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Concepts are the most fundamental units of cognition in philosophy and how to learn
concepts from various aspects in the real world is the main concern within the domain
of conceptual knowledge presentation and processing. In order to improve efficiency and
flexibility of concept learning, in this paper we discuss concept learning via granular
computing from the point of view of cognitive computing. More precisely, cognitive
mechanism of forming concepts is analyzed based on the principles from philosophy and
cognitive psychology, including how to model concept-forming cognitive operators, define
cognitive concepts and establish cognitive concept structure. Granular computing is then
combined with the cognitive concept structure to improve efficiency of concept learning.
Furthermore, we put forward a cognitive computing system which is the initial
environment to learn composite concepts and can integrate past experiences into itself
for enhancing flexibility of concept learning. Also, we investigate cognitive processes
whose aims are to deal with the problem of learning one exact or two approximate cogni-
tive concepts from a given object set, attribute set or pair of object and attribute sets.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Cognitive computing is the development of computer systems modeled on the human brain [38]. It embodies major
natural intelligence behaviors of the brain including perception, attention, thinking, etc. As an emerging paradigm of
intelligent computing methodologies, cognitive computing has the characteristic of integrating past experiences into itself
[22]. Nowadays, this theory has become an interdisciplinary research and application field and absorbed methods from
psychology, information theory, mathematics and so on [37,39].

Concepts are the most fundamental units of cognition in philosophy and they carry certain meanings in almost all cogni-
tive processes such as inference, learning and reasoning [37,50]. In this sense, a concept is in fact a cognitive unit to identify
and/or model a real-world concrete entity and a perceived-world abstract subject. As is well known, how to efficiently learn
concepts from various aspects in the real world is the main concern within the domain of conceptual knowledge presenta-
tion and processing. Up to now, for meeting the requirements of data analysis and knowledge manipulation, all kinds of con-
cepts which carry certain meanings have been proposed such as abstract concepts [37], Wille’s concepts [42], object-oriented
concepts [48,49] and property-oriented concepts [9].
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In philosophy, a concept can generally be identified by its extension part (often called extent) and intension part (often
called intent) which can be determined with each other [9,37,42,48,49]. The extent of a concept is the set of all objects or
instances that the concept denotes, and the intent of a concept is the set of attributes or properties that a concept connotes
[37,42]. In order to reflect the relationship of specialization and generalization among concepts, a structure of concepts can
further be built by defining a partial order on the concepts under consideration. By this means, the obtained concept
structure often forms a complete lattice no matter what kinds of meanings we give to the concepts, and hence some scholars
from the community of formal concept analysis [42] called it certain concept lattice instead. For example, different concept
structures have been proposed by specifying certain meanings of the concepts in the real world such as Wille’s concept
lattice [42], object-oriented concept lattice [48,49], property-oriented concept lattice [9], AFS-concept lattice [40], power con-
cept lattice [11] and others [6,15,16,20,21]. Note that these certain concept structures or lattices establish rigorous mathe-
matical models and provide formal semantics for data analysis in practice. In other words, meanings of real-world
concrete entities can be represented and semantics of abstract subjects can be embodied by these certain concept structures.
All in all, learning concepts (sometimes including their corresponding structure) has been investigated from various aspects.
However, the current paper focuses on this issue from a novel aspect (i.e., a cognitive viewpoint).

Note that, generally speaking, learning a certain concept structure from a given dataset is computationally expensive
when its size is large. The reason is that the number of concepts in the structure will increase exponentially in the worst
case. Considering that granular computing gives rise to processing that is less time demanding than the one required when
dealing with detailed numeric processing [2–4]. Information granule, the basic notion in the theory of granular computing
which can broadly be viewed as a collection of information granules and the area of intelligent computing revolving around
them [26], was introduced into Wille’s concept lattice as an attempt to decrease computation time [43]. In a general sense,
by information granule, one regards a collection of elements drawn together by their closeness (resemblance, proximity,
functionality, etc.) articulated in terms of some useful spatial, temporal, or functional relationships [52,53]. In fact, informa-
tion granules are intuitively appealing constructs, which play a pivotal role in human cognitive and decision-making activ-
ities [24]. It is also worth stressing that information granules permeate almost all human endeavors [2–5,24,25,27,53,54]. For
example, information granules have been studied in rough set theory [17,23,29,30,35,44,46,47] extensively which is consid-
ered as one of the approaches of granular computing, and applied in formal concept analysis [10], evidence analysis [33], etc.
Recently, studies on combination of granular computing with formal concept analysis have been made by several researchers
[7,12,19,31,41,43,45,56]. And what is particularly worth mentioning is that information granules in formal concept analysis
mean granular concepts [43] which are the basic concepts used to deduce others. As a matter of fact, in order to improve
efficiency sharply, learning concept structure indeed needs the idea of granular computing no matter how we specify the
certain meanings of the concepts in the real world, no exception to cognitive concepts to be discussed in the current paper.

Note that the aforementioned concepts were learned using constructive methods, which means that the concepts were
formed by defining certain concept-forming operators [9,11,16,40,42,48,49]. In the meanwhile, axiomatic methods are also
needed in terms of learning methodologies in which concepts are learned by establishing axiomatic systems (i.e., sets of axi-
oms). To the best of our knowledge, axiomatic systems of concept learning were often called concept systems instead. In
recent years, there have been several concept systems proposed for certain concept learning such as cognitive system [45],
concept granular computing system [31], generalized concept system [19] and generalized dual concept system [18]. At the same
time, it should be pointed out that these concept systems can also be used to learn the certain concepts which were obtained
by using the constructive methods in [9,11,16,40,42,48,49]. Compared with constructive methods, axiomatic methods try to
look beyond appearance for the essence of concept learning. However, the existing concept systems cannot integrate past
experiences into itself. In other words, they are not able to deal with e.g., dynamic data and thereby are lack of flexibility
for data analysis in practice. Besides, no explanation was provided to the background of the axioms of the existing concept
systems, which means that they are too abstract to be understood. But, as far as we know, it is possible to solve these prob-
lems to some extent by means of concept learning based on cognitive computing because this kind of computing approach
has the characteristic of integrating past experiences into itself and the background of simulating intelligence behaviors of
the brain including perception, attention and learning.

To sum up, concept learning deserves to be studied based on granular computing from the perspective of cognitive
computing, which may be beneficial to understanding and describing human cognitive processes in a conceptual knowledge
way. Our current study mainly focuses on this issue. More precisely, the problems to be discussed are analysis of cognitive
mechanism of forming concepts, integration of granular computing into cognitive concept structure, establishment of cog-
nitive computing system, and implementation of cognitive processes. Note that the proposed cognitive computing system
not only can integrate past experiences into itself by recursive thinking, but also is easy to be understood because cognitive
mechanism of forming concepts is analyzed in advance based on the principles from philosophy and cognitive psychology.

The rest of this paper is organized as follows. In Section 2, cognitive mechanism of forming concepts is analyzed based on
the principles from philosophy and cognitive psychology, including how to define concept-forming cognitive operators,
construct cognitive concepts and induce their hierarchical structure. In Section 3, granular computing is integrated into
the induced cognitive concept structure. In Section 4, we put forward a cognitive computing system in which the notions
of a cognitive computing state, an object-oriented cognitive computing state and an attribute-oriented cognitive computing
state are proposed. In Section 5, we investigate the cognitive processes whose aims are to deal with the problem of learning
one exact or two approximate cognitive concepts from a given object set, attribute set or pair of object and attribute sets. In
Section 6, we discuss the main differences and relations between the proposed concept learning approach and the existing



Table 1
A SARS dataset.

Patient Fever Cough Headache Difficulty breathing

1 Yes Yes No Yes
2 No Yes No Yes
3 No No Yes No
4 Yes No Yes No
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ones, and give explanations on some obtained results in our study. The paper is then concluded with a brief summary and an
outlook for further research.
2. Cognitive mechanism of forming concepts

In this section, we analyze cognitive mechanism of forming concepts based on the principles from philosophy and
cognitive psychology.

Let U be an object set and A be an attribute set. We denote the power sets of U and A by 2U and 2A, respectively.
Hereinafter, suppose L : 2U ! 2A and H : 2A ! 2U are two set-valued mappings which are rewritten as L and H for short
when there is no confusion. If the mappings L and H are used to derive concepts from a given object-attribute relation in
the sense of cognition, then what do they need to obey? In what follows, we address this problem based on the principles
from philosophy and cognitive psychology.

From the point of view of philosophy, a concept has two constituent parts: extent X and intent B, where X is a set of
objects and B is a set of attributes. In general, the more objects a concept denotes, the less attributes it connotes, and vice
versa. By this principle, given object sets X1; X2 and attribute sets B1, B2, we have
X1 # X2 ) LðX2Þ#LðX1Þ; ð1Þ

B1 # B2 ) HðB2Þ#HðB1Þ; ð2Þ
where LðX1Þ and LðX2Þ denote the corresponding intents of X1 and X2, respectively; HðB1Þ andHðB2Þ denote the correspond-
ing extents of B1 and B2, respectively.

From the perspective of cognitive psychology, the principle for perception can be used to restrain the mapping L, while
that for attention can be used to restrain the mapping H. The details are described below.

According to Gestalt psychology [13,14], the perception of the whole is more than the integration of those of its parts. By
this principle, we obtain
LðX1 [ X2Þ � LðX1Þ \ LðX2Þ: ð3Þ
Here, the intersection of attribute sets on the right side represents ‘‘the integration of perceptions of parts’’.

Remark 1. By considering that the value on the left of Eq. (3) will equal the one on the right when X1 ¼ X2, the proper
inclusion ‘‘�’’ which should have been used between the left and right sides so as to strictly obey the principle for perception,
has to be weakened to ‘‘�’’.

Moreover, in terms of the principle for attention in cognitive psychology, the selection model of Deutsch and Deutsch [8]
says that all information (attended and unattended) should be analyzed for meaning in order to select some inputs for full
awareness. Whether or not the information is selected is dependent on how relevant it is at the time. By this principle, we get
HðBÞ ¼ fx 2 UjB #LðfxgÞg: ð4Þ
That is, the information at least relevant to all attributes in B will be selected.
It is easy to verify that Eq. (2) can be implied by Eq. (4). Thus, combining the principles from philosophy with those from

cognitive psychology for perception and attention, we claim that Eqs. (1), (3) and (4) should be satisfied by the set-valued
mappings L and H when they are used to learn concepts from a given object-attribute relation.

