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Abstract

Feature extraction based on three-dimensional (3D) watralesform is capable of improving the classification accu-
racy of hyperspectral imagery data by simultaneously camuhe geometrical and statistical spectral-spatiaicstr
ture of the data. Nevertheless, the design of wavelets asgyalproceeded with empirical parameters, which tends to
involve a large number of irrelevant and redundant spespatial features and results in suboptimal configuration.
This paper proposes a 3D Gabor wavelet feature extractianniremetic framework, named M3DGFE, for hyper-
spectral imagery classification. Particularly, the par@msetting of 3D Gabor wavelet feature extraction is optadi
using memetic algorithm so that discriminative and parsiimas feature set is acquired for accurate classification.
M3DGFE is characterized by afffieient fitness evaluation function and a pruning local seallhe fitness evalu-
ation function, a new concept of redundancy-free relevdrased on conditional mutual information is proposed to
measure the goodness of the extracted candidate featiregriining local search is specially designed to eliminate
both irrelevant and redundant features without sacrifittiegdiscriminability of the obtained feature subset. M3EGF

is tested on both pixel-level and image-level classificatising real-world hyperspectral remote sensing data and hy
perspectral face data, respectively. The experimentaltseshow that M3DGFE achieves promising classification
accuracy with parsimonious feature subset.

Keywords: Memetic Algorithm, Gabor Wavelet Transform, Feature Eotian, Feature Selection, Hyperspectral

Imagery Classification.

1. Introduction

Hyperspectral imaging captures an image of objects witheleaagths ranging from the visible spectrum to the
infrared region. The technology has allowed more accuraggé classification, object discrimination, and material
identification thanks to the availability of rich informati on both spectral and spatial distributions of the analyze

targets. However, hyperspectral imagery data usuallyatoméns and thousands of images simultaneously collected
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from various spaced spectral bands. When only a limited numibabeled samples are available, it is a great chal-
lenge for classification of such data [9]. In addition, naieposed by sensors and the environment also deteriorates
the performance of learning algorithms.

Feature selection and extraction methods have been widelyto address the aforementioned problems. Feature
selection [13, 19] selects relevant features and removieg/redundant ones in the original feature space, so that the
classification accuracy could be improved or not substiytiateriorated. Feature extraction-methods [20] tramsfo
the given features into other space to generate a new sedtofés possessing high information packing properties.
The most discriminative information is concentrated t@tigeé small number of selected new features with which
superior classification accuracy is permitted.

Principle component analysis (PCA) [36], linear discriamibhanalysis (LDA) [15], and wavelet transform [17] are
among the most commonly used feature extraction methodw/frspectral imagery classification. PCA identifies a
subspace where data variances are maximized by orthogaraaisforming possibly correlated features into a smaller
set of linearly uncorrelated principal components [1, 29DA is related to PCA in that it also tries to find a linear
combination of features but explicitly attempts to moded thiterence between the classes of data [5, 3]. Wavelet
transform, in a solid and formal mathematical frameworks htracted increasing attention and served as another
powerful solution for feature extraction of hyperspecimahgery classification [26, 51, 41, 12, 24].

Many feature extraction methods mentioned above have bemwnsto be &ective in improving the hyperspec-
tral imagery classification accuracy. However, most of tleemsider only the spectral signature of each pixel or an
individual spectral band, whereas the important spatfarimation is ignored. Since hyperspectral imagery is natu-
rally a three-dimensional (3D) data cube containing botitiapand spectral dimensions, it is believed that spectral
and spatial structures of hyperspectral data should bedsmesl simultaneously to further improve the classifigatio
accuracy. In this regard, feature extraction of hyperspeanagery data should treat the 3D cube as a whole and
a few 3D feature extraction methods have been proposed. nBtarices, Qian et al. [38, 37] proposed a 3D dis-
crete wavelet transform (3D-DWT) to extract spectral-spddatures from hyperspectral remote sensing data. Bau
et al. [4] introduced a 3D Gabor filterbank as a tool for extragspectral-spatial features to represent image re-
gions/in hyperspectral region classification. Two authdrhis work, i.e., Shen and Jia [45], proposed a 3D Gabor
wavelet transform based feature extraction method for lsgeetral imagery classification. Particularly, a set ofwe
designed Gabor wavelets withfidirent frequencies and orientations was applied to extigeakvariances in joint
spatial-spectrum domains. We further extended [45] in pd6introducing a filter-ranking feature selection method
based on symmetrical uncertainty and approximate Markankat to select discriminative 3D Gabor features. As a
result, comparable or better classification accuracy whaeaed with much more parsimonious feature set.

On one hand, 3D feature extraction methods have been showbidim better classification accuracy than many
other state-of-the-art feature selecfixiraction methods [38, 37, 4, 45]. On the other hand, 3Dufeagxtraction
would generate a larger number of spectral-spatial festuherefore dimension reduction like feature selection is
necessarily needed after feature extraction. For exarmp[87], a structured sparse logistic regression was agplie
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after the 3D-DWT extraction to select discriminative spalesipatial features. A stepwise greedy feature selection
was adopted in [4] to identify Gabor filters that optimize thscriminability among dferent classes. A sequential
feature selection and fusion process was developed in48gntify the most discriminative Gabor features after 3D
Gabor wavelet transform. In [46], a filter-ranking featuedestion method was imposed to rank the Gabor features
based on their symmetrical uncertainty to the class lalbsdsten the redundant ones were eliminated based on
approximate Markov blanket. It is easy to implement the phoase feature extraction applied in [37, 4, 45, 46],
but it could introduce bias and retain a large number of ékr@ht and redundant features in the first phrase where
wavelet transform is empirically configured. The greedy berfiranking feature selection used in the second phase
could also get trapped in local optimal feature sets. Moggawmost of the existing 3D feature extraction methods
[38, 37, 4, 45, 46] were targeted at pixel-level classifaratbut very few are applicable to image-level classificatio
(the diferences between pixel-level and image-level classificatie described in Section 2.2).

