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Abstract: Tri-level decision-making arises to address compromises among interacting decision entities 

distributed throughout a three-level hierarchy; these entities are respectively termed the top-level leader, the 

middle-level follower and the bottom-level follower. This study considers an uncooperative situation where 

multiple followers at the same (middle or bottom) level make their individual decisions independently but 

consider the decision results of their counterparts as references through information exchanged among 

themselves. This situation is called a reference-based uncooperative multi-follower tri-level (MFTL) 

decision problem which appears in many real-world applications. To solve this problem, we need to find an 

optimal solution achieving both the Stackelberg equilibrium in the three-level vertical structure and the Nash 

equilibrium among multiple followers at the same horizontal level. In this paper, we first propose a general 

linear MFTL decision model for this situation. We then develop a MFTL Kth-Best algorithm to find an 

optimal solution to the model. Since the optimal solution means a compromised result in the uncooperative 

situation and it is often imprecise or ambiguous for decision entities to identify their related satisfaction, we 

use a fuzzy programming approach to characterize and evaluate the solution obtained. Lastly, a real-world 

case study on production-inventory planning illustrates the effectiveness of the proposed MFTL decision 

techniques. 

Keywords: Tri-level decision-making; multilevel programming; Kth-Best algorithm; fuzzy programming; 

production-inventory planning. 

1. Introduction 

Tri-level decision-making (also known as tri-level programming) technique has been developed to deal 

with decentralized decision problems involving interacting decision entities that are distributed throughout a 

three-level hierarchy, which is a subfamily of multilevel programming [30] motivated by Stackelberg game 

theory [26]. Decision entities at the three hierarchical levels are respectively termed the top-level leader, the 

middle-level follower and the bottom-level follower. The decision entities make their individual decisions in 

sequence, from the top level to the middle level and then to the bottom level with the aim of optimizing their 

respective objectives [36]. Specifically, the leader gives priority to making a decision; however, this decision 
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is implicitly determined by the actions of the followers. The middle-level follower then reacts to the decision 

made by the leader and optimizes its own objective function while taking into account the implicit reactions 

of the bottom-level follower. Lastly, in view of the given decisions from the top and middle levels, the 

bottom-level follower makes decision to optimize its own objective function. The decision process is 

repeatedly executed until the Stackelberg equilibrium is achieved in the three-level vertical structure, which 

differs from the traditional Stackelberg game where the decisions made by the followers do not affect the 

decision, which has been already taken by the leader [11]. This category of the hierarchical decision-making 

process often appears in many decentralized management problems in applications, such as supply chain 

management [33], resource allocation optimization [20, 34] and hierarchical production operations [29]. 

The hierarchical production-inventory planning in a conglomerate enterprise can be taken as an example. 

The conglomerate is composed of a sales company, a logistics center and a manufacturing factory, which are 

distributed throughout a three-stage supply chain. To fully satisfy market demand and shorten time-to-market, 

the sales company and the logistics center have to hold a certain amount of inventory using their respective 

warehouses but both of them nonetheless seek to minimize their individual inventory holding costs. When 

making the production-inventory plan within a stable sales cycle, the sales company (the leader) takes the 

lead in developing an optimal inventory plan which considers the current market demand and implicit 

reactions of other decision entities. The logistics center (the middle-level follower) then makes an optimal 

inventory plan under the decision given by the sales company and considers the implicit production planning 

of the manufacturing factory (the bottom-level follower). Lastly, the manufacturing factory makes the 

production plan to minimize its own cost of production in light of the fixed inventory plans. The decision 

process will not stop until the Stackelberg equilibrium among the decision entities is achieved. Consequently, 

the example describes a typical tri-level decision-making problem in which decisions are sequentially and 

repeatedly executed with all decision entities seeking to optimize their individual objectives until the 

Stackelberg equilibrium is achieved. 

In general, there are two fundamental issues in supporting such a tri-level decision-making process. One 

is how to use a model to describe the decision-making process, which may manifest different characteristics 

at the three decision levels, and the other is how to find an optimal solution to the problem. Whereas the 

majority of studies on multilevel programming were focused on bi-level decision-making (also known as 

bi-level programming) such as in [3, 5, 9, 10, 12, 14, 17, 31, 35], research on tri-level decision-making has 

increasingly attracted investigations into decision models, solution algorithms and applications since it can 

be used to deal with many decentralized decision problems in the real world. Bard [4] first presented an 

investigation of linear tri-level programming and designed a cutting plane algorithm to solve such problems, 

based on which White [32] proposed a penalty function approach for linear tri-level programming problems. 

Faísca, Saraiva, Rustem and Pistikopoulos [11] studied a multi-parametric programming approach to solve 

tri-level hierarchical and decentralized optimization problems. Yao, Edmunds, Papageorgiou and Alvarez 

[34] built a tri-level optimization model for resource allocation in electric power network defense and 

proposed a decomposition approach to find an optimal solution to the model. Recently, Alguacil, Delgadillo 

and Arroyo [1] adopted a tri-level decision model to describe an electric grid defense planning problem and 
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solved it using a novel two-stage solution approach. Street, Moreira and Arroyo [27] developed a tri-level 

decision model for energy reserve scheduling in electricity markets with transmission flow limits and found a 

solution to it by a Benders decomposition approach. 

Although numerous studies have been carried out, existing tri-level decision-making research has been 

primarily limited to a specific situation in which one single decision entity is involved at each level. 

However, more decision entities are often involved at the middle and bottom levels in a tri-level 

decision-making case; these entities are called multiple followers. In the production-inventory planning 

example, the sales company (the leader) may have several subordinate logistics centers (the middle-level 

followers) and there may also be several manufacturing factories (the bottom-level followers) attached to 

each logistics center. Moreover, multiple followers at the same level may have a variety of relationships with 

one another. In our previous research [18], we developed 64 kinds of standard situations to describe various 

relationships within multi-follower tri-level (MFTL) decision problems, such as the uncooperative 

relationship, cooperative relationship, and semi-cooperative relationship. Such diverse relationships among 

multiple followers will generate different decision processes which need to be described and solved using 

different decision models and solution methods. As almost no research on MFTL decision-making has been 

proposed apart from some limited discussion about programming models [18, 23], further investigation into 

MFTL decision models together with solution methods is necessary and urgent. Furthermore, MFTL 

decision techniques in real-world applications are crucially required. 

