{ LIVERPOOL

JOHN MOORES
UNIVERSITY

LJMU Research Online

Li, C, Nguyen, TT, Yang, M, Yang, S and Zeng, S

Multi-population methods in unconstrained continuous dynamic
environments: The challenges

http:/Iresearchonline.ljmu.ac.uk/id/eprint/524/

Article

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Li, C, Nguyen, TT, Yang, M, Yang, S and Zeng, S (2015) Multi-population
methods in unconstrained continuous dynamic environments: The
challenges. INFORMATION SCIENCES, 296. pp. 95-118. ISSN 0020-0255

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LUIMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

15

Multi-Population Methods in Unconstrained Continuous Byric
Environments: The Challenges

Changhe L3, Trung Thanh Nguyéh Ming Yang?, Shengxiang Yarfg Sanyou Zeng

aSchool of Computer Science, China University of Geosciences, Wuhan 430074, China
bSchool of Engineering, Technology and Maritime Operations, Liverpool John Moores University, Liverpool L3 3AF, U. K.
CCentre for Computational Intelligence (CCl), School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U. K.

Abstract

The multi-population method has been widely used to soleenstrained continuous dynamic optimization problems
with the aim of maintaining multiple populations onfléirent peaks to locate and track multiple changing peaks
simultaneouslyHowever, to make this approactiieient, several crucial challenging issues need to be askelies.g.,
how to determine the moment to react to changes, how to adapttmber of populations to changing environments,
and how to determine the search area of each population. ditiad several other issues, e.g., communication
between populations, overlapping search, the way to creatéple populations, detection of changes, and local
search operators, should be also addressed. The lack mi@tten these challenging issues within multi-population
methods hinders the development of multi-population badgdrithms in dynamic environments. In this paper,
these challenging issues are comprehensively analyzedskby af experimental studies from the algorithm design
point of view. Experimental studies based on a set of pogltrithms show that the performance of algorithms is
significantly dfected by these challenging issues on the moving peaks bemkhm

Keywords: Multi-population methods, dynamic optimization problemgolutionary computation

1. Introduction

The key issue of addressing dynamic optimization probldd@KRs) using evolutionary algorithms (EAS) is how
to maintain the population diversity while tracking the ogang global optimum. The multi-population method has
several properties, which make it one of the most commonrdy approaches in dynamic optimization. Firstly, the
overall population diversity can be maintained at the gldédzel as long as dierent populations search infidirent
sub-areas in the fithess landscape. Secondly, locating-ackirig multiple changing optima simultaneously is pos-
sible, and this is very helpful to locate and track the mowvetnoé the global optimum. This is because one of the
being-tracked local optima may become the new global optinalnen changes occur. Thirdly, any scheme based
on a single population roach can be easily extended tdtapopulation version, e.g., diversit mcreas and
maintaining schemeﬂhgﬂﬂﬂﬂ 63], memory scheﬂ%dﬁ%] adaptive schemds__tﬂ ﬁ , 66],
multi-objective optimization methods [10], hybrid appcbas 3.44), representation scher@s[nalﬂy—met
ods Ek], immune algorithmE[EBG], redator-prey simoiaimethods [13], change prediction meth , 57], and
problem change detection approac [54].

Although many multi-population algorithms were proposgeddlve unconstrained continuous dynamic optimiza-
tion problems (UCDOPsﬁ[é) Zﬁ?ﬁl B3,31,139) 50| 566135/ 64, 74, 74], most of them have the following
limitations. Firstly, many of them use a fixed number of p@pioins or a variable number of populations but with
a fixed total size of populations. Secondly, the search aeins the same for each population over the run time.
Thirdly, the assistance of change detection methods iseteddetect changes for increasing the diversity. These

Email addresses: changhe.lw@gmail.com (Changhe Li)T.T.Nguyen@ljmu.ac.uk (Trung Thanh Nguyen),
yangming0702@gmail . com (Ming Yang), syang@dmu.ac.uk (Shengxiang Yangkanyouzeng@gmail.com (Sanyou Zeng)

Preprint submitted to Information Sciences August 13, 2014

30

35

40

45

50

55

60

limitations may cause multi-population methods to be ua&ihadapt to certain dynamic environments, such as envi-
ronments with an unknown number of optima, partially chahgvironments, or environments with noise.

The lack of attention on several crucial challenging isswdsch should be taken into account in the process of
algorithm design, is the cause of the above limitations. s€hghallenging issues are: 1) when to react to changes;
2) how to determine the number of populations; 3) how to deitee the search area of each population; and 4)
how to avoid using change detection methods. The seconchaddgsues were discussed in the authors’ wbrk [35]
(extended in|E4]). However, the works E[E] 64] have neiitthown how the issues woulffect the performance of
an algorithm nor provided solutions on how to handle the sgoiés. The other two issues have not been mentioned
in the works. Moreover, the proposed algorithmdﬂ @ @4l rely on change detection methods like many other
traditional methods. In the authors’ later w[36], a gethramework of algorithm design without change detection
was proposed. However, the issues were still left untouelxedpt the change detection issue. In their recent work
[@], an attempt of solving the first and second issue was niHuke performance of the proposed algoritﬂﬂ [38] was
improved in comparison with the algorithm proposedﬂ [64hich is also shown in Sect. 4.1.2 in this paper later.
However, the third issue was not discussed. Although theréeghniques of adjusting the number of populations in
[4,/59], no attempt has been made to address this challenge.

All the studies mentioned above focus on developing a spedgorithm rather than looking at a bigger picture of
how the aforementioned challenges wouftket algorithm performance and how they can be addressedéanexig
way. Although the authors’ works ||ELBE|6E| 38] partlydaessed some of the challenges, there has been no
experiment focusing on the investigation of these chaksrand their impacts on algorithm performance. This pa-
per is the first one to comprehensively discuss the chaltgnigsues supported by experimental results of a set of
existing popular algorithms. This paper also gives commantl suggestions on future algorithm design in dynamic
environments to overcome the challenges.

The rest of this paper is organized as follows. ddct. 2 revimwlti-population based algorithms for UCDOPSs in
three categories. Sefl. 3 introduces the selection of & senchmark algorithms and the moving peaks benchmark
(MPB) problem|[8] with a new feature. Three performance eatibn measures are also introduced in S&ct. 3. The
challenging issues regarding the design of multi-popaihathethods are investigated in S&dt. 4. Finally, conclission
of this paper and suggestions on future development of fpafiulation based EAs for UCDOPs are given in Jdct. 5.

2. Multi-population Methods in Dynamic Environments

EAs for DOPs can be divided into two categori@ [11]: 1) fighiracking optima over time (algorithms are
mainly for DOPs in a continuous space, e.g., the MPB prob&jrehd 2) adapting current solutions against changes
(algorithms are mainly for DOPs in a combinatorial spaag, echeduling and planning problems). Multi-population
methods discussed in this paper belong to the first categutyreey can be further categorized into three groups in
terms of the number of populations used. They are multi-fagjmn methods using a fixed number of populations,
multi-population methods using a variable number (withiraage) of populations, and multi-population methods
using an adaptive number of populations, respectively.

2.1. Fixed Number of Populations

Most multi-population based algorithms so far fall intostigroup. In this group of methods, populations are
organized in two dferent ways. The first way is that all populations use the saaech operator and there is no
communication among them. The second way is th@@int populations useftiérent search operators and there are
communications between them.

Among the methods using the first way of populations orgdinzaone popular model is the atomic swﬂrap—
proach, which was proposed by Blackwell and Bramnke [6] toktraultiple optima simultaneously. In their approach,
a charged swarm is used for maintaining the diversity of thars, and an exclusion principle ensures that no more
than one swarm surrounds a single peak. In an algorithngdallilti-swarm optimization with quantum (mQS®)

[Iﬂ], anti-convergence is introduced to detect new peakdbyiisg information among all sub-swarms. This strategy
was experimentally shown to b&ective for the MPB problem [8]. An enhanced version of mMQS@ paposed in

1The term “swarm” is normally used to refer to a “population’garticle swarm optimization (PSO).

2

o
a

80

85

90

95

100

105

110

%} by applying two heuristic rules to further enhance theesity of mQSO. Borrowing the idea of exclusion from

], Mendes and Mohais developed a multi-populatioffiedential evolution (DE) algorithm (DynDEEhS] to solve
the MPB problem. In their approach, a dynamic strategy fentlutation factoF and probability facto€Rin DE was
introduced. A fuzzy C-means clustering technique was usegherate populations iﬂ47], where a memory-based
crowding archive method was also introduced to solve DOPs.

The representative model for the second way of organizipgiations is a model called collaborative evolutionary
swarm optimization (CESO), proposed |E|[43]. In CESO, twasws, which use the crowding DE (CDﬁt60] and
PSO model, respectively, cooperate with each other by almmiative mechanism. The CDE swarm is responsible
for preserving diversity while the PSO swarm is used forkiag the global optimum. The competitive results were
reported in]. Thereafter, a similar algorithm, calledlationary swarm cooperative algorithm (ESCA), was
proposed inl[44] based on the collaboration between a PS@itilm and an EA. In ESCA, three populations using
different EAs were used. Two of them follow the rules of CDE [60irtaintain the diversity. The third population
uses the rules of PSO. Three types of collaborative meamanigere also developed to transmit information among
the three populations. Recently, a similar model to c@m ESCA], calleccooperative dual-swarm PSO
(CDPSO), was proposed [74]. CDPSO adopts a dual-swarrtsteuto maintain the swarm diversity and track the
changing optima. Two dlierent population topologies were used in two sub-swarm@]\; fwhere the two sub-
swarms exchange their best particles at checkpoints. mewarm is used for searching the global optimum and
the other is responsible for searching local optima and taimimg diversity. A similar dual-swarm structure with
multiple strategies was also used|inl[21].

A cultural framework was introduced ih [19] for PSO, whereéfines five dferent kinds of knowledge, named
situational knowledge, temporal knowledge, domain knogé normative knowledge, and spatial knowledge, re-
spectively. The knowledge is used to detect changes. Onbarage is detected, a diversity based repulsion mecha-
nism is applied among particles and a migration strategygge¢red among swarms.

2.2. Variable Number of Populations

Different from the above algorithms which use a fixed number afifadpns created randomly in the whole fithess
landscape, another way to create populations is to gpfit@n a main population or to cluster a main population into
a set of small populations.

A famous early “splitting” model is the self-organizing sie (SOS) algorithm proposed by Branteal. [|§].

In SOS, the whole population is composed of a parent pojpuldtiat searches through the entire search space and
a number of child populations that track local optima. Theepapopulation is regularly analyzed to check the
condition for creating child populations, which are split fsom the parent population. The size of each population
is re-adjusted according to its relative quality define(ﬁh Inspired by a forking method, a multi-swarm algorithm
was proposed irml]. Similar to the SOS algorithm, in thetirawarm algorithm, a large main swarm is responsible
for continuously exploring new peaks and a number of smaliéd swarms, split § from the main swarm, are used

to track the achieved peaks during the run.

Inspired by the SOS algorithrﬂ [9], a fast multi-swarm op#ation (FMSO) algorithm was propos@[34] to locate
and track multiple optima in dynamic environments. In FM@(narent swarm is used as a basic swarm to detect
the most promising area when changes occur, and a groupldfsstérms are used to search for the local optima in
their own search areas, which are determined by a predef@edsradius. There is no overlap among child swarms
since they exclude from each other. If the distance betwwerchild swarms is less than their radius, then the worse
swarm is removed. This guarantees that no more than onesliddn covers a single peak. Another similar idea
is the hibernation multi-swarm optimization (HmSO) algom, introduced in [30], where a child swarm hibernates
if it is not productive anymore and wakes up when a changetextkrl. Recently, a similar hibernation scheme was
employed inmg], in which competitive results were népd in comparison with a set of algorithms.

For the clustering based methods, a representative matiel&peciation-based PSO (SPSO) developed by Parrott
and Li @,@]. The model dynamically adjusts the number asizé of swarms by constructing an ordered list
of particles, ranked according to their fitness, with splgtielose particles joining a particular species. At each
generation, SPSO aims to identify multiple species seetiéna swarm. Once a species seed has been identified, all
the particles within its radius are assigned to that sameepeParrott and Li also proposed an improved version with
a mechanism to remove duplicate particles in specid§__|n [5]@], Bird and Li developed an adaptive niching PSO

3

115

120

125

130

135

140

145

150

155

160

(ANPSO) algorithm which adaptively determines the raditia gpecies by using the population statistics. Based
on their previous work, Bird and Li introduced another imgd version of SPSO using a least square regression
(rSPSO) in |I_l3]. In order to determine niche boundaries, dordzased PSCE$5] algorithm was proposed to locate
and maintain niches by using additional vector operations.