In this study, a novel memetic 3D Gabor wavelet feature etita namely M3DGFE is proposed for both pixel-
level and image-level hyperspectral imagery classificatiRarticularly, M3DGFE conducts 3D Gabor feature genera-
tion and selection simultaneously in a memetic algorithr\f¥amework [32]. The evolutionary search mechanism
of MA optimizes both the parameter configurations of 3D Gatavelet transform and the selection of feature subset.
In this way, Gabor wavelets transform no longer relies onigogh parameter setting and discriminative features can
be picked out as desirable signatures for final classificafilie performance of M3DGFE is evaluated on both pixel-
level and image-level classification using two real-worgbérspectral remote sensing data and one hyperspectral
face data, respectively. Comparison studies between MID&Te other state-of-the-art feature seleggatraction
methods show that M3DGFE obtains superior classificaticnracy with compact feature sets.

This work is an extension of our conference paper [54], whiegerototype of the framework merely targeted at
pixel-level classification was first proposed. Significamprovements have been made in both theory and experiments
in this work. Particularly, the memetic framework is exteddo handle both pixel-level and image-level classificatio
problems, and a novel fitness function evaluating featuexaace is introduced. Much more extensive experimental
results are also provided to demonstrate tfieiency of the proposed method. The main contributions af $hildy

are three-fold:

1) a general memetic framework is proposed for 3D Gabor featxtraction of hyperspectral imagery classifica-

tion;

2) anovel redundancy-free relevance (RFR) measure is puafd to dficiently evaluate the fitness of candidate
feature subsets. RFR enables feature selection methodentify relevant features and at the same time

eliminate irrelevant and redundant features;

3) both pixel-level and image-level classification probdeaspecially with small sample size are studied using
various state-of-the-art feature selectmdraction methods, which could provide insights for otfeesearchers

facing similar issues.



The remainder of this paper is organized as follows. Se&idescribes the fundamentals of 3D Gabor wavelet
feature extraction and Section 3 introduces the proposedatie 3D Gabor feature extraction framework. Section 4
presents the experimental results of M3DGFE and other credpaethods on three hyperspectral imagery datasets.

Finally the conclusion is given in Section 5.

2. Three-Dimensional Gabor Wavelet Feature Extraction

Gabor wavelet is closely related to the human visual systadfitehas been used asa powerful tool to maximize
joint time/frequency and spagfeequency resolutions for signal analysis [16]. Gabor Metgehave been successfully

used to extract features for texture classification [5@efeecognition [43], medical image registration [44], etc.

2.1. Three-Dimensional Gabor Wavelet Transform

Figure 1: Three-dimensional frequency domain.

In this study, 3D Gabor wavelet transform [44] is appliedypdérspectral image cube to reveal the signal variances
in joint spatial-spectrum domains. A circular 3D Gabor wavén spatial-spectrum domaing, {, b) is defined as

follows:

VY. v\2 _h\2
(X — %) +(y_2(3;c2) +(b bc)) )

whereu = fsingcosd, v = fsingsing, andw = f cosy. VariableS is a normalization scalef is the central

Wigo(%Y, D) = é X exp(jZn(xu +yv+ bw)) X exp(

frequency of the sinusoidal plane wave,and 8 are the angles of the wave vector withaxis andu — v plane
in frequency domainuy, v, w) (as shown in Figure 1), and is the width of Gaussian envelop i, {, b) domain.
(X, Yo, be) is the position for signal analysis.

Let V be a 3D hyperspectral image cube of dnx Y region captured irB spectral bands.V(x,y,b) is the
signal information of a sampled spatial locatiogy() captured in spectral barid The response of signal to wavelet
Y1 00(X Y, b) represents the strength of variance with frequency aog#if and orientation¢, ). The response of

V(x,y,b) to ¢ 4,(% Y, b) is defined as:

®f,9,kp(x’ y’ b) = (V ® \Pfﬂ,y?)(X» y’ b) (2)

where® denotes the convolution operation and calculates the magnitude of the respon@g, (X, y, b) reveals
the information of signal variances around locatisny(b) with center frequencyf and orientation{, ¢) at joint

spatial-spectrum domains.



2.2. Pixel-Level Classification vs. Image-Level Clasdiiica

This work studies 3D Gabor wavelet feature extraction fqrdrgpectral imagery classification on two levels, i.e.,
pixel-level and image-level. In pixel-level classificatisuch as material recognition in hyperspectral remoteisgns
data [37, 45], each pixel in a locatior §) across alB spectral bands, i.&/(x,y, %), is treated as a learning target, and
the task of classification is to assign a class label for ea@h.pgn such case, after 3D Gabor wavelet transform, a pixel
atV(x,y, =) yields a set of respons@®s g ,(X, Y, 1), @5 9 ,(X, ¥, 2), . .., @1 9,(X, ¥, B)} to a single 3D Gabor wavelet. By
considering together all 3D Gabor wavelets, each pixel $artgrefore can be featured by a numeric vector that
concatenates the pixel’s response sets to all waveletsassifier needs to be trained to classify each pixelfi@dint
categories, e.g., road, grass and water, based on the mueggtire vector.

In image-level classification like hyperspectral face gggtion [14], each 3D hyperspectral cube is considered
as a sample of a category and the target is to label a claskdfartiole image cube. In this case, each pixel on an
image can serve as a feature point for classifying the imadeer transformed with a single 3D Gabor wavelet, a
3D hyperspectral cub¥(x, %, ) of size X x Y x B can be represented by a response set containing the response
of all pixels across all bands to the wavelet, i{€;4,(1,1,1),050,(1, 1,2),...,014,(X Y, B)}. Accordingly, when
transformed with all 3D Gabor wavelets, a 3D hyperspecuibkecsample is represented as the concatenation of all
response sets, each of which is subject to a unique waveket-1Bvel classification normally studies pixels within a
single 3D hyperspectral cubg whereas image-level classification usually considers afstD hyperspectral cubes
say{Vi, V2 ... VM.

2.3. 3D Gabor Feature
In this study, we define‘a 3D Gabor feature of all data samples, pixels or 3D hyperspectral cubes, as a
combination of the samples’ spectral-spatial propertyrasgonses to a specific 3D Gabor wavelet. In the following

text, a 3D Gabor feature is denotedGs

o {[®f,9,¢(1,1,b),...,@tg,w(x,y,b),...,@)f,g,w(x,v,b)] Pixel - level classification -

[©1,,0y.b).....0T, (xy,b),....0}, (xy,b)| Image-level classification
whereG in pixel-level classification is of lengtK x Y and characterized by parametefss, ¢, b}, whereas in image-
level classificatior is of lengthM, i.e., equal to the number of 3D hyperspectral cubes corexddand characterized
by parametersf, 9, ¢, X, y, b}. G)ff‘je’gp(x, y, b) denotes the response of locatigkx, y, b) in the m-th cube to the 3D
Gabor wavelet.

