regression algo-

equation [(4f!
Theorem 1:Algorithm [2 monotonically decreases the cost
function given by equatiori14) after every iteration.

1 Note that this does not necessarily mean that we find the igiolpémum
of the error function. More importantly, we can not claimtth@nimizing the
error as defined would lead to learning of a good piece-wiseali model.
We note here that the simpl&-plane regression algorithm also results in
monotonic decrease in the error as defined for that algoriiem though it

rithm monotonically decreases the error function defined t;ry

Z (?EZVNVE - yn)2 > Z (izwiﬂ - yn)27 k=1...K
Xn €S}, Xn €S}
STl —mflP > Y ke - pgH R k=10 K
Xn €S}, Xn €S}
his will further give us
K
DY EIWE = yn)? +llxn — pill? >
k=1x,€S;,
K
SO EW —yn)? +llxn — pg
k=1x,€S5},
= E°(©° > E°(0°t) 9)

may not learn good models. However, the fact that the alyartontinuously Given ©¢+1, setsS;“, k=1...K, are found as follows

decreases the error at each iteration, is an important gyof® a learning
algorithm.

St

P = {xn [ k= argming (& WS = ya)? 4+ ylxa — g}



Using Sg“, k=1...K, we can findE<t(©°t1), which is a variance parameter, andis the identity matrix. This co-
Eeri(oet) variance matrix is common for al' components. We assume
« th.at the target values gi_ven in_the training set may be céedip
Z Z KRy )2 oyl — 2 with zero mean Ggussmn noise. Thus, &8t component, Fhe
k Yn TiXn target value is assigned usiNg, asy = wi x + e, wheree is
Gaussian noise with mean 0 and varianc®ariancee is kept
. ) Lo same for allk components. Thug(y|x, W) = N W%, €),
= Z Z (X,, WZJF —Yn)” +[Ixn — N?F I a Gaussian with meaﬁszcn and variance. Thus,
3k=1x, es¢ns;t

k=1 XnES;+1

€
P(Xns Yn [ Wi, p11,) = N (py,, = DN (Wi %y, €)
By the definition of setsS{ ™", vx,, € Si*!, we have, g "y g

c c g g
(X Wi = yn)® + % — w2 = 7 exp (= o lxn — p|[?) %
c+1 12 s (2me)> 2¢
< (X W yn) +7||Xn_ﬂj 1%, Vi #k . )
which is also true for angk,, € S;*'n S5. Thus (2me) 2 exp (-~ Z(Wk %o = tm)’)
c c 1 1 T
Bt = 7 oxp (= o l(yn = WiRn)? +llxn — )
T sc+1 2 _,,ct1y2 1
< ;1 Z H(anj yn)” £ lPen — 5| whereL = M °. Note thate and~y are assumed to be
P X €505, fixed constant, instead of parameters to be re-estimatads, Th
the density model for incomplete data becomes
= Z > EEWST =) % — ST
Jj= lxnesC p(xnayn|@)
c c K ~
= (o) A0 _ gLy o (- (= Wi+l = i
Combining [9) and[(10), we gek<(©°¢) > E°¢(©°tl) > i 2¢
Ect1(©°t1). Which means after one complete iteration mod- 1 ( . ST 2 2 )1
ified K-plane regression Algorithm decreases the error func- L 2¢ mkm[(y Wi )" £ ben = p | FED)
tion. B Negative of the log-likelihood under the model given in
equation [(IN) is same as the error function minimized in
IV. EM VIEW OF MODIFIED K-PLANE REGRESSION the modified K-plane regression algorithm. Hence, we can
ALGORITHM now compute the EM iteration for maximizing log-likelihood