This study considers an uncooperative situation where multiple followers at the same level make their 

individual decisions independently but exchange information among themselves, which implies that 

followers consider the decision results of their counterparts as references when making their individual 

decisions. The situation is known as a reference-based uncooperative (or reference-uncooperative) 

relationship, which is very common and popular among competitive or uncooperative decision entities in 

some hierarchical organizations. For example, in the proposed production-inventory planning instance, the 

independent logistics centers and factories may reference inventory or production plans determined by their 

counterparts at the same level when making their individual decisions. More specifically, within MFTL 

decision-making, if multiple followers at the same level determine their individual decision variables 

independently but simultaneously take the decision results of their counterparts for references to optimize 

their respective objectives, this can be called a reference-uncooperative MFTL decision problem. Solving 

this kind of MFTL decision problem implies that we need to find an optimal solution known as a 

Stackelberg-Nash solution to achieve not only the Stackelberg equilibrium in the tri-level vertical structure 

but also the Nash equilibrium among multiple followers at the same horizontal level. To support such a 

decision-making process, this paper will model this reference-uncooperative MFTL decision situation and 

find an optimal solution to the model. 

 In addition, the optimal solution only means a compromised result for a MFTL decision problem, which 

cannot reflect the operations of the complex MFTL decision-making process completely; that is, it is 

imprecise or ambiguous for decision entities to evaluate the solution obtained whether or not they desire to in 

real-world cases. It is necessary to find a practical way to identify the satisfaction of decision entities towards 
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the solution obtained by the MFTL Kth-Best algorithm. In terms of related research, Lai [15], Shih, Lai and 

Lee [23] and Sinha [24, 25] have developed fuzzy approaches to identify the satisfaction of decision entities 

and have obtained solutions to multilevel programming problems. Pramanik and Roy [21] have proposed 

another fuzzy approach using linear goal programming to solve such problems. However, these fuzzy 

approaches are limited to a special situation where decision entities from different levels share the same 

constraint conditions with each other and the solutions obtained are not the compromised equilibrium. This 

study will overcome this existing issue and extend these fuzzy programming approaches to evaluate the 

solution obtained and analyze the decision-making process in the uncooperative MFTL decision situation. 

The main contribution of this paper is twofold. First, it provides a general decision model and a solution 

method with related algorithm to solve reference-uncooperative MFTL decision problems; and second, it 

adopts a fuzzy programming approach to identify the satisfaction of decision entities towards the solution 

obtained. We first present a linear MFTL decision model for the reference-uncooperative situation and 

discusses related theoretical properties of the model. A MFTL Kth-Best algorithm is then developed to find 

an optimal solution to the MFTL decision model and a fuzzy programming approach is used to evaluate the 

solution obtained. Lastly, a detailed case study on production-inventory planning illustrates the proposed 

MFTL decision-making techniques in applications. 

The paper is organized as follows. Following the introduction, a general linear reference-uncooperative 

MFTL decision model along with related theoretical properties are presented in Section 2. In Section 3, a 

MFTL Kth-Best algorithm is proposed to find an optimal solution to the model. We then use a fuzzy 

programming approach to analyze the satisfactory degree of decision entities towards obtained solutions in 

Section 4. A case study and a related decision support system on production-inventory planning illustrate our 

research in Section 5. Lastly, in Section 6, concluding remarks and further avenues of study are given. 

2. Multi-follower tri-level decision model and related properties 

This section will present the developed reference-uncooperative MFTL decision model and discuss 

related theoretical properties. 

2.1. A general reference-uncooperative MFTL decision model and related solution concepts 

The organizational structure among decision entities in the three-level hierarchy that is studied in this 

paper is shown as Fig. 1. 
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Fig. 1. The organizational structure of the three-level hierarchy 
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Let kRXx  , ik
ii RYy  , ijk

ijij RZz   denote the vectors of decision variables of the leader, the 

middle-level follower i, and the bottom-level follower ij respectively where nimj i ,,2,1,,,2,1   . We give 

detailed definitions of the reference-uncooperative relationship as follows. 

Definition 2.1 If the decision variables nii yyyy ,,,,, 111   controlled by the counterparts of the 

middle-level follower i  are involved in its the objective function and constraint conditions apart from its 

own decision variable iy and the decision variables
iimi zzx ,,, 1  determined by the leader and the 

bottom-level followers, this is a reference-uncooperative relationship among multiple followers at the middle 

level. 

Definition 2.2 If the decision variables 
iimjijii zzzz ,,,,, )1()1(1    controlled by the counterparts of the 

bottom-level follower ij  are involved in its objective function and constraint conditions apart from its own 

decision variable ijz and the decision variables x and iy respectively determined by the leader and the 

middle-level follower i, this can be called a reference-uncooperative relationship among multiple 

bottom-level followers attached to the same middle-level follower i. 

As we can see from Definitions 2.1 and 2.2, the reference-uncooperative relationship implies that each 

decision entity at the middle or bottom level should consider decision results made by its counterparts as 

references when determining its own decision variable to optimize its individual objective function. Based on 

the definitions, we propose a general linear MFTL decision model together with the reference-uncooperative 

relationship among both middle-level and bottom-level followers. 

For kRXx  , ik
ii RYy  , ijk

ijij RZz  , 1
1111

)1(

1
: RZZZYYXf

nnmmn   ,

1
11

)2( : RZZYYXf
iimini   , 1

1
)3( : RZZYXf

iimiiij   , imj ,,2,1  , ni ,,2,1  , a linear 

reference-uncooperative MFTL decision model in which one leader, n middle-level followers and im
 

bottom-level followers attached to the middle-level follower i are involved is defined as follows: 
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       where 
iimii zzy ,,, 1  ),,2,1( ni  , for the given ),,,,,,( 111 nii yyyyx   , solve (1c-1f): 
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where k
iji Rccc ,, , ik

iji Rpd , , sk
is Rg  , ijk

ijij Rhe , , itk
ijt Rq  , krRA  , kr

i
iRA


 , kr

ij
ijRA


 , ikr
i RB


 ,

si kr
is RD


 , iij kr

ij RP


 , ijkr

ij RC


 , iji kr

ij RE


 , itij kr

ijt RQ


 , rRb , ir
i Rb  , ijr

ij Rb 
 
for ,,,2,1 imj  ,,,2,1 imt   

nsni ,,2,1,,,2,1   . 

To find a Stackbelberg-Nash solution to the MFTL decision model (1), relevant solution concepts are 

defined as follows based on the MFTL hierarchical structure. 