With appropriately selected parameters, a 3D Gabor feagucapable of capturing the desirable signatures of
imagery classification from a specific aspect. The key isst@iv to identify the optimal parameters to generate the
best 3D Gabor feature set in terms of both classificationracguand compactness. By searching the spack of
0, ¢, andb with or without (x,y), one can find the solution with satisfactory classificatmeuracy. The following
section will introduce the proposed MA framework for seamghthe optimal 3D Gabor feature set. Take pixel-level
classification for example, the procedure of 3D Gabor feagutraction is illustrated in Figure 2.
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Figure 2: Three-dimensional Gabor wavelet feature extsadbtr pixel-level hyperspectral imagery classification

3. Memetic Algorithm for 3D Gabor Feature Extraction

Memetic algorithm (MA) [32, 27], the most well-known pargdi of memetic computing [10, 35, 33, 7], is
widely recognized as a synergy of population-based globallgonary algorithm and individual learning or local
search heuristic. Taking advantage of both global and lkeeatch, MAs are capable of obtaining better performance
than their conventional counterparts in various complet-veorld search problems such as capacitated arc routing
[47, 30], robot control [34], digital IR filter design [49protein structure prediction [23], image segmentatior,[25
and feature selection [52,53].

In this study, a genetic algorithm (GA) [22] based MA framekvis proposed to optimize the 3D Gabor feature
extraction for hyperspectral imagery classification. lis thamework, the parameters used to generate 3D Gabor
features are-optimized with GA based global search and arguacal search is introduced to fine-tune the GA
solutions, especially by eliminating both irrelevant aedundant features. The proposed framework named M3DGFE

is outlined in Algorithm 1 and more details of it are providadhe following subsections.

3.1. Chromosome Encoding

At the beginning of M3DGFE, a population of chromosomes iglanly generated with each chromosome en-
coding a set of candidate 3D Gabor features. A chromosonmsh(men in Figure 3) is designed as a stringi@ftuple
(i.e.,{fi, 6, ¢, b} for pixel-level classification) or 6-tuple (i.€.5i, 6, ¢i, %, Vi, bj} for image-level classification) genes,
each of which can be used to generate a corresponding 3D @sdtare based on Egs. (1), (2), and (3). The length
of a chromosome is variable when it undergoes local seamticraissover operation.

In each genefj is in [0, 0.5]; ; andy; take real values in [Gr]; X, vi, andb; indicate the spectral position of the
pixel in the 3D hyperspectral cube. The search space of 3Fahtures is intrinsically continuous. Nevertheless,

6



Algorithm 1 The procedure of M3GDFE
BEGIN

1: Randomly initialize a population of chromosomes encodiaameters for generating 3D Gabor features;

2: While stopping criteria are not satisfield

3:  Generate 3D Gabor features based on the parameters ennaaghichromosome using Egs. (1), (2), and (3);
4:  Evaluate the fitness of each chromosome in the populaticedas Eq. (9);

5. PerformPruning Local Search on each chromosome to eliminate both irrelevant and reduridatures;

6:  Evolve the population based on selection, crossover andtiontoperators;

7: End While

END

J—— Genel —ple—— Gene2 —p le—— Genen

2 A PSR I A A I () 2 A A AR A |

Figure 3: A 3D Gabor feature chromosome.

features characterized by similar wavelet parameteredrendant for capturing similar signatures. Therefore oame
samplef, 8, andy in certain intervals to reduce the redundancy of the exthfgatures and meanwhile significantly
reduce the search space. Particularly, the frequénakes the values of [, 0.25,0.125 0.0625] with orientation®
andy set as the values of [@/4, /2, 3r/4] in this study. Since the frequency vector points to theesdirection with
differentd wheng = 0, there are intotal 52 wavelets available for feature extra. LetB denotes the total number
of bands. Each pixel in a 3D hyperspectral cube is repredemita 52B 3D Gabor features and the complexities of
searching the optimal feature set for pixel-level and imiagel classification are®®® and 22XY8 respectively.

The feature space ofimage-level classification could bertarger than that of pixel-level classification. Nonethe-
less, since pixels‘in.a local region are likely similar to leather, downsampling of representative pixels in a local
region could be used in image-level classification to suttstly reduce the feature space while maintaining good
classification accuracy. Yet, the feature space of stzé @ 22XV still poses a big challenge for most search al-
gorithms. M3DGFE is designed to handle the problem by cliriitg on the merits of GA based global search and

pruning local search.

3.2. Fitness Evaluation

After the initialization, the chromosome population evaswntil some predefined stopping criterion is satisfied.
The stopping criterion could be a convergence to the glgi@inal or a maximum computational budget is reached. In
each evolution generation, the goodness of the 3D Gabarrtesét encoded in each chromosome should be evaluated
based on a fithess function.

Since the final objective is to classify pixgfaages, classification accuracy should be the first choiceHimmo-
some fithess evaluation. However, the evaluation of classifin accuracy based on a classifier could be very time
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consuming especially when evolutionary algorithms like &#f MA need thousands of fithess evaluations to reach
a satisfying solution. Instead of using classification aacy, we propose a novel criterion namely redundancy-free
relevance (or RFR for short) for chromosome fitness evaloatParticularly, RFR measures the relevance of the
encoded features in a chromosome to the class labels, éxglthee redundancy detected among the features. Itis a
computationally &icient measure to approximate the classification accuracy.