Here, we show that modifieft -plane regression algorithm computed from[(T1).
presented in SectidnJIl can be viewed as a limiting case ofHowever, the incomplete data log-likelihood under our
an EM algorithm. In the generd{-plane regression idea, theProbability model[(1ll) becomes non-differentiable duette t
difficulty is due to the following credit assignment probhemhard minimum function. To get around this, we change the
When we decompose the problem inkd sub-problems, we probability model for incomplete data into a mixture model
do not know whichx,, should be considered in which subWith mixing coefficients as part o®:
problem. We can view this as the missing information in the T N9 9
EM formulation. P(Xn, yn|O) = Z 2% exp ( — Wi %n)® + 1% — | ) (12)
Recall thatS = {(x1,1),...,(xn,yn)} is the training L Ze
data set. In the EM frameworl§, = {(x1,y1),--., (XN, yn)}
can be thought of as incomplete data. The missing data WOt\g
bez, = [zn1 ... znk|’, Wherez,, € {0,1}, Vn, Vk, such
that,ZkK:1 znk = 1, Vn. Thenz,, are defined as,

ereqy, = P(zn;C =1), Vn; ax > 0, Zszl o = 1, and
{(a1, W1, 1), ..., (ak, Wk, i) }. Note that here,

S apexp (=[x — )
) ) _ ) P(Ynlxn,©) § K - 5
B {1, if k = argmin; [(W X — yn)® +7[|%n — 15| ] =1 2 j—1 O exp (—g-|xn — pyl[?)
nk =

. 1 T
0, otherwise exp(—z—(y —wl%,)?)
This gives us the following probability model ¢
which is same as the model described[in| [19] for a mixture
P(Xn, Yn|znk = 1,0) = p(Xn, Yn| Wi, 1y,) of experts network. The incomplete data log-likelihoodegiv

= p(Xn | )P (Yn| X0, W) by (12) will now be smooth and we can use EM algorithm to
P(%n, Yn|7n, ©) _ ZK 2k (%1 )P (Y [ X 1) maximize the likelihood. However, the model given[in](12) is
o Imit k=1 IR BRI 15 somewhat different from the one in equati@nl(11) which was
In our formulation,u,;, represents the center of the set of alised in Sectiofi 1.
x for which the k" linear model is appropriate. Hence we We, now derive the iterative scheme under EM framework
takep(x|p,) = N(py, £1), @ multivariate Gaussian in whichusing the model specified by equatiénl(11) dnd (12) and show
the covariance matrix is given by1, where%(e,v > 0) is that in the limite — 0, the iterative scheme becomes the



modified K -plane regression algorithm that we presented in V. EXPERIMENTS
SectiorI].
In this section we present empirical results to show the

A. EM Algorithm effectiveness of modified<-plane regression approach. We
We now describe EM algorithm with S = demonstrate how the learnt functions differ among various
{(x1,91),-..,(xn,yn)} ~as incomplete data andregression approaches using two synthetic problems. We tes
S = {(x1,y1,21),...,(Xn,yNn,2ZNn)} as complete data the performance of our algorithm on several real datassts al
and under the model specified hy11) and (12). The complétée compare our approach with hinging hyperplane algorithm
data log-likelihood is which is the best state-of-art regression tree algorithm an
N K with support vector regression (SVR) which is among the best
lcompletd ©; 5) H H[p(xn, Yy 2nk|©)] 77 ] generic regression approaches today.
N K -
- 2_:1 ]; zuie 10 [P(zui) P (%, Yl 20, ©))] Dataset Description
i XK: Mgl — (y — Wizn)?  7llxn — Hk||2] The two synthetic datasets are generated as follows:
= Znk [ In a -
—i—) 2¢ 2¢ 1) Problem 1: In this, points are uniformly sampled from
E-Step: In E-Step, we findQ (0, ©°) which is the expectation the interval(0  5]. Then, for every point: the target
of complete data log-likelihood. valuesy are assigned ag = f(x) + ¢, where
Q(@a e° ) IE{z1 ..... zZN } [lcomplet&GQ §)|90] z, fo<z<1
N K (y — Wi%n)? — v|[xn — pgl? 2—z ifl<ax<?2
ZZ[lnakL— k ]X fx) = ’ o
=i 2e 2(7—22), f2<x<35
P(an = 1|Xn7yna GC) %(2(E — 7), if 3.5 <zxr<5

M-Step: In the M-Step, we maximiz& (O, ©°) with respect ) ) ) )
to © to find out new parameter s&<+!. This will give us ande is a Gaussian random variable with zero mean and

following update equations. variance 0.01. 500 points are generated for training and
500 points are generated for testing.