Definition 2.3 

(a) Constraint region of the MFTL decision model (1): 
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(b) Feasible set of the middle-level follower i ),,2,1( ni   and its bottom-level followers: 
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(c) Feasible set of the bottom-level follower ij ),,2,1,,,2,1( nimj i   : 
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(f) Rational reaction set of the middle-level follower i ( ni ,,2,1  ) and its bottom-level followers: 
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(g) Inducible region (IR) of model (1): 
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Based on related solution concepts, it can be concluded that the reference-uncooperative MFTL decision 

model has the following features: (1) there are reference-uncooperative relationships among both multiple 

middle-level followers and multiple bottom-level followers attached to the same middle-level follower; (2) 

the leader has the priority to determine its decision variable x to optimize its objective function under the 

constraint region S; (3) the middle-level follower i then determines its individual decision variable iy  under 

the feasible set ),,,,,,( 111 niii yyyyxS    to react to the given decision ),,,,,,( 111 nii yyyyx    
from 

the leader and other middle-level followers; (4) the bottom-level follower ij determines its decision variable 

ijz under its feasible set ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxS   to respond to the decision 

),,,,,,,( )1()1(1 iimjijiii zzzzyx    
made by the leader, the middle-level follower i and its own counterparts; 

(5) since each decision entity seeks to optimize its own objective function, the decision variable selection of 

the bottom-level follower ij must be involved in its rational reaction set ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxP  
, 

which ensures an optimal solution to problem (1e-1f) under the given decision 

),,,,,,,( )1()1(1 iimjijiii zzzzyx  
; (6) as the decision of the middle-level follower i is affected by actions of 

its bottom-level followers, it must consider implicit reactions of its bottom-level followers when making its 

own decisions, thus, a Stackelberg-Nash solution ),,,( 1 iimii zzy 
 
to the middle-level follower i and its 

bottom-level followers must occur in their rational reaction set ),,,,,,( 111 niii yyyyxP   , which can also be 

considered as an optimal solution to problem (1c-1f) under the given decision ),,,,,,( 111 nii yyyyx   ; (7) 

a Stackelberg-Nash solution to all the followers under the given x by the leader must be involved in 

:),,,,,,,,,{()( 11111 1 nnmnmn zzzzyyxP  },,2,1),,,,,,,(),,,( 1111 niyyyyxPzzy niiiimii i
  

; (8) as the 

leader should consider implicit reactions of all the followers when making its own decisions, an optimal 

solution (also known as a Stackelberg-Nash solution) to model (1) must occur over the inducible region (IR) 

and the optimal solution set is expressed by OS. 

2.2. Related theoretical properties 

For the sake of developing an efficient algorithm to solve the MFTL decision model (1), we now turn our 

attention to the geometry of the solution space shown as the following theoretical properties of model (1). To 

ensure that the model (1) is well posed, it is necessary to make some assumptions about the MFTL decision 

model as the basis for the existence of solutions. 

(1) S is nonempty and compact. 

(2) IR is nonempty. 

(3) ),( ii yxP  and )(xP  have at most one solution respectively for each parameter ),( iyx  and x, where 

ni ,,2,1  . 

Theorem 2.1 If the above assumptions (1-3) hold, there exists an optimal solution to the MFTL decision 

model (1). 

Proof. Since both S and IR are not empty, there is at least one parameter value x
 

and  )(xP . Consider 
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a sequence IRzzzzyyx t
t
nm

t
n

t
m
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n
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n


111111 )},,,,,,,,,,{(
1


 

converging to ,,,,,,,,(
11111  

mn zzyyx  

),,1


nnmn zz  . Then, by the well-known results of linear parametric optimization, we have ,,,,,( 111   zyy n

,,,, 11 1
 

nm zz )()   xPz
nnm . Hence, IR is closed. Also, IR is bounded by SIR  and assumption (1). 

Therefore, the inducible region IR is a nonempty and compact set. Furthermore, by assumption (3), the Nash 

equilibrium ),,( 1


iimi zz   among the bottom-level followers attached to the same middle-level follower i 

( ni ,,2,1  ) and the Stackelberg-Nash equilibrium ),,,,,,,,,( 11111 1



nnmnmn zzzzyy 
 
among all the 

middle-level and bottom-level followers are uniquely determined respectively for the given value ),( 
iyx  

and 
x , which implies that the leader must optimize its objective over IR. According to the optimal solution 

set OS in Definition 2.3(h), finding an optimal solution to model (1) is equivalent to solving the following 

problem: 

}.),,,,,,,,,,(:),,,,,,,,,,(min{ 1111111111
)1(

11
IRzzzzyyxzzzzyyxf

nn nmnmnnmnmn             (2) 

Therefore, problem (2) consists of minimizing a continuous function over a nonempty and compact set IR, 

which implies that there exists an optimal solution to the problem (2) that is also a Stackelberg-Nash solution 

to the MFTL decision model (1). □ 

It is noticeable from the Theorem 2.1 that if the followers have multiple optimal solutions to respond to 

the parameter value x of the leader, it will be difficult for the leader to realize its objective function value 

prior to the determination of the optimal solution taken by the followers [19]. In this case, if the followers 

cannot select the solution preferred by the leader, the leader may achieve its optimal solution outside IR, 

which implies that the MFTL decision model (1) may not have an optimal solution. Therefore, to avoid this 

situation in the presentation of solution algorithms, the assumption (3) is necessary. 

Theorem 2.2 The IR can be expressed equivalently as a piecewise linear equality constraint comprised of 

supporting hyperplanes of S. 

Proof. First, define 

)},,,,,,,,(:min{),,,,,,,( )1()1(1)1()1(1 ii imjijiiiijijijijjimjijiiiij zzzzyxSzzqzzzzyxF   

 
                                                     .,,2,1,,,2,1 nimj i    

),,,,,,,()ˆ,,ˆ,ˆ(:ˆˆmin{),,,,,,( 1111
1

111 niiiimii

m

j
ijijiiiniii yyyyxSzzyzhygyyyyxF

i

i

 


 

                       .,,2,1},,,2,1),ˆ,,ˆ,ˆ,,ˆ,ˆ,(ˆ
)1()1(1 nimjzzzzyxFzq iimjijiiiijijijj i

    

Since ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF    can be seen as a linear programming problem with parameters 

iyx,  and 
iimjijii zzzz ,,,,, )1()1(1   , the dual problem of ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF    can be written 

as: 

 .,,2,1,,,2,1},0,:)max{(
,1

nimjuquQubzQyPxA iijijjijijjijij

m

jtt
itijtiijij

i

 


         

 (3) 

If both ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF    
and problem (3) have feasible solutions, according to the dual 
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theorem of linear programming, both of them have optimal solutions and the same optimal objective function 

value. We know that a solution to problem (3) occurs at a vertex of its constraint region

}0,:{(  ijijjijijjijij uquQuU . Adopting ijk

ijijij uuu ,,, 21   to express all the vertices of ijU , problem (3) 

can be written as: 

.,,2,1,,,2,1},,,,{:)max{( 21

,1

nimjuuuuubzQyPxA i

k

ijijijijijij

m

jtt
itijtiijij

ij
i

 


        (4) 

Clearly, ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF    is a piecewise linear function according to problem (4). 