Before introducing the definition of RFR, the preliminaryokviedge of feature relevance and redundancy is
presented as follows. L&k be a vector of the class labels of the data samples,Gartae the 3D Gabor feature
encoded by théth gene, i.e.{fi, 6, i, bi} or { fi, 6, ¢i, X, Vi, bi}, of a given chromosom&. The relevance of; to C

is measured in terms of mutual informatib@;; C) [42]:
1(Gi; C) = H(Gi) - H(GiIC) (4)

whereH(G;) is the entropy of5;, andH(G;|C) denotes the conditional entropy @f givenC. H(G;) andH(G;|C) are

defined as follows:

H(Gi) =~ " p(g) log p(g) (5)
gEGi
H(GIIC) = - > > p(g. ¢) log p(glc) (6)
ceC geG;i

wherep(g) is the probability mass function @f p(g, ¢) is the joint probability mass function gfandc, andp(gc) is
the conditional probability mass function g@ivenc.
The redundancy between two features is measured based diti@oal mutual information. Given two features

G; andG; encoded i, the conditional mutual information betwe@nandC givenG; is defined as:
I(Gi; CIGj) = H(Gi|Gj) - H(GIIC,G)) (7)

where the calculations ¢1(G;|G;j) andH(Gi|C, G;) are similar to Eq. (6)I(Gi; C|G;) measures the conditional infor-
mation shared bg; andC givenG;. So, ifI(Gj; C|G;) < €, wheree is a small constanG; gives little discriminatory
information ofC in the existence oB;. If 1(G;; C) > I(G;; C) and|(G;; C|Gj) < € both hold trueG; is of very low
relevance taC or high redundancy tG;. In either casei;’s relevance teC could be ignored i3 has already been
included inX.

Based on the definitions of feature relevance and redunddreRFR ofG; is defined as follows:

0 if 3Gj, 1(Gj; C) > I(G;; C) andl(G;; CIGj) < €
RFRG) = _ (8)
1(Gj;C) otherwise
The relevance of a feature is counted only if it is not redumda any other features. The fithess of the chromosome
X is thus calculated by summing up the RFR of all encoded 3D Galatures:
%]

Fitnessf) = Z RFRG) (9)
i=1
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where|X| denotes the number of genes containel.if he fitness evaluated in Eq. (9) is expected as a good e&iimat
of the classification accuracy. The more RFR is capture,ithe more accurate classification could be achieved.
Not fitting the classification accuracy directly, RFR-bafistess evaluation can also alleviate the overfitting [39] or

selection bias [2] problem especially when the training garsize is small.

3.3. Pruning Local Search

Algorithm 2 The procedure of pruning local search
INPUT: a chromosomé&;

BEGIN

1: Fori=1to|X|-1do
2. For j=i+1to|X|do

3: If 1(Gi; C) > 1(Gj; C) andI(Gj; CIG;) < e then
4: Remove thg-th gene fromx;
5: Elself 1(Gj; C) > I(G;; C) andl(G;; C|G;) < e then
6: Remove the-th gene fronix;
7: Continue line 1;
8: End If
9: End For
10: End For
END

Since only the relevant but not redundant features congritiuthe fitness of a chromosome, both irrelevant and
redundant 3D Gabor features encoded in each chromosomesaamioved for the sake of reducing computational
complexity. After fitness evaluation, each chromosome tguks a local search to prune both irrelevant and redundant
features. The procedure of the pruning local search ismadlin Algorithm 2, where features are checked pairwise
every time and those of low relevance or high redundancyeam®ved. In practice, irrelevant and redundant features
can be identified when computing RFR, so the pruning locatbezan be done at the same time as fitness evaluation,

i.e.; the pruning local search causes very little extra agatonal cost.

3.3.1. Evolutionary Operators

Following the fitness evaluation and local search, the ol is evolved using evolutionary operators including
linear ranking selection, uniform crossover, and mutatldere, it is notable that the uniform crossover is performed
on each 4-tuple or 6-tuple gene rather than on each compohengene to ensure the consistency of the encoded
3D Gabor features during the crossover. Moreover, becaus@arent chromosomes could hav@elient lengths,

an appending operation is imposed to make their length esutiiat the conventional crossover is applicable. For
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example, as shown in Figure 4, given two parent chromosoifrfesioand two genes respectively, two dummy genes
are appended to the shorter one so that the two parent choomesshave the same length. Afterward, the uniform
crossover is applied on each gene and then the dummy gensmnaoseed, resulting in two children chromosomes
each of three genes. The crossover also has to guarantegidgiueness of the genes in every children chromosome.
The details of the crossover operator are summarized inridgo 3. After crossover, conventional mutation operator
is applied to the children chromosomes by randomly chang@ud position of a chromosome at a predefined mutation
rate .
Unlike many other feature selectj@xtraction methods that require a predefined number of teeldeatures,

M3DGFE dynamically varies the number of selected featunemded in each.chromosome during the pruning lo-
cal search and crossover operation. The final number oftedldeatures-is determined automatically in the best

chromosome in terms of fitness value.

Parent 1, (n=4) |
[0.] () Lo

(o)., (o) 4]

(a) Two parent chromosomes before crossover

Child 1 (n=3)
(270 AR 28 {63 v Gl JESAE M
I VA 2R JEN)! e WA [ JE2Sy P

Child 2 (n=3)
(b) Two children chromosomes after crossover

Figure 4: An example of crossover.

4. Experiments

The performance of M3DGFE is evaluated on both pixel-lemelianage-level classification using three real-world

hyperspectral imagery datasets.

4.1. Pixel-Level Classification of Hyperspectral Remotes$gy Imagery Data
4.1.1. Datasets

In many real-world applications of hyperspectral remotess®y imagery data, pixel classification is an impor-
tant task for terrainsbjects identification. In this experiment, the proposedd@FE is applied to the pixel-level
classification of two most widely used hyperspectral rensetgsing imagery datasets namely Indiana pines AVIRIS
(Indiana) [6] and Kennedy Space Center (KSC) [31, 45].
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Algorithm 3 The procedure of crossover
INPUT: two parent chromosomegl andX2;

OUTPUT: two children chromosomesl and¢?2;
BEGIN

1: Set€l = X1, ¢2 = X2, andk = max(<&1,|€2));

2: Appendk — |€1] andk — |€2] dummy genes t€1 and¢2, respectively;

3: Fori=1tokdo

4.  Generate a random numbein [0, 1];

5 Ifr <0.5andcl; ¢ €2 ande2; ¢ €1 then {//€1(2) indicates the-th gene in€1(2)}
6: Exchangefl; and¢2;

7. EndlIf

8: End For

9: Remove all dummy genes frogil ande2;

END

The Indiana data represent a section of a scene taken ovbwest Indiana’s Indiana Pines by the AVIRIS sensor
in 1992. It contains 10366 pixels, 220 bands, and 16 cla§$esKSC images were acquired over the KSC, Florida,
on March 23, 1996 using NASA's airborne visible infrared gimey spectrometer (AVIRIS). In the original 224 bands,
48 bands (numbered 1-4, 102-116, 151-172, and 218-224yantified as water absorption and low SNR bands,
leaving 176 spectral bands for classification. Following][4ight classes representing various land cover types are

defined. The information of the two datasets is summarizd@iies 1 and 2, respectively.