N N .
ottt — 1 Pl = 1]x 0°) 2) Problem 2: Points are uniformly sampled from the
Y TN — nk = Lo Yn, interval [0 3]. Then, for every point the target values
N y are assigned ag = f(z), where
Wit = [ Plenk = 1xn, yn, ©9)%,%1] 7 x
n=1 z, fo<z<l1
N . flry=<1, if1<z<?2
[ZP(an = 1|Xn, Yn, O )ynxn] v f2<z<3
n=1 ) = >~
N _ c
pett = Z"]:vl Penk = 1/Xn, yn, O9)%n We also generatg’ asy’ = f(z) + ¢, wheree is a
> =1 Plznk = 1Xn, yn, ©°) Gaussian random variable with zero mean and variance
where P(z,; = 1|xn, yn, O°) is given by 0.01. 300 points are generated for training and 300

oints are generated for testing.
P(an - 1|mena GC) p g g

aSp(Xn, Yn|Znk = 1,0°) Note that both the above functions are discontinuous.

) We also present the experimental comparisons on 4 ‘real’
o2 datasets downloaded from UCI ML repository [20] which are

)? + 9% — pill ]) described in Tabl€l I. In our simulations, we scale all featur

W)2 +7|lxn — p£]1?])  values to the range df-1 1].

ZJK 1« P(men|2nk - 1
vy, eXp ( - 2—[( W
K

o asexp (— 215 [(y 5

B. Limiting Case { — 0)

Data set Dimension # Points
Now considerlim,_,q P(znk = 1|xpn,yn, O°). Let al = Boston Housing 13 506
argminjg{le} [(yn—x Wi )2 +7|xn — NEHQ} Whene = ﬁsﬂ?;ig 3 gg?
0, then in the denomlnator the term corresponding to index Computer ity Vi 5197
a¢ will go to zero most slowly and hendém._.o P(znr = TABLE |

Uxn, Yn, ©°) = Ljp—qey, Wherely,_q.y = 1if k = a5, and
zero otherwise. In this limiting case, the EM updatesgfand
p;, Will be same as updates of modifigd-plane regression
algorithm.

DETAILS OF REAL WORLD DATASETS USED FROMJC| ML REPOSITORY



. Method Parameters MSE
EXpe”mental Setup K-plane # hyperplanes = 4 0.0557
We implemented K -plane regression and modifief - Modified K-plane | # hyperplanes = 4 0.037
plane regression algorithms in MATLAB.We have also Hinge Hyperplane | # hinges = 6 __ | 00451
. o ) SVR C=64,0=16,c=2" | 0.013

implemented hinging hyperplane method in MATLAB. For
TABLE I

support vector regression, we used Libsvm [21] code. All the
simulations are done on a PC (Core2duo, 2.3GHz, 2GB RAM).
Modified K -plane regression has one user defined parameter
which is . We search for the best value ofusing 10-fold
cross validation and use that value in our simulations. B6th ) o
plane regression and modifigd-plane regression approache§iVen the noise-free training examples. As can be seen, all
require X (number of hyperplanes) to be fixed apriori. In ouflg0rithms learn a very good approximation of the target
experiments, we change the valuefoffrom 2 to 5. Similarly, function (when given noise-free training (jata). The hlnge h_
in hinging hyperplane method, maximum number of hing%er_planes method and SVR llt_aarn a continuous approximation
functions should be specified. In our simulations, this nemb"hile the K-plane and modified K-plane methods learn the