Another popular clustering based algorithm is the clusteRSO (CPSO) algorithm, proposed by Li and Yang
[@,@]. CPSO applies a hierarchical clustering methodviole an initial swarm into sub-swarms that coveftelient
local regions. Based on their previous work @ 64], hd &ang Eb] proposed a general framework for multi-
population methods in undetectable dynamic environmantsich random individuals are added when the number of
individuals drops blow a pre-defined levél.clustering PSO with random immigrants (CPSOR) was impleedin
[@]. Recently, a cluster-based dynamic DE algorithm wiktemal archive (CDDEAr) was proposed in [25], where
the k-means clustering method is used to create populations when clsaargedetected. The number of populations
is adjusted regularly with a certain time span based on tHeqpmeance of the algorithm.

2.3. Adaptive Number of Populations

Different from the above methods, which start with a fixed humbppopulations without considering the rela-
tionship between the optima number of populations and thelau of peaks, a few attempts have been made to adapt
the number of populations to the changing number of peaksananges.

The first attempt was made in [4], where the mQSO algorimnwfis} extended to a self-adaptive version, called
self-adaptive multi-swarm optimizer (SAMO). SAMO startgtwa single free swarm (with a small, fixed number of
individuals) that patrols the search space rather thanergeg on a peak. Free swarms will transform themselves
to normal swarms when they are converging (a swarm is asstortezlconverging when its neutral swarm diameter
is less than a convergence diameter). If there is no freemsyamew free swarm is created. On the other hand, a
maximum number of free swarmsefcess) is used to prevent too many free swarms being created.

A dynamic population DE (DynPopDE), which addresses DORB &am unknown number of optima, was pro-
posed in|{__5b]. Diferent from the population convergistagnating criterion used iE|[4], in DynPopDE, a population
kis assumed to stagnate if there is nfietience between the fitness of the best individuals at tweessae iterations
(Afe(t) = [f(t) — f(t — 1)| = 0). If the stagnation criterion is met, a new free populafgeme as the “free swarm”
in SAMO ﬂZ]) is created and the stagnated one is re-initli# it is an excluded population. To prevent too many
populations from getting crowded in the search space, alptipu is discarded if it is set for re-initialization due to
exclusion and\ f(t) # O.

The algorithms SAMO|]4] and DynPopDﬂ59] do not monitor thember of converging populations. As a
result, more and more converging populations are formed tave from free populations without considering the
total number of peaks in the search space. To address thiiation, a new approach, adaptive multi-swarm optimiser
(AMSO), was propose@S], where the number of populatisraljusted according to thefiirences of the number
of survived populations between two successive “checkinigtp”, which are moments when the drop ratio of the
number of populations decreases to a small value. This Wwaypiimber of populations is able to adapt to changes.
The results in[38] showed that AMSO has a very competitivégpmance in comparison with other twelve algorithms
on the MPB problenﬂS].

Note that, the literature review of PSO takes the major pitiis section. This is because that published studies
on multi-population methods for UCDOPs so far are mainlyrfithe research area of PSO.

2.4. Other ways to classify multi-population methods

Besides classifying multi-population methods based onntln@ber of populations used, we can also use the
following classification criteira:

e The way to create populations.

— Random initialization: Populations are created randomtpss the whole search space at the beginning

of the run[6] 7| 45, 47, 20, 43] or during the runtirhe'[4, 59].

— Clustering-based approaches: Populations are genenatdddbering a random populatioEHE] 51/, 3,
35,(64/ 35, 38].

170

175

180

185

190

195

— Splitting-off approaches: Populations are created by splittififfom a main population from generation

to generatio QEDEBO].

e The role of populations.

— All populations play the same role: All populations aim tqxe promising peaks and exploit peaks

[, [20] bl 56, 51. 35, 58.64].

— Different populations may havefidirent roles: A part of populations are responsible for esipipnew
peaks and the others are for exploiting peaks that have bgéored E@ 0,43, 4k 1) 74).

e The relationship between populations.

— Competitive relationship: No more than onegpulationl'mv@d to search in the same area and exclusion

rules are normally applieE|[5|, 7.145)20] 80| b4,/36, 38].

— Collaborative relationship: Populations are allowed tarsk in the same area and information can be

shared between each othler![43,44 [21] 7B, 74].

— Mixed relationship: Populations that playfiirent roles cooperate with each other, but populations that
play the same role compete with each otEbE[_bL_QhE4, 30].

— No relationship: No rules are applied to populations [50/5B].
e Diversity handling.

— Diversity maintaining: Diversity is maintained within dapopulation by exclusion rules applied only to

a certain type of individual£|[7. ubs,143] 44 pil d,[34, 59].

— Diversity regaining: Diversity is regained by re-initdition when it drops to a certain level or a certain

type of conditions are mdﬁb@fﬂ, /3] 85| 64,3638, 30].

Compared to the above classification methods, the one atlopthis paper highlights the challenge of deter-
mining the number of populations better. It also reflectsttbed of the development of multi-population methods in
dynamic environments.

2.5. Examples of real-world applications

This subsection briefly provides some examples of realehaypplications to which multi-population methods can
be applied. Readers are referred td @ 49] for a comprébesins of real-world applications solved by evolutionary
dynamic optimization methods.

A contaminant source identification problem in water digttion networks is a nonlinear programming problem.
The search for the location and the time history of the coitant is carried out according to the observed data
up to the current time. The fliiculty in identifying the contaminant source is that soloicare not uniqu@l],
and we do not know which solution is the correct solution, itlee solution representing the actual contamination
source, according to the observed data. Therefore, maoiftitfation methods can be used to locate multiple optima
solutions in a hope that among the multiple optimal solugifound by the multiple populations, one would be the
correct solution. Multi-population methods can also beduiseother areas, such as optimizing the cluster center
in subtractive clusterind__[_f6], searching for the globak#hold of image@?], training perceptrons in predicting
outcomes of construction cIairTE[lZ], searching for thenoaltset of weights in feed forward neural networks [58],
predicting financial distresﬂlS], predicting stock psead directiorﬂ_l|7], and finding multi-solutions for mubiyer
ensemble prunin@Z].

200

205

210

3. Benchmark Problem and Evaluations

3.1. The Moving Peaks Benchmark

The MPB problem|__[18] has been widely used as a benchmark inrdignenvironments. A peak can be varied in
three aspects: its location, height and width. F@r-dimensional landscape, the problem is defined as follows:

F(X t) = max DHi(t) ’
i=1...p 1 + Wi(t) 21 (xj(t) = Xij(1))?

1)

whereW,(t) andH;(t) are the height and width of pealat timet, respectively, anc;(t) is the j-th element of the
location of peaki at timet. The p independently specified peaks are blended together byndixefunction. The
position of each peak is shifted in a random direction by aareg of a distances (sis also called the shift length,
which determines the severity of the problem dynamics) thaanove of a single peak can be described as follows:

S
0= g

(1-r+av(t - 1)), 2)
where the shift vectovi(t) is a linear combination of a random vectoand the previous shift vectai(t — 1) and is
normalized to the shift lengte The correlated parametgris set to 0, which implies that the peak movements are
uncorrelated. A change of a single peak can be describedlas$o

H;i(t) = Hi(t — 1) + height_severity - o 3)
Wi (t) = Wi(t — 1) + width_severity - o 4)
Xi(t) = Xi(t)(t - 1)+ vi(t))

whereo is a normally distributed random number with mean 0 and tianidl.

Due to the simplicity of the MPB problem, many algorithms &éathown good performance in tracking the global
optimum, such as, mQS® [7], SPSOJ[51], rSPSO [3], CFSO [6RBOR [36], AMSO[[38] and SAMO 4] from
PSO, DynDEHZI'S] and DynPopDﬂ59] from DE, S [9] from geaoetigorithms (GAs), ect. In this paper, we
introduce a new feature into the MPB problem. The number akpés allowed to change to evaluate the adaptability
of multi-population methods. If this feature is enable@, ttumber of peaks changes by one of the following formulas:

peaks = peaks+ sign- 10 (6a)
peaks = peaks+ sign - rand(5, 25) (6b)
peaks = rand(10, 100), (6¢)

wheresign = 1 if peaks <= 10 andsign = —1 if peaks >= 100 (the initial value o&ign is one), andand(a, b) returns

a random value ind, b]. This feature make the MPB morefiicult to solve as the number of populations must adapt
to the changes regarding the number of peaks. The defatitiggetor the MPB used in the experiments of this paper
are given in TablEll. The new feature is disabled by defanless stated otherwise in this paper.

3.2. Benchmark Algorithms

For experiments in this paper, a set of benchmark algoritmmaselected from the literature of multi-population
methods for DOPs. They are mQSO0 [7], SPS0 [51], CRSO [64]AEPE6], AMSO [38], SAMO [4], DynDE[[45],
DynPopDE lL_5b], and CDDEAr [@]. These algorithms represent several research tibres of multi-population
methods. For example, SPSO is the origin of the re-groupiogei39, 50| 213, 85, 42]; mQSO is the origin of the
competing modeﬂ @5]; CPSO is the origin of the clisggmodel ESI__SBES]. Among these methods, only
SAMO, DynPopDE and AMSO are adaptive algorithms. Theser#dlgos were chosen to ensure that they represent

6

215

220

225

230

235

240

Table 1: Default settings for the MPB problem, where the técirange frequencyu)” means that the environment changes ewverfjtness
evaluationsS denotes the range of allele values, arttenotes the initial height for all peaks. The height of paalshifted randomly in the range
H = [30, 70] and the width of peaks is shifted randomly in the raige [1, 12]

Parameter Value Parameter Value
number of peaksgeaks) 10 | number of dimensiond)) 5
change frequencyu 5000 | correlation cofficient () 0
height severity 7.0 | number of peaks change no
width severity 1.0 S [0, 100]
peak shape cone H [30.0, 70.0]
basic function no w [1,12]
shift length €) 1.0 I 50.0

all typical characteristics of multi-population methods. addition to the above algorithms, we also develop two
new multi-population algorithms in this paper: One is a ipdtpulation PSO (mPSO) algorithm and the other is a
multi-population DE (mDE) algorithm. The details of theamtalgorithms will be introduced later in Selct. 4]1.1.

The algorithms are carefully selected in each set of exparimto ensure that the results are meaningful and
representative. For example, in the experimental studgfing the search radius in Séci. 411.3, only those algosth
that have configurable search radius are selected to igaéstihe usefulness of this feature.

Note that, for all experiments in this paper, for each athomiwe use the best known parameter values as suggested
by the authors of the algorithms. The values of parametemrsR80 and mDE were obtained by several preliminary
experiments. To investigate the impact of each challengeomly focus on parameters that can Ifieeted by this
challenge. The values of these parameters are also cgreffidsen through a thorough sensitivity analysis.

3.3. Performance Evaluation

In order to investigate theffiect of the aforementioned issues on the performance of anitl in locating and
tracking multiple optima, this paper uses three perforreaneasures, which are described below.

3.3.1. Average Score (score)
In order to investigate the capability of an algorithm inpesding to changes, i.e., how quickly the algorithm
converges to the global optimum after a change occurs, wéhaggerformance measuseore [37]. The measure is

defined as follows: o

K
score = 2 3 (1#%/(1+ Y (1-r})/P)) @)
k=1

p=1

Whererl’(’eg is the relative value of the best-so-far solution to the glaptimum at the end of thieth environment
(i.e., just before thé-th change)rP® = f(x2**)/f(x) for maximization problems ang® = f(x;)/f(x*) for
minimization problemsr,f is the relative value of the best-so-far solution to the glaptimum at thep-th sampling
point during thek-th environmentrl’(J = (f(xE) + of fset)/(f(x;) + of fset) for maximization problems an[iJ =
(f(x) + of fset)/(f(xE) + of f set) for minimization problems, wheref f set was set tof abs(f(x;)) + 1 and is used

to ensure thatf(x;) + of f set) is greater than (P = u/s_f is the total number of sampling points for an environment,
whereu is the change frequency of the MPB problem anflis the sampling frequency, which was set to 100.

3.3.2. The Percentage of Peaks Being Tracked (tPercent)

The aim of multi-population approaches is to locate andktraciltiple peaks simultaneously. Therefore, the
percentage of peaks that are tracked by an algorithm is aortant measure. A peak is assumed to be tracked if the
distance from any solution to the peak is less than 0.1 foMR& problem in this paper.

3.3.3. The Tracking Ratio for the Global Optimum (gRatio)

The above measures cannot show exactly how well an algor#fable to locate and track the global optimum.
Therefore, we use an additional measure: the averagerngadio, which is the percentage of times where the global
optima are successfully tracked by an algorithm over alhgles.

7

245

250

255

260

265

270

275

280

285

3.3.4. t-Test Comparison

To evaluate if the dierence in performance (average score and average begtadrany two peer algorithms is
statistically significant, a two-tailedtest with 58 degrees of freedom at a 0.05 level of signifieamas conducted.
Thet-test results are shown as a superscript letter of “w”, “t";th next to the average scores and average best-error
values of each algorithm to indicate whether the performari@n algorithm is significantly better than, significantly
worse than, and statistically equivalent to its peer atbarj respectively. For example, in the first row of TdHle 2 in
Sect[4.1P, CPSO has a score of 0.8§ainst AMSO, meaning that the score of CPSO is 0.95 andigmifisantly
worse than that of AMSO. All the results reported in this pegre averaged over 30 independent runs.