4.1.2. Experimental Design

Classification using ALL feature bands is involved as theebas and the other four state-of-the-art feature selec-
tion/extraction methods including ReliefF [40], Mutual Infortizen (MI) based filter ranking method [18], Principle
Component Analysis (PCA) [20], and the 3D-DWT method propase[37] are considered for comparison study.
M3DGFE is also compared to the counterpart GA-based 3D Gtdadure extraction (G3DGFE), i.e., M3DGFE
without the pruning local search, to test theeet of local search. G3DGFE and M3DGFE use the same parameter
configurations with population size 50, crossover prolighil.6, and mutation rate 0.1. The maximum number of
genes in each chromosomés empirically set to 100. Both G3DGFE and M3DGFE are stoppleen a maximum it-
eration number of 100 or a search convergence is reachedat&s én Section 3.3, the pruning local search consumes
very little computational cost, therefore the computadidiudgets of G3ADGFE and M3DGFE are nearly equivalent
to each other.

Unlike G3DGFE and M3DGFE, whose number of selected feataresiot deterministic, ReliefF and MI need

a predefined number of selected features. To make the caopdair, ReliefF and MI are set to select the same
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Table 1: Information of classes and samples of Indiana data

Class Land Cover Type #Samples(pixels)
C1 Stone-Steel-Towers 95
c2 Hay-windrowed 489
C3 Corn-mintill 834
C4 Soybean-notill 968
C5 Alfalfa 54
C6 Soybean-clean 614
c7 Grass-pasture 497
Cc8 Woods 1294
C9 Buildings-Grass-Trees-Drives 380
C10  Grass-pasture-mowed 26
Cl1 Corn 234
C12 Oats 20
C13  Corn-notill 1434
Cl14  Soybean-mintill 2468
C15  Grass-trees 747
Cl16  Wheat 212

Table 2: Information of classes and samples of KCS data

Class Land Cover Type #Samples(pixels)
C1 Willow swamp 108

c2 Cabbage palfnak hammock 132

C3 Slash pine 163

C4 Oakbroadleaf hammock 74

C5 Hardwood swamp 248

C6 Water 330

Cc7 Spartina marsh 181

C8 Citrus 142

number of features as M3DGFE. For PCA, the dimensionalithucgon is accomplished by empirically choosing
enough eigenvectors to account for 95% of the variance irtiginal data. It is noted that the methods deal with

different types of features. Particularly, the feature selratiethods ReliefF and MI select spectral bands in the
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original feature space. The feature extraction methods BG@A3D-DWT apply orthogonal linear transform and
3D discrete wavelet transform to the original data, respelgt and then select eigenvectors and 3D-DWT features
accordingly. Whereas both G3DGFE and M3DGFE extract andtsgle Gabor features. Despite acquiringfeient
types of features, the performance of all compared methadse objectively evaluated in terms of classification
accuracy.

All methods are challenged with small sample size. In eanhanly 5% randomly sampled pixels of a dataset are
used for training and the remaining unseen 95% pixels for T¢se average classification accuracy and the number of
selected features of each method are reported over 30 indeperuns. The classification accuracy is evaluated using
K-Nearest-Neighbor (KNN) [11] witiKK = 1 and Support Vector Machine (SVM) [48] with linear kernet fach
method. Exceptionally, following [37], the sparse grougsia (SGLasso) feature selection and classification method
is used for 3D-DWT. Here, SVM is implemented with LIBSVM [8] éthe default parameter setting is adopted.
ReliefF, MI, PCA, and KNN are all implemented in Weka envimant [21].

4.1.3. Experimental Results

The classification accuracy of each data class, the overaliracy (OA), and the number of selected features
of all methods on Indiana and KSC data are summarized in $&bknd 4, respectively. Wilcoxon rank-sum test
[28] at a 0.05 significant level is performed between M3DGIRH aach of ALL, MI, ReliefF, PCA, 3D-DWT, and
G3DGFE. The results show that M3DGFE and G3DGFE obtain fegmitly better overall accuracy than the other
methods using both KNN and SVM, which suggests that the 3DoG&mnture extraction framework indeed can
capture or even enhance the desirable signatures for pasdification. The performance of M3DGFE and G3DGFE
is competitive, but M3DGFE manages to obtain more compadbabor feature set. The pruning local search used in
M3DGFE plays a key role in eliminating both irrelevant anduedant features while maintaining or improving the
classification accuracy. The band selection methods Ml aiiR fail to improve the classification accuracy with
respect to the baseline performance using all bands. PG#eigar to the other methods on these two datasets.

To show the discriminative ability of the selected featurssially, we take Indiana data for example and plot the
prediction results of the whole image in Figure 5 based offighrires obtained on 5% training pixels. It is consistent
with the observation in Tables 3 and 4 that G3ADGFE and M3DG#edipt more accurately than the other methods.

The above results have demonstrated that 3D Gabor featereserior to capture the geometrical and statistical
spectral-spatial structure of hyperspectral remote sgr#ata, and thus leading to improved classification acgurac
To evaluate theféiciency of the memetic framework, we also pit M3DGFE agaihstdreedy 3D Gabor features
selection and fusion method (Fused-Gabor for short) [4%]elkas the filter-ranking Gabor feature selection method
(Filtered-Gabor for short) [46]. The Fused-Gabor methast ipplies a predefined set of 3D Gabor wavelets to the

imagery cube to extract 3D Gabor features, and then a gresdyré selection method kicks in, where a group of

1The p-values of Wilcoxon rank-sum tests performed in Tablesare provided in httpcsse.szu.edu.(stal/zhuzyM3DGFE/p-values.pdf
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3D Gabor features is iteratively added to the candidatetsldeature set so that the classification accuracy is best
improved. The selection procedure is repeated until noavgment can be achieved. Finally, all selected 3D Gabor
features are fused for the final classification. The Filtegadbor method is dlierent from the Fused-Gabor.method in
that a filter-ranking feature selection method is introdLizereplace the greedy feature selection and fusion method.
In particular, the extracted 3D Gabor features are rankedsanted based on their symmetrical uncertainty to the
class labels. Afterward, the irrelevant and redundantifeatare eliminated using approximate Markov blanket.