is varied from 1 to 5. Support vector regression has three uiScontinuous function. B _
defined parameters: penalty parameterwidth parameterr We see that botlﬂ(-plane_ and modified(-plane regression
for Gaussian kernel and tolerance paramet@est values for @Pproach leamn the function exactly. But MSE Af-plane
these parameters are found using 10-fold cross-validatish Method is much higher than modifi¢d-plane method as can
the results reported are with these parameters. be seen in TabIEI]I_I._The reason is as follows. In prqblem 2,
the three sets (defining the partitioning of the domain of the
function) corresponding to the three affine functions ar#&)[0
. ) ) ) 1,2) and [2,3]. Moreovelyz € [0,1)U[2,3], f(z) = z. Thus
Problem 1: Figure[2 shows functions learnt using differenfne same affine function is assigned to two of the three disjoi
approaches on problem 1 and Table Il shows MSE achievgds Thefx -plane regression approach tries to partition the
with different approaches on a test set. Hinge hyperplaggining data so that for each partition we can learn a good
approach and support vector regression (SVR) methods gfyRction to fit the data; it does not care about whether the
continuous approximations to the functigh(see Figs[2(c) ngints in a partition are close together. Hence, any pantitf
and[2(d)). While SVR gets the shape of the function welje the sef0, 1)U[2, 3] into two parts (including the case where
the function learnt using SVR is not piecewise linear. Figsne nart is null) would result in roughly the same value of the
ure[2(e) shows 4-piecewise affine function learnt uskig oo function for thek -plane method. But, for prediction on
plane regression method. We see that ifiplane regression 4 new point, we have to use the nearness of the new point to
approach completely misses the shape of the function whigBhrgig of the partitions. Hence, if the partitions are bagh
results in a very high MSE. In contrast, as can be seen frA: final MSE can be very large. In this problem, whin
figure[2(f), modifiedK-plane regression approach learns thgiane regression is given noise free samples, it alwaystiear
discontinuous functiory’ exactly (even though the functionqn)y o hyperplanes irrespective of the valuefofused (with
values given in training set are noisy). _ the sets §;) corresponding to the remaining partitions being
Rg_call that in modified K-plane regression, we essentlalgfnpty)_ The means of the two partitions learnt w5 and
partition the data and learn a hyperplane as well as a ‘c&Nyg75. This clearly shows the algorithm has gor1) U |2, 3]
ter’ or ‘mean’ (which was callequ,, in the algorithm) for inig one partition. This leads to very poor prediction ort tes
each partition. The target function in this example has fo's‘&mples and high MSE in case &f-plane regression. In
linear pieces. If we got the exact partitioning of the inpWqnirast, the means learnt using modifigdplane regression
space then the ideal centers would be (0.5,1.5,2.75,41B8). 5,60.495 1.5 and2.505.
means learnt using modifieli -plane regression approach are |, yhe second part of this problem, we have added noise to
(0.495,1.495,2.745,4.25). This example demonstratdotiia e e function values in the training set as explainetiezar
qulfled K—plan.e regressmn_algorl.thm is robu§t to add'“"?igure@ shows the functions learnt using different appneac
noise, and that it can learn discontinuous functions alsth Weyiven these noisy samples of the function. The MSE achieved
This example also shows that the simple-mindgeplane y the |earnt function on a test set under different alganith
regression performs poorly when there is noise in the mgini ;o shown in TablETlI. We see that only modifié-plane
set. _ . o regression approach learns the target function exactly.
Problem 2: In this problem the target function is @ 3- The fynction learnt byk-plane regression is very poor and

piec_ewise affine function and_ we show the functi(_)n§ Ie_arng MSE is also high. This shows that, unlike in the earliesega
by dlﬁerent approaches on noise-free as WE_’” as noisylmin y,q K-plane regression algorithm could not even get the two
set. FiguréB shows functions learnt using different aphtea ,¢ine functions correctly. Given the shape of function fear

2 For K-plane regression, there is no specified model function vban On.th's problem by'-plane regr.essmn When_ the examplt_—z; are
be used to predict the value for a test point. In our simutatico assign value noise-free, we can see that this algorithm is very sensitive
for any test point usingk -plane regression, we use the same methodologydditive noise.

as modifiedK -plane regression approach. That is, using g learnt, we .
obtain setsS;, as explained in Sectidn]Il; then we find thesuch that centroid Both hlnge hyperplanes method and SVR learn a QOOd con-

of Sy, is closest to the test point and then use tWat to predict the target. tinuous approximation to the target function. Howeversthe

MSE OF DIFFERENT REGRESSION APPROACHES ON PROBLEM

Simulation Results: Synthetic Problems
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(a) 4-piecewise affine functiofi described in problem 1; (b) functioii corrupted by additive Gaussian noise; functions learnhgi¢c) hinge
hyperplane algorithm, (d) support vector regression,/{eplane regression approach and (f) modifi&dplane regression approach, given noisy samples of