Definition 1. Let L and H be two set-valued mappings. If for any X1;X2 # U and B # A, the following properties hold:

(i) X1 # X2 ) LðX2Þ#LðX1Þ,
(ii) LðX1 [ X2Þ � LðX1Þ \ LðX2Þ,

(iii) HðBÞ ¼ fx 2 UjB #LðfxgÞg,

then L and H are called concept-forming cognitive operators (or simply cognitive operators).
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Example 1. Table 1 depicts a dataset of four patients who suffer from severe acute respiratory syndrome (SARS) [1].
Let U be the set of four patients and A be the set of four symptoms. For convenience, we denote the four patients by 1, 2, 3

and 4, respectively, and the four symptoms (Fever, Cough, Headache, Difficulty breathing) by a, b; c and d, respectively. That is,
U ¼ f1;2;3;4g and A ¼ fa; b; c; dg. Then, by intuitive perception and attention, we can obtain the following set-valued
mappings:
L : ;# fa; b; c; dg; f1g# fa; b;dg; f2g# fb;dg; f3g# fcg;
f4g# fa; cg; f1;2g# fb;dg; f1;3g# ;; f1;4g# fag;
f2;3g# ;; f2;4g# ;; f3;4g# fcg; f1;2;3g# ;;
f1;2;4g# ;; f1;3;4g# ;; f2;3;4g# ;; f1;2;3;4g# ;
and
H : ;# f1;2;3;4g; fag# f1;4g; fbg# f1;2g; fcg# f3;4g;
fdg# f1;2g; fa; bg# f1g; fa; cg# f4g; fa; dg# f1g;
fb; cg# ;; fb;dg# f1;2g; fc; dg# ;; fa; b; cg# ;;
fa; b;dg# f1g; fa; c; dg# ;; fb; c;dg# ;; fa; b; c; dg# ;;
where LðXÞ ¼ B means that B is the set of symptoms possessed by all patients in X, and HðBÞ ¼ X means that X is the set of
patients at least suffering from all symptoms in B. Then, by Definition 1, it is easy to verify that L and H are cognitive
operators.

For brevity, hereinafter we write LðfxgÞ (x 2 U) as LðxÞ and HðfagÞ (a 2 A) as HðaÞ.
Proposition 1. Let L and H be cognitive operators. Then for any X # U and B # A, we have
LðXÞ ¼
\
x2X

LðxÞ; ð5Þ

HðBÞ ¼
\
a2B

HðaÞ: ð6Þ
Proof. It is immediate from Definition 1. h

The formula in Eq. (5) can be explained as ‘‘the perception of the whole is equal to the integration of those of its parts’’,
which is not surprising for the cognitive operator L. The reason is that on one hand the principle ‘‘the perception of the whole
is more than the integration of those of its parts’’ is weakened to ‘‘the perception of the whole is more than or equal to the
integration of those of its parts’’ in Eq. (3), and on the other hand the principle for a concept in philosophy has also been
embodied into the cognitive operator L. Similarly, the formula in Eq. (6) can be explained as ‘‘the information at least
relevant to all attributes under consideration is equal to the integration of those at least relevant to its parts’’.

Proposition 2. Let L and H be cognitive operators. Then for any X # U and B # A, we have
X #HLðXÞ; ð7Þ

B #LHðBÞ; ð8Þ
where HLð�Þ and LHð�Þ represent the compositions HðLð�ÞÞ and LðHð�ÞÞ, respectively.
Proof. It is immediate from Definition 1. h

The formula in Eq. (7) can be explained as ‘‘other objects (if any) analogous to X can be recognized by HL-cognition of X’’,
and the formula in Eq. (8) can be explained as ‘‘other attributes (if any) analogous to B can be recognized by LH-cognition of
B’’.

Here, we are extremely interested in the pair ðX;BÞ satisfying X ¼ HðBÞ and B ¼ LðXÞ since in this case both X and B reach
the balance with respect to HL and LH-cognitions, respectively. In other words, X ¼ HLðXÞ and B ¼ LHðBÞ can be satisfied
simultaneously. In fact, such pairs ðX;BÞ satisfying X ¼ HðBÞ and B ¼ LðXÞ are a kind of useful conceptual knowledge in the
sense of cognition.

Definition 2. Let L andH be cognitive operators. For X # U and B # A, if LðXÞ ¼ B andHðBÞ ¼ X, we say that the pair ðX;BÞ is a
concept under the cognitive operators L and H (or simply a cognitive concept). In this case, X and B are referred to as the
extent and intent of the cognitive concept ðX;BÞ, respectively.
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Example 2. Let L and H be the cognitive operators shown in Example 1. Then by Definition 2, it is easy to verify that
ðf1;2;3;4g; ;Þ, ðf1;2g; fb; dgÞ; ðf1;4g; fagÞ; ðf3;4g; fcgÞ, ðf1g; fa; b; dgÞ; ðf4g; fa; cgÞ and ð;; fa; b; c; dgÞ are cognitive concepts
which can be viewed to some extent as the learning results after perception and attention.

Moreover, in the real world, it is necessary to make the correlation analysis between cognitive concepts. This motivates us
to establish generalization and specialization relationships between the cognitive concepts. More precisely, for two cognitive
concepts ðX1;B1Þ and ðX2;B2Þ under L andH, if X1 # X2, then ðX1;B1Þ is called a subconcept of ðX2;B2Þ, or equivalently, ðX2;B2Þ
is called a superconcept of ðX1;B1Þ, which is denoted by ðX1;B1Þ � ðX2;B2Þ. The set of all cognitive concepts together with the
partial order relation � forms a complete lattice. We call it a cognitive concept structure or a cognitive concept lattice which
is denoted by BðU;A;L;HÞ. The infimum (

V
) and supremum (

W
) of a set of cognitive concepts fðXt ;Bt � �Þj t 2 Tg (T is an

index set) are respectively defined as:
^
t2T

Xt ;Btð Þ ¼
\
t2T

Xt ;LH
[
t2T

Bt

 ! !
;

_
t2T

Xt ;Btð Þ ¼ HL
[
t2T

Xt

 !
;
\
t2T

Bt

 !
:

ð9Þ
3. Integrating granular computing into cognitive concept lattice

According to the discussion in Section 2, given cognitive operators L and H, we can find in theory all cognitive concepts.
However, in practice, it may be hard to implement such an action since the exhaustion of all elements of L and H is difficult
when the cardinalities of U and A are large, let alone finding all cognitive concepts. For instance, in Example 1, the total num-
ber of Xi # LðXiÞ (Xi # U) in L and Bj #HðBjÞ (Bj # A) in H is 2jUj þ 2jAj, which is exponential with respect to the cardinalities
jUj and jAj. However, fortunately, according to Eqs. (5) and (6), every LðXiÞ can be represented as the intersection of LðxÞ
(x 2 Xi) and every HðBjÞ can be represented as the intersection of HðaÞ (a 2 Bj), which means that it is sufficient to list
fxg# LðxÞ (x 2 U) in the mapping L and fag#HðaÞ (a 2 A) in the mapping H. In other words, fxg# LðxÞ (x 2 U) are basic
but sufficient enough for inducing L, and fag# HðaÞ (a 2 A) are basic but sufficient enough for inducing H. Therefore,
fxg# LðxÞ (x 2 U) and fag#HðaÞ (a 2 A) can respectively be viewed as the information granules of L and H in terms of
knowledge representation. Moreover, by considering that information granules are the basic notion in the theory of granular
computing, it is natural for us to integrate granular computing into cognitive concept lattice for decreasing the computation
time. Besides, such an integration is also in accordance with characteristics of human thinking in which complex information
is often divided into pieces, classes and groups [28].

In what follows, we put forward the notion of information granules of cognitive operators and that of a granular concept.

Definition 3. Let L and H be cognitive operators. Then LG ¼ ffxg# LðxÞj x 2 Ug and HG ¼ ffag#HðaÞj a 2 Ag are called
information granules of L and H, respectively.

According to Eqs. (5) and (6), the information granules LG and HG can respectively be used to form any X # LðXÞ and
B #HðBÞ as follows:
LðXÞ ¼
\
x2X

LGðxÞ;

HðBÞ ¼
\
a2B

HGðaÞ:
It should be pointed out that X # LðXÞ and B # HðBÞ may not be information granules when X and B are not singleton sets.
Take Example 1 for instance, LðXÞ ¼ ; when X ¼ f2;4g, and HðBÞ ¼ ; when B ¼ fb; cg. Thus, X # LðXÞ R LG and
B #HðBÞ R HG.

Considering that the exhaustion of all elements of L and H is quite hard in practice when the cardinalities of U and A are
large, we store and remember the information of L and H in their granular forms, i.e., LG and HG.

Moreover, in preparation for presenting the notion of a granular concept, we need the following proposition.

Proposition 3. Let L and H be cognitive operators. Then for any X # U and B # A, both ðHLðXÞ;LðXÞÞ and ðHðBÞ;LHðBÞÞ are
cognitive concepts.
Proof. It is immediate from Definitions 1 and 2 and Proposition 2. h
Definition 4. Let L and H be cognitive operators. Then for any x 2 U and a 2 A, we say that ðHLðxÞ;LðxÞÞ and ðHðaÞ;LHðaÞÞ
are granular concepts.

It is easy to observe that granular concepts are basic but sufficient enough to induce others, and we can confirm this by
the following proposition.
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Proposition 4. Let L and H be cognitive operators and BðU;A;L;HÞ be the cognitive concept lattice. Then for any
ðX;BÞ 2 BðU;A;L;HÞ, we have
ðX;BÞ ¼
_
x2X

ðHLðxÞ;LðxÞÞ ¼
^
a2B

ðHðaÞ;LHðaÞÞ: ð10Þ
Proof. It follows directly from Eqs. (5), (6) and (9). h

Considering that the exhaustion of all cognitive concepts under L and H is quite hard in practice, we store and remember
the conceptual knowledge BðU;A;L;HÞ in the form of its granular concepts ðHLðxÞ;LðxÞÞ (x 2 U) and ðHðaÞ;LHðaÞÞ (a 2 A)
which are able to induce BðU;A;L;HÞ.

Note that in fact either ðHLðxÞ;LðxÞÞ (x 2 U) or ðHðaÞ;LHðaÞÞ (a 2 A) is enough to induce all cognitive concepts based on
Eq. (10). However, we still need both of them since in practice it may start with an object set, an attribute set or a pair of
object and attribute sets for concept learning or set approximation (see Section 5 for details).

To facilitate subsequent discussion, we denote
GLH ¼ ðHLðxÞ;LðxÞÞj x 2 Uf g [ ðHðaÞ;LHðaÞÞj a 2 Af g: ð11Þ
That is, GLH is the set of all granular concepts under the cognitive operators L and H.