In the next step, we prove that ),,,,,,( 111 niii yyyyxF    is also a piecewise linear function. Suppose that 

),,,(,),,,,( 21
11

2
1
1

i

i

ii

i

s

im

s
i

s
iimii zzzzzz 

 
are solutions to the problem },,2,1),,,,,,,,({ )1()1(1 iimjijiiiij mjzzzzyxF

i
   

for all ni ,,2,1  . For each fixed i and a solution ),,,( 21
i

i

ii t

im

t
i

t
i zzz 

 
where ii st ,,2,1  ,

),,,,,,( 111 niii yyyyxF    becomes a programming problem with parameters nii yyyyx ,,,,,, 111    
and

),,,( 21
i

i

ii t

im

t
i

t
i zzz  , and there are is  parameterized programming problems such as

,,|),,,,,,(
),,,(111 11

2
1
1




iimii zzzniii yyyyxF  ),,,(111
21

|),,,,,,(
is

iim
is

i
is

i zzzniii yyyyxF


  . Considering different 

combinations of ),,,( 21
i

i

ii t

im

t
i

t
i zzz  for all ni ,,2,1  , therefore, there are 



n

i

is
1

 parameterized programming 

problems 
),,,(111

21

|),,,,,,(
it

iim
it

i
it

i zzzniii yyyyxF


  . Similarly, 
),,,(111

21

|),,,,,,(
it

iim
it

i
it

i zzzniii yyyyxF


   is 

also a piecewise linear function as ),,,,,,,( )1()1(1 iimjijiiiij zzzzyxF   . Lastly, according to the above 

definition of ),,,,,,( 111 niii yyyyxF   , the inducible region (IR) can be rewritten as: 

:),,,,,,,,,,{( 11111
1

1

1 SzzzzyyxIR n

n

n t

nm

t
n

t

m

t
n     

     

},,2,1,,,2,1,|),,,,,,(
),,,(111

1 21

nistyyyyxFzhyg iizzzniii

m

j

t
ijijiii it

iim
it

i
it

i

i
i 


 



 
:),,,,,,,,,,{( 11111

1

1

1 Szzzzyyx n

n

n t

nm

t
n

t

m

t
n  

 

  },,,2,1,,,2,1,0|),,,,,,(
1

),,,(111
21

nistzhyyyyxFyg ii

m

j

t
ijijzzzniiiiii

i
i

it

iim
it

i
it

i








              (5) 

and it can be seen as a piecewise linear equality constraint for problem (2). □ 

Corollary 2.1 The MFTL decision model (1) is equivalent to optimizing 
)1(f  over a feasible region 

comprised of a piecewise linear equality constraint. 

Corollary 2.2 An optimal solution to the MFTL decision model (1) occurs at a vertex of IR. 

Proof. According to the equivalent form (2) of the MFTL decision model (1) and since 

),,,,,,,,,,( 11111
)1(

1 nnmnmn zzzzyyxf   is linear, an optimal solution to the problem must occur at a 

vertex of IR if it exists. □ 

Theorem 2.3 An optimal solution ),,,,,,,,,,( 11111 1



nnmnmn zzzzyyx   to the MFTL decision model (1) 
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occurs at a vertex of S. 

Proof. Let ),,,,,,,,,,(,),,,,,,,,,,,( 11111
11

1
1
1

1
11

11
1

1

11

t
nm

t
n

t
m

tt
n

tt
nmnmn nn

zzzzyyxzzzzyyx   express the distinct 

vertices of S. Since any point in S can be written as a convex combination of these vertices, we can obtain 





t

r

r
nm

r
n

r
m

rr
n

rr
rnmnmn nn

zzzzyyxzzzzyyx
1

1111111111 ),,,,,,,,,,(),,,,,,,,,,(
11

  where ,0,1
1




r

t

r
r   

tr ,,2,1   and tt  . By the convexity of ),,,,,,( 111







niii yyyyxF  , let us write the constraints of 

model (1) in the piecewise linear form (5) discussed in Theorem 2.2: 













i

iimii

m

j
ijijiiizzzniii zhygyyyyxF

1
),,,(111

21

|),,,,,,(0




 

)(|)),,,,,,((
111

),,,(
1

111
21




 

t

r

r
ijr

m

j
ij

t

r

r
iriizzz

t

r

r
n

r
i

r
i

rr
ri zhygyyyyxF

i

iimii




   

  )(|),,,,,,(
111

),,,(111
1 21









i

iimii

m

j

r
ijij

t

r
r

t

r

r
iiirzzz

r
n

r
i

r
i

rr
i

t

r
r zhygyyyyxF 




 

.,,2,1),|),,,,,,((
1

),,,(111
1 21

nizhygyyyyxF
i

iimii

m

j

r
ijij

r
iiizzz

r
n

r
i

r
i

rr
i

t

r
r 








                         (6) 

By the definition of
),,,(111

21

|),,,,,,(
is

iim
is

i
is

i zzzniii yyyyxF


  , we have

.,,2,1,,,2,1,)min(|),,,,,,(
11

),,,(111
21

nitrzhygzhygyyyyxF
ii

i

iimii

m

j

r
ijij

r
iii

m

j

t
ijijiiizzz

r
n

r
i

r
i

rr
i 





 

Thus, .,,2,1,,,2,1,0|),,,,,,(
1

),,,(111
21

nitrzhygyyyyxF
i

iimii

m

j

r
ijij

r
iiizzz

r
n

r
i

r
i

rr
i 





  Because the 

preceding expression (6) must be held with trr ,,2,1,0  , there must exist 

,,,2,1,0|),,,,,,(
1

),,,(111
21

trzhygyyyyxF
i

iimii

m

j

r
ijij

r
iiizzz

r
n

r
i

r
i

rr
i 





  .,,2,1 ni   These statements imply 

that ,),,,,,,,,,,( 11111 1
IRzzzzyyx r

nm
r
n

r
m

rr
n

rr

n
 tr ,,2,1  , and that ),,,,,,,,,,( 11111 1



nnmnmn zzzzyyx   can 

be denoted as a convex combination of the points in the IR. Since ),,,,,,,,,,( 11111 1



nnmnmn zzzzyyx   is a 

vertex of the IR according to Corollary 2.2, there must exist 1t , which implies that 

),,,,,,,,,,( 11111 1



nnmnmn zzzzyyx   is a vertex of S. □ 

Corollary 2.3 If ),,,,,,,,,,( 11111 1



nnmnmn zzzzyyx 
 

is a vertex of the IR, it is also a vertex of S. 