3.3.5. Other Performance Measurements

There are several other common performance measures foirEdysmamic environments, such as thélioe
error, the dfline performance, the best-before-change error, and mesagur robust optimization, etc. Thetine
error, which is used to measure the performance in respdrd®nges, averages over the errors of the best solution
found since the last change after every function evaluatidre dfline performance is used in the situation where
the global optimum is unknown, by simply averaging the finekthe best solution at each evaluation. The best-
before-change error, which is used to measure the solutiality is the average error of the best solution obtained
just before a change occurs. Measures for robust optiroizatie used to measure the robustness of solutions over a
time span.

Although there are many other measures as mentioned atwvbef purpose of investigating the impact of the
aforementioned challenges on multi-population methdus three performance measures selected in this paper are
the most suitable. The score measure is chosen becausdtieh@a®perties of both thefitine error and best-before-
change error. In addition, this measure makes it easy to aoetpe performance of a set of algorithms. From Eg. (7),
for an algorithm, the better the solution obtained, thedatbe value ofl’(JeSt and hence, the larger the value of score.
Also, the less time an algorithm spent to relocate the glop&mum after a change occurs, the larger the value of
score it would achieve. Similarly, th®ercent andgRatio measures are chosen over other measures because they help
evaluating an algorithm’s performance in tracking muéipblutions, including the global optimum.

3.4. Outdated Memory |ssues

For PSO algorithms, it is necessary to update fithess valuparticles’ personal best positions once a change
occurs. This is because there is no method that is alwaystalwetect changes (see discussions in $ect.]4.2.6).
Therefore, there will be errors in performance evaluatioa tb outdated fitness values of particles’ personal best
positions. To avoid such errors, for PSO algorithms invdlvethe experimental study, the fitness values of particles’
personal best positions are updated automatically oncarsgehoccurs. The same procedure is applied to individuals
of DE algorithms as the same issue exists in the case of DEitdgrs.

4. The Challenges for Multi-population Methods

This section comprehensively analyzes the challenges @tti-population methods to locate and track multiple
peaks and shows théfect through experimental results. Three major challengdsaveral other considerations for
multi-population methods are explained and correspongliggestions are also given from the algorithm design point
of view in this section.

4.1. Major Challenges

As mentioned before, the key issue of applying EAs to dynasnidronments is how to maintain population
diversity. Diversity loss is generally handled by diveysiicreasingregaining mechanisms in most multi-population
studies, e.g., re-initializing inactive individuals ottrieducing extra new active individuals. Therefore, thipga
focuses on analyzing the major issues encountered by tleesitivincreasingegaining studies in multi-population
approaches for DOPs with many peaks.

290

295

300

305

095
O . tPercent—1 roent- 0.25 tPercent-- £
oo egse 8ege. priat 0al @ ! B e | po R a o loRam-
088 P 5888888, @ o0 o o 5 02 / e A
, g o025t @ = o © /m = o
08 g 88, ¢ o0& © / AV W g m
2 om B{e o2 g & o ot @ [fgPeedged
g or @ 8 } £/ 8 { &g o
<4 & € o015 Ly B i o= \
oes| O/ H ‘4 oir @ / ©
ool B/ 01 i 4 \ !)
e 0.05 \ g] 0.05 % /
oss| 8 LB L s
05 9 % 00 &
score —— o scqre 7 sogre ——
098 0.88 o065
086
0975
o o 08 o 08
8 o097 g oe 8
8 8 o8 % o075
0.965 078
07
076
096 o074] oo
0 020406081012 14 16 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50 0 020406081012 14 1.6 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50 0 020406081012 14 16 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50
The moment (t) to react to changes (CPSOR,peaks=10) The moment (1) to react to changes (MPSO,peaks=10) The moment (t) to react to changes (MDEpeaks=10)
wPercent— 3 014 percent-@- Percent -5
045 N -0-0.__O_ gRatio --0- 2 @Ratio - 012 6 oo) gRatio -
- cy N O~ (2% N 4 - Q A\
© = 012 o NN NI N B- Pre AN
04 = Ba / oo e/ Lo 01 / /
. =) 5-8-a B 8 ros N \
& o3 e Q o1l @ / g-g-8-8 a A / 5] 6-a [}
035 A P / 8558 o, 0.08 / S -
s o' [SiN g oost j Bra-EE 418 / -
g o2 2 8 g ? 8 ool @ s 8o
B 0.06 A . 1 A\ 7
025 2 5 ! fin| S =R=i N
o B 0.04 3 / 4 004t o L gea® =} Dm0
o2 B\.‘%’ 002 0.02 B
015 o O | a il
score —— 0.94 score —+— | o. score ——
0975 092
002 1 09
097 0.88
o © 09 1e
g g § oeo
3 os6s 3 oss 8 oss
o6 082
0.96 a 0.8
084 1 078
0,955 076
0 02040608101214161820253.040507.0 10 20 30 50 0 02040608101214161820253.040507.0 10 20 30 50 0 02040608101214161820253.040507.0 10 20 30 50
The moment () to react to changes (CPSOR,peaks=50) The moment (1) to react to changes (MPSO,peaks=50) The moment (t) to react to changes (MDE peaks=50)
022 Peresnt L 014 Percent-E- 1 01 Percent -
- @Rt -0 [CN-% 2 - @ ‘gRatio -
02 nga a8 012 SreSgema M eeo.g | [e-e.g
o-gBBe. _ o-0-a A / o o 008 / N a
018 v © kS 01 / Q / N
S o1 S ‘g S oo [} 5 2 o008 v e Q. o
5 e . = / \ z N 2
= o S~ & L ; B.g.g T8 {5 g o] o,/ N\
o B' S / BDDEIDE'D F— =N] 5-©
oizp G | ooaf % . 1 vl ® / et oPEsasad,
01f Oy 002 | { 1 5 / o
\ 8 \ I
o o £
0.975 score —+— score —+— score —+—
0.94 1 094
092
097 092 09
@] 2 e
8 8 0.9 8
& 0965 2 & ose
0.88 084
096 o086 082
o8
0 02040608101214161820253040507.0 10 20 30 50 0 02040608101214161820253040507.0 10 20 30 50 0 02040608101214161820253040507.0 10 20 30 50
The moment (t) to react to changes (CPSOR,peaks=100) The moment (t) to react to changes (mPSO,peaks=100) The moment (t) to react to changes (mDE,peaks=100)

Figure 1: Hfect of varying the moments to react to changes on the perfarenaf CPSOR [36], mPSO, and mDE in terms of the average score
(score), tracking ratio of the global optimungRatio), and percentage of tracked peat®ef cent) on the MPB problem with dierent numbers of
peaks under the default change frequency of 5@abs.

4.1.1. Determining the Moment to React to Changes

The first challenge is to determine when to react to changesst kesearchers believe that the moment when
a change occurs is when the algorithm should react to changesording to this assumption, many algorithms,
including multi-population based algorithms, have beesppsed to react to changes at the moment when a change
occurs by increasinigntroducing diversity or reusing information learnt frohetpastﬁl?ﬂ@@@@ 68].

However, we will show below that this choice might not be timeall situations, at least for three algorithms:
CPSORL[EB], mPSO, and mDE. mPSO and mDE are simple multitptipn based PSO and DE algorithms, respec-
tively. In these two algorithms, ten populations are usetle gbest model and theDE/best/2 mutation strategy
[@,] are used in mPSO and mDE, respectively. To react am@bs, a certain number of new random individ-
uals are introduced in CPSOR and all populations are rigliziédd in mMPSO and mDENote that, the parameter
settings of the three algorithms are made based on sevetahjirary experiments and several experimental studies
[Iﬂ, @,@]. For example, ten populations are suggestedany studieﬂﬁﬂ@OEigureﬂ anf2 present
the dfect of varying the moment to react to changes on the MPB pnoliih the change frequency a5, 000 and
u=10, 000, respectively. The horizontal axis denotes the moneeimttoduce new random individuals in CPSOR or
to re-initialize populations in mPSO and mDE. Taking theueabf 1.0 in mPSO as an example, it means that popu-
lations are re-initialized every.Q « u fithess evaluations, i.e., at every moment when a changesddote that, the
results for the value of O denote that no reaction is perfdrmehe three algorithms throughout the run time. From
the results in Fid.]1, we can have the following observatfonghe involved algorithms on the MPB problem.

Firstly, it is not a good option to react to changes frequemtlg., more than once during one change interval
(0 < t < 1.0). For all the three algorithms, the performance greatbpdrin terms of all the three measures when

9

310

315

320

325

330

018
tPercent-—E1 A tPercent-—E]- 014 a tPercent-—E
Ratio -

L O-Bg_ o o _ Z e 4 -

03 18‘2 o-o-B-a-8 9—3-9_5_@ gRatio -0~ 0.16 o-o-0"N o _a gRatio —-O- 012 2 % oa

> @8, 014 ; R 1) .

& =1 012 / 09, 1 01 / N o
0.25 L Q o1 ! o /
008 {

5 006 {

oss| | 2 vl & /m y
oo2f %/] oozl N/ g

X 008 .
Y 1 ¢ N oo yoy

=3 006 oo R
5-8-5-8-g-u-8-08 8y g8 0-a | o o’ N

ratio
ratio
ratio
°8

B, P
g wBEEEg ggeeec0Sg

GEl...__

01 o 2
score —+— 0.95 score —+— | o score ——

098

0.945 R 095

0975 094 094

0.935

0.03

0.03

score
°
g
score
score

092
0.925 1

0.965 091

002 1

096 0915 1

001 089

0 020406081012 14 16 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50 0 0204 0608101214 1.6 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50 0 020406081012 14 16 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50

The moment (t) to react to changes (CPSOR,peaks=100) The moment () to react to changes (mPSO,peaks=100) The moment (1) to react to changes (mDE,peaks=100)

014
“o. 012 4 / LS -0 4 N
By, i 5 g.g-8., o 014 / o.
oif | mg-g.g.gBe8 o So o 012 /
o1 ¢ o A 59

Percent— 3 g ercen- o018 Percent— 3
Ratio --0-- PN By oo 27O aRatio -6 28 Ratio --0--
9 ©-%-0-g TN/ < 016 RSN ’

ratio
°
g
=]
e
g4
ratio
°
3
ratio

/ 0.06 L 4 0081 @ (- - \
/ % L L B @ g g \
03 B 0.04 yoo 4 006 M/ S geEd@eg g -8-0-g-8
‘ - 4 \ p-B-B-B-8-Eg
025F & 8 iy 0.04 A a (=]
H 1 0.02 LT

[alc)
°

e o wem T

0.94 9 0.93
0.975 0.92
091

score
°
3
score
score

0.9
0.965 0.89
1 0.88

0.87

0 020406081012 14 16 1.8 2.0 25 3.0 40 5.0 7.0 10 20 30 50 0 02040608 101214 16 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50 0 020406081012 1416 1.8 20 25 3.0 40 5.0 7.0 10 20 30 50
The moment (t) to react to changes (CPSOR, peaks=50) The moment (1) to react to changes (MPSO,peaks=50) The moment (t) to react to changes (MDE,peaks=50)

Figure 2: Hfect of varying the moments to react to changes on the perfarenaf CPSOR [36], mPSO, and mDE in terms of the average score
(score), tracking ratio of the global optimungRatio), and percentage of tracked peat®ef cent) on the MPB problem with dierent numbers of
peaks under the change frequency of 10,8@E0s.

the momentt] to react to changes is between 0 and 1.0. The more frequdsetyresponse to changes, the worse
performance they achieve. For example, mPSO and mDE caifyheadk any peak whem decreases below 0.4.
Frequently introducingestarting individuals causes the algorithms to be unabtefficiently exploit peaks before

a change occursThis observation is consistent with the behavior of tradidil algorithms reviewed in [29], which
states that continuous focus on diversity slows down theripation process.

Secondly, it is neither a good option to react to changessiacally, e.g.t > 7.0, especially for the MPB problem
with a large number of peaks (e.geaks = 100). Taking the CPSOR algorithm as an example, the perfocenalso
drops whert increases above 7.0, where individuals are introduced/eetatively large number of changes. The
reason is that the risk of losing peaks that have been loedtkidcrease if diversity regaining is not carried out in a
relatively long time.

Thirdly, the performance of the three algorithms withouy agaction to changes seems not so bad as intuitively
expected. In the case € 0), the results are similar to the resultstof 50. When we observe the behavior of
three algorithms, we found that environmental changesyawause a small variation to the populations. This small
variation enables the populations to re-locate peaks teatlase to them, even when they are converging.

Fourthly, the best option to react to changes seems to bedheemt corresponding tovalues between 1.0 and 5.0
for all the three algorithms under the default change fraqua = 5000. The algorithms achieve the best performance
in most cases in terms of the three measures by using thesvafltin this range.