Example 3. Let L and H be the cognitive operators shown in Example 1. By Definition 3, we have that LG ¼ ff1g# fa; b; dg;
f2g# fb; dg; f3g# fcg; f4g# fa; cgg and HG ¼ ffag# f1;4g; fbg# f1;2g; fcg# f3;4g; fdg# f1;2gg are the information
granules of L and H, respectively. With these information granules, we can obtain
Lð1Þ ¼ LGð1Þ ¼ fa; b;dg; HLð1Þ ¼ Hðfa; b;dgÞ ¼ HGðaÞ \ HGðbÞ \ HGðdÞ ¼ f1g;
Lð2Þ ¼ LGð2Þ ¼ fb; dg; HLð2Þ ¼ Hðfb;dgÞ ¼ HGðbÞ \ HGðdÞ ¼ f1;2g;
Lð3Þ ¼ LGð3Þ ¼ fcg; HLð3Þ ¼ HðcÞ ¼ HGðcÞ ¼ f3;4g;
Lð4Þ ¼ LGð4Þ ¼ fa; cg; HLð4Þ ¼ Hðfa; cgÞ ¼ HGðaÞ \ HGðcÞ ¼ f4g
and
HðaÞ ¼ HGðaÞ ¼ f1;4g; LHðaÞ ¼ Lðf1;4gÞ ¼ LGð1Þ \ LGð4Þ ¼ fag;
HðbÞ ¼ HGðbÞ ¼ f1;2g; LHðbÞ ¼ Lðf1;2gÞ ¼ LGð1Þ \ LGð2Þ ¼ fb;dg;
HðcÞ ¼ HGðcÞ ¼ f3;4g; LHðcÞ ¼ Lðf3;4gÞ ¼ LGð3Þ \ LGð4Þ ¼ fcg;
HðdÞ ¼ HGðdÞ ¼ f1;2g; LHðdÞ ¼ Lðf1;2gÞ ¼ LGð1Þ \ LGð2Þ ¼ fb;dg:
Then, by Definition 4, we conclude that ðf1g; fa; b; dgÞ, ðf1;2g; fb; dgÞ; ðf3;4g; fcgÞ; ðf4g; fa; cgÞ and ðf1;4g; fagÞ are granular
concepts. That is, GLH ¼ fðf1g; fa; b; dgÞ; ðf1;2g; fb; dgÞ; ðf3;4g; fcgÞ; ðf4g; fa; cgÞ; ðf1;4g; fagÞg.
4. Cognitive computing system

In the previous section, we have discussed how to derive granular concepts from cognitive operators L and H. In the real
world, the information on the object set U and attribute set A will be updated as time goes by, which means that the obtained
granular concepts need to be updated accordingly. For instance, in Example 1, four symptoms (Fever, Cough, Headache, Dif-
ficulty breathing) related to SARS have been found from the current four patients. As time goes by, there will appear more
patients from whom additional symptoms (e.g., Diarrhea, Muscle aches, Nausea and vomiting) will be observed (see Example
4 for details). So, it is necessary to update the granular concepts obtained in Example 3.

In what follows, we put forward a cognitive computing system which can be viewed as the initial environment to learn
composite concepts by updating the current granular concepts with the newly input information.

For convenience, hereinafter n object sets U1;U2; . . . ;Un with U1 # U2 # � � � # Un are denoted by fUtg", and similarly n
attribute sets A1;A2; . . . ;An with A1 # A2 # � � � # An are denoted by fAtg".

Definition 5. Let Ui�1; Ui be object sets of fUtg" and Ai�1; Ai be attribute sets of fAtg". Denote DUi�1 ¼ Ui � Ui�1 and
DAi�1 ¼ Ai � Ai�1. Suppose
ðiÞ Li�1 : 2Ui�1 ! 2Ai�1 ; Hi�1 : 2Ai�1 ! 2Ui�1 ;

ðiiÞ LDUi�1
: 2DUi�1 ! 2Ai�1 ; HDUi�1

: 2Ai�1 ! 2DUi�1 ;

ðiiiÞ LDAi�1
: 2Ui ! 2DAi�1 ; HDAi�1

: 2DAi�1 ! 2Ui ;

ðivÞ Li : 2Ui ! 2Ai ; Hi : 2Ai ! 2Ui
are four pairs of cognitive operators whose information granules: ði�Þ LG
i�1, HG

i�1, ðii�Þ LG
DUi�1

;HG
DUi�1

, iii�Þ LG
DAi�1

;HG
DAi�1

and ðiv�Þ
LG

i , HG
i satisfy the following properties:
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LG
i ðxÞ ¼

LG
i�1ðxÞ [ L

G
DAi�1
ðxÞ; if x 2 Ui�1;

LG
DUi�1
ðxÞ [ LG

DAi�1
ðxÞ; otherwise;

(
ð12Þ

HG
i ðaÞ ¼

HG
i�1ðaÞ [ HG

DUi�1
ðaÞ; if a 2 Ai�1;

HG
DAi�1
ðaÞ; otherwise;

(
ð13Þ
where LG
DUi�1
ðxÞ and HG

DUi�1
ðaÞ are set to be empty when DUi�1 ¼ ;, and LG

DAi�1
ðxÞ and HG

DAi�1
ðaÞ are set to be empty when

DAi�1 ¼ ;. Then we say that Li and Hi are extended cognitive operators of Li�1 and Hi�1 with the newly input information
LDUi�1

, HDUi�1
and LDAi�1

, HDAi�1
.

As for the background of extended cognitive operators, Li�1; Hi�1 can be considered as last state of knowledge expressing,
and Li; Hi can be considered as the current state of knowledge expressing which is the result of updating the last state of
knowledge expressing with the newly input information LDUi�1

,HDUi�1
and LDAi�1

,HDAi�1
. Under this background, from the last

state to the current state, granular concepts need to be updated once.

Definition 6. Let Ui�1; Ui be object sets of fUtg"; Ai�1; Ai be attribute sets of fAtg"; DUi�1 ¼ Ui � Ui�1; DAi�1 ¼ Ai � Ai�1 and
(i) Li�1; Hi�1, (ii) LDUi�1 ; HDUi�1 , (iii) LDAi�1

; HDAi�1
, (iv) Li,Hi be four pairs of cognitive operators. If Li andHi are the extended

cognitive operators of Li�1 and Hi�1 with the newly input information LDUi�1
; HDUi�1

and LDAi�1
; HDAi�1

, then we call
SLiHi ¼ ðGLi�1Hi�1 ; LDUi�1 ; HDUi�1 ; LDAi�1

; HDAi�1
Þ a cognitive computing state, where GLi�1Hi�1 is the set of all granular concepts

under the cognitive operators Li�1 and Hi�1. Moreover, a collection of cognitive computing states, denoted by S ¼
Sn
i¼2
fSLiHig,

is called a cognitive computing system.
As for the background of cognitive computing system, every cognitive computing state can be viewed as the result of

updating the information under consideration once, and a collection of cognitive computing states can be viewed as the
result of updating a series of information successively.

Then it is important to compute the final granular concepts GLnHn of a cognitive computing system S ¼
Sn
i¼2
fSLiHi

g based on

the initial granular concepts GL1H1 and a series of newly input information ‘‘LDU1 ; HDU1 ; LDA1 ; HDA1 ’’, ‘‘LDU2 ; HDU2 ,

LDA2 ; HDA2 ’’, . . . , ‘‘LDUi�1
; HDUi�1

; LDAi�1
; HDAi�1

’’. Note that this problem is called transformation between information gran-

ules in the theory of granular computing. Moreover, considering that recursive approach can be applied here, it is sufficient

to solve the subproblem of determining GLiHi
with GLi�1Hi�1

; LDUi�1
; HDUi�1

; LDAi�1
and HDAi�1

. In other words, we only need to

discuss cognitive computing state SLiHi
¼ ðGLi�1Hi�1

;LDUi�1
;HDUi�1

;LDAi�1
;HDAi�1

Þ. To achieve this task, we continue to propose

the notions of an object-oriented cognitive computing state and an attribute-oriented cognitive computing state.

Definition 7. Let Ui�1; Ui be object sets of fUtg"; Ai�1 be an attribute set, DUi�1 ¼ Ui � Ui�1 and (i) Li�1 : 2Ui�1 ! 2Ai�1 ,
Hi�1 : 2Ai�1 ! 2Ui�1 , (ii) LDUi�1 : 2DUi�1 ! 2Ai�1 , HDUi�1 : 2Ai�1 ! 2DUi�1 , (iii) L0 : 2Ui ! 2Ai�1 , H0 : 2Ai�1 ! 2Ui be three pairs of
cognitive operators. If L0 and H0 are the extended cognitive operators of Li�1 and Hi�1 with the newly input information
LDUi�1 and HDUi�1 (i.e., only object information being updated), then OSL0H0 ¼ ðGLi�1Hi�1 , LDUi�1 ;HDUi�1 Þ is called an object-
oriented cognitive computing state.
Proposition 5. Let OSL0H0 ¼ ðGLi�1Hi�1
, LDUi�1

;HDUi�1
Þ be an object-oriented cognitive computing state. Then the following state-

ments hold:

(i) For any x 2 Ui, if x 2 Ui�1, then
ðH0L0ðxÞ;L0ðxÞÞ ¼ ðHi�1Li�1ðxÞ [ HDUi�1
Li�1ðxÞ;Li�1ðxÞÞ; ð14Þ

otherwise,

ðH0L0ðxÞ;L0ðxÞÞ ¼ ðHi�1LDUi�1
ðxÞ [ HDUi�1

LDUi�1
ðxÞ;LDUi�1

ðxÞÞ: ð15Þ
(ii) For any a 2 Ai�1, we have

ðH0ðaÞ;L0H0ðaÞÞ ¼ ðHi�1ðaÞ [ HDUi�1
ðaÞ;Li�1Hi�1ðaÞ \ LDUi�1

HDUi�1
ðaÞÞ: ð16Þ
Proof. (i) If x 2 Ui�1, by Definition 5, we have L0ðxÞ ¼ Li�1ðxÞ due to LDAi�1
ðxÞ ¼ ;. Based on Eqs. (6) and (13), we conclude
H0ðfa1; a2gÞ ¼ HG
0 ða1Þ \ HG

0 ða2Þ ¼ HG
i�1ða1Þ [ HG

DUi�1
ða1Þ

� �
\ HG

i�1ða2Þ [ HG
DUi�1
ða2Þ

� �
¼ HG

i�1ða1Þ \ HG
i�1ða2Þ

� �
[ HG

DUi�1
ða1Þ \ HG

i�1ða2Þ
� �

[ HG
i�1ða1Þ \ HG

DUi�1
ða2Þ

� �
[ HG

DUi�1
ða1Þ \ HG

DUi�1
ða2Þ

� �
¼ HG

i�1ða1Þ \ HG
i�1ða2Þ

� �
[ HG

DUi�1
ða1Þ \ HG

DUi�1
ða2Þ

� �
¼ Hi�1ðfa1; a2gÞ [ HDUi�1

ðfa1; a2gÞ:
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Moreover, using recursive approach, we obtain H0L0ðxÞ ¼ H0Li�1ðxÞ ¼ Hi�1Li�1ðxÞ [ HDUi�1
Li�1ðxÞ. To sum up, it follows

ðH0L0ðxÞ;L0ðxÞÞ ¼ ðHi�1Li�1ðxÞ [ HDUi�1
Li�1ðxÞ;Li�1ðxÞÞ. In a similar manner, if x 2 DUi�1, we can prove

ðH0L0ðxÞ;L0ðxÞÞ ¼ ðHi�1LDUi�1
ðxÞ [ HDUi�1

LDUi�1
ðxÞ;LDUi�1

ðxÞÞ.
(ii) By Definition 5, for any a 2 Ai�1, we have H0ðaÞ ¼ Hi�1ðaÞ [ HDUi�1 ðaÞ. Furthermore, based on Eqs. (5) and (12), we

conclude
L0ðH0ðaÞÞ ¼ L0ðHi�1ðaÞ [ HDUi�1
ðaÞÞ ¼ L0ðHi�1ðaÞÞ \ L0ðHDUi�1

ðaÞÞ ¼
\

x2Hi�1ðaÞ
LG

0 ðxÞ
 !\ \

x2HDUi�1
ðaÞ
LG

0 ðxÞ

0
@

1
A

¼
\

x2Hi�1ðaÞ
LG

i�1ðxÞ
 !\ \

x2HDUi�1
ðaÞ
LG

DUi�1
ðxÞ

0
@

1
A ¼ Li�1Hi�1ðaÞ \ LDUi�1

HDUi�1
ðaÞ:
As a result, we obtain ðH0ðaÞ;L0H0ðaÞÞ ¼ ðHi�1ðaÞ [ HDUi�1 ðaÞ;Li�1Hi�1ðaÞ \ LDUi�1HDUi�1 ðaÞÞ: h

Moreover, we put forward the notion of an attribute-oriented cognitive computing state.