3. A MFTL Kth-Best algorithm 

Theorem 2.3 and Corollary 2.3 imply that we can find an optimal solution to the MFTL decision model (1) 

by enumerating vertices (also called extreme points) of the constraint region S, which clearly provide an 

appropriate way to develop the following MFTL Kth-Best algorithm to solve the problem. According to the 

notations and theoretical foundation respectively defined and demonstrated in Section 2, the main principle 

of the MFTL Kth-Best algorithm is proposed as follows. 

To begin, consider the following linear programming problem: 

}.),,,,,,,,,,(:min{ 11111
1 11

1
Szzzzyyxzeydcx

n

i

nmnmn

n

i

m

j
ijij

n

i
ii 

 

                   (7) 
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Let the vertices ),,,,,,,,,,(,),,,,,,,,,,,( 11111
11

1
1
1

1
11

11
1

1

11

N
nm

N
n

N
m

NN
n

NN
nmnmn nn

zzzzyyxzzzzyyx   of the 

constraint region S denote the N-ranked basic feasible solutions to problem (7), such that

1,,2,1,
1 1

1

1

11

1 11

  
 







 

Nkzeydcxzeydcx
n

i

m

j

k
ijij

n

i

k
ii

k
n

i

m

j

k
ijij

n

i

k
ii

k ii

 . Solving the equivalent problem (2) of 

model (1) is then equivalent to finding the index ,,,,,,,,(:},,2,1{min{
11111  k

m
kk

n
kk zzyyxNkK   

}),,1 IRzz k
nm

k
n n

 , which ensures that ),,,,,,,,,,( 11111 1

 K
nm

K
n

K
m

KK
n

KK

n
zzzzyyx   is an optimal solution 

to model (1). Therefore, we need to verify whether or not IRzzzzyyx K
nm

K
n

K
m

KK
n

KK

n




),,,,,,,,,,( 11111 1


 

under the condition Szzzzyyx K
nm

K
n

K
m

KK
n

KK

n




),,,,,,,,,,( 11111 1
 . If ,,,(),,,( 11 



 KK
i

K
im

K
i

K
i yxPzzy

i  

),,, 11




K
n

K
i

K
i yyy   for all ni ,,2,1   that means ),,,( 1

 K
im

K
i

K
i i

zzy 
 
is an optimal solution to the problem 

(1c-1f) under the fixed 


 
K
nn

K
ii

K
ii

KK yyyyyyyyxx ,,,,,, 111111   for ni ,,2,1  , there exists

)(),,,,,,,,,( 11111 1



 KK
nm

K
n

K
m

KK
n

K xPzzzzyy
n

 , thus, IRzzzzyyx K
nm

K
n

K
m

KK
n

KK

n




),,,,,,,,,,( 11111 1
  by 

Definition 2.3(g). As this requires finding the K th best vertex of S to obtain an optimal solution to model 

(1), the algorithm is named the MFTL Kth-Best algorithm. 

Second, we need to verify whether or not ),,,,,,(),,,( 1111



 K
n

K
i

K
i

KK
i

K
im

K
i

K
i yyyyxPzzy

i


 
through 

solving problem (1c-1f). For ni ,,2,1 
 
and fixing the given ,,,, 1111



  K
ii

KK yyyyxx 



 
K
nn

K
ii yyyy ,,11  , (1c-1f) can be seen as the problem (8) by Definition 2.3(f): 

)}.,,,,,,(),,,(:min{ 1111
11

niiiimii

m

j
ijij

n

s
sisi yyyyxPzzyzhygxc

i

i

 


             (8) 

For the given ,,,, 1111



  K
ii

KK yyyyxx 


 
K
nn

K
ii yyyy ,,11  , consider the following linear 

programming problem (9): 

)},,,,,,(),,,(:min{ 1111
11

niiiimii

m

j
ijij

n

s
sisi yyyyxSzzyzhygxc

i

i

 


               (9) 

and the vertices ),,,(,),,,,( 1
11

1
1 i

i

ii

i

N

im

N
i

N
iimii zzyzzy  of ),,,,,,( 111 niii yyyyxS    

become the ranked 

basic feasible solutions to problem (9), such that  





 i

ii

m

j

k
ijij

k
iii

n

is
s

K
sis

K
i zhygygxc

1,1

 

,
1

11

,1










 i

ii

m

j

k
ijij

k
iii

n

is
s

K
sis

K
i zhygygxc ,1,,2,1  ii Nk  ni ,,2,1  . Solving problem (8) is then equivalent 

to finding the index )},,,,,,(),,,(:},,2,1{min{ 1111




  K

n
K
i

K
i

KK
i

k

im

k
i

k
iiii yyyyxPzzyNkK i

i

ii  , which ensures that 

),,,( 11


i

i

ii K

im

K
i

K
zzy 

 
is an optimal solution to (1c-1f) where i=1,2,...,n. If ),,,(),,,( 111



 K
im

K
i

K
i

K

im

K
i

K

i

i

i

ii zzyzzy  , 

we can conclude that ),,,,,,(),,,( 1111



 K
n

K
i

K
i

KK
i

K
im

K
i

K
i yyyyxPzzy

i
 . 

Before the detailed procedures of the MFTL Kth-Best algorithm are presented, the notations and indexes 

used in the algorithm are explained in Table 1. 
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Table 1 Notations and indexes used in the MFTL Kth-Best algorithm 

k Current iteration number for solving the MFTL decision model (1) 

T The feasible vertices set of the constraint region S that has been searched for solving model (1) 

W The feasible vertices set of the constraint region S that needs to be searched for solving model (1) 

i The ith middle-level follower 

n The total number of middle-level followers 

kW
 

The adjacent vertices set of the current vertex ),,,,,,,,,,( 11111 1

k
nm

k
n

k
m

kk
n

kk

n
zzzzyyx   over S 

K  The iteration number when finding an optimal solution to model (1) 

ik
 

Current iteration number for solving problem (1c-1f) involving the ith middle-level follower and its 

bottom-level followers 

iT
 

The feasible vertices set of ),,,,,,( 111 niii yyyyxS  
 that has been searched for solving problem (1c-1f) 

iW   The feasible vertices set of ),,,,,,( 111 niii yyyyxS    that needs to be searched for solving problem (1c-1f) 

j The jth bottom-level follower attached to the ith middle-level follower 

im
 

The total number of bottom-level followers attached to the ith middle-level follower 

ikW
 

The adjacent vertices set of the current vertex ),,,( 1
i

i

ii ik

im

ik
i

ik
i zzy   over ),,,,,,( 111 niii yyyyxS    



iK  The iteration number when finding an optimal solution to problem (1c-1f) 

 

The MFTL Kth-Best algorithm: The input is the coefficients of model (1), and the output is an optimal 

solution to model (1) and the iteration number K . 