The results of M3DGFE, Fused-Gabor, and Filtered-Gaboerims of number of selected features, overall clas-
sification accuracy, and time cost of classification usirggdbrresponding selected features are tabulated in Table 5.
M3DGFE is shown to attain better classification accurach \WiNN, whereas Fused-Gabor and Filtered-Gabor win
with SVM. Fused-Gabor and Filtered-Gabor tend to selectenmiwelevant and redundant features than M3DGFE,
which deteriorates the performance of KNN since it is basedase-susceptible Euclidean distance. By contrast,
SVM is more robust against noise and thus can benefit frommymviement of more features that could provide
more discriminative information in proportion. AccordipgFused-Gabor and Filtered-Gabor obtain more accu-
rate classification than M3DGFE with SVM. Overall, the clésation accuracy of M3DFE is comparable to the
other two methods regarding both KNN and SVM, yet M3DGFE ngasao reduce the number of selected features
substantially, and thus leading to much less classificatior. It is also worth noting that both Fused-Gabor and
Filtered-Gabor need to generate a large number of 3D Galaturs before feature selection kicks in, which in-
evitably boosts the memory or disk space consumption. Ubimgame parameter values 66, ¢, b} as described in
Section 3.1, Fused-Gabor and Filtered-Gabor end up wittespamplexityO(52XY B), whereas the space complexity
of M3DGFE is merelyO(nPB), wherenis the maximum number of genes in a chromosoRis,the population size,

and normallynP is much smaller than 52Y.

4.2. Image-Level Classification of Hyperspectral Face Data

4.2.1. Datasetand Experimental Design

The publicly available HK-PolyU Hyperspectral Face Dath§l4] is used to evaluate the performance of
M3GDFE on image-level classification. The multi-spectruatadwere obtained by using a CRI's VariSpec LCTF
to filter the light with wavelength less than 400nm and gnetlitan 720nm. The spectral range produces 33 bands in
all with a step length of 10nm. The face images were captuoed 48 young volunteers (13 females and 35 males) at
different sessions. In this experiment, we follow [14] to usefitbrtal hyperspectral images of 25 individuals (each
of four 3D hyperspectral cubes). The eye coordinates weraually located and each face was cropped and rotated
with reference to the eye locations and resized to sizé684 Figure 6 shows 32 bands of an example hyperspectral
face.

According to [14], the first six and last three bands can béueled due to the high noise, and two hemoglobin
absorption bands around 540 and 580nm should be selecteti¢o thescribe the skin characteristics. Particularly, th

two band subsets, one consists of bands at 530, 540 and 5%0anather contains bands at 570, 580 and 590 nm, were
14



suggested in [14]. In this study, only the three bands at 580,and 550 nm are considered for the sake of reducing
computational complexity. As such, each sample face isadharized by 6464 feature pixels and three feature
bands, i.e., totally 12288 features. In line with the studyhgperspectral remote sensing data, the performance of
M3GDFE on hyperspectral face data is compared with that df Alll, ReliefF, PCA, and G3GDFE. Since there are
four samples for each individual (one 3D hyperspectrialeccdiptures one sample face), a four-fold cross validation
scheme is used to evaluate the performance of the methodmtyimdependent runs of four-fold cross validation
are carried out to estimate the average classification acgwf all methods with both KNN and SVM. The best

classification accuracy reported in [14] using BS-WFD metisaso included for comparison.

4.2.2. Experimental Results

The results of the compared methods on hyperspectral fdeeada reported in Table 6. To test the significant
differences of the methods’ performance, Wilcoxon rank-sumnatiea 0.05 significant level is performed between
M3DGFE and each of ALL, MI, ReliefF, PCA, and G3DGFE. Similarthe results of hyperspectral remote sensing
data, M3DGFE is observed to significantly outperform ALL,,NReliefF, and PCA. G3DGFE and M3DGFE obtain
similar classification accuracy, but M3DGFE selects sigaiftly fewer features. M3DGFE also shows obviously
higher accuracy than BS-WFD. Comparing the results of thidystirectly with that published in [14] may not be
appropriate due to thefiiéerent preprocessing, classifier, and performance evafusthema used. Yet the comparison
confirms the #iciency of the proposed method to a certain degree.

To see whether M3DGFE can identify meaningful feature gixele also plot the 30 most frequently selected
locations in spatial domain in Figure 7. It is shown that im@nt facial points like eye corners, eyebrows, and mouth
are included. Itis interesting'to see that most of the setklcications distribute on one side of the face. The reason fo
this observation could be the use of RFR-based fitness démvaiu#\s the front face has relatively symmetric patten,
the important points on the one side of the face could be mhirto the counterparts on the other side. Accordingly,
the points on the side of better discriminative quality,jaioly thanks to better lighting afal shooting angle, are

preferred for classification.

5. Conclusion

In this paper, a 3D Gabor feature extraction based on memlgiicithm (M3DGFE) is proposed for hyperspec-
tral imagery classification. Particularly, M3DGFE optimézthe 3D Gabor wavelet transform based feature generation
and selection such that desirable 3D Gabor features cagtthre signal variances in joint spatial-spectrum domains
are identified and the classification accuracy is improvexthBRixel-level and image-level classification problems of
small sample size are studied and various state-of-tHestrire selectigiextracton methods are involved in compari-
son with M3DGFE. The experimental results on real-worlddrgpectral imagery datasets demonstrate that M3DGFE
is eficient in identifying discriminative features and elimimagirrelevant and redundant ones. It is expected to serve
as a competitive alterative for solving the increasing clicafe hyperspectral imagery classification problems.
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Table 3: Classification accuracy and selected feature $itee@ompared methods on Indiana data