Definition 8. Let Ui be an object set, Ai�1; Ai be attribute sets of fAtg"; DAi�1 ¼ Ai � Ai�1 and (i) L0 : 2Ui ! 2Ai�1 ,
H0 : 2Ai�1 ! 2Ui , (ii) LDAi�1

: 2Ui ! 2DAi�1 , HDAi�1
: 2DAi�1 ! 2Ui , (iii) Li : 2Ui ! 2Ai , Hi : 2Ai ! 2Ui be three pairs of cognitive

operators. If Li and Hi are the extended cognitive operators of L0 and H0 with the newly input information LDAi�1
and HDAi�1

(i.e., only attribute information being updated), then ASLiHi ¼ ðGL0H0 , LDAi�1
;HDAi�1

Þ is called an attribute-oriented cognitive
computing state.
Proposition 6. Let ASLiHi
¼ ðGL0H0 , LDAi�1

;HDAi�1
Þ be an attribute-oriented cognitive computing state. Then the following state-

ments hold:

(i) For any a 2 Ai, if a 2 Ai�1, then
ðHiðaÞ;LiHiðaÞÞ ¼ ðH0ðaÞ;L0H0ðaÞ [ LDAi�1
H0ðaÞÞ; ð17Þ

otherwise,

ðHiðaÞ;LiHiðaÞÞ ¼ ðHDAi�1
ðaÞ;L0HDAi�1

ðaÞ [ LDAi�1
HDAi�1

ðaÞÞ: ð18Þ
(ii) For any x 2 Ui, we have
ðHiLiðxÞ;LiðxÞÞ ¼ ðH0L0ðxÞ \ HDAi�1
LDAi�1

ðxÞ;L0ðxÞ [ LDAi�1
ðxÞÞ: ð19Þ
Proof. We can prove it in a manner similar to Proposition 5. h

Combining Definitions 7 and 8 with Propositions 5 and 6, we know that a cognitive computing state
SLiHi

¼ ðGLi�1Hi�1 ;LDUi�1 ;HDUi�1 ;LDAi�1 ;HDAi�1 Þ can be decomposed into the object-oriented cognitive computing state OSL0H0

¼ ðGLi�1Hi�1
;LDUi�1

;HDUi�1
Þ and the attribute-oriented cognitive computing state ASLiHi

¼ ðGL0H0 , LDAi�1
;HDAi�1

Þ. Such a decom-
position is beneficial to the computation of granular concepts GLiHi

. More precisely, (1) we firstly decompose SLiHi
into

OSL0H0 and ASLiHi
; (2) we further use Proposition 5 to calculate the granular concepts GL0H0 ; (3) we finally employ Propo-

sition 6 to compute GLiHi
. The detailed results are shown in the following proposition.

Proposition 7. Let SLiHi ¼ ðGLi�1Hi�1 ;LDUi�1 ;HDUi�1 ;LDAi�1
;HDAi�1

Þ be a cognitive computing state. Then the following statements
hold:

(1) For any x 2 Ui, if x 2 Ui�1, then
ðHiLiðxÞ;LiðxÞÞ ¼ ðHi�1Li�1ðxÞ [ HDUi�1
Li�1ðxÞÞ \ HDAi�1

LDAi�1
ðxÞ;Li�1ðxÞ [ LDAi�1

ðxÞ
� �

; ð20Þ

otherwise,

ðHiLiðxÞ;LiðxÞÞ ¼ ðHi�1LDUi�1
ðxÞ [ HDUi�1

LDUi�1
ðxÞÞ \ HDAi�1

LDAi�1
ðxÞ;LDUi�1

ðxÞ [ LDAi�1
ðxÞ

� �
: ð21Þ
(2) For any a 2 Ai, if a 2 Ai�1, then
ðHiðaÞ;LiHiðaÞÞ ¼ Hi�1ðaÞ [ HDUi�1
ðaÞ; ðLi�1Hi�1ðaÞ \ LDUi�1

HDUi�1
ðaÞÞ [ ðLDAi�1

Hi�1ðaÞ \ LDAi�1
HDUi�1

ðaÞÞ
� �

; ð22Þ

otherwise,

ðHiðaÞ;LiHiðaÞÞ ¼ HDAi�1
ðaÞ; ðLi�1ðHDAi�1

ðaÞ \ Ui�1Þ \ LDUi�1
ðHDAi�1

ðaÞ \ DUi�1ÞÞ [ LDAi�1
HDAi�1

ðaÞ
� �

: ð23Þ
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Proposition 7 gives a simple transformation way from the information granules GLi�1Hi�1
to GLiHi

with the newly input
information LDUi�1 ; HDUi�1 and LDAi�1 ; HDAi�1 .

Based on the above discussion, we are now ready to propose a procedure (called Algorithm 1 to compute the granular

concepts GLnHn of a cognitive computing system S ¼
Sn
i¼2
fSLiHi

g, where each SLiHi
¼ ðGLi�1Hi�1

;LDUi�1
;HDUi�1

;LDAi�1
;HDAi�1

Þ rep-

resents a cognitive computing state.

Algorithm 1. Computing the granular concepts of a cognitive computing system
Require: S ¼
[n
i¼2

fSLiHig, where SLiHi ¼ ðGLi�1Hi�1 ;LDUi�1
;HDUi�1

;LDAi�1
;HDAi�1

Þ is a cognitive computing state.

Ensure The granular concepts GLnHn of S.
1: Initialize GL1H1 ¼ fðH1L1ðxÞ;L1ðxÞÞj x 2 U1g [ fðH1ðaÞ;L1H1ðaÞÞj a 2 A1g and i ¼ 2;
2: While i 6 n
3: Denote the object-oriented cognitive computing state ðGLi�1Hi�1 ;LDUi�1 ;HDUi�1 Þ by OSL0H0 ;
4: For each x 2 Ui

5: If x 2 Ui�1

6: set L0ðxÞ ¼ Li�1ðxÞ, HDUi�1Li�1ðxÞ ¼
\

a2Li�1ðxÞ
HDUi�1 ðaÞ and H0L0ðxÞ ¼ Hi�1Li�1ðxÞ [ HDUi�1Li�1ðxÞ;

7: Else
8: do L0ðxÞ ¼ LDUi�1 ðxÞ;Hi�1LDUi�1 ðxÞ ¼

\
a2LDUi�1

ðxÞ
Hi�1ðaÞ and H0L0ðxÞ ¼ Hi�1LDUi�1 ðxÞ [ HDUi�1LDUi�1 ðxÞ;

9: End If
10: End For
11: For each a 2 Ai�1

12: compute H0ðaÞ ¼ Hi�1ðaÞ [ HDUi�1 ðaÞ and L0H0ðaÞ ¼ Li�1Hi�1ðaÞ \ LDUi�1HDUi�1 ðaÞ;
13: End For
14: Denote the attribute-oriented cognitive computing state ðGL0H0 ;LDAi�1

;HDAi�1
Þ by ASLiHi ;

15: For each a 2 Ai

16: If a 2 Ai�1

17: set HiðaÞ ¼ H0ðaÞ, LDAi�1
H0ðaÞ ¼

\
x2H0ðaÞ

LDAi�1
ðxÞ and LiHiðaÞ ¼ L0H0ðaÞ [ LDAi�1

H0ðaÞ;

18: Else
19: do HiðaÞ ¼ HDAi�1

ðaÞ;L0HDAi�1
ðaÞ ¼

\
x2HDAi�1

ðaÞ
L0ðxÞ and LiHiðaÞ ¼ L0HDAi�1

ðaÞ [ LDAi�1
HDAi�1

ðaÞ;

20: End If
21: End For
22: For each x 2 Ui

23: let LiðxÞ ¼ L0ðxÞ [ LDAi�1
ðxÞ and HiLiðxÞ ¼ H0L0ðxÞ \ HDAi�1

LDAi�1
ðxÞ;

24: End For
25: Set GLiHi ¼ fðHiLiðxÞ;LiðxÞÞj x 2 Uig [ fðHiðaÞ;LiHiðaÞÞj a 2 Aig;
26: i iþ 1;
27: End While
28: Return GLiHi .

According to Propositions 5 and 6, the computations in Steps 3–13 are to find the granular concepts of the object-oriented
cognitive computing state OSL0H0 , and those in Steps 14–24 are to find the granular concepts of the attribute-oriented cog-
nitive computing state ASLiHi

. By Proposition 7, we know that GLiHi
obtained in Step 25 is the granular concepts of the cog-

nitive computing state SLiHi
. Consequently, GLnHn output by Algorithm 1 is the granular concepts of the input cognitive

computing system S ¼
Sn
i¼2
fSLiHi

g.

In fact, from the point of view of granular computing, Algorithm 1 can be viewed as a transformation way from the infor-
mation granules GL1H1 to GLnHn by means of recursive approach.

Now, we analyze the time complexity of Algorithm 1. Suppose S ¼
Sn
i¼2
fSLiHi

g is the input cognitive computing system.

Then, based on the discussion in Section 2, running Step 1 takes OððjU1j þ jA1jÞj U1jjA1jÞ. Furthermore, we know that the time
complexity of Steps 3–13 is OððjUij þ jAijÞj UijjAijÞ and so is that of Steps 14–24. Thus, running Steps 2–27 takes
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OðnðjUnj þ jAnjÞj UnjjAnjÞ, where n is the number of cognitive computing states. To sum up, the time complexity of Algorithm
1 is OðnðjUnj þ jAnjÞj UnjjAnjÞ which is polynomial.

Example 4. In Example 1, four symptoms (Fever, Cough, Headache, Difficulty breathing) related to SARS have been found from
the four patients. As time goes by, there will appear more patients (e.g., patients 5, 6, 7, 8 and 9) from whom additional
symptoms (e.g., Diarrhea, Muscle aches, Nausea and vomiting) will be observed. We suppose the information updating on the
patients and symptoms is shown in Table 2. Note that in the table, the values of patients 1, 2, 3 and 4 under the new
symptoms Diarrhea, Muscle aches, and Nausea and vomiting being ‘‘No’’ are a very special assumption which cannot be
applied to all situations since four original patients with the four original symptoms may have gone and could not be
contacted when additional symptoms can be tested using new technologies, i.e., sometimes no chance of obtaining the
values of the new symptoms from them.