[Begin] 

Step 1: Set k=1, adopt the simplex method to obtain an optimal solution 

),,,,,,,,,,( 11
1

1
1

1
11

11
1

1

1 nnmnmn zzzzyyx   to the linear programming problem (7). Let T  and

)},,,,,,,,,,{( 11
1

1
1

1
11

11
1

1

1 nnmnmn zzzzyyxW  . Set i=1 and go to Step 2. 

Step 2: Put 
k
nn

k
ii

k
ii

kk yyyyyyyyxx   ,,,,,, 111111  , solve the problem (1c-1f) or problem (8) 

and obtain an optimal solution )ˆ,,ˆ,ˆ( 1 iimii zzy   using the following subroutine Step 2.1-Step 2.5. 

Then go to Step 3. 

Step 2.1: Set 
kxx   and 1ik , adopt the simplex method to obtain the optimal solution 

),,,( 11
1

1 i
im

i
i

i
i i

zzy   to the linear programming problem (9). Within the subroutine, let iT

and )},,,{( 11
1

1
1

i
im

i
i

i
i i

zzyW  . Set j=1 and go to Step 2.2. 

Step 2.2: Put i

ii

iiii ik

imim
ik

jiji
ik

jiji
ik
ii

ik
ii

k zzzzzzzzyyxx   ,,,,,,, )1()1()1()1(11   and adopt 

the simplex method to solve the problem (10): 

)},,,,,,,(:min{ )1()1(1
1

i

i

imjijiiiijij

m

t
itijtiijij zzzzyxSzzqypxc  



           (10) 



13 

and obtain the optimal solution ijz~ . 

Step 2.3: If iik
ijij zz ~ , go to Step 2.4. If iik

ijij zz ~  and imj  , set j=j+1 and go to Step 2.2. If 

iik
ijij zz ~  and imj  , stop the subroutine, ii kK   and go to Step 2 with 

),,,()ˆ,,ˆ,ˆ( 11
i

i

ii

i

ik

im

ik
i

ik
iimii zzyzzy   . 

Step 2.4: Let 
ikW  denote the set of adjacent vertices of ),,,( 1

i

i

ii ik

im

ik
i

ik
i zzy   that 

ii kimii Wzzy ),,,( 1 

implies 









i

ii

i m

j

ik
ijij

ik
iii

n

is
s

k
sis

k
i

m

j

ijijiii

n

is
s

k
sis

k
i zhygygxczhygygxc

1,11,1

. Let 

)},,,{( 1
i

i

ii ik

im

ik
i

ik
iii zzyTT   and ikii TWWW

i
\)(  . Go to Step 2.5. 

Step 2.5: Set 1 ii kk and choose ),,,( 1
i

i

ii ik

im

ik
i

ik
i zzy   such that 






i

ii

m

j

ik
ijij

ik
iii

n

is
s

k
sis

k
i zhygygxc

1,1

 

}.),,,(:min{ 1
1,1

iimii

m

j
ijijiii

n

is
s

k
sis

k
i Wzzyzhygygxc

i

i









 

Set j=1 and go to Step 2.2. 

Step 3: If ),,,()ˆ,,ˆ,ˆ( 11
k
im

k
i

k
iimii ii

zzyzzy   , go to Step 4. If ),,,()ˆ,,ˆ,ˆ( 11
k
im

k
i

k
iimii ii

zzyzzy    and ni  , set 

i=i+1 and go to Step 2. If ),,,()ˆ,,ˆ,ˆ( 11
k
im

k
i

k
iimii ii

zzyzzy    and ni  , stop and 

),,,,,,,,,,( 11111 1

k
nm

k
n

k
m

kk
n

kk

n
zzzzyyx   is an optimal solution to the MFTL decision model (1) and 

kK  . 

Step 4: Let kW  denote the set of adjacent vertices of ),,,,,,,,,,( 11111 1

k
nm

k
n

k
m

kk
n

kk

n
zzzzyyx   such that 

knmnmn Wzzzzyyx
n
),,,,,,,,,,( 11111 1

  implies 
  


n

i

m

j

k
ijij

n

i

k
ii

k
n

i

m

j
ijij

n

i
ii

ii

zeydcxzeydcx
1 111 11

. 

Let )},,,,,,,,,,{( 11111 1

k
nm

k
n

k
m

kk
n

kk

n
zzzzyyxTT   and TWWW k \)(  . Go to Step 5. 

Step 5: Set k=k+1 and choose ),,,,,,,,,,( 11111 1

k
nm

k
n

k
m

kk
n

kk

n
zzzzyyx   such that 

 


n

i

m

j

k
ijij

n

i

k
ii

k
i

zeydcx
1 11

 

}.),,,,,,,,,,(:min{ 11111
1 11

1
Wzzzzyyxzeydcx

n

i

nmnmn

n

i

m

j
ijij

n

i
ii  

 



 

Set i=1 and go to Step 2. 

[End] 

Within the MFTL Kth-Best algorithm, Step 2 and its subroutine (Step 2.1-2.5) are adopted to obtain an 

optimal solution to problem (1c-1f) of the ith middle-level follower and its bottom-level followers under the 

given decision ),,,,,,( 111 nii yyyyx    from the leader and other middle-level followers. Step 3 is 

repeatedly performed to see whether or not the current vertex is an element involved in the IR. If the current 

vertex occurs outside IR, the algorithm will go to Step 4 in which the adjacent vertices of the current vertex 

will be found and added to the vertices set W that needs to be searched. Step 5 is developed to choose a 

vertex from the vertices set W to optimize the objective function of problem (7) and prepare for the next 

iteration to verify whether or not the vertex is an element of the IR. 
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We then use a simple numerical example, shown as the following Example 1, to illustrate how the MFTL 

Kth-Best algorithm works. Also, we will illustrate the algorithm through a case study in Section 5. 

Example 1 We assume that the example involves one leader, two middle-level followers and two 

bottom-level followers attached to each middle-level follower, which means that 2,2 21  mmn  in 

model (1).  For }0:{},0:{},0:{  ijijijiii zzZyyYxxX , ,2,1j 2,1i , coefficients of the decision 

variables in model (1) are shown in Table 2. 