Method Parameters MSE Method Parameters MSE Time(sec)
Without | K-plane # hyperplanes = 3 | 0.7917 K-plane # hyperplanes = 2 17.15£0.85 0.01
Noise Modified K-plane | # hyperplanes = 3 | 3.33x10~28 # hyperplanes =3 27.472.74 0.03+0.003
Hinge Hyperplane | # hinges = 13 0.008 # hyperplanes = 4 30.29+1.77 0.04+0.005
SVR C = 1024, ¢ = | 0.0041 # hyperplanes =5 39.6A49.11 0.06+0.012
16, e =278 Modified K-plane | # hyperplanes = 2| 14.95£0.27 0.006
With K-plane # hyperplanes = 3 | 0.1352 ~ =100 # hyperplanes =3 14.72+0.53 0.014-0.001
Noise Modified K-plane | # hyperplanes = 3 | 0.011 # hyperplanes = 4 14.25+0.62 0.014+0.001
Hinge Hyperplane | # hinges = 23 0.0237 # hyperplanes =5 13.92+0.78 0.024-0.002
SVR C = 1024, ¢ = | 0.0148 Hinge Hyperplane | # hinges = 1 19.29+-2.19 0.014-0.003
16, e =278 # hinges = 2 16.45+1.34 0.04+0.006
# hinges = 3 16.25+1.16 0.074:0.006
TABLE I # hinges = 4 16.06:0.98 | 0.114+0.008
MSE OF DIFFERENT REGRESSION APPROACHES ON PROBLEM # hinges = 5 15.62-1.57 0.14+0.015
SVR C = 128, 0 = | 10.08:0.42 0.1740.01
0.25, ¢ = 278
TABLE IV

. . COMPARISON RESULTS OF MODIFIEDK -PLANE REGRESSION APPROACH
are not as good as the functions learnt by these algorithms On 1y otHER REGRESSION APPROACHES ONOUSING DATASET.

noise-free data of this problem. In contrast, the modifféd
plane regression algorithm learns the discontinuous fomct
exactly under our additive noise also. It also achieves the

minimum MSE which is nothing but the noise variance as
can be seen in Tablelll. Thus, though the&s-plane regression method is conceptually

simple and appealing, its performance is not very good.

The modifiedK -plane regression algorithm performs much

Results on Real Datasets: better thank -plane regression not only in terms of MSE but

We now discuss performance of modifigd-plane re- also interms of time taken. The reason why modifieglanes
gression algorithm in comparison with other approaches otethod takes lesser time is that it converges in fewer iterat
different real datasets. The results provided are based)en This happens because modifiGdplane regression algorithm
repetitions of 10-fold cross validation. We show averadaes gives importance to the connectedness of the clusters Aso.
and standard deviation of mean square error (MSE) and thdesult, number of transitions of points from one cluster to
time taken. The results are presented in Tablg TV-VII. another after every iteration are lesser and thus the ctuste

We see that for all datasets, the MSE achieved by the simgl@bilize after fewer iterations.
K-plane regression method is highest among all algorithms.The performance of modifieff -plane regression algorithm
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Method Parameters MSE Time(sec)
K-plane # hyperplanes=2 | 10.44£0.17 0.114+0.02
# hyperplanes=3 | 9.19+0.62 0.144+-0.01
# hyperplanes=4 | 9.87+1.45 0.2740.03
# hyperplanes=5 | 10.85:1.19 0.3%-0.05
Modified K-plane | # hyperplanes=2 | 4.80+0.02 0.02+0.002
~+=100 # hyperplanes=3 | 4.68+0.03 0.04+-0.005
# hyperplanes=4 | 4.69%-0.03 0.08+0.01
# hyperplanes=5 | 4.68+0.03 0.08+0.01
Hinge Hyperplane | # hinges = 1 4.73+0.06 0.01+0.001
# hinges = 2 4.53+0.03 0.08+0.01
# hinges = 3 4.47+0.04 0.1740.02
# hinges = 4 4.4140.02 0.28+0.02
# hinges = 5 4.444+0.06 0.40+0.03
SVR C = 32, 0o = | 450+0.01 1.68+0.01
0.5, e=10.5
TABLE V

COMPARISON RESULTS OF MODIFIEDK -PLANE REGRESSION APPROACH

WITH OTHER REGRESSION APPROACHES ORBALONE DATASET.