ALL

Ml

ReliefF

PCA

3D-DWT*

G3DGFE

M3DGFE

KNN

c1 SVM

78.3k15.27
81.72:16.77

76.94:16.87
78.25:17.78

48.31+18.1T
71.47%19.85

72.03:15.16°
77611518

86.00+:8.32+

72.76:23.99
71.15:26.97

71.53:25.81
69.36:25.77

KNN

c2 SVM

92.59t4.64
94.9G:3.65

91.75:5.69
94.62:3.91°

92.63t4.52
96.25:3.44

61.368:8.17
93.846.17

98.86+0.647

98.09:2.04°
97.46+3.86°

98.36:1.93
97.14+3.55

KNN

c3 SVM

40.1#3.45
53.50t4.91°

54.18:4.30°
44.16:7.89

50.58:3.98
42.24:8.53

17.7%3.13
2.10+4.40

63.96:5.25

92.00+£2.93%
87.915.43

91.86:3.20
90.73:4.68

KNN

c4 SVM

46.76:6.07
57.15t6.08

60.23:6.18
52.99:7.90°

48.69:6.12
40.91:7.45

22.92:4.50
7.58:10.17

71.99:3.08

91.12£2.83
86.99:4.38"

91.92+2.50
86.05t5.12

KNN

5 SVM

15.56£11.26°
28.32:18.08

26.85:15.59
37.86:22.07

24.74:13.37
36.88:23.08

5.34t5.97
0.00+0.00°

45.69:13.65

83.61+24.96~
74.26:26.4Z

83.6125.13
77.5124.74

KNN

c6 SVM

28.86:6.21
46.83:7.0"

43.13:6.52°
57.96:10.28

37.08:6.41
61.90:8.52

13.60£2.95
0.58+1.73

61.94:3.98

88.99+4.62~
80.76:8.38

88.58t5.24
81.76:7.53

KNN

c7 SVM

66.51+6.15
84.60t4.74

69.55:6.82
70.13:9.99

63.23t6.59
50.549.43

23.60:5.35°
4.56£5.97

89.813.16;

91.71+3.38~
85.82t6.05°

91.38:3.72
88.29:4.98

KNN

c8 SVM

85.15:3.79
90.5k3.24

83.63:4.24
88.72:4.46

84.09:3.20°
87.9G:3.52°

65.55:6.54"
96.98t1.63

96.92:1.42

98.64+1.14%
98.02:1.51r

98.46:1.38
98.16:1.64

KNN

9 SVM

25.945.80°
45.58:9.00°

28.146.25
34.43:9.06°

25.10:6.18
34.68:8.67

19.6G:5.65
4.335.18

64.93:8.53

95.32:3.44
87.74:7.8T

96.61+2.40
89.92:6.18

KNN

C10 SUM

43.90:28.48
54.12:31.56

35.88:27.08
44.96:31.76

16.06:14.30°
14.34:18.70°

4.94+5.83
0.00+0.00°

55.83:18.13

73.52+34.22
70.79:33.98°

73.2#33.85
72.78:33.81

KNN

Cl SUM

27.13:9.11
37.84:10.44

23.50:7.73
40.3#12.27

24.54:8.12
46.12:13.57

9.61+4.41
0.00+0.00°

46.71+5.82

90.53+5.91*
90.31+7.56°

89.646.01
89.95:7.91

KNN

C12 SUM

18.83:19.46
18.64:20.49

17.38t15.40
15.1G6:15.79

25.69:20.42
31.92:27.52

2.19+4.00°
0.00+0.00°

42.11:14.8%

48.04:39.74
54.2140.7F

53.72:41.11
55.05+41.28

KNN

C13 SUM

44.99:4.25
65.55+4.58

57.80:4.99
56.90:6.51

54.19:4.64
49.46:6.84

32.38:3.08
33.45:6.62°

80.42:2.0%

92.52:2.45°
87.96:3.46°

93.50+2.25
86.76:3.92

KNN

Cl4 SUM

63.70:4.31
71.04£3.25

70.16:3.02
60.05:5.20°

63.29:3.35
55.19:6.55

49.42+3.81°
92.54:4.20°

83.49:2.33

96.46:1.5T
93.82£2.23

97.06+1.05
93.7#2.50

KNN

C15 SUM

85.14:4.30°
91.09:3.86°

83.13:5.51"
83.214.63

80.43:7.38
72.52:5.72

54.617.64
84.36:5.07

95.85:2.06;

95.9%1.79°
94.58+2.66°

96.48+1.95
94.80:2.63

KNN

C16 SUM

87.39:5.24
91.9G:5.7Z

82.30:8.80°
83.8G:10.67

81.89:8.30°
94.95:6.08°

32.0410.95
3.13:6.95

92.44:5.94

93.53:6.0Z°
89.719.24

94.84+5.63
92.75:6.08

KNN

OA SVM

59.32t1.03
70.26:1.15

65.54:1.10°
63.94:1.79

60.88:1.97
59.231.53

39.06t1.43
51.34t0.61°

81.09:1.26-

94.03:0.60°
90.66£1.39°

94.41+0.70
90.96:1.17

#Features

220

62

62

27

1031

78.00£1.93

62.272.84

* According to [37], sparse group lasso (SGLasso) featuezten and classification method is used for 3D-DWT. Wilcoxank-sum test at a
0.05 significant level is performed between M3DGFE and eatheobther methods in terms of classification accuracy usingdhee classifier.
The significance of dierence between M3DGFE and G3DGFE is also tested in terms oferushbelected features. Superscripts,-and~
indicate that the performance of the corresponding methddnsfisantly worse than, significantly better than, and samtb that of M3DGFE,
respectively. The comparison results between 3D-DWT and M3PGsing KNN and SVM are indicated with superscript and stipsc
respectively” Number of eigenvectors to account for 95% of the varianceerotiginal data. Bold typefaces emphasize the best accuracy

obtained in each clalss or the overall accuracy.