Table 2 Coefficients of model (1) in Example 1 

Decision entity 

Coefficients of model (1) 

Coefficients of objective functions Coefficients of constraint conditions 

Leader 
1,1,1

,3,2,1,1

222112

1121





eee

eddc
 

TTTT

TTTT

bCCC

CBBA

)5.1,14(,)0,1(,)0,2(,)0,2(

,)0,1(,)0,1(,)0,1(,)1,1(

222112

1121



  

Follower 1 1,1,1,1,1 121112111  hhggc  
TT

TTTT

bE

EDDA

)1,5.8(,)0,1(

,)0,1(,)0,1(,)1,1(,)0,2(

112

1112111



  

Follower 2 1,1,2,1,1 222122212  hhggc  
TT

TTTT

bE

EDDA

)5.1,3(,)0,1(

,)0,1(,)1,1(,)1,1(,)0,1(

222

2122212



  

Follower 11 1,2,1,1 1121111111  qqpc  
TT

TTT

bQ

QPA

)3,10(,)0,2(

,)1,1(,)0,1(,)0,1(

11112

1111111



  

Follower 12 1,1,1,2 1221211212  qqpc  
TT

TTT

bQ

QPA

)6,7(,)1,1(

,)1,1(,)0,1(,)1,1(

12122

1211212



  

Follower 21 1,3,1,1 2122112121  qqpc  
TT

TTT

bQ

QPA

)5.1,5.5(,)0,2(

,)1,1(,)1,1(,)0,1(

21212

2112121



  

Follower 22 1,2,2,1 2222212222  qqpc  
TT

TTT

bQ

QPA

)5.2,4(,)1,1(

,)1,1(,)0,1(,)0,1(

22222

2212222



  

Detailed procedures of the MFTL Kth-Best algorithm that are executed to solve the example 1 are shown 

as follows. 

Iteration 1 

Step 1: Set k=1 and adopt the simplex method to obtain an optimal solution to the following linear 

programming problem (11) in the format (7): 

}.),,,,,,(:min{ 2221121121

2

1

2

1

2

1

Szzzzyyxzeydcx
i j

ijij
i

ii  
 

                        (11) 

The optimal solution to problem (12) is )2,0,5.4,5.0,5.0,1,1(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx and now T , 

W={(1,1,0.5,0.5,4.5,0,2)}. Set i=1 and go to Step 2. 

Step 2: Put 11  xx , 5.01
22  yy and solve the problem (12) of the middle-level follower i(=1) and its 

bottom-level followers in the format (8): 

)}.,(),,(:min{ 2112111

2

1
11

2

1
11 yxPzzyzhygxc

j
jj

s
ss  



                         (12) 

We can get an optimal solution (1,2,3)=)ˆ,ˆ,ˆ( 12111 zzy  by Steps 2.1-2.5 of the MFTL Kth-Best algorithm and 

go to Step 3. 
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Step 3: ),,()ˆ,ˆ,ˆ( 1
12

1
11

1
112111 zzyzzy   and go to Step 4. 

Step 4: Find the set 1W of adjacent vertices of ),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx  and now ),5.2,0,4,1,5.0,1,1{(1 W

)}5.2,0,4,2,5.0,1,0(),2,0,5.3,5.2,5.1,1,0(),2,0,3,2,5.0,1,1(),5.1,1,3,2,5.0,1,1( , )}2,0,5.4,5.0,5.0,1,1{()}2,0,5.4,5.0,5.0,1,1{(  TT , 

11 \ WTWWW   . Go to Step 5. 

Iteration 2 

Step 5: Set k=k+1=2 and choose )5.2,0,4,1,5.0,1,1(),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx from the vertices set W such 

that }),,,,,,(:min{),,,,,,( 2221121121

2

1

2

1

2

1

2
22

2
21

2
12

2
11

2
2

2
1

2)1( Wzzzzyyxzeydcxzzzzyyxf
i j

ijij
i

ii  
 

, set i=1 and 

go to Step 2. 

Step 2: Put 12  xx , 5.02

22  yy
 

and solve the problem (12). We can get an optimal solution 

(1,2,3)=)ˆ,ˆ,ˆ( 12111 zzy  by Steps 2.1-2.5 of the MFTL Kth-Best algorithm and go to Step 3. 

Step 3: ),,()ˆ,ˆ,ˆ( 2
12

2
11

2
112111 zzyzzy   and go to Step 4. 

Step 4: Find the set 2W of adjacent vertices of ),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx  and now

)}5.2,0,3,3,5.1,1,0(),5.2,0,3,2,5.0,1,1{(2 W , )}5.2,0,4,1,5.0,1,1(),2,0,5.4,5.0,5.0,1,1{()}5.2,0,4,1,5.0,1,1{(  TT , 

),5.2,0,3,2,5.0,1,1(),5.2,0,4,2,5.0,1,0(),2,0,5.3,5.2,5.1,1,0(),2,0,3,2,5.0,1,1(),5.1,1,3,2,5.0,1,1{(\2  TWWW 

)}5.2,0,3,3,5.1,1,0( . Go to Step 5. 

Iteration 3 

Step 5: Set k=k+1=3 and choose )5.1,1,3,2,5.0,1,1(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx  
from the vertices set W such that 

}),,,,,,(:min{),,,,,,( 2221121121

2

1

2

1

2

1

3
22

3
21

3
12

3
11

3
2

3
1

3)1( Wzzzzyyxzeydcxzzzzyyxf
i j

ijij
i

ii  
 

, set i=1 and go 

to Step 2. 

Step 2: Put 13  xx , 5.03
22  yy and solve the problem (12). We can get an optimal solution 

(1,2,3)=)ˆ,ˆ,ˆ( 12111 zzy  by Steps 2.1-2.5 of the MFTL Kth-Best algorithm and go to Step 3. 

Step 3: Clearly, (1,2,3) =),,()ˆ,ˆ,ˆ( 3
12

3
11

3
112111 zzyzzy   , and ni  , set i=i+1=2 and go to Step 2. 

Step 2: Put 13  xx , 13
11  yy and solve the problem (13) of the middle-level follower i(=2) and its 

bottom-level followers in the format (8): 

)}.,(),,(:min{ 1222211

2

1
22

2

1
22 yxPzzyzhygxc

j
jj

s
ss  



                         (13) 

We can get an optimal solution )(0.5,1,1.5=)ˆ,ˆ,ˆ( 22212 zzy  by Steps 2.1-2.5 of the MFTL Kth-Best algorithm 

and go to Step 3. 