Finally, for the particular case df = 1.0, where reactions are carried out just at the moment wheraageh
occurs, it is interesting to see that mPSO and mDE have dfisigmi drop in their score values, while CPSOR does
not experience such drop in its score. An explanation fordttog in the scores of mMPSO and mDE is that the two
algorithms react to changes by restarting themselves wiithsing any knowledge of previous environments. The
restart happens just at every moment when a change occting ¢ases af # 1.0, the best solution found so far since
the last change is recorded before the next change for tlierpemce evaluation. However, the best solution does
not make sense in the casetef 1.0 since: 1) the best solution belongs to the previous enmient and 2) restarting
population means no individual survives for the new envinent, i.e., the search restarts from scratch. Therefore,
there is a significant performance drop in the score of mMPS0vdDE in the cases df= 1.0. Since CPSOR does use
information of previous environment (the archived beshiittlials of converged populations) to accelerate its $earc
it does not exhibit a clear drop in its performance if the newinment somehow resembles the old environment.
The results indicate that reacting to changes at the monfesitamge occurrence may be not the best choice for a

10

335

340

345

350

355

360

365

370

375

certain kind of response schemes, e.g,. the restart scllem@$O and mDE in this paper.

Compared with Fig]1, Fidg.l2 shows similar observations @séhthree algorithms except that a smalleelps
the algorithms achieve the best results due to the use ofjerlahange intervali(= 10,000). For exampld, = 0.8
helps CPSOR and mDE achieve the larggttio in Fig.[d, while that value is 1.0 for the two algorithms in Fi

From the results in FigEl 1 afdl 2, it can be seen that the maimesxict to changes plays an important role in the
performance of the three algorithms. The problem is how terd@ne a proper moment. This is a challenging issue as
a good choice depends not only on the change frequency loubalhe converging status of populations. Our recent
study of the AMSO algorithm in_[38] suggests that a good marfarthe AMSO algorithm to react to changes may
be when the populations are no longer able to locate or tiagkew optimum, rather than when a change occurs. To
estimate the moment when no new optimum is found, the forimei@w is used [38]:

(pop(t — 8) — pop(t))/s < 0.002 (8)

where pop(t) is the number of populations at tinteandé is a parameter to determine the time gap between two
successive checking points. Similar idea can also be fourdgorithms SAMO|I|4] and DynPopD 9], where a
new free population is created when all populations are @@ingstagnating rather than when a change occurs.

It should be noted that this challenge exists only for alfpons with diversity increasirigegaining mechanisms,
such as the three algorithms involved above. For algorithitisdiversity maintaining mechanisms, such as mQSO
[Iﬂ] and DynDE |[Zi5], they do not have such issue (but extrauata@dns are needed to maintain diversity at each
iteration).

4.1.2. Determining the Appropriate Number of Populationsto Deal with Changes

The second challenge in maintaining population diversitgidetermine the correct number of populations to deal
with changes. This issue lies in two aspects. The first aspéztdetermine the number of populations for algorithms
using a fixed number of populations. The proper number of [adipns is mainly determined by the number of peaks
in the fithess landscape. Generally speaking, the more jre#ties fitness landscape, the more populations are needed
for problems like the MPB. Several experimental studﬂeﬁ?@] showed that the optimal number of populations is
equal to the number of peaks in the fithess landscape for thgpiéblem |[$] with a small number of peaks (e.g., less
than ten peaks). However, recent evidenceEh9, 38] sthdknag the optimal number of populations is not equal
to the number of total peaks for the MPB problem with many ggakg., more than ten peaks). Although locating
and tracking each peak by a single population is theoréticght, it is not eficient and hard to achieve in practice
in particular for DOPs with a huge number of optima (e.g., &2BG benchmarl@?]) because it is hard to move
populations to the right areas and only limited computatioesources are available. In addition, the distributiot a
shape of peaks may also play a role in configuring the numbgopdlations.

The second aspect is to determine the number of populatiohe increasedecreased for algorithms using a
variable number of populations. This is also #idult problem. For example, in dynamic environments with an
unknown and changing number of optima, the dynamic increasecrease in the number of populations should be
in line with the increase or decrease in the number of peaks.ificreas@ecrease in the number of peaks, however,
is generally unknown to algorithms.

To illustrate the impact of changing number of populatidfig,[3 presents the results of varying the number of
populations on the performance of Dyn[45], mQ§b [7], amDE_Ar [@] in terms of the three performance
measures on four fferent MPB instances. Note that, both DynDE and mQSO useddeulgtions in their original
papers and the value &ffor the k-means method used in CDD& was also suggested to be ten. Experimental
results in FigCB show that the performance of all the thrgerithms are sensitive to the total number of populations
in terms of the three measures. For example, for problentstivt same number of peaks, the performance of mMQSO
improves as the number of populations increases to a cdetadh then it worsens as the number of populations
further increases. For problems withfdrent numbers of peaks, the best choice of the number of atigos also
varies. For example, mQSO achieves the gBstio value using ten populations on the 10-peak MPB problem ewhil
using 16 populations on the 20-peak MPB problem. The reBukgy.[3 clearly shows that the choice of the number
of populations doesftect the performance of the three algorithms especiallyrmdenfgRatio andtPercent and the
best choice is problem dependant.

To efficiently solve DOPs, the results above suggest that adagtngumber of populations is needed. Below we
will show an experimental example illustrating the need ldasing the right number of populations. We compare

11

380

385

390

395

peaks=10—— peaks= peaks=30--F- peaks= peaks=10—— peaks= peaks=30--E- peaks=

score
gRatio
tPercent

e

© |

e

2 3 5 7 10 12 14 16 18 20 25 30 35 40 45 2 3 5 7 10 12 14 16 18 20 25 30 35 40 45 5 7 10 12 14 16 18 20 25 30 35 40 45
The number of populations(DynDE) The number of populations (DynDE) The number of populations(DynDE)

peaks=10—— peaks=20--©-- peaks=30--E- peaks=50- peaks=10—— peaks=20--©-- peaks=30--E-- peaks=50--Ik peaks=10—— peaks=20--©-- peaks=30--E-- peaks=50--k

score
o
©
gRatio
o
©
tPercent
o
©

0.84 /
01t o] 01
0.82 0 |
" g u
08 [0
2 3 5 7 10 12 14 16 18 20 25 30 35 40 45 2 3 5 7 10 12 14 16 18 20 25 30 35 40 45 2 3 5 7 10 12 14 16 18 20 25 30 35 40 45
The number of populations(mQSO) The number of populations(mQSO) The number of populations(mQSO)
peaks=10—— peaks=20--O-- peaks=30--£}- peaks=50-M peaks=10—— peaks=20--O-- peaks=30--E}-~ peaks=50--1 peaks=10—— peaks=20--O-- peaks=30--E}-~ peaks=50--1

28888y,

score
°
3
gRatio
tPercent

2 3 5 7 10 12 14 16 18 20 25 30 35 40 45 2 3 5 7 10 12 14 16 18 20 25 30 35 40 45 2 3 5 7 10 12 14 16 18 20 25 30 35 40 45
The number of populations(CDDE_Ar) The number of populations (CODE_Ar) The number of populations(CDDE_Ar)

Figure 3: Hfect of varying the number of populations on the performarfd@ymDE [45], mQSOI[’], and CDDEAr [25] in terms of the average
score (left), tracking ratio of the global optimum (middlehd percentage of tracked peaks (right) witfiedent numbers of peaks.

two algorithms, CPSd__[g$4] and AMS@BS]. The onlyffdrence between these two algorithms is that AMSO has
a feature to adapt the number of populations. This is donetibiging a finding in [38]: the number of populations
should be in synchronisation with the number of peaks. Baseithis observation, AMSO first checks the variance
in the number of populations at two successive checkingtpdsee Eq.[(8)), then add or delete more populations
accordingly. The larger the variance, the larger the nurabpopulations that will be increased or decreased.

Figure4 presents the comparison of progress on the numipepodations andPercent for CPSO and AMSO on
different MPB instances. From the graphs in Elg. 4 with a fixed rarmabpeaks peaks= 10 andpeaks=30), AMSO
shows a better adaptability: It is able to adaptively chatiierent numbers of populations for itself in relation to
different problems. For example, on the 10-peak MPB instaneajumber of populations is about 15, while on the
30-peak MPB instance the number of populations stabiliz@8 aDue to the limitation of CPSO and thdfitiulties
in determining the correct number of populations, CPSO damgshow such population adaptation capability. In
CPSO, the number of populations drops during each changevattand is simply restored to an initial level after
a change occurs. Comparing the results of CPSO between th®IRB instances, we cannot observe the behavior
change as AMSO shows. Due to the adaptation capability of BMS performance is much better than that of CPSO
regardingtPercent. On the 10-peak MPB instance, the percentage of peaks ttdgk@MSO is much higher than
that of CPSO and it reaches almost 100% after the 60th ch&ogéhe 30-peak MPB instance, althoudfter cent of
AMSO is smaller than that of CPSO for the first 40 changes, &heevgradually improves and finally overtakes the
value achieved by CPSO at the 40th change.

For the problem instances with a changing number of peakss@Mhows a certain level of adaptability to the

12

400

405

410

415

N

o

S
B
o
<)

The number of peaks—— The number of peaks——

% %)
< 60 1= 60
i) jo}
a a
20 q 20
wn 25 41w
f= =
S 20 S
< <
e E
S 10 o
a a
5 [F

o
©

J,mw

AR

200k 300k 500k 200k 300k 400k 500k
evals evals

100 - The number of peaks——
60 bl
20 Bl

tPercent
o
(4]

[
o
o

Peaks
[}
o
Peaks

N
o

Populations
PR NN
oo uowu
. —
Populations

o

©
o
«
@]
T
2]
0]

o
=)

tPercent

0.3

tPercent
o«
w
"
= s

Figure 4: Comparison of the number of populations and thegoeage of tracked peaks for AMSO|[38] and CPSO [64] on the fBlem with
different instances, where CPSO is AMSO without population tatiap.

changing environments where the number of populations ey synchronous with the change pattern of the
number of peaks. However, we cannot observe such a cleatatidapin CPSO. Again, AMSO shows a better
performance than CPSO on these two instances in tertf®eafent measure.

To show the advantage of adapting the number of populatitatse[2 presents the comparison of the average
scoregRatio, and average number of populatio®®ps) between three pairs of algorithms. The algorithms AMSO,
SAMO, and DynPopDE are three adaptive versions of the dlguns CPSO, mQSO, and DynDE, respectively, re-
garding the number of populations. For each pair of theseritiigns, the only dierence between the adaptive version
and the non-adaptive one is that the earlier has a populatiaptation mechanism. The results in Téable 2 show that
the adaptive versions chose a verffelient number of populations, compared to their non-adajpters. As stated
above, the larger the number of peaks, the more number ofigtigns are used in the adaptive algorithms. It can be
seen that the results of the three adaptive versions are beittdr than that of the three non-adaptive algorithms in
most cases in terms atore except for the pair of DynPopDE [69] and DynDE [45], which wegroposed by dif-
ferent authors, in the cases of variable number of peaks tat, the tracking ratio of the global optimum achieved
by SAMO is worse than that of mQSO. The reason is that SAMO dgp@mmuch larger number of evaluations for
charged particles to maintain the population diversityvatgiteration due to a larger number of populations used.