Now we update the granular concepts obtained in Example 3. We denote the set of original patients in Table 1 by U1 (i.e.,
U1 ¼ f1;2;3;4g), that of original symptoms by A1 (i.e., A1 ¼ fa; b; c; dg), and the cognitive operators between 2U1 and 2A1 by
L1 and H1 (see Example 1 for details). Then the information granules of L1 and H1 and their granular concepts GL1H1 can be
found in Example 3.

Besides, we denote the new patients by 5, 6, 7, 8, 9, and the new symptoms by e; f and g, respectively. Let
U2 ¼ f1;2;3;4;5;6;7;8;9g; A2 ¼ fa; b; c; d; e; f ; gg, DU1 ¼ U2 � U1 ¼ f5;6;7;8;9g; DA1 ¼ A2 � A1 ¼ fe; f ; gg. Similar to
Example 1, by intuitive perception and attention, we can obtain the cognitive operators LDU1 : 2DU1 ! 2A1 ,
HDU1 : 2A1 ! 2DU1 and LDA1 : 2U2 ! 2DA1 , HDA1 : 2DA1 ! 2U2 . The information granules of LDU1 and HDU1 are
Table 2
A SARS

Patie

1
2
3
4
5
6
7
8
9

LG
DU1
¼ ff5g# fa; cg; f6g# fbg; f7g# fa; dg; f8g# fbg; f9g# fcgg;

HG
DU1
¼ ffag# f5;7g; fbg# f6;8g; fcg# f5;9g; fdg# f7gg;
and those of LDA1 and HDA1 are
LG
DA1
¼ ff1g# ;; f2g# ;; f3g# ;; f4g# ;; f5g# feg; f6g# ffg; f7g# fgg; f8g# ff ; gg; f9g# fegg;

HG
DA1
¼ ffeg# f5;9g; ffg# f6;8g; fgg# f7;8gg:
We denote by L2 and H2 the extended cognitive operators of L1 and H1 with the newly input information LDU1 , HDU1 and
LDA1 , HDA1 (see Eqs. (12) and (13) for construction of L2 and H2). Then SL2H2 ¼ ðGL1H1 ;LDU1 ;HDU1 ;LDA1 ;HDA1 Þ is a cognitive
computing state which also forms a cognitive computing system S with n ¼ 2.

Using Algorithm 1, we obtain the granular concepts GL2H2 of the cognitive computing system S as follows:
ðf1g;fa;b;dgÞ; ðf1;2g;fb;dgÞ; ðf3;4;5;9g;fcgÞ; ðf4;5g;fa;cgÞ; ðf5g;fa;c;egÞ; ðf6;8g;fb; fgÞ; ðf7g;fa;d;ggÞ;
ðf8g;fb; f ;ggÞ; ðf5;9g;fc;egÞ; ðf1;4;5;7g;fagÞ; ðf1;2;6;8g;fbgÞ; ðf1;2;7g;fdgÞ; ðf7;8g;fggÞ:
5. Cognitive processes

In the real world, it is important to learn cognitive concept(s) based on the current ones when additional information is
given to object set, attribute set or both of them. Solving this problem is often called cognitive process [38,45]. For instance,
continued with Example 4, we suppose patients 3, 4 and 5 are children suffering from SARS. Then which symptoms charac-
terize these children exactly in terms of suffering from SARS? Unfortunately, the current granular concepts GL2H2 listed at the
end of Example 4 cannot answer this question since no granular concept has the extent X1 ¼ f3;4;5g. In order to deal with
this issue, we need to learn additional cognitive concept(s) according to the given object set X1 ¼ f3;4;5g based on the
obtained granular concepts GL2H2 . Similarly, it is also necessary to learn additional cognitive concept(s) when new
information is given to an attribute set or a pair of object and attribute sets.
dataset with information updating on patients and symptoms.

nt Fever Cough Headache Difficulty breathing Diarrhea Muscle aches Nausea and vomiting

Yes Yes No Yes No No No
No Yes No Yes No No No
No No Yes No No No No
Yes No Yes No No No No
Yes No Yes No Yes No No
No Yes No No No Yes No
Yes No No Yes No No Yes
No Yes No No No Yes Yes
No No Yes No Yes No No
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In this section, using set approximations, we discuss cognitive processes to learn one exact or two approximate cognitive
concepts from a given object set, attribute set or pair of object and attribute sets based on the granular concepts GLnHn of a
cognitive computing system. Before embarking on this issue, we introduce some basic notions related to rough set theory
(e.g., lower and upper approximations, rough set, etc) in order to explicitly show where the idea of our set approximations
comes from.

Formally, an information system can be considered as a pair I ¼ hU;ATi [23], where.

� U is a non-empty finite set of objects, called the universe.
� AT is a non-empty finite set of attributes such that for any a 2 AT; Va is the domain of attribute a.

For any x 2 U, we denote by aðxÞ the value of x under the attribute a 2 AT. Given A # AT, an indiscernibility relation INDðAÞ
can be defined as:
INDðAÞ ¼ fðx; yÞ 2 U 	 UjaðxÞ ¼ aðyÞ forall a 2 Ag:
It is easy to verify that the relation INDðAÞ is reflexive, symmetric and transitive. In other words, INDðAÞ forms an equivalence
relation which can partition U into equivalence classes ½x
A ¼ fy 2 Ujðx; yÞ 2 INDðAÞg. We denote this partition of U by
U=INDðAÞ. That is, U=INDðAÞ ¼ f½x
Ajx 2 Ug. Then one can derive lower and upper approximations of an arbitrary subset X
of U which are respectively defined as:
AðXÞ ¼
[

Y2U=INDðAÞ;Y # X

Y and AðXÞ ¼
[

Y2U=INDðAÞ;Y\X–;
Y:
In rough set theory [23], the pair ½AðXÞ;AðXÞ
 is referred to as the rough set of X with respect to the attribute set A.
Note that the idea of lower and upper approximations in rough set theory was further extended by Saquer and Deogun

[32], Yao and Chen [51], and Zhang and Qiu [55] to Wille’s concept lattice, and by Shao et al. [34] to fuzzy concept lattice.

5.1. Concept learning from an object set

In this subsection, we investigate the problem of learning one exact or two approximate cognitive concepts from a given
object set by means of set approximations. Firstly, we put forward an approach to approximate an object set.

Let GLnHn be the granular concepts of a cognitive computing system S ¼
Sn
i¼2
fSLiHi

g and BðUn;An;Ln;HnÞ be the correspond-

ing cognitive concept lattice. Then, based on the discussion in Section 3, we know that GLnHn is the set of basic information

granules of BðUn;An;Ln;HnÞ.
Motivated by the existing set approximation ideas [23,32,34,51,55], we respectively define the lower and upper approx-

imations of an object set X0 in the cognitive concept lattice BðUn;An;Ln;HnÞ as follows:
AprðX0Þ ¼ extent
_

ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X # X0

ðX;BÞ

0
@

1
A;

AprðX0Þ ¼ extent
^

ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X0 # X

ðX;BÞ

0
@

1
A;

ð24Þ
where extentð�Þ denotes the extent of a cognitive concept.
That is, the lower approximation AprðX0Þ is the extent of the supremum of the cognitive concepts which are specializa-

tions of ðHnLnðX0Þ;LnðX0ÞÞ, and the upper approximation AprðX0Þ is the extent of the infimum of the cognitive concepts
which are generalizations of ðHnLnðX0Þ;LnðX0ÞÞ.

According to Eqs. (9) and (24), the lower and upper approximations of X0 can also be represented as:
AprðX0Þ ¼ HnLn

[
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X # X0

X

0
@

1
A;

AprðX0Þ ¼
\

ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X0 # X

X:
ð25Þ
Note that
HnLn

[
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X # X0

X

0
@

1
A#HnLnðX0Þ#

\
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X0 # X

X:
Then
ðAprðX0Þ;LnðAprðX0ÞÞÞ � ðHnLnðX0Þ;LnðX0ÞÞ � ðAprðX0Þ;LnðAprðX0ÞÞÞ: ð26Þ
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Thus, we consider ðAprðX0Þ;LnðAprðX0ÞÞÞ and ðAprðX0Þ;LnðAprðX0ÞÞÞ as the result of learning cognitive concepts from the
given object set X0 by means of set approximations. Moreover, we define the (concept) learning accuracy as
aðX0Þ ¼ 1�
jAprðX0Þj � jAprðX0Þj

jUnj
ð27Þ
which is used to measure the accuracy of learning cognitive concepts from X0. Obviously, the learning accuracy aðX0Þ equals
1 if and only if AprðX0Þ ¼ AprðX0Þ.

Note that by Algorithm 1, we only obtain the granular concepts GLnHn of a cognitive computing system S ¼
Sn
i¼2
fSLiHi

g.

Although, according to Eq. (10), we are able to induce all cognitive concepts BðUn;An;Ln;HnÞ using GLnHn and then determine
the lower and upper approximations of X0. However, in practice, it is generally hard to implement such an action since the
nodes of BðUn;An;Ln;HnÞ increase exponentially in the worst case. To solve this problem, we need the following proposition.

For convenience, we denote
G�LnHn
¼

GLnHn [ fðUn; ;Þg; if ðUn; ;Þ 2 BðUn;An;Ln;HnÞ;
GLnHn ; otherwise;

�

G#
LnHn

¼
GLnHn [ fð;;AnÞg; if ð;;AnÞ 2 BðUn;An;Ln;HnÞ;
GLnHn ; otherwise:

�

Proposition 8. Let BðUn;An;Ln;HnÞ be the cognitive concept lattice of the cognitive operators Ln and Hn, and GLnHn be the
corresponding granular concepts. Then for any X0 # U, we have
AprðX0Þ ¼ extent
_

ðX;BÞ2G#
LnHn

;X # X0

ðX;BÞ

0
B@

1
CA;

AprðX0Þ ¼ extent
^

ðX;BÞ2G�LnHn
;X0 # X

ðX;BÞ

0
@

1
A:

ð28Þ
Proof. We denote by G#T
LnHn

the complement of G#
LnHn

with respect to BðUn;An;Ln;HnÞ and by G�TLnHn
the complement of G�LnHn

with respect to BðUn;An;Ln;HnÞ. That is, G#T
LnHn

¼ BðUn;An;Ln;HnÞ � G#
LnHn

and G�TLnHn
¼ BðUn;An;Ln;HnÞ � G�LnHn

. Then by Eq.
(10), we obtain
_
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X # X0

ðX; BÞ ¼
_

ðX;BÞ2G#
LnHn

;X # X0

ðX;BÞ

0
B@

1
CA_ _

ðX;BÞ2G#T
LnHn

;X # X0

ðX;BÞ

0
B@

1
CA

¼
_

ðX;BÞ2G#
LnHn

;X # X0

ðX;BÞ

0
B@

1
CA_ _

ðX;BÞ2G#T
LnHn

;X # X0

_
x2X

HnLnðxÞ;LnðxÞð Þ
 !0

B@
1
CA

¼
_

ðX;BÞ2G#
LnHn

;X # X0

ðX;BÞ

0
B@

1
CA
and
^
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;X0 # X

ðX; BÞ ¼
^

ðX;BÞ2G�LnHn
;X0 # X

ðX;BÞ

0
@

1
A^ ^

ðX;BÞ2G�TLnHn
;X0 # X

ðX;BÞ

0
B@

1
CA

¼
^

ðX;BÞ2G�LnHn
;X0 # X

ðX;BÞ

0
@

1
A^ ^

ðX;BÞ2G�TLnHn
;X0 # X

^
a2B

ðHnðaÞ;LnHnðaÞÞ
 !0

B@
1
CA

¼
^

ðX;BÞ2G�LnHn
;X0 # X

ðX;BÞ

0
@

1
A:
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As a result, Eq. (28) is at hand. h

Proposition 8 says that the granular concepts GLnHn (exactly G�LnHn
and G#

LnHn
), which can easily be computed by Algorithm 1 from

a cognitive computing system, are able to approximate an object set X0 with the same result as BðUn;An;Ln;HnÞ. More precisely,0 1

AprðX0Þ ¼ HnLn

[
ðX;BÞ2G#

LnHn
;X # X0

XB@ CA;
AprðX0Þ ¼

\
ðX;BÞ2G�LnHn

;X0 # X

X:

ð29Þ
This allows us to learn cognitive concept(s) from an object set X0 using the granular concepts GLnHn instead of the cognitive
concept lattice BðUn;An;Ln;HnÞ.