Method Parameters MSE Time(sec)
K-plane # hyperplanes=2 | 10.34+-0.22 0.02+0.001
# hyperplanes=3 | 11.15+0.56 0.02+0.003
# hyperplanes=4 | 13.08+1.10 0.04+0.003
# hyperplanes=5 | 13.72+-0.77 0.05+0.003
Modified K-plane | # hyperplanes=2 | 8.55+0.11 0.006
=100 # hyperplanes=3 | 8.72+0.25 0.01+0.003
# hyperplanes=4 | 8.82+0.75 0.012-0.001
# hyperplanes=5 | 8.83+0.69 0.01+0.002
Hinge Hyperplane | # hinges = 1 9.814+0.52 0.003
# hinges = 2 9.03+0.53 0.02+-0.002
# hinges = 3 8.75+0.37 0.03+0.01
# hinges = 4 8.58+0.35 0.05+0.009
# hinges =5 8.35+0.39 0.08+0.005
SVR C=16, ¢ = 1, | 6.80+0.26 0.03
e =0.25
TABLE VI

COMPARISON RESULTS OF MODIFIEDK -PLANE REGRESSION APPROACH

WITH OTHER REGRESSION APPROACHES ORUTO-MPG DATASET.

Method Parameters MSE Time(sec)
K-plane # hyperplanes=2 | 61.87.17 0.3%-0.05
# hyperplanes=3 | 19.48+-0.49 0.48+0.07
# hyperplanes=4 | 15.88+0.92 0.92+0.13
# hyperplanes=5 | 19.98+1.03 1.19+0.20
Modified K-plane | # hyperplanes=2 | 154.45+12.61| 0.15+0.02
v = 100 # hyperplanes=3 | 23.44-1.56 0.244+-0.03
# hyperplanes=4 | 11.88+0.15 0.48+0.04
# hyperplanes=5 | 11.8G+0.24 0.66+0.10
# hyperplanes=6 | 10.98+0.14 0.70+0.16
Hinge Hyperplane | # hinges = 1 29.40+21.57 | 0.05+0.002
# hinges = 2 11.39+0.32 0.1740.017
# hinges = 3 10.7#0.27 0.38+0.047
# hinges = 4 10.66+0.33 0.64+0.062
# hinges = 5 10.06+0.13 0.98+0.055
SVR C =256,0=1, | 84H0.11 23.16£0.31
e=10.5
TABLE VII

COMPARISON RESULTS OF MODIFIEDK -PLANE REGRESSION APPROACH

WITH OTHER REGRESSION APPROACHES OBOMPUTERACTIVITY

DATASET.
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is comparable to that of hinge hyperplane algorithm in terms
of MSE. It performs better than hinge hyperplane method on
Housing dataset. On Auto-Mpg dataset, Abalone dataset and
Computer Activity dataset, the minimum MSE of modified
K-plane regression approach is only a little higher than the
minimum MSE of hinge hyperplane method. Modifidd-
plane regression algorithm is also faster than hinge hypeep
method on all data sets.

On all problems except on the Abalone dataset, the SVR
algorithms achieves better MSE than modifigdplane re-
gression algorithm. However, we observe that modifiéd
plane regression is significantly faster than SVR. In SVR, th
complexity of dual optimization problem i©®(N?), where
N is the number of points. In contrast, in modifiéd-plane
regression, at each iteration, the major computation idgrfgnd
K linear regression functions. The time complexity of each
iteration in modified K -plane regression i€(K(d + 1)3)
which is very less tha®(N3) if N >> d.

Thus, we see that overall, modifieR -plane regression
is a very attractive method for learning nonlinear reg@assi
functions by approximating them as piecewise linear fuomi
It is conceptually simple and the algorithm is very efficient
Its performance is comparable to that of SVR or hinge hyper-
planes method in terms of accuracy. It is significantly faste
than SVR and is also faster than hinge hyperplane method.
Further, unlike all other current regression function teag
algorithms, this method is capable of learning discontirauo
functions also.

VI. CONCLUSIONS

In this paper, we considered the problem of learning piece-
wise linear regression models. We proposed an interestidg a
simple algorithm to learn such functions. The proposed otkth
is capable of learning discontinuous functions also. Thhou
simulation experiments we showed that the performancesof th
proposed method is good and is comparable to state-of-art in
regression function learning.