Although the adaptive versions have much better resultsttimnon-adaptive versions, the number of populations
grows as the number of peaks increases (e.g., DynPopDE)résu#, for problems with a huge number of peaks, it
is likely that a large number of populations is generatedctvim turn requires many evaluations per iteration. This
computational cost issue should be addressed in futurandse

4.1.3. Search Areas of Populations
For multi-population approaches, ideally each populasioould only cover the area surrounding one optimum.
This way, the populations are able to locate and track maltiptima in diferent sub-areas simultaneously. Normally,

13

420

425

430

435

Table 2: Average scoresdore) + standard error, tracking ratio for the global optimugiRédtio), and average number of populations for three
pairs of algorithms on the MPB problem withfidirent numbers of peaks, where AMSO, SAMO, and DynPopDE a&adaptive versions of
CPSO, mQSO, and DynDE, respectively, and varl, var2, arlararproblems with changing number of peaks by Ed. (6a)[@), and Eq[{8a),
respectively. The-test comparison is performed between each pair of algosith

peaks Evaluation CPSO AMSO mQSO SAMO DynDE DynPopDE
score 0.95"+0.02 0.99:0.008 | 0.96:0.01 0.96+0.01 0.98:0.004 0.97¥+0.03
10 gRatio 0.71%+0.3 0.96+0.09 0.170.3 0.086+0.2 0.51+0.5 0.63:0.4
Pops 7.4 17 10 12 10 10
score 0.95"+0.02 0.98:0.01 | 0.95+0.02 0.96:0.01 0.96+0.02 0.97+0.02
20 gRatio 0.61¥+0.2 0.74:0.2 0.053:0.1 0.0¥'+0.04 0.26"+0.3 0.47+0.4
Pops 9.7 21 10 17 10 17
score 0.96"+0.02 0.98:0.008 | 0.95'+0.02 0.96+0.01 0.96"+0.02 0.98+0.02
30 gRatio 0.48"+0.3 0.73t0.3 0.09%0.2 0.01%+0.04 0.16"+0.2 0.38:0.4
Pops 11 25 10 22 10 23
score 0.96"+0.01 0.98:0.01 0.95"+0.01 0.96+0.01 0.95"+0.01 0.9740.01
50 gRatio 0.3+0.2 0.45:0.3 0.076:0.1 0.0093+0.04 | 0.11"+0.1 0.25:0.3
Pops 12 28 10 24 10 28
score 0.96"+0.01 0.98:0.01 | 0.94"+0.02 0.96:0.01 0.95'+0.02 0.97+0.02
100 gRatio 0.2+0.2 0.21+0.2 0.0310.06 0.0027+0.01 | 0.042+0.06 0.12+0.2
Pops 14 30 10 28 10 40
score 0.97+0.01 0.98:0.01 0.94"+0.03 0.96+0.01 0.95"+0.03 0.98+0.01
200 gRatio 0.13+0.2 0.13t0.2 0.025:0.06 0.00¥+0.005 | 0.034+0.07 0.064:0.1
Pops 15 35 10 33 10 62
score 0.95"+0.03 0.97+0.02 0.94"+0.03 0.95+0.02 0.95+0.03 0.95+0.03
varl gRatio 0.41+0.3 0.45:0.2 0.055:0.1 0.029+0.06 0.170.2 0.099+0.2
Pops 11 18 10 16 10 33
score 0.94"+0.04 0.96:0.03 | 0.94+0.03 0.95:0.03 0.95:0.03 0.94:0.04
var2 gRatio 0.33+0.4 0.4+0.4 0.11+0.2 0.045+0.1 0.22+0.3 0.094+0.2
Pops 11 16 10 15 10 34
score 0.94"+0.04 0.970.03 | 0.94+0.04 0.95:0.03 0.95:0.03 0.93:0.06
var3 gRatio 0.37+0.4 0.45:0.4 0.1+0.2 0.049+0.1 0.25:0.4 0.09'+0.2
Pops 11 15 10 15 10 40

all individuals belonging to a population are restrictedhe search area covered by that population only. Therefore,
identifying a proper search area for each population is iraportant to locate the optima within that area. However,
determining a proper search area for an initial populati@th & given number of individuals is a very challenging
task. The challenges lie in that: 1) the population may ceeseral optima instead of one, 2) the population may
cover no optimum at all, and 3) the size of the search areayshagd to define due to the irregular shape of the basin
of attraction (e.g., see the rotated landscapes in the GI}B@mnark@]).

Due to the above challenges, most existing multi-populagilgorithms just use pre-defined values, which are
based on empirical experience, to determine the searcliarpapulations. For example, the size of each search area
for all populations is set to 30 in rSPSO [3] and HmMS$O [30] aBdri2FMSO Eh]. Some other studies assume that
some information of the problem to be solved is known. In stedes, problem information can be used to guide the
configuration of the search area. For example, assumingrttia¢ MPB problem we know such information as the
number of peaks, the number of variables, and the domairer@igckwell [‘}’] suggested that the exclusion radius of
each population is determined by:

Fexd = 0.5 % S/ peaks/® (9)

whereS is the range of the search spa€kjs the number of dimensions, ameaks denotes the number of peaks

in the search space, respectively. Thereafter, severat Mearcherﬂh@ﬂ also adopted the same population
radius to solve the MPB problem. To avoid being relied difidilt-to-know, problem-dependent information such
as the number of peakpeaks in Eq. [9) was replaced by the number of populations in SAMD The algorithm
DynPopDE|[[50] also adopted this idea.

Although problem information was not neededﬁh@l, 59], timaitations still exist: 1) The size of the search area
for each population is not adaptive to changes and 2) all jatipas use the same size of the search area.

To overcome the limitations of the above ideas, a clustdsaspd idea were proposedm[35]. Thereafter, CPSOR
[@] and AMSO EB] also adopted a similar idea@[SS]. Thesidethat spatially close individuals are clustered into
one population. A unigue size of the search area will be tatled for that population according to the distribution of
individuals. Initial populations are trained for sevetafations to allow individuals within one population to neao

14

440

445

450

455

460

465

Table 3: Average score standard error, and the number of cases wiseoee values andPercent values are significantly bettew) than,
significantly worselj than, and statistically equivalert) (o peer cases with fierent exclusion radiug), rexe = 315 is obtained by Eq[{9)

Algorithm 0 1 10 20 30 315 40 50 60 70
score | 0.82+0.07 0.85-0.05 0.8%0.06 0.8%40.05 0.88:0.05 0.880.05 0.8%0.06 0.830.06 0.830.07 0.83-0.07
mCPSO w,t, | 0,4,6 1,8,1 4,6,0 4,6,0 5,5,0 4,6,0 4,6,0 0,5,5 0,55 0,5,5
tPercent 0.038:0.050.026:0.04 0.026:0.05 0.028:0.05 0.033:0.05 0.034-0.05 0.03%0.05 0.0280.05 0.026:0.04 0.02&0.05
w,t,| 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 00,1 0,10,0
score | 0.87+0.07 0.96:0.02 0.96:0.01 0.96-0.01 0.96+0.01 0.96-0.01 0.96:0.01 0.94:0.02 0.920.02 0.920.04
e w,t,| 0,1,9 4,6,0 46,0 4,6,0 4,6,0 4,6,0 46,0 2,2,6 1,3,6 1,2,7
tPercent 0.13:0.08 0.140.09 0.150.09 0.120.1 0.1A0.1 0.1A#0.1 0.18:0.1 0.:k0.08 0.110.07 0.0990.07
w,t,| 0,10,0 1,9,0 3,7,0 3,7,0 3,7,0 3,7,0 3,7,0 0,5,5 0,55 0,4,6
score | 0.37+0.1 0.3#0.1 0.5:0.2 0.890.04 0.96:0.02 0.96+0.02 0.96:0.02 0.94-:0.02 0.940.02 0.92-0.04
SPSO w,t,| 0,2,8 0,2,8 2,17 3,16 7,3,0 7,3,0 7,3,0 52,3 52,3 4,15
tPercent 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0
w,t,| 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 0,10,0 00,1 0,10,0
score | 0.89+0.06 0.970.01 0.980.01 0.98-0.008 0.980.0060.98+0.005 0.98:0.006 0.96:0.02 0.95-0.02 0.93-0.03
DynDE w,t,| 0,1,9 4,24 4,6,0 5,5,0 5,5,0 5,5,0 5,50 3,16 2,17 1,1,8
tPercent 0.23:0.08 0.420.1 0.460.1 0.480.1 0.48:0.2 0.48&0.1 0.4%#0.2 0.21%:0.1 0.160.1 0.02:0.08
w,t,| 2,2,6 4,6,0 4,6,0 4,6,0 4,6,0 4,6,0 4,6,0 1,3,6 1,2,7 0,1,9

an area nearby where an optimum is located. Then, the se@&afoa each population is determined after the training
process. Therefore, the obtained search area of each pioputaadaptive to the local fithess landscape.

To show the &ect of varying the search radius, we carried out an expetimhetudy on algorithms mCPSO [71,
mQSO [7], SPSOL[51], and DynDE [45] with fiérent exclusion radiusq - the size of the search area for each
population), where mCPSO and mQSO have the same struB]lHEcié(pt that mCPSO uses charged swarms instead
of quantum swarms used by mQSO. In mCPSO, mQSO, and DynDpdation is re-initialized if its best individual
is within reyq of another population with a better best individual. SPSgaeps all individuals at every iteration and
assigns individuals that are withig from its seed to one group. Talfile 3 presents the results dbthealgorithms
on the 10-peak MPB problem, whergy=31.5 was set by Eq.X9). From the results, it can be seen thiastare and
tPercent are sensitive to the size of the search area for populatiensthe exclusion radius) for all the algorithms.
Note that, due to the small threshold (0.1) for checking ekied peaktPercent achieved by SPSO is zero in all cases.
The estimated radius by E{] (9) does work on the MPB with desattings in Tabl€]1.

Although improvements have been achieved via adaptingeheck areas to the fitness Iandscapé__hh [35], far
more dfort is still needed as a symmetric peak shape, e.g., the t@pe $n the MPB problem, is assumed in current
research of EAs for UCDOPs. For complex peak shapes, eegrptated peak shape in the GDBG benchmark [37],
there is no research yet.

It should be noted that this challenge only exists for mpittpulation methods that aim to locate and track multiple
peaks simultaneously (most existing multi-populationtmes belong to this category), such as SPiSO [51], mQSO
[|f|], CPSO l[__Qh], CPSO@G], DynDﬂhS], and SOS [9], etc. Hwer for algorithms like CESdﬂS] where
overlapping search is allowed, there is no such issue.

4.2. Other Considerations

Besides the above major challenges, several other corgleongl be also addressed when multi-population meth-
ods are considered for addressing DOPs. These concernseuesid below.

4.2.1. Communication

Many researchers believe that communication among papatacommunication here means exchanging indi-
viduals among dferent populations) is helpful for the search since inforamais able to transmit among populations
and, hence, this will accelerate the search and promisihgi@es may be found as well. However, interestingly,
most multi-population algorithms for UCDOPs have no comivaition, especially for algorithms aiming to locate
and track multiple peaks, e.g., mQSO [7], SPEO [51], rSPSATBSO [64], CPSOR [36], AMSQ [38], SAMI[4],
DynDE [45], DynPopDE[[59], and SOS![9].

15

470

475

480

485

490

495

500

505

Table 4: Average scorestore) + standard error and the number of tracked pe#iReaks) for algorithms CPSOR_[36], CPSOR*, mQS [7], and
mQSO* on the MPB problem with fierent numbers of peakgdaks), where CPSOR* and mQSO* are CPSOR and mQSO with commuoricati
respectively. Theé-test comparison is performed between the two algroithneaoh pair

Algorithm 1 2 5 7 10 20 30 50 100 200
score CPSOR| 0.96:0.02 0.93:0.04 0.96+0.02 0.96+0.02 0.97+0.02 0.97+0.02 0.98+0.01 0.97+0.01 0.97+0.01 0.98+0.009
CPSORC} 0.88'+0.1 0.8%'+0.09 0.8%+0.05 0.81'+0.1 0.8%+0.06 0.87'+0.05 0.8%+0.05 0.87'+0.05 0.88+0.05 0.9'+0.04
tPerce CPSOR| 0.98:0.06 0.59+0.3 0.81+0.2 0.6+0.2 0.73:0.1 0.48:0.1 0.42+0.09 0.3+0.06 0.16+0.04 0.086:0.02
%PSORC* 0.041"+0.2 0.02'+0.08 0.019+0.05 0.01'+0.03 0.0093+0.03 0.0057+0.01 0.0043+0.01 0.0027+0.006 0.0014+0.003 6.35e-0%+:0.002
score mQSO | 0.92:0.03 0.91+0.04 0.96+0.01 0.97+0.01 0.96+0.01 0.95+0.02 0.95-0.02 0.95+0.01 0.94-0.02 0.94'+0.03
mQSOM¥ 0.91+0.03 0.8%+0.04 0.94+0.01 0.9%+0.01 0.94+0.01 0.95+0.01 0.95+0.01 0.95-0.01 0.95+0.02 0.96+0.01
tPercent mQSO | 0.027:0.1 0.16:0.2 0.27+0.2 0.33:0.2 0.18:0.1 0.099:0.05 0.086:0.04 0.06+0.03 0.03:0.01 0.016:0.007
mQSOM? 0+0 0"+0 4.0e-04'+0.002 2.86e-04:0.002 1.33e-0%+7.2e-04 3.33e-05:1.8e-04 2.22e-05:1.2e-04 2.67e-05:1.4e-04 3.33e-06:1.8e-05 5.00e-06:2.7e-05

Experimental results in this section reveal that certapetgf communication between populations may not be
useful to locate and track multiple peaks for the aIgoritI@%OREb] and mQSdﬂ[?]. We do so by adding a special
type of communication to the two above algorithms and nareetmmunication-equipped algorithms CPSOR* and
mQSO*, respectively. The communication method is a ringetiopology where a random individual of a population
migrates to one of its neighbour population with a migrafie@guency of ten iterations. We compare CPSOR* with
CPSOR, and mQSO* with mQSO to see which perform better. Tlgeesents the results regarding the average
score and the percentage of peaks tracked by these two palgoathms.