Proposition 9. Let ðAprðX0Þ;LnðAprðX0ÞÞÞ and ðAprðX0Þ;LnðAprðX0ÞÞÞ be the learning cognitive concepts from an object set X0

based on GLnHn . If AprðX0Þ ¼ AprðX0Þ, there is only one learning cognitive concept from X0 which is ðHnLnðX0Þ;LnðX0ÞÞ.
Proof. It is immediate from Eq. (26). h

In summary, for a given object set X0, we learn an exact cognitive concept ðHnLnðX0Þ;LnðX0ÞÞ with the learning accuracy
aðX0Þ ¼ 1 if AprðX0Þ ¼ AprðX0Þ; otherwise, we can only learn two approximate cognitive concepts ðAprðX0Þ, LnðAprðX0ÞÞÞ and

ðAprðX0Þ;LnðAprðX0ÞÞÞ with the learning accuracy aðX0Þ ¼ 1� jAprðX0Þj�jAprðX0Þj
jUn j . Algorithm 2 describes how to compute them.

Algorithm 2. Concept learning from an object set

Require: The granular concepts GLnHn of a cognitive computing system S ¼
[n
i¼2

fSLiHig and an object set X0.

Ensure: An exact or two approximate cognitive concepts with learning accuracy for X0.
1: Initialize Px ¼ ;;Pa ¼ ;, Xx ¼ ;;Xa ¼ ;;aðX0Þ ¼ 1;m ¼ 1 and label the elements of GLnHn as

ðHnLnðx1Þ;Lnðx1ÞÞ; ðHnLnðx2Þ;Lnðx2ÞÞ; . . . ; ðHnLnðxsÞ;LnðxsÞÞ,
ðHnða1Þ;LnHnða1ÞÞ; ðHnða2Þ;LnHnða2ÞÞ; . . . ; ðHnðatÞ;LnHnðatÞÞ;

2: For each i 2 f1;2; . . . ; sg
3: If HnLnðxiÞ# X0

4: Px  Px [ fðHnLnðxiÞ;LnðxiÞÞg;
5: End If
6: If X0 #HnLnðxiÞ
7: Xx  Xx [ fðHnLnðxiÞ;LnðxiÞÞg;
8: End If
9: End For

10: For each j 2 f1;2; . . . ; tg
11: If HnðajÞ# X0

12: Pa  Pa [ fðHnðajÞ;LnHnðajÞÞg;
13: End If
14: If X0 #HnðajÞ
15: Xa  Xa [ fðHnðajÞ;LnHnðajÞÞg;
16: End If
17: End For
18: Let P ¼ Px [Pa;X ¼ Xx [Xa, add ð;;AnÞ into P when ð;;AnÞ is a cognitive concept and ðUn; ;Þ into X when ðUn; ;Þ

is a cognitive concept, and compute AprðX0Þ ¼ HnLn

[
ðX;BÞ2P

X

0
@

1
A and AprðX0Þ ¼

\
ðX;BÞ2X

X;

19: If AprðX0Þ ¼ AprðX0Þ
20: B0 ¼

\
x2AprðX0Þ

LnðxÞ;

21: Else

22: reset m ¼ 2 and compute B0 ¼
\

x2AprðX0Þ
LnðxÞ, B0 ¼

\
x2AprðX0Þ

LnðxÞ and aðX0Þ ¼ 1� jAprðX0Þj�jAprðX0Þj
jUn j ;

23: End If
24: Return ðAprðX0Þ; B0Þ and aðX0Þ when m ¼ 1; otherwise, ðAprðX0Þ; B0Þ, ðAprðX0Þ;B0Þ and aðX0Þ.
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According to Eq. (29), Steps 2–18 in Algorithm 2 are to compute the lower and upper approximations of the object
set X0. Furthermore, Steps 19–24 are to find an exact or two approximate cognitive concepts for X0 as well as the
learning accuracy aðX0Þ. What is more, it is easy to check that the time complexity of Algorithm 2 is

2 2
OðjUnj þ jUnjjAnj þ jAnj Þ.
Example 5. Continued with Example 4, we suppose patients 3, 4 and 5 are children suffering from SARS, while patients 5
and 9 are old people suffering from SARS. Then which symptoms characterize these children (old people) exactly in terms of
suffering from SARS? In order to answer this question, we need to learn cognitive concept(s) from the given object sets
X1 ¼ f3;4;5g and X2 ¼ f5;9g based on the obtained granular concepts GL2H2 which can be found at the end of Example 4. By
Eq. (29), we have
AprðX1Þ ¼ H2L2

[
ðX;BÞ2G#

L2H2
;X # X1

X

0
B@

1
CA ¼ H2L2ð; [ f5g [ f4;5gÞ ¼ f4;5g;

AprðX1Þ ¼
\

ðX;BÞ2G�L2H2
;X1 # X

X ¼ f3;4;5;9g \ U2 ¼ f3;4;5;9g;

AprðX2Þ ¼ H2L2

[
ðX;BÞ2G#

L2H2
;X # X2

X

0
B@

1
CA ¼ H2L2ð; [ f5g [ f5;9gÞ ¼ f5;9g;

AprðX2Þ ¼
\

ðX;BÞ2G�L2H2
;X2 # X

X ¼ f5;9g \ f3;4;5;9g \ U2 ¼ f5;9g:
Thus, we learn two approximate cognitive concepts ðf4;5g; fa; cgÞ and ðf3;4;5;9g; fcgÞ from X1 with the learning accuracy
aðX1Þ ¼ 7

9. Then we know that there do not exist some symptoms characterizing these children exactly in terms of suffering
from SARS, but fever and headache can characterize them approximately and so can headache. Moreover, we learn an exact
cognitive concept ðf5;9g; fc; egÞ from X2 with aðX2Þ ¼ 1, which means that headache and diarrhea can characterize the old
people exactly in terms of suffering from SARS.

5.2. Concept learning from an attribute set

In this subsection, we investigate the problem of learning one exact or two approximate cognitive concepts from a given
attribute set by means of set approximations. Similar to the case in Section 5.1, we first propose an approach to approximate
an attribute set in preparation for concept learning here.

We define the lower and upper approximations of an attribute set B0 in BðUn;An;Ln;HnÞ as follows:
AprðB0Þ ¼ intent
_

ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B0 # B

ðX; BÞ

0
@

1
A;

AprðB0Þ ¼ intent
^

ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B # B0

ðX; BÞ

0
@

1
A;

ð30Þ
where intentð�Þ denotes the intent of a cognitive concept.
That is, the lower approximation AprðB0Þ is the intent of the supremum of the cognitive concepts which are specializa-

tions of ðHnðB0Þ;LnHnðB0ÞÞ, and the upper approximation AprðB0Þ is the intent of the infimum of the cognitive concepts
which are generalizations of ðHnðB0Þ;LnHnðB0ÞÞ.

According to Eqs. (9) and (30), the lower and upper approximations of an attribute set B0 can also be represented as:
AprðB0Þ ¼
\

ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B0 # B

B;

AprðB0Þ ¼ LnHn

[
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B # B0

B

0
@

1
A:

ð31Þ
Note that
LnHn

[
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B # B0

B

0
@

1
A#LnHnðB0Þ#

\
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B0 # B

B:
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Then
ðHnðAprðB0ÞÞ;AprðB0ÞÞ � ðHnðB0Þ;LnHnðB0ÞÞ � ðHnðAprðB0ÞÞ;AprðB0ÞÞ: ð32Þ
Thus, we consider ðHnðAprðB0ÞÞ;AprðB0ÞÞ and ðHnðAprðB0ÞÞ;AprðB0ÞÞ as the result of learning cognitive concepts from the
attribute set B0 by means of set approximations. Moreover, we define the (concept) learning accuracy as
bðB0Þ ¼ 1�
jAprðB0Þj � jAprðB0Þj

jAnj
; ð33Þ
which is used to measure the accuracy of learning cognitive concepts from B0. Obviously, the learning accuracy bðB0Þ equals 1
if and only if AprðB0Þ ¼ AprðB0Þ.

Similarly, the granular concepts GLnHn of a cognitive computing system are able to approximate an attribute set with the
same result as the cognitive concept lattice BðUn;An;Ln;HnÞ. More precisely, we have the following proposition.

Proposition 10. Let BðUn;An;Ln;HnÞ be the cognitive concept lattice of the cognitive operators Ln and Hn, and GLnHn be the
corresponding granular concepts. Then for any B0 # A, we have
AprðB0Þ ¼ intent
_

ðX;BÞ2G#
LnHn

;B0 # B

ðX; BÞ

0
B@

1
CA;

AprðB0Þ ¼ intent
^

ðX;BÞ2G�LnHn
;B # B0

ðX; BÞ

0
@

1
A:

ð34Þ
That is,
AprðB0Þ ¼
\

ðX;BÞ2G#
LnHn

;B0 # B

B;

AprðB0Þ ¼ LnHn

[
ðX;BÞ2G�LnHn

;B # B0

B

0
@

1
A:

ð35Þ
Proposition 11. Let ðHnðAprðB0ÞÞ;AprðB0ÞÞ and ðHnðAprðB0ÞÞ;AprðB0ÞÞ be the learning cognitive concepts from an attribute set
B0 based on GLnHn . If AprðB0Þ ¼ AprðB0Þ, there is only one learning cognitive concept from B0 which is ðHnðB0Þ;LnHnðB0ÞÞ.
Proof. It is immediate from Eq. (32). h

In summary, for a given attribute set B0, we learn one exact cognitive concept ðHnðB0Þ;LnHnðB0ÞÞ with the learning accu-
racy bðB0Þ ¼ 1 if AprðB0Þ ¼ AprðB0Þ; otherwise, we can only learn two approximate cognitive concepts ðHnðAprðB0ÞÞ;AprðB0ÞÞ

and ðHnðAprðB0ÞÞ;AprðB0ÞÞ with bðB0Þ ¼ 1� jAprðB0Þj�jAprðB0Þj
jAn j . Algorithm 3 describes how to compute them.