The basic idea behind the proposed method is very simple.
Let S = {(x1,¥1),...,(xn,yn)} be the training dataset. We
essentially want to find a way to partition the $&t,--- , xx}
into K sets such that we can find a good linear fit for the
targets (i.e.,y;) of points in each partition. The algorithm
achieves this by repeatedly partitioning the points anthdtt
linear models. After each model fit, we repartition the pgint
based on the closeness of targets to the current models. We
called this theK -plane regression algorithm. This algorithm
is conceptually simple and is similar in spirit to ti&-means
clustering method. While such an idea has been discussed in
different contexts, we have not come across this algorithm
proposed and empirically investigated for nonlinear regjien.

Though this idea is interesting, as we showed here, it has
several drawbacks. As the results in previous section stnisv,
algorithm performs poorly even on one dimensional problems

In this paper we have also proposed a modification of the
above method which performs well as a regression learning
method. In our modified(-plane regression algorithm, during
the process of repeatedly partitioning feature vectors and
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fitting linear models, we make the partitions so that we g@#] A. K. D. Jayadeva and S. Chandra, “Algorithm for Builgira Neu-

gOOd linear models and, also, the points of a partition are ral Network for Function Approximation,IEE Proc.-Circuits Devices
. . . . Systemsvol. 149, pp. 301-307, October-December 2002.
all close together. This idea is easily incorporated inte thys; p’ pycar and J. Sjoberg, “On the Hinge-Finding Aldorit for Hing-

algorithm by expanding the parameter vector to be learnt and ing Hyperplanes,"IEEE Transaction on Information Theqryol. 44,
by modifying the objective function to be minimized. The re- _ Pp. 1310-1319, May 1998.

i | ith iallv d fli . [16] E. Amaldi and M. Mattavelli, “The MIN PFS Problem and Besvise
sulting algorithm essentially does one step of linear regjon Linear Model Estimation,’Discrete Applied Mathematicsvol. 118,

and one step of{-means clustering in each iteration. pp. 115-143, April 2002.

Through empirical studies, we showed that the modified [17]1 A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A réedy
9 P Approach to Identification of Piecewise Affine Models,” fmoceedings

plane regression algorithm is very effective. Its perfmm of the 6th International Conference on Hybrid Systems: Qgdatjpn
on some real data sets is comparable to that of nonlinear and Control (HSCG)(Prague, Czech Republic), pp. 97-112, April 2003.

SVR in terms of accuracy while the proposed method %8] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “AdBinded Error

. Approach to Piecewise Affine System IdentificatioffEE Transaction
much faster than SVR. The proposed method is better than o, automatic Controlvol. 50, pp. 1567—1580, October 2005.

the hinge hyperplane algorithm which is arguably the beg®] L. Xu, M. I. Jordan, and G. E. Hinton, “An alternative medor mixtures

method today for learnin iecewise linear functions. '[igfm pf experts,” inProceedings of Advances in Neural Information Process-
. y . g.p ing Systems (NIPSjDenver, CO, USA), pp. 633-640, November 1995.
two synthetic one-dimensional problems, we also showetd thay, p’n.A. Asuncion,UCI Machine Learning RepositoryUniversity of

the proposed method has better robustness to additive noise California, Irvine, School of Information and Computer Gwes, 2007.

than the other methods and that it is capable of learning. NitP:/www.ics.uci.edutmlearn/MLRepository.html.
. . . P r[-gi] C.-C. Chang and C.-J. Lin,LIBSVYM : A Library for
discontinuous functions also. Support  Vector Machines 2001. Software available at

We feel that the proposed method opens up interesting http:/iwww.csie.ntu.edu.tw/ cjlin/libsvm.
possibilities of designing algorithms for learning piecssv
linear functions. As mentioned earlier, simultaneouswestion
of optimal partitions and optimal models for each partitisn
computationally intractable. Hence an interesting anficdif
open question is to establish theoretical bounds on th@perf
mance of the modified({-plane regression method. While we
showed that the method can be viewed as a limiting case EM
algorithm under reasonable probability model, a lot of work
needs to be done to understand how close to optimum can
such methods converge to.
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