From the results, it can be seen that the number of trackddsggaatly drops to a very low level when commu-
nications is applied to both algorithms. Accordingly, tlesults of both algorithms with communication (CPSOR*
and mQSO*) are significantly worse than those of the algoritivithout communications (CPSOR and mQSO) on
all instances in terms of both performance measuras.reason for this behaviour can be explained as follows. Th
motivation of multi-population methods is to divide the s#Bspace into dierent sub-areas. Each population locates
and tracks peaks within its own search area. It would be eagwpck the global optimum if one of the traced peaks
becomes the new global optimum or the global optimum movesi&of the search areas of populations. However,
when communications are used between populations, migkaep moving from one population to another popula-
tion during the search progress. In such case, when a migraves from a high-quality peak to a sub-population
currently tracking a lower quality peak, it can potentiallgminate that sub-population and consequently force that
sub-population to abandon the lower quality peak. Such anadn will eventually reduce the number of peaks that
can be tracked by the algorithm. Therefore, the number okpaacked greatly drops when the communication
scheme is applied. In environments like the MPB where a loality peak can become the global optimum in the fu-
ture when changes occur, reducing the number of peaks lreicket obviously has a negative impact. It contradicts
the aim of using multi-population methods.

It should be noted that although communication may not helfiifpopulation methods like CPSOR and mQSO
where populations aim to search irffdrent sub-areas, it is necessary for multi-population oahike CESO|E3]
where populations transmit information between each dtheooperate to track the changing global optimum.

4.2.2. Avoiding Overlapping Search

In order to dficiently locate and track multiple peaks infflérent sub-areas, overlapping control is necessary on
problems with many peaks. This is because overlapping leetwgo populations searching in the same sub-area
firstly wastes valuable computational resources and ségdmadot helpful for exploring new optima. Overlapped
populations normally will be re-initialized (e.g., in mQ and DynDE]) or removed (e.g., in CPS[64]).
Table® presents the comparison between three pairs ofithlgerwhere each pair has one algorithm with and an-
other without overlapping control. From the comparisonait be seen that the score values of the algorithms without
overlapping control are significantly worse than those efdlgorithms with overlapping control on most MPB in-
stances with many peaks (e.g., more than 5 peaks), exceiptef@rair of CPSO algorithms, where CPSérhieves
slightly worsescore values than CPSO. Like the comparison of the other two péakyorithms (mQSO and mQSO
DynDE and DynDE), the average percentage of peaks tracked by CPSO withagyenlg control is much larger than
that of CPSO without overlapping control.

However, overlapping control seems to be not good to solablpms with a few peaks. Examples can be seen
in Table[®, where the algorithm in each pair with overlapgingtrol performs worse than its peer algorithm without
overlapping control on the 1-peak and 2-peak MPB instantésins of both thecore andtPercent measures.

16

Table 5: Average scoresdore) andtPercent for three pairs of algorithms on the MPB problem wittitelient numbers of peakpdaks), where
CPSO is the CPSO algorithm without overlapping control, mQS&ahd DynDE are mQSO and DynDE without exclusion (i.esq = 0 in
Eq. [@)), respectively. Thetest is performed between the two algorithms in each pair

. the number of peakggaks)

Algorithm 1 2 5 7 10 20 30 50 100 200
oo CPSO | 095:0.02 0.94004 0.95:003 096:0.02 0.95:0.02 0.95002 096:0.02 0.96:001 086:0.01 0970.01
CPSO | 0.95:0.01 0.95:0.02 0.950.02 0.960.01 0.950.02 0.96:0.01 0.9&0.01 0.960.01 0.960.01 0.9%0.009
Percen; CPSO [0.12%0.3 0.36%03 0.72:02 0.62:01 06E0.1 041005 03004 024002 0100l 00530008
CPSO | 1:0.02 0.79:0.2 0.58'+0.2 0.48+0.1 0.4%+0.1 0.26+0.07 0.19+0.05 0.1¥+0.03 0.068+0.02 0.03#=0.01

oo MQSO [0.92+0.030.97%0.04 0.96:0.01 0.97:0.01 0.96:0.01 095:0.02 095:002 0095:001 094002 0.94:0.03
mQSO | 0.95:0.01 0.95:0.04 0.81'+0.05 0.87+0.04 0.89+0.08 0.89+0.04 0.88+0.06 0.92+0.05 0.92+0.04 0.92+0.05
Percent MQSO [0.027%0.1 0.16%0.2 02702 03302 0.18:0.1 0099:0.05 0.086:0.04 0.06:0.03 0.03:0.01 0.016:0.007
mQSO | 0.14:0.3 0.31:0.3 0.038+0.08 0.2:+0.09 0.13+0.07 0.04%:+0.03 0.05¥-:0.03 0.048+0.02 0.026:0.01 0.012+0.006

<core DYNDE [[0.98%:0.010.970.04 0.97:0,007 0.98:0,005 0.98:0.004 0.96:0.02 096:0.02 095:001 095:0.02 0.95:0.03
DynDE-| 0.98:0.003 0.96:0.04 0.81'+0.04 0.84+0.002 0.89+0.06 0.87+0.04 0.87+0.03 0.9+0.06 0.92+0.04 0.91+0.05
\Percent DYNDE [0.16204 01702 0302 0402 04802 025:008 017005 0.1x0.03 0.052002 0.026:0.008
DynDE-| 0.99:0.009 0.71+0.2 0.21¥+0.05 0.27+0.04 0.2%+0.08 0.14+0.04 0.F'+0.02 0.08+0.02 0.039+0.01 0.018+0.006

Table 6: Average score standard error, and the number of cases wiseoee value is significantly betten) than, significantly worsel) than,

and statistically

equivalent)(to its peer cases for CPSO and AMSO on the MPB problem withebBk$

] size of individual populationgubSize)
Algorithm 3 5 7 9 1 3 15 17 20 25 30 70 50
score| 0.92:0.03 0.950.03 0.95:0.02 0.950.03 0.050.02 0.950.02 0.940.02 0.94.0.02 0.940.02 0.94:0.03 0.930.03 0.920.04 0.9:0.05
cpso Wil | 058 3100 490 3,100 3100 3,100 2110 2110 @11,1,120 0121 085 049
tPercerft 0.48:0.2 0.68:0.1 0.6£0.1 0550.1 050.09 0.4%0.000.420.09 0.40.08 0.340.08 0.31:0.08 0.280.08 0.23.0.08 0.18:0.08
wtl | 652 1210 11,11 8,3,2 7,42 6,43 544 436 427 922 229 0211 0211
score| 0.96:0.02 0.98:0.010.99:0.008 0.92:0.009 0.94:0.009 0.9¢:0.01 0.98:0.02 0.98:0.02 0.98:0.03 0.96:0.04 0.95:0.05 0.92:0.07 0.8:0.09
amso Wil | 238 580 6,7,0 6,7,0 670 580 580 580 463 247,38 0211 0211
tPercerft 0.3£0.1 0.8%:0.00 0.92:0.06 0.820.07 0.8&0.07 0.820.1 0.7&0.1 0.720.1 0.640.1 0.5%0.1 0.50.1 0.38&0.09 0.3£0.1
wtl | 0211 940 10,30 9,4,0 931 724 724 526 526 841 319 2110 0211

Table 7: Averag
and statistically

e score standard error, and the number of cases wheredbre value is significantly bettem) than, significantly worsd) than,
equivalent)(to its peer cases for CPSO and AMSO on the MPB problem withesl$

. size of individual populationgubSize)
Algorithm 3 5 7 9 11 13 15 17 20 25 30 70 50

score| 0.95:0.02 0.96:0.010.96:0.01 0.96:0.01 0.96:0.02 0.96:0.02 0.96:0.02 0.95:0.02 0.95:0.02 0.950.02 0.950.03 0.940.03 0.940.04

cpso WU | 1111 490 580 3100 2110 2110 2110 1120 12,0112 0103 0,7,6 0,4,9
tPercer|t 0.14£0.05 0.22:0.03 0.2:0.02 0.1%0.02 0.16:0.02 0.14:0.02 0.13:0.02 0.120.02 0.1%0.02 0.09%0.02 0.07&0.02 0.06:0.02 0.04&0.02

wtl 643 1210 11,11 1012 823 724 625 517 418 931 2110 1,111 0112

score| 0.96:0.02 0.98:0.010.98:0.01 0.98:0.01 0.9%0.01 0.9%0.02 0.96:0.02 0.96:0.03 0.95:0.03 0.940.03 0.920.04 0.9%0.06 0.88&0.08

amso ! 4,45 940 940 940 850 733 544 445 346 238 391 0310 0211
tPercer|t0.047:0.03 0.320.06 0.40.05 0.3%0.05 0.31£0.04 0.24:0.04 0.12:0.04 0.1£0.04 0.14:0.03 0.120.02 0.0960.02 0.074:0.02 0.0620.02

wtl | 0112 1030 1120 1021 913 814 625 625 517 184 319 2110 1111

4.2.3. The Sze of Individual Population

In order to investigate how the population size impacts #régomance of a multi-population based EA, a simple
experiment was carried out with the algorithms CPSO and AMS@e MPB problem with 10 and 50 peaks. Tables
and[Y present the results reagrdsegre andtPercent for both algorithms with dferent numbers of individual
population size fubSize) on the MPB with 10 and 50 peaks, respectively. From the tesuleach table, it can be
seen that varying the individual population size has a Samt impact on the performance of the two algorithms,
especially regarding the performart&ercent (see the-test results in the tables). However, comparing the regult
the two tables, it can be seen that the population size thps ige two algorithms achieve the best results does not
change. For exampleybSize = 7 helps AMSO achieve the best performance on both MPB instanc

510

17

515

520

525

530

535

540

545

Table 8: Average scoresgore) + standard error for algorithms CPSOR, CPSOR’, and CDER oM#PB problem with diferent numbers of peaks
(peaks), where the CPSORand CDER algorithms use the same algorithm framework asinghd CPSOR algorithm except that the local search
operator is replaced by PSO using thest model [32] and the simple DE algorithm with [est2/bin suggested by [59, 45]

The number of peaks

Algorithm 1 2 5 7 10 20 30 50 100 200
CPSOR| 0.96:0.02 0093004 006:002 0.980.02 0.97:0.02 0.97:0.02 0.98:0.01 0.97:0.01 0.97:0.01 0.98:0.000

score CPSOR| 0.96:0.03 0.95:0.04 0.960.03 0.96:0.03 0.96:0.02 0.96:0.02 0.968:0.02 0.96+0.02 0.96+0.01 0.970.01
CDER| 0.31:0.2 056+0.3 058:02 04%:0.2 05#:0.1 0.46'+0.2 0.42'+0.2 0.45'+0.2 0.530.2 0.5'+0.2
CPSOR| 0.98:0.06 058:0.3 0.81x0.2 0.6:0.2 0.73:0.1 0.48:0.1 0.42:0.09 0.3:0.06 0.16:0.04 0.086:0.02

tPercent CPSOR| 0.8':0.4 05304 052+:0.2 042402 0.4Y+0.2 0.25'+0.1 0.19'+0.07 0.11+0.04 0.044:0.02 0.01¥+0.009
CDER | 0.012-0.02 0.00880.02 0.0055=0.008 0.0025:0.007 9.67€-0%:0.001 9.18e-0%:0.003 4.44e-0%4:8.3e-04 2.00e-0%:2.7e-04 2.40e-04-7.7e-04 5.50e-05:1.3e-04

4.2.4. Local Search Operator

Since each population in multi-population approaches liyst@uses on one peak only, it might be helpful to
hybridise them with a local search operator so that the @djpm can quickly converge to the peak. This helps
relocating the moving optima quickly using just a relatyvsinall number of evaluations.

The question is how to choose a suitable local search opdmata particular algorithm. Tablel 8 presents the
comparison of the CPSOR algorithm with thre@elient local search operators withfdrent levels of bias toward
exploitation. These are the PSO with thlgest model (CPSOR - bias toward exploitation), the PSO with|test
model E?_] (CPSOR- bias toward exploration), and the DE with the mutation secheof DEbest2/bin @,]
(CDER - bias toward exploration).

The comparison in Tablg 8 shows that CPSOR withgitesst model, which is the one that biases toward exploita-
tion, achieves the best results in most cases. So, the exgraml results in this subsection confirms that, for thiscla
of PSO to solve problems similar to the MPB problem, we shohlubse a local search operator that focuses more on
exploitation rather than exploration.

4.2.5. TheWay to Create Populations

How to create populations is also one inevitable questioanaulti-population methods are applied. As men-
tioned above, methods for creating multiple populations lsa roughly classified into three approaches. The first
approach simply uses a certain number of randomly genepaiaalations across the whole search space (e.g., ESCA
ﬂﬂ, CESO], and mQSQ/[7]). The second approach startts avimain population and maintains it to generate
sub-populations by splittingfbfrom the main population (e.g., SOS [9], FMSO![34], and Hm3d]) if some pre-
defined criteria are satisfied (e.g., the best individughérhain population does not improve for a certain number of
iterations). The third approach divides a large randomiyegated population into a set of sub-populations to make
them cover dierent sub-areas in the search space (e.gk-theans PSdI$1], SPSE[SQ], and CP& @ 64]).