Algorithm 3. Concept learning from an attribute set

Require: The granular concepts GLnHn of a cognitive computing system S ¼
[n
i¼2

fSLiHig and an attribute set B0.

Ensure: An exact or two approximate cognitive concepts with learning accuracy for B0.
1: Initialize Px ¼ ;;Pa ¼ ;, Xx ¼ ;;Xa ¼ ;; bðB0Þ ¼ 1;m ¼ 1 and label the elements of GLnHn as

ðHnLnðx1Þ;Lnðx1ÞÞ; HnLnðx2Þ;Lnðx2ÞÞ; . . . ; ðHnLnðxsÞ;LnðxsÞÞ,
ðHnða1Þ;LnHnða1ÞÞ; ðHnða2Þ;LnHnða2ÞÞ; . . . ; ðHnðatÞ;LtHnðatÞÞ;

2: For each i 2 f1;2; . . . ; sg
3: If B0 #LnðxiÞ
4: Px  Px [ fðHnLnðxiÞ;LnðxiÞÞg;
5: End If
6: If LnðxiÞ# B0

7: Xx  Xx [ fðHnLnðxiÞ;LnðxiÞÞg;
8: End If
9: End For

10: For each j 2 f1;2; . . . ; tg

(continued on next page)
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11: If B0 #LnHnðajÞ
12: Pa  Pa [ fðHnðajÞ;LnHnðajÞÞg;
13: End If
14: If LnHnðajÞ# B0

15: Xa  Xa [ fðHnðajÞ;LnHnðajÞÞg;
16: End If
17: End For
18: Let P ¼ Pa [Px;X ¼ Xa [Xx, add ð;;AnÞ into P when ð;;AnÞ is a cognitive concept and ðUn; ;Þ into X when ðUn; ;Þ

is a cognitive concept, and compute AprðB0Þ ¼
\

ðX;BÞ2P
B and AprðB0Þ ¼ LnHn

[
ðX;BÞ2X

B

0
@

1
A;

19: If AprðB0Þ ¼ AprðB0Þ
20: X0 ¼

\
a2AprðB0Þ

HnðaÞ;

21: Else

22: reset m ¼ 2 and compute X0 ¼
\

a2AprðB0Þ
HnðaÞ, X0 ¼

\
a2AprðB0Þ

HnðaÞ and bðB0Þ ¼ 1� jAprðB0Þj�jAprðB0Þj
jAn j ;

23: End If
24: Return ðX0;AprðB0ÞÞ and bðB0Þ when m ¼ 1; otherwise, ðX0;AprðB0ÞÞ, ðX0;AprðB0ÞÞ and bðB0Þ.

According to Eq. (35), Steps 2–18 in Algorithm 3 are to compute the lower and upper approximations of the attribute set
B0. Moreover, Steps 19–24 are to learn one exact or two approximate cognitive concepts from B0 as well as the learning
accuracy bðB0Þ. Moreover, it is easy to verify that the time complexity of Algorithm 3 is OðjUnj2 þ jUnjjAnj þ jAnj2Þ.
Example 6. Continued with Example 4, we suppose fever and diarrhea receive more attention from doctors and so do
headache and diarrhea. Then which patients as a whole suffer and only suffer from fever and diarrhea (headache and
diarrhea)? In order to answer this question, we need to learn cognitive concept(s) from the given attribute sets B1 ¼ fa; eg
and B2 ¼ fc; eg based on the obtained granular concepts GL2H2 which can be found at the end of Example 4. By Eq. (35), we
have
AprðB1Þ ¼
\

ðX;BÞ2G#
L2H2

;B1 # B

B ¼ fa; c; eg \ A2 ¼ fa; c; eg;

AprðB1Þ ¼ L2H2

[
ðX;BÞ2G�L2H2

;B # B1

B

0
@

1
A ¼ L2H2ð; [ fagÞ ¼ fag;

AprðB2Þ ¼
\

ðX;BÞ2G#
L2H2

;B2 # B

B ¼ fc; eg \ fa; c; eg \ A2 ¼ fc; eg;

AprðB2Þ ¼ L2H2

[
ðX;BÞ2G�L2H2

;B # B2

B

0
@

1
A ¼ L2H2ðfcg [ fc; egÞ ¼ fc; eg:
Thus, we learn two approximate cognitive concepts ðf5g; fa; c; egÞ and ðf1;4;5;7g; fagÞ from B1 with bðB1Þ ¼ 5
7. Then we know

that there do not exist some patients as a whole suffering and only suffering from fever and diarrhea, but patient 5 suffers
from fever, headache and diarrhea, and patients 1, 4, 5, 7 as a whole suffer from fever. Moreover, we learn an exact cognitive
concept ðf5;9g; fc; egÞ from B2 with bðB2Þ ¼ 1, which means that patients 5 and 9 as a whole suffer and only suffer from
headache and diarrhea.

5.3. Concept learning from a pair of object and attribute sets

In this subsection, we study the problem of learning one exact or two approximate cognitive concepts from a pair of
object and attribute sets by means of set approximations.

For a pair ðX0; B0Þ of object and attribute sets, concept learning is quite different from that of an object set X0 or attribute
set B0. More precisely, for a given object set X0, we can consider it as ðX0;LnðX0ÞÞ in which LnðX0Þ is an intent induced by X0.
Similarly, for a given attribute set B0, we can consider it as ðHnðB0Þ;B0Þ in which HnðB0Þ is an extent induced by B0. However,
for a given pair ðX0;B0Þ, it is not known whether B0 is an intent associated to X0, or X0 is an extent associated to B0. Even
sometimes, X0 and B0 are less associated with each other with respect to the extent-intent relationship, which means that



J. Li et al. / Information Sciences 298 (2015) 447–467 463
in this case it may not be reasonable to learn cognitive concept(s) from the pair ðX0;B0Þ. Motivated by this problem, we put
forward the notion of a concept-inducible pair of object and attribute sets.

Definition 9. Let BðUn;An;Ln;HnÞ be the cognitive concept lattice of the cognitive operators Ln and Hn, and GLnHn be the
corresponding granular concepts. For any X0 # Un and B0 # An, if AprðX0Þ#HnðB0Þ# AprðX0Þ and AprðB0Þ#LnðX0Þ# AprðB0Þ,
then ðX0;B0Þ is said to be concept-inducible; otherwise, it is said to be concept-uninducible.
Example 7. Continued with Examples 4–6, it can be known from Definition 9 that the pair ðf3;4;5g; fa; egÞ is concept-unin-
ducible since Aprðf3;4;5gÞ#Hnðfa; egÞ# Aprðf3;4;5gÞ does not hold due to Aprðf3;4;5gÞ ¼ f4;5g, Hnðfa; egÞ ¼ f5g and
Aprðf3;4;5gÞ ¼ f3;4;5;9g.

In what follows, we only focus on concept-inducible pairs for concept learning since concept-uninducible ones mean that
the object set X0 and the attribute set B0 are less associated with each other with respect to the extent-intent relationship.
Proposition 12. Let BðUn;An;Ln;HnÞ be the cognitive concept lattice of the cognitive operators Ln and Hn, and GLnHn be the cor-
responding granular concepts. Then, for any X0 # Un and B0 # An, ðX0;LnðX0ÞÞ and ðHnðB0Þ;B0Þ are concept-inducible pairs.
Proof. Firstly, we prove that the pair ðX0;LnðX0ÞÞ is concept-inducible. On one hand, by Eq. (26), we have
AprðX0Þ#HnðLnðX0ÞÞ# AprðX0Þ. On the other hand, by Eq. (31), we obtain\
AprðLnðX0ÞÞ ¼
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;LnðX0Þ# B

B;

AprðLnðX0ÞÞ ¼ LnHn

[
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B #LnðX0Þ

B

0
@

1
A:
Note that
LnHn

[
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;B #LnðX0Þ

B

0
@

1
A#LnðX0Þ#

\
ðX;BÞ2BðUn ;An ;Ln ;HnÞ;LnðX0Þ# B

B:
Then it follows AprðLnðX0ÞÞ#LnðX0Þ# AprðLnðX0ÞÞ. To sum up, we conclude that ðX0;LnðX0ÞÞ is concept-inducible.
In a similar manner, we can prove that the pair ðHnðB0Þ;B0Þ is also concept-inducible. h

Combining Proposition 12 with the discussion in the front of Section 5.3, we know that it is concept-inducible for the case
of an object set or attribute set. This is why we directly implement concept learning in Sections 5.1 and 5.2.

In what follows, we discuss how to learn cognitive concept(s) from a concept-inducible pair of object and attribute sets.

Proposition 13. For a concept-inducible pair ðX0;B0Þ, let ðAprðX0Þ;LnðAprðX0ÞÞÞ and ðAprðX0Þ;LnðAprðX0ÞÞÞ be the learning

cognitive concepts from X0, and ðHnðAprðB0ÞÞ;AprðB0ÞÞ and ðHnðAprðB0ÞÞ;AprðB0ÞÞ be the learning cognitive concepts from B0. Then
ðHnðAprðB0ÞÞ;AprðB0ÞÞ � kðX0Þ � ðHnðAprðB0ÞÞ;AprðB0ÞÞ ð36Þ
and
ðAprðX0Þ;LnðAprðX0ÞÞÞ � lðB0Þ � ðAprðX0Þ;LnðAprðX0ÞÞÞ; ð37Þ
where kðX0Þ ¼ ðHnLnðX0Þ;LnðX0ÞÞ and lðB0Þ ¼ ðHnðB0Þ;LnHnðB0ÞÞ.

Proof. It follows directly from Definition 9. h

According to Eqs. (26), (32), (36) and (37), we have the following proposition.

Proposition 14. For a concept-inducible pair ðX0;B0Þ, let ðAprðX0Þ;LnðAprðX0ÞÞÞ and ðAprðX0Þ;LnðAprðX0ÞÞÞ be the learning

cognitive concepts from X0, and ðHnðAprðB0ÞÞ;AprðB0ÞÞ and ðHnðAprðB0ÞÞ;AprðB0ÞÞ be the learning cognitive concepts from B0.
Then
ðAprðX0Þ;LnðAprðX0ÞÞÞ _ ðHnðAprðB0ÞÞ;AprðB0ÞÞ � kðX0Þ � ðAprðX0Þ;LnðAprðX0ÞÞÞ ^ ðHnðAprðB0ÞÞ;AprðB0ÞÞ ð38Þ
and
ðAprðX0Þ;LnðAprðX0ÞÞÞ _ ðHnðAprðB0ÞÞ;AprðB0ÞÞ � lðB0Þ � ðAprðX0Þ;LnðAprðX0ÞÞÞ ^ ðHnðAprðB0ÞÞ;AprðB0ÞÞ; ð39Þ
where kðX0Þ ¼ ðHnLnðX0Þ;LnðX0ÞÞ and lðB0Þ ¼ ðHnðB0Þ;LnHnðB0ÞÞ.
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Based on the above discussion, if a pair ðX0;B0Þ is concept-inducible, we consider
ðAprðX0Þ;LnðAprðX0ÞÞÞ
_
ðHnðAprðB0ÞÞ;AprðB0ÞÞ ð40Þ
and
ðAprðX0Þ;LnðAprðX0ÞÞÞ
^
ðHnðAprðB0ÞÞ;AprðB0ÞÞ ð41Þ
as the learning cognitive concepts from ðX0;B0Þ by means of set approximations. Note that the formulas in Eqs. (40) and (41)
are equal to ðHnðAprðB0ÞÞ;AprðB0ÞÞ and ðAprðX0Þ;LnðAprðX0ÞÞÞ, respectively. Thus, we define the (concept) learning accuracy
as
cðX0;B0Þ ¼ 1�
jAprðX0Þj � jHnðAprðB0ÞÞj

2jUnj
þ
jAprðB0Þj � jLnðAprðX0ÞÞj

2jAnj

 !
; ð42Þ
which is used to measure the accuracy of learning cognitive concepts from ðX0;B0Þ. Obviously, the learning accuracy cðX0;B0Þ
equals 1 if and only if AprðX0Þ ¼ HnðAprðB0ÞÞ and AprðB0Þ ¼ LnðAprðX0ÞÞ.