Table 4: Classification accuracy and selected feature $idee@ompared methods on KCS data

ALL Mi ReliefF PCA 3D-DWT* G3DGFE | M3DGFE

KNN |85.76:13.98 |85.9411.6T°|80.3115.14 |57.9A#16.54 89.59:19.92°|190.59:20.11
c1 SVM [85.98:13.37|84.02:13.76" | 77.21+16.66 | 33.95:35.42 81.5m14.21 90.52+20.6° [90.91+20.12
KNN | 57.1+16.04 |52.39:15.37 |51.2/412.92 |38.06:14.25 _ 186.58:11.36°({85.71+12.76
c2 SVM|74.14:15.73°|65.49:16.54 |63.35:14.13 | 37.74:28.5 87.28:8.14 81.65t16.73|79.8*17.04
KNN | 75.95t8.94 |79.44:10.61 |71.37412.00|62.94:13.07 94.95:10.09° | 95.79+9.09
3 SVM |83.29:10.82°| 85.14:9.77 |81.99:12.11 |59.81+:25.44 94.48:2.86 91.4+13.56° |93.74+11.66
KNN |20.7112.96 |15.38:10.83 |16.25:11.04 | 13.6G:10.56° 71.16£33.23|72.04+32.70
c4 SVM |27.52:17.79 | 22.25:15.4 |22.51+16.30 | 3.05+11.37 36.86: 1328 63.20:31.95|64.78:30.33
KNN |44.64:11.45 |43.18:11.81|44.14:12.03 |31.4#10.19 86.75:11.80°|89.09+11.23
5 SVM|51.13:15.29 |51.5A412.08 |50.23:13.68 | 25.12:35.31 fLIIR & 89.04t9.94° |87.99:13.24
KNN | 64.45:6.68 | 60.818.62" | 58.2748.13 | 39.79:6.91 99.65:0.82° | 99.92+0.40
ce SVM| 71.519.41 |71.38:10.46 |66.74:12.38 |62.03:35.15 Ko=-10 99.05:1.39° | 98.45:3.18
KNN | 99.92:0.4T° | 99.85:0.5I" | 98.83:4.59° | 99.66+0.99 _199.21+1.96° | 99.74:1.04
c7 SVM | 99.94+0.31F | 99.53:1.31" | 98.944.94" | 99.68:0.98" 99.77+ 041y 97.15:4.35° | 97.66:3.68
KNN | 36.42:13.3 |34.38:14.03 | 36.83t13.8" | 21.99:9.32 95.18t7.2T | 96.43+5.94
c8 SVM |38.8415.45|38.68:16.03 | 38.29:15.4 | 6.86:16.96 45.00:7.23 89.47%10.64°190.76:10.44
KNN | 62.63:2.39 | 60.9%43.44 | 59.19:3.17 | 46.91+:2.41 92.69:2.19° | 93.51+2.40
OA SVM| 68.63t2.94 | 67.56:3.82 | 65.00:3.63 | 46.69:3.68" 77.952.52 90.85:2.88" | 90.93:3.08
#Features 176 52 52 2f 226 76.7/42.88 | 51.7G:3.75

* According to [37], sparse group lasso (SGLasso) featuectien and classification method is used for 3D-DWT. Wilcoxank-sum test at a

0.05 significant level is performed between M3DGFE and eatheobther methods in terms of classification accuracy usingdhee classifier.

The significance of dierence between M3DGFE and G3DGFE is also tested in terms ofenurfibelected features. Superscripts,-and~

indicate that the performance of the corresponding methadrigfisantly worse than, significantly better than, and samtb that of M3DGFE,

respectively. The comparison results between 3D-DWT and M3PGsing KNN and SVM are indicated with superscript and stipsc

respectively” Number of eigenvectors to account for 95% of the varianceerotiginal data. Bold typefaces emphasize the best accuracy

obtained in each class or the overall accuracy.

Table 5: Comparison results of M3DGFE, Fused-Gabor, andrEdtGabor.

KNN SVM
Data Method |#Features OA Time(s) OA Time(s)
Fused-Gabor 1496 |(92.44:1.03 123.712.25|95.31+0.95* 26.23:0.16°
IndiangFiltered-Gabor 136 |92.89:0.89° 10.17%0.23 |94.66+1.05" 2.32+0.03"
M3DGFE 62 94.41+0.70 5.14+0.15 | 90.96:1.17 0.85+0.02
Fused-Gabor 809 [89.33:t3.65 2.80+0.01" |92.4%3.76° 0.44:0.05
KSC |Filtered-Gabor 110 |89.53:3.25 0.05:0.0T" |94.62+3.32* 0.05:0.01
M3DGFE 52 93.51+2.40 0.03+0.01 |90.93:3.08 0.03+0.01

Wilcoxon rank-sum test at a 0.05 significant level is perfaimhetween M3DGFE and each of Fused-Gabor and Filtered-Galemms of

classification accuracy and time cost. Superscripts and~ indicate that the performance of the corresponding methadjuke same classifier

is significantly worse than, significantly better than, aimdilar to that of M3DGFE, respectively. Bold typefaces emgbashe best result

obtained by the methods in each column.
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Figure 5: Prediction results of the compared feature selgetitraction methods usingftierent classifiers on Indiana data.
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Figure 6: The 32 bands of an example hyperspectral face image.

Table 6: Classification accuracy and selected feature $itee@ompared methods on the 3D hyperspectral face data.

ALL M ReliefF PCA BS-WFD*| G3DGFE | M3DGFE
KNN 63.40:7.07 |60.80:6.14 |50.60:8.32" | 68.00:6.93 95.20£3.22°|95.80G:2.40
SVM 80.00:7.48 |63.8G:6.517[55.80£7.537| 77.60:4.08 7933 95.80£3.46°|96.80+2.96
#Features 12288 65 65 12 6 82.25:1.837|65.40:1.04

* BS-WFD [14] denotes the band subset fusion-based{RDA with weighted averaging fusing method. Wilcoxon rankagest at a 0.05

significant level is performed between M3DGFE and each of theranethods in terms of classification accuracy. The signifie@f diference

between M3DGFE and G3DGFE is also tested in terms of numbetexited features. Superscripts,and~ indicate that the performance of

the corresponding method is significantly worse than, sicanifily better than, and similar to that of M3DGFE, respettivBecause the standard

deviation result of BS-WFD is available in [14], statistite$t between BS-WFD and M3DGFE is not performetlumber of eigenvectors to

account for 95% of the variance in the original data. Boldefgpes emphasize the best overall accuracy.

Figure 7: The 30 most frequently selected locations by M3D@Rhe face.
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