It is difficult to give an answer to the question of which way to creafaufadions is the best one from an experi-
mental point of view. All the three approaches have their advantages and disadvantages, as explained below:

e Random initialization approaches.

— Advantages: It is simple and easy to implement.
— Disadvantages: Populations have over-lapping searcls arehit is dfficult to define the search area of
each population.
e Clustering-based approaches.
— Advantages: Populations have no over-lapping search arehdefining the search area offdrent pop-
ulations becomes possible (an appropriate search areadbmp®pulation is still very hard to determine).

— Disadvantages: It is flicult to develop anfective clustering approach. For example, the populatios si
or the population search radius must be given before théeclng operation ir’@ 4]. Moreover, these
parameters are problem dependant.

e Splitting-off approaches.
18

550

555

560

565

570

575

580

Table 9: Average scoresgore) and percentages of peaks tracked for eight algorithmset@hpeak MPB with and without noise

CPSOR CPSO AMSO SPSO mCPSO mQSO SAMO DynPopDE
Origin| 0.97+0.02 0.95+0.02 0.99+0.009 0.95+0.02 0.87+0.05 0.96+0.01 0.96+0.01 0.97+0.03

SCOT® " Noise| 0.96+0.02 0.48+0.09 0.94+0.04 0.018+0.03 0.3%+0.1 0.3%+0.1 0.13+0.1 0.77+0.1
tpercen(glrigin 0.73:01 061:0.1 0.86:0.08 0 0.032:0.050.18:0.1 0.084:0.08 0.51:0.2
oise| 0.67:0.2 0'+0 0.3'+0.1 0£0 0"+0 0"+0 040 0.1+2.2e-008

— Advantages: Populations have no over-lapping search.areas

— Disadvantages: It is hard to design dfeetive splitting rule and special rules need to be desigoed t
prvent the main population from being empty.

From the comparison, generating populations without eygring seems to be the future trend. This also reflects
the divide-and-conquer idea of multi-population methotisis way, individuals that are close to each other will be
likely assigned to one group and individuals that are faryafsam each other will be assigned tofigirent groups.
Hence, populations will distribute in flierent sub-areas without overlapping, and they can locatdrack several
optima in parallel without any guidance for them to move tidedtent sub-areas.

However, techniques are needed to handle tifeedities in the usage of such methods to create multiple epul
tions, especially learning techniques, which are able $oalier the characteristics of the fithess landscape (key., t
number of peaks, the shape of peaks, and the basion of mtivaare needed. Fortunately, we have seen the start
of such work. For example, SAM@[4], DynPoijE_tSQ], and AM@I have been proposed to try to adjust their
behaviour in the number of populations.

4.2.6. Change Detection

Change detection is an important issue for EAs in dynamiérenments and many studies so far are based on
change detection or prediction techniques. Currentlyngbaletection is realized by directly monitoring the fithess
change using re-evaluating methods, or by indirectly clmecthe population average fitness value or other algorithm
behaviorsi[49]. However, there is no change detection adiptien method that is able to guarantee a successful
detection or prediction when changes occur in a certaimitn, e.g., the dynamic environments with noisable[9
shows the comparison of eight algorithms on the 10-peak Mi@Blpm with and without noise. Noise is added to a
solution when it is to be evaluated as follows:

X=X+001-& (10)

whered is a vector of normal distributed random numbers with meandwariation 1.

From the comparison, it can be seen that noise does haveificsighefect on the performance of all the involved
algorithms, especially on the algorithms which highly dep®n change detection methods (e.g., CPSO, SPSO,
mCPSO, and mQSO). In such algorithms, noise is misintezgras changes. Therefore, diversity increasing opera-
tions are being triggered continuously. As a result, thégperance significantly drops due to continuously focusing
on diversity [29]. Such algorithms hardly track any peak @isy environments. So, here raises a question: whether
we should really need change detection methods as they deankin such situations.

To answer the above question, we should re-consider thevaioth behind change detection. In order to achieve
a good performance for an algorithm, many people believgtigamoment when a change occurs is a very important
time point to react to changes in order to triggefatient mechanisms, e.g., diversity increasing, random grant,
memory, adaptive schemes, and so on. However, experinteatdls in Seci.4.7].1 show that for the tested algorithms,
it might be not necessary to increase population diversityestime point when changes occur. What is worse, current
change detection techniques may not guarantee a succestfation in all cases. Therefore, it may be a good idea
to focus more on identifying new methods that do not heagly on change detection in future research.

4.3. Difficultiesin Evaluating Algorithm Behavior

There are many performance evaluation methods for EAs iramym environmentdﬂ9]. Many of them are
optimization based approaches, such as the score measdrauke paper and several other measures mentioned in

19

585

590

595

600

605

610

6!

2

5

620

625

Sect[3.8. However, for multi-population methods, redears may be interested in behavior-based measures, such as
measures for the moment to increase diversity, measurdisdarumber of populations, and measures for the search
areas. It would be helpful for researchers to design algmstif we can measure algorithms in such behaviors.

However, such behaviors arditult to measure. The measure for determining the momenttease diversity
is related to algorithm diversity behavior. Although thare several diversity based measufes [49], it is still hard
to know what level of diversity is optimal. For measures @ ttumber of populations, although we know the fact
that a good choice of the number of populations depends onuimder of peaks, we do not know their relationship
even though we know the number of peaks. For measures ofdhehsareas, it is even harder than the two measures
aforementioned.

The behavior-based measures used in this paper ¢Ratio andtPercent) are able to indicate the capability of
an algorithm for tracking multiple peaks. However, how talewate the quality of peaks that has been tracked by
an algorithms is still an open and important question. Dmvielg new behavior-based measures to answer this open
guestion would be very helpful for researchers to develapalgorithms. This direction, however, has been largely
overlooked by the community.

5. Conclusions

The multi-population approach, which aims at locating aadking multiple peaks, is one of the most widely
used approaches to solve UCDOPs. However, there has beendepth analysis on the possible challenges that
this approach may encounter. In order to present a deepeghiristo how to designfécient multi-population based
algorithms for UCDOPSs, this paper comprehensively analyaed summarizes several challenging issues, which
should be considered when designing such algorithms. Ttrewhen to react to changes, how many populations
are needed, and how to determine the search area of eactapopuBesides the major challenges, this paper also
discusses several other considerations, which are coneationis between populations, overlapping search, the size
of each individual population, the choice of local searcarapor, the way to create populations, and change detection
issues, respectivelylhe dificulties in evaluating multi-population methods using hetiabased measures are also
discussed in this paper.

The challenging issues discussed in this paper suggesfutuase multi-population based EAs, which aim at
locating and tracking multiple peaks, should be able to:

1. adaptively figure out the proper moment to react to chgnges
2. adaptively adjust the number of populations to adapt &mgbs;
3. adaptively determine the search area for each popujation

4. adaptively cluster populations;

5. maintain population diversity without change detection

6. handle overlapping search among populations.

In this paper, in-depth analyses and experimental findiags hlso been provided to help to achieve some of the
objectives listed above. These analyses and findings amnatized as follows:

1. For certain algorithms, e.g., AMSO, SAMO, and DynPopDieg of the appropriate moment to start to react to
changes could be the time point where populations entecituerging status.

2. For algorithms with restarting scheme, e.g., mPSO and nn&dfarting all populations when changes occur
may slow down the search process.

3. The number of populations to be increased or decreasedtbenagfated to the historical changes of the number
of survived populations.

. Memory schemes are helpful for accelerating the searemwhanges occur.

. Clustering based approaches are helpful to guide papnsagearching in dlierent areas.

. Clustering based approaches are helpful to determingetireh area of each population.
Communication between populations might not always lgftlefor certain algorithms like CPSO.
. For some PSO algorithms, e.g., CPSOR giest local search operator may be a better choice.

®~NOo U A

20

630

635

640

645

650

655

660

665

670

675

680

9. In certain cases, overlapping control is essential ftuirsg problems with many peaks. However, it might not
be useful for solving problems with only a few peaks.
10. For certain swarm-based algorithms like CPSO and AMB®size of a single population should be small.

In summary, a fully adaptive andfective algorithm should be able to learn useful informatibout the problem
from historical data and to use the learned knowledge toggilid future search, and finally to adapt populations to
dynamic environments without artificial intervention.

Optimization based performance measures are importarthagdave been widely studied and used in the litera-
ture of dynamic optimization. However, behavior-basedsness for multi-population methods have not been widely
studied, especially the measures for the number of popaktind the search area. Modeling benchmark problems
from real-world dataset is also a challenging task. Theeeo@wious gaps between the common academic problem
benchmarks and real-world problems in this research arege Netailed discussions on this issue can be seﬁin [49].
However, these issues should be addressed in the future.

This paper proposes several suggestions on the design afutiepopulation based algorithms, which aim to
track multiple optima. However, there is no discussion am difficulties in designing multi-population methods,
which are not motivated by the divide-and-conqueridedhsis¢ CESO and ESCA. Future works on this topic should
be addressed. All the studies in this paper only focus onlenabin the continuous space. Relevant studies on
combinatorial problems should be addressed.

Acknowledgments

This work was supported by the National Natural Science Bation of China under Grant 61203306, the Engi-
neering and Physical Sciences Research Council (EPSRCKofildder Grant ERK0013101, an EU-funded project
named “Intelligent Transportation for Dynamic Environrh@nTraDE)”, and a Seed-corn funding grant by the Char-
tered Institute of Logistics and Transport.

[1] Aragon, V. S., Esquivel, S. C., Coello Coello, C. A., 8apber 2011. A t-cell algorithm for solving dynamic optimion problems. Inf. Sci.
181, 3614-3637.
[2] Bird, S., Li, X., 2006. Adaptively choosing niching panaters in a pso. In: 2006 Genetic and Evol. Comput. Conf.3pp0.
[3] Bird, S., Li, X., 2007. Using regression to improve locainvergence. In: 2007 IEEE Congr. on Evol. Comput., pp. 592-—
[4] Blackwell, T., 2007. Particle swarm optimization in dymic environments. In: Evolutionary Computation in Dynamnd Uncertain Envi-
ronments. Studies in Computational Intelligence. SpinGér 2, pp. 29-49.
[5] Blackwell, T., Bentley, P., 2002. Don’t push me! colbsi-avoiding swarms. In: 2002 IEEE Congr. on Evol. Computl, ¥. pp. 1691-1696.
[6] Blackwell, T. M., Branke, J., 2004. Multi-swarm optinaitzon in dynamic environments. In: Applications of Evolutary Computation. Vol.
3005. Springer Berlin Heidelberg, pp. 489-500.
[7] Blackwell, T. M., Branke, J., 2006. Multiswarms, exdlus, and anti-convergence in dynamic environments. IEE&3ron Evol. Comput.
10 (4), 459-472.
[8] Branke, J., 1999. Memory enhanced evolutionary alporg for changing optimization problems. In: 1999 IEEE CongrEvol. Compult.,
\ol. 3. pp. 1875-1882.
[9] Branke, J., KauRiler, T., Schmidth, C., Schmeck, H., 200@ulti-population approach to dynamic optimization pesh. In: 4th Interna-
tional Conference on Adaptive Computing in Design and Maairing. pp. 299-308.
[10] Bui, L. T., Abbass, H. A., Branke, J., 2005. Multiobjeet optimization for dynamic environments. In: 2005 Coragr.Evol. Comput., Vol. 3.
pp. 2349-2356.
[11] Bui, L. T., Michalewicz, Z., Parkinson, E., Abello, M2012. Adaptation in dynamic environments: A case study ission planning. IEEE
Trans. on Evol. Comput. 16 (2), 190-209.
[12] Chau, K., 2007. Application of a pso-based neural nétimanalysis of outcomes of construction claims. Autowrain Construction 16 (5),
642—-646.
[13] Chen, H., Li, M., Chen, X., dec. 2010. A predator-prejiidar genetic algorithm for dynamic optimization problenin: 2nd Int. Conf. on
Information Engineering and Computer Science (ICIECS),1p6.
[14] Chen, L., Ding, L., Du, X., march 2011. Genetic algomittwith particle filter for dynamic optimization problems.:18rd Int. Conf. on
Computer Research and Development (ICCRD), Vol. 1. pp. 452—
[15] Chen, M.-Y., 2011. Bankruptcy prediction in firms wittaistical and intelligent techniques and a comparisorvofutionary computation
approaches. Comput. & Math. with Appl. 62 (12), 4514 — 4524.
[16] Chen, M.-Y., 2013. A hybrid anfis model for businessuedl prediction utilizing particle swarm optimization andgactive clustering. Inf.
Sci. 220 (0), 180-195.
[17] Chen, M.-Y., Chen, D.-R., Fan, M.-H., Huang, T.-Y., 31nternational transmission of stock market movementsadaptive neuro-fuzzy
inference system for analysis of taiex forecasting. NeGahput. and Appl., 23 (1), 369-378.
[18] Cobb, H. G., Grefenstette, J. J., 1993. Genetic algmst for tracking changing environments. In: 5th Int. Comf.Genetic Algorithms, pp.
523-530.