Proposition 15. For a concept-inducible pair ðX0;B0Þ, let ðAprðX0Þ;LnðAprðX0ÞÞÞ and ðAprðX0Þ;LnðAprðX0ÞÞÞ be the learning

cognitive concepts from X0, and ðHnðAprðB0ÞÞ;AprðB0ÞÞ and ðHnðAprðB0ÞÞ;AprðB0ÞÞ be the learning cognitive concepts from B0. If

AprðX0Þ ¼ HnðAprðB0ÞÞ and AprðB0Þ ¼ LnðAprðX0ÞÞ, there is only one learning cognitive concept from ðX0;B0Þ which is
ðHnðB0Þ;LnðX0ÞÞ.
Proof. It is immediate from Eqs. (38) and (39). h

In particular, if the concept-inducible pair ðX0;B0Þ is a cognitive concept, it is easy to verify that its learning cognitive con-
cept is just itself.

In summary, for a given concept-inducible pair ðX0;B0Þ, we learn an exact cognitive concept ðHnðB0Þ;LnðX0ÞÞ with the
learning accuracy cðX0;B0Þ ¼ 1 if AprðX0Þ ¼ HnðAprðB0ÞÞ and AprðB0Þ ¼ LnðAprðX0ÞÞ; otherwise, we can only learn two
approximate cognitive concepts (see Eqs. (40) and (41) for details) with the learning accuracy cðX0; B0Þ < 1 (see Eq. (42)
for details).

Algorithm 4. Concept learning from a pair of object and attribute sets.

Require: The granular concepts GLnHn of a cognitive computing system S ¼
[n
i¼2

fSLiHig and the pair ðX0;B0Þ.

Ensure: An exact or two approximate cognitive concepts with learning accuracy for concept-inducible pair ðX0;B0Þ.
1: Initialize m ¼ 0;
2: Call Algorithm 2 to learn the cognitive concepts ðAprðX0Þ;LnðAprðX0ÞÞÞ and ðAprðX0Þ;LnðAprðX0ÞÞÞ from X0, and

Algorithm 3 to learn the cognitive concepts ðHnðAprðB0ÞÞ;AprðB0ÞÞ and ðHnðAprðB0ÞÞ;AprðB0ÞÞ from B0;

3: If AprðX0Þ#
\

a2B0

HnðaÞ# AprðX0Þ or AprðB0Þ#
\

x2X0

LnðxÞ# AprðB0Þ does not hold

4: Return ‘‘the pair ðX0;B0Þ is concept-uninducible’’;
5: Else
6: If AprðX0Þ ¼ HnðAprðB0ÞÞ and AprðB0Þ ¼ LnðAprðX0ÞÞ
7: Return ðHnðB0Þ;LnðX0ÞÞ and cðX0;B0Þ ¼ 1;
8: Else
9: do

ðX1;B1Þ  ðAprðX0Þ;LnðAprðX0ÞÞÞ _ ðHnðAprðB0ÞÞ;AprðB0ÞÞ
ðX2;B2Þ  ðAprðX0Þ;LnðAprðX0ÞÞÞ ^ ðHnðAprðB0ÞÞ;AprðB0ÞÞ
cðX0;B0Þ ¼ 1� jAprðX0Þj�jHnðAprðB0ÞÞj

2jUn j þ jAprðB0Þj�jLnðAprðX0ÞÞj
2jAn j

� �
Return ðX1;B1Þ; ðX2;B2Þ and cðX0;B0Þ;

10: End If
11: End If

It can be known from Definition 9 and Eqs. (40) and (41) that Algorithm 4 is designed to learn an exact or two
approximate cognitive concepts (if any) from a pair of object and attribute sets. Moreover, it is easy to verify that the time
complexity of Algorithm 4 is OðjUnj2 þ jUnjjAnj þ jAnj2Þ.
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Example 8. Continued with Example 5, where patients 3, 4 and 5 were supposed to be children suffering from SARS.
Moreover, it can be seen from Table 2 that these children have the common symptom headache. Then, can these children and
the symptom headache characterize each other in terms of suffering from SARS? In order to answer this question, we need to
learn cognitive concept(s) from the pair ðX0;B0Þ with X0 ¼ f3;4;5g and B0 ¼ fcg based on the obtained granular concepts
GL2H2 which can be found at the end of Example 4.

It is easy to verify that AprðX0Þ#H2ðB0Þ# AprðX0Þ and AprðB0Þ#L2ðX0Þ# AprðB0Þ can be satisfied simultaneously. By
Definition 9, ðX0;B0Þ is concept-inducible. Furthermore, according to Algorithm 4, we learn an exact cognitive concept
ðf3;4;5;9g; fcgÞ from ðX0;B0Þ with the learning accuracy cðX0;B0Þ ¼ 1. Thus, the children (i.e., patients 3, 4, 5) and the
symptom headache cannot characterize each other in terms of suffering from SARS, but patients 3, 4, 5, 9 suffer and only
suffer from headache and in the meanwhile the symptom headache characterizes patients 3, 4, 5 and 9 exactly.

6. Discussion

In this section, we discuss the differences and relations between the proposed method and the existing ones on concept
learning, and give explanations on some obtained results in this paper.

Firstly, we analyze the differences from the following three aspects: (a) cognitive mechanism, (b) cognitive computing
system, and (c) cognitive process.

� The existing literature mainly focused on concept learning via concept systems (e.g., [18,19,31,45]) which were
established by axiomatic ways, regardless of the analysis on cognitive mechanism. However, the current study
has carefully analyzed the cognitive mechanism of forming concepts based on the principles from philosophy
and cognitive psychology, and then naturally found the constraints for cognitive operators to better simulate
intelligence behaviors of the brain including perception, attention and learning.

� The existing work put forward cognitive computing systems (e.g., [18,19,31,45]) by means of different axiomatic
ways, which cannot integrate past experiences into itself to deal with e.g., dynamic data. However, the current
study has proposed such a cognitive computing system that is composed of a series of cognitive computing states
and is able to integrate past experiences into itself through recursive thinking. In addition, granular computing has
also been integrated into the proposed cognitive computing system to decrease the computation time sharply.

� The existing researches on cognitive process mainly investigated the problem of learning concept(s) from a given
pair of object and attribute sets by means of iterative algorithms [31,45], regardless of discussing whether the pair
of object and attribute sets is concept-inducible or not, let alone the learning accuracy. However, the current paper
has put forward the notion of a concept-inducible pair of object and attribute sets and a simple way of learning
concept(s) from the concept-inducible pair via set approximations. What is more, how to measure the concept
learning accuracy has been studied as well.

Secondly, we analyze the relations between the proposed method and the existing ones from the following two aspects:
(1) cognitive computing, and (2) application.

� The existing work (e.g., [18,19,31,45]) showed to some extent pieces of the idea of cognitive computing in studying
concept learning. For example, the importance of applying cognitive viewpoint to concept learning was mentioned
in [45]. Learning concept(s) from a given pair of object and attribute sets by iterative algorithm was considered as a
natural reflection of cognition. Motivated by these work, in this paper we have explicitly applied the idea of
cognitive computing to concept learning based on granular computing, including a detailed discussion of cognitive
mechanism, cognitive computing system and cognitive process.

� Both the proposed method and the existing ones allow users to specify the operators in the cognitive computing
system. In other words, users can remould the operators according to their certain requirements of data analysis
before learning concepts through the cognitive computing system.

Finally, we give explanations on some obtained results in this paper.

� Some basic propositions (e.g., Propositions 1–4) of the proposed cognitive operators L and H are similar to those
obtained by Zhang Wenxiu’s research group [18,19,31] in formal concept analysis since L and H here form Galois
connection as well. However, the difference is that the proposed cognitive operators are characterized by the axi-
oms in Definition 1 which are from the principles in philosophy and cognitive psychology.

� Since the time complexities of Algorithms 1–4 are OðnðjUnj þ jAnjÞjUnjjAnjÞ;OðjUnj2 þ jUnjjAnj þ jAnj2Þ,
OðjUnj2 þ jUnjjAnj þ jAnj2Þ and OðjUnj2 þ jUnjjAnj þ jAnj2Þ, respectively, the proposed concept learning method can
be completed in polynomial time. However, the classical algorithms in [10] take exponential time in the worst case
for concept learning. So, granular computing integrated into cognitive concept lattice can indeed improve the
efficiency of concept learning.
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7. Conclusions

In order to improve efficiency and flexibility of concept learning, this paper mainly focuses on concept learning via gran-
ular computing from the viewpoint of cognitive computing. To be more concrete, cognitive mechanism of forming concepts
has been analyzed based on the principles from philosophy and cognitive psychology. Then granular computing has been
combined with the cognitive concept lattice to improve the efficiency of concept learning. What is more, we have put for-
ward a cognitive computing system which is the initial environment to learn composite concepts and can integrate past
experiences into itself for enhancing the flexibility of concept learning. In addition, cognitive processes have also been inves-
tigated to deal with the problem of learning one exact or two approximate cognitive concepts from a given object set, attri-
bute set or pair of object and attribute sets. The obtained results in this paper may be beneficial to simulating intelligence
behaviors of the brain including perception, attention and learning, but it still needs to be further confirmed.

In fact, integrating the idea of cognitive computing into concept learning is a promising and challenging research direc-
tion. Although in this paper we have discussed it from the aspects of cognitive mechanism, cognitive computing system and
cognitive process, an in-depth study of this issue still needs to be made in our future work. For instance, (i) how to deal with
the problem of learning concept(s) from a concept-uninducible pair because in this paper we are only interested in concept-
inducible pair in terms of concept learning from a pair of object and attribute sets; (ii) large databases in the real world
should be conducted to show the effectiveness of the proposed concept learning method; (iii) motivated by the logical rea-
soning work [36] in rough set theory, logical reasoning should also be integrated (if possible) into the proposed concept
learning method for better simulating intelligence behaviors of the brain including perception, attention and learning.
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