21

685

690

695

700

705

710

715

720

725

730

735

740

745

[29]
[20]

[21]
[22]

[23]
[24]
[25]
[26]
[27]
[28]

[29]
[30]

[31]
[32]

(33]

[34]

[35]
[36]

[37]

(38]
[39]

[40]
[41]
[42]
[43]

[44]
[45]

[46]
[47]

(48]
[49]

[50]
[51]
[52]
(53]

[54]

Daneshyari, M., Yen, G., june 2011. Dynamic optimiaatusing cultural based pso. In: 2011 IEEE Congress on Heakty Computation.
pp. 509-516.

del Amo, I., Pelta, D., Gonzaez, lez, J., july 2010.dsheuristic rules to enhance a multiswarm pso for dynamiad@mments. In: 2010
IEEE Congr. on Evol. Conput., pp. 1-8.

Du, W.,, Li, B., 2008. Multi-strategy ensemble partisi@arm optimization for dynamic optimization. Inf. Sci. 17%), 3096—3109.

du Plessis, M., Engelbrecht, A., april 2011. Self-ad@pcompetitive diferential evolution for dynamic environments. In: 2011 IER#ENp.
on Differential Evolution (SDE), pp. 1-8.

Fernandez-Marquez, J., Arcos, J., july 2010. Adaptiagticle swarm optimization in dynamic and noisy environise In: 2010 IEEE
Congr. on Evol. Comput., pp. 1-8.

Grefenstette, J. J., 1992. Genetic algorithms for ghmapenvironments. In: 2nd Int. Conf. on Parallel Problenivibg From Nature. pp.
137-144.

Halder, U., Das, S., Maity, D., 2013. A cluster-baseffedential evolution algorithm with external archive for iopization in dynamic
environments. IEEE Trans. on Cybernetics 43 (3), 881-897.

Hashemi, A., Meybodi, M., oct. 2009. A multi-role cdtm pso for dynamic environments. In: 14th Int. CSI Comp@enf. (CSICC 2009),
pp. 412-417.

Huang, Z.-K., Chau, K.-W., 2008. A new image threshaffimethod based on gaussian mixture model. Applied MathCamaput. 205 (2),
899-907.

Jiang, Y., Huang, W., Chen, L., jan. 2009. Applying mslivarm accelerating particle swarm optimization to dyieontinuous functions.
In: 2nd Int. Workshop on Knowledge Discovery and Data MinfdgiKDD 2009), pp. 710-713.

Jin, Y., Branke, J., 2005. Evolutionary optimizationuncertain environments: a survey. IEEE Trans. on Evol. @dn® (3), 303-317.
Kamosi, M., Hashemi, A. B., Meybodi, M. R., 2010. A hibating multi-swarm optimization algorithm for dynamic @wments. In: World
Congress on Nature and Biologically Inspired ComputingBNE2010. pp. 363—-369.

Kennedy, J., 2000. Stereotyping: Improving partickasm performance with cluster analysis. In: 2000 IEEE CoagrEvol. Comput., pp.
1507-1512.

Kennedy, J., Mendes, R., 2002. Population structuceparticle swarm performance. In: 2002 IEEE Congr. on Evoin@ut., pp. 1671—
1676.

Khouadjia, M., Sarasola, B., Alba, E., Jourdan, L. blaE., may 2011. Multi-environmental cooperative pataifetaheuristics for solving
dynamic optimization problems. In: Parallel and DistrémitProcessing Workshops and Phd Forum (IPDPSW), 2011 IEt€Enational
Symposium on. pp. 395-403.

Li, C., Yang, S., 2008. Fast multi-swarm optimizaticor flynamic optimization problems. In: 4th Int. Conf. on NaluComput. Vol. 7.
pp. 624-628.

Li, C., Yang, S., 2009. A clustering particle swarm opizer for dynamic optimization. In: 2009 IEEE Congr. on E@bmput., pp. 439-446.
Li, C., Yang, S., 2012. A general framework of multip¢gtion methods with clustering in undetectable dynamidremments. IEEE Trans.
Evol. Comput. 16 (4), 556-577.

Li, C., Yang, S., Pelta, D., 2011. Benchmark generatwrcec’2012 competition on evolutionary computation fondmic optimization
problems. Tech. rep., the School of Computer Science, Ghimersity of Geosciences, Wuhan, China.

Li, C., Yang, S., Yang, M., 2013. An adaptive multi-swaoptimizer for dynamic optimization problems, Evol. Corhpin press, 2014.

Li, X., 2004. Adaptively choosing neighborhood bessing species in a particle swarm optimizer for multimodaldtion optimization. In:
2004 Genetic and Evol. Comput. Conf., pp. 105-116.

Liang, Y., nov. 2009. An newficient evolutionary approach for dynamic optimization peofs. In: 2009 IEEE Int. Conf. on Intel. Comput.
and Intel. Syst. Vol. 1. pp. 61-65.

Liu, L., Ranjithan, S. R., 2010. An adaptive optimizatitechnique for dynamic environments. Engineering Applif. Intell. 23 (5),
772-779.

Liu, L., Yang, S., Wang, D., 2010. Particle swarm optiation with composite particles in dynamic environmernEEE Trans. on Systems,
Man and Cybern. Pat B: Cybern. 40 (6), 1634-1648.

Lung, R. I., Dumitrescu, D., 2007. A collaborative moder tracking optima in dynamic environments. In: 2007 IEEBngr. on Evol.
Comput., pp. 564-567.

Lung, R. I., Dumitrescu, D., 2010. Evolutionary swarooperative optimization in dynamic environments. Nat@amputing 9 (1), 83—94.
Mendes, R., Mohais, A. S., 2005. Dynde: &eliential evolution for dynamic optimization problems. 2205 IEEE Congr. on Evol. Compult.,
pp. 2808-2815.

Morrison, R. W., De Jong, K. A., 2000. Triggered hypertation revisited. In: 2000 IEEE Congr. on Evol. Comput., pp25—-1032.
Mukherjee, R., Patra, G. R., Kundu, R., Das, S., 2014ster-based dierential evolution with crowding archive for niching in dymic
environments. Inf. Sci. 267 (0), 58-82.

Nguyen, T. T., 2011. Continuous dynamic optimisatiamng evolutionary algorithms. URhttp://etheses.bham.ac.uk/1296/
Nguyen, T. T., Yang, S., Branke, J., 2012. Evolutiondyyamic optimization: A survey of the state of the art. Swamd Evol. Comput.
6 (0), 1-24.

Parrott, D., Li, X., 2004. A particle swarm model for ¢kdng multiple peaks in a dynamic environment using spemiatin: 2004 IEEE
Congr. on Evol. Comput., pp. 98-103.

Parrott, D., Li, X., 2006. Locating and tracking mulgpdynamic optima by a particle swarm model using speciatiBEE Trans. on Evol.
Comput. 10 (4), 440-458.

Rezazadeh, |., Meybodi, M. R., Naebi, A., 2011. Adaptparticle swarm optimization algorithm for dynamic enwineents. In: Proc. of the
2nd Int. Conf. on Advances in Swarm Intelligence - Vol. |. fa0—-129.

Rezazadeh, I., Meybodi, M. R., Naebi, A., 2011. Pagtimlvarm optimization algorithm in dynamic environments:apting inertia weight
and clustering particles. In: 5th UKSim European Symp. om@ater Modeling and Simulation (EMS), pp. 76-82.

Richter, H., 2009. Detecting change in dynamic fithesglscapes. In: 2009 IEEE Congr. on Evol. Comput., pp. 163331

22

http://etheses.bham.ac.uk/1296/

750

755

760

765

770

775

780

785

[55]
[56]
[57]
(58]
[59]
[60]
[61]
[62]

[63]
(64]

[65]

[66]
[67]

(68]
[69]
[70]
[71]
[72]
[73]
[74]

[79]

Schoeman, I. L., Engelbrecht, A. P., 2009. A novel géetswarm niching technique based on extensive vector tipesaNatural Computing
9 (3), 683-701.

Shi, X., Qian, F., 2010. Gradient-based immune alfaritfor optimization of dynamic environments. In: Proc. 6. IConf. on Natural
Computation (ICNC), Vol. 1. pp. 327-330.

Simoes, A., Costa, E., 2008. Evolutionary algorithras dynamic environments:prediction using linear reg@ssind markov chains. In:
Parallel Problem Solving from Nature. pp. 306-315.

Taormina, R., wing Chau, K., Sethi, R., 2012. Artificredural network simulation of hourly groundwater levels icoastal aquifer system
of the venice lagoon. Engineering Appl. of Artif. Intell. 28), 1670-1676.

du Plessis, M. C., Engelbrecht, A. P., 2012ffBiential evolution for dynamic environments with unknowrmbers of optima. Journal of
Global Optimization, 1-27.

Thomsen, R., 2004. Multimodal optimization using cobmg-based dferential evolution. In: 2004 IEEE Congr. on Evol. Compub).\2.
pp. 1382-1389.

Wang, H., Wang, N., Wang, D., 2008. Multi-swarm optiatibn algorithm for dynamic optimization problems usingkiog. In: Control
and Decision Conference (CDC 2008), pp. 2415-2419.

Yang, S., 2006. Associative memory scheme for gendtjorthms in dynamic environments. In: EvoWorkshops 208@plications of
Evolutionary Computing. Vol. 3907. pp. 788—799.

Yang, S., 2008. Genetic algorithms with memory- antisgli-based immigrants in dynamic environment. Evol. Comp6i (3), 385-416.
Yang, S., Li, C., 2010. A clustering particle swarm opiier for locating and tracking multiple optima in dynamivgonments. IEEE Trans.
on Evol. Comput. 14 (6), 959-974.

Yang, S., Richter, H., 2009. Hyper-learning for popiaia-based incremental learning in dynamic environmentsProc. of the 2009 IEEE
Congr. on Evol. Comput., pp. 682—689.

Yang, S., Tinos, R., 2008. Hyper-selection in dynamme¢i®nments. In: Proc. of the 2008 IEEE Congr. on Evol. Cotmmp. 3185-3192.
Yang, S., Yao, X., 2005. Experimental study on popolabased incremental learning algorithms for dynamicrojzétion problems. Soft
Computing 9 (11), 815-834.

Yang, S., Yao, X., 2008. Population-based incremele@ining with associative memory for dynamic environmetE&E Trans. on Evol.
Comput. 12 (5), 542-561.

Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., Meybdtli Akbarzadeh-Totonchi, M., 2014. MNAFSA: A novel appcbdor optimization
in dynamic environments with global changes. Swarm and.Ex@input. (0), in press.

Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., MeybadliR., 2013. A novel multi-swarm algorithm for optimizatian dynamic environ-
ments based on particle swarm optimization. Applied Sofnating 13 (4), 2144-2158.

Zechman, E., Ranjithan, S., 2009. Evolutionary corapab-based methods for characterizing contaminant ssurca water distribution
system. Journal of Water Resources Planning and Manageig1{b), 334—343.

Zhang, J., Chau, K.-W., feb 2009. Multilayer ensembiening via novel multi-sub-swarm particle swarm optimiaat Journal of Universal
Computer Science 15 (4), 840-858.

Zheng, X., Liu, H., 2009. A dferent topology multi-swarm pso in dynamic environment.|EEE Int. Symp. on IT in Medicine Education
(ITIME '09), Vol. 1. pp. 790-795.

Zheng, X., Liu, H., 2011. A cooperative dual-swarm pso dynamic optimization problems. In: 7th Int. Conf. on NaluComputation
(ICNC), Vol. 2. pp. 1131-1135.

Zhu, T., Luo, W., Li, Z., 2011. An adaptive strategy fgrdating the memory in evolutionary algorithms for dynamatimization. In: 2011
IEEE Symp. on Comput. Intell. in Dynamic and Uncertain Eomiments (CIDUE), pp. 8-15.

23

	Introduction
	Multi-population Methods in Dynamic Environments
	Fixed Number of Populations
	Variable Number of Populations
	Adaptive Number of Populations
	Other ways to classify multi-population methods
	 Examples of real-world applications

	Benchmark Problem and Evaluations
	The Moving Peaks Benchmark
	Benchmark Algorithms
	Performance Evaluation
	Average Score (score)
	The Percentage of Peaks Being Tracked (tPercent)
	The Tracking Ratio for the Global Optimum (gRatio)
	t-Test Comparison
	Other Performance Measurements

	Outdated Memory Issues

	The Challenges for Multi-population Methods
	Major Challenges
	Determining the Moment to React to Changes
	Determining the Appropriate Number of Populations to Deal with Changes
	Search Areas of Populations

	Other Considerations
	Communication
	Avoiding Overlapping Search
	The Size of Individual Population
	Local Search Operator
	The Way to Create Populations
	Change Detection

	Difficulties in Evaluating Algorithm Behavior

	Conclusions