Step 3: )5.1,1,5.0(),,()ˆ,ˆ,ˆ( 3
22

3
21

3
222212  zzyzzy and i=n=2, stop and )5.1,1,3,2,5.0,1,1(),,,,,,( 3

22
3
21

3
12

3
11

3
2

3
1

3 zzzzyyx  

is an optimal solution to the example 1 and the iteration number 3 kK . 

We finally find an optimal solution to the Example 1 through three iterations, which means that we 

enumerated three vertices to get an optimal solution. The objective function values of all decision entities are
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5.2,0,0.8,0.9,5.3,5.5,5.5 )3(
22

)3(
21

)3(
12

)3(
11

)2(
2

)2(
1

)1(  fffffff . As we can see from the simple 

numerical example, the MFTL Kth-Best algorithm provides a convenient way to solve this kind of 

reference-uncooperative MFTL decision problem. However, there are still two practical issues in applying 

the proposed MFTL decision model and Kth-Best algorithm to deal with MFTL decision cases in the real 

world. One is that it is imprecise or ambiguous for decision entities to evaluate a solution whether or not 

decision entities desire this through their respective objective values; the other is that it remains difficult and 

inefficient to find an optimal manual solution if we have to search a mass of vertices using the MFTL 

Kth-Best algorithm. Therefore, it is becoming necessary and urgent to propose an approach to recognize the 

satisfactory degree of decision entities towards solutions, and develop a decision support system driven by 

the MFTL Kth-Best algorithm to assist decision makers in solving such MFTL decision problems accurately 

and efficiently. To overcome these issues, an evaluation approach of solutions using fuzzy programming will 

be proposed in Section 4. In Section 5, we will deal with a real-world reference-uncooperative MFTL 

decision problem by means of a tri-level decision support system driven by the proposed MFTL decision 

techniques. 

4. Evaluation of solutions 

We are able to find an optimal solution for the MFTL decision model (1) using the proposed MFTL 

Kth-Best algorithm based on related theoretical properties. However, it is difficult to illustrate the operations 

of the complex MFTL decision-making process by the optimal solution defined by Definition 2.3 because the 

solution only represents the decision result rather than the decision process. In this section, we will use a 

fuzzy programming approach to evaluate the solution obtained and illustrate why decision entities have to 

achieve and accept the final result during the MFTL decision-making process. 

Within a MFTL decision-making process, each decision entity seeks to optimize its own objective but its 

decision is affected by actions of others, thus, decision entities achieve a compromised result with a possible 

relaxation rather than their individual best solutions as desired. Since it is imprecise or ambiguous for 

decision entities to identify a compromised result whether or not they desire it, the objective functions can be 

transformed into fuzzy goals using an imprecise aspiration level. We use minf
 

and maxf
 

to denote the 

individual best and worst results respectively that a decision entity may achieve. Finally, the compromised 

objective value of the decision entity must be involved in the interval ],[ maxmin ff . Therefore, we can elicit 

membership functions )( f  to characterize fuzzy goals over the domain ],[ maxmin ff for the objective 

functions, which can also be adopted to describe the satisfactory degree of decision entities towards a 

solution or an objective value. For example, a decision entity specifies the objective value 0f
 
such that the 

satisfactory degree is 0, that is 0)( 0 f , while the value 1f of the objective function such that 1)( 1 f  

means that the satisfactory degree is 1. Clearly, if an objective value f is undesired (larger) than 0f , it is 

defined that 0)( f ; whereas 1)( f  
if an objective value f is desired (smaller) than 1f . In this 

study, for the sake of simplicity, we assume that 0f
 

and 1f
 
are specified as max0 ff 

 
and min1 ff  , 

app:ds:efficiently
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and that the membership functions are linear versions shown as Fig. 2 although they do not always need to 

be linear. Also, note that in this research the satisfactory degree 1)( f  
if there exists maxmin ff  . 

0

μ(f)

1.0

1f 0f
 

Fig. 2. Linear membership function 

(1)The membership function of the leader 

The individual best objective value of the leader is: 

}.),,,,,,,,,,(:),,,,,,,,,,(min{ 1111111111
)1(min1

11
Szzzzyyxzzzzyyxfff

nn nmnmnnmnmn    

The individual worst objective value is: 

}.),,,,,,,,,,(:),,,,,,,,,,(max{ 1111111111
)1(max0

11
Szzzzyyxzzzzyyxfff

nn nmnmnnmnmn    

The corresponding linear membership function )( )1(f
 
is defined as: 

.

,

,

,

,1

,0

)(
1)1(

0)1(1

0)1(

01

0)1(
)1(

ff

fff

ff

ff

ff
f



















                                (14) 

)( )1(f
 

can be used to denote the satisfactory degree of the leader towards an objective value )1(f . 

0)( 0 f
 
implies that the satisfactory degree of the leader is 0 when the objective value 0)1( ff  , while 

the objective value 1)1( ff 
 
such that 1)( 1 f

 
means that the satisfactory degree of the leader becomes 

1. 

(2) The membership function of the middle-level follower i ),,2,1( ni   

The middle-level follower i makes its decision under the given decisions ),,,,,,( 111







nii yyyyx   

from the leader and other middle-level followers, thus, its individual best objective value is: 

)}.,,,,,,(),,,(:),,,,,,,,,,(min{ 11111111
)2(min1 











  niiiimiiiminiiiiii yyyyxSzzyzzyyyyyxfff
ii

  

The individual worst objective value is: 

)}.,,,,,,(),,,(:),,,,,,,,,,(max{ 11111111
)2(max0 











  niiiimiiiminiiiiii yyyyxSzzyzzyyyyyxfff
ii


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The corresponding linear membership function )( )2(
ii f is defined as: 

.

,

,

,

,1

,0

)(
1)2(

0)2(1

0)2(

01

0)2(
)2(

ii

iii

ii

ii

ii
ii

ff

fff

ff

ff

ff
f



















                              (15) 

We can use )( )2(
ii f  

to denote the satisfactory degree of the middle-level follower i towards an 

objective value )2(
if . 0)( 0 ii f  implies that the satisfactory degree of the middle-level follower i is 0 

when the objective value 0)2(
ii ff  , whereas the objective value 1)2(

ii ff   such that 1)( 1 ii f
 
means 

that the satisfactory degree becomes 1. 

(3) The membership function of the bottom-level follower ij ),,2,1,,,2,1( nimj i    

The bottom-level follower ij makes its decision under the given decision 

),,,,,,,( )1()1(1








iimjijiii zzzzyx   from the leader, the middle-level follower i and its own counterparts, 

thus, its individual best objective value is: 

)}.,,,,,,,(:),,,,,,,,(min{ )1()1(1)1()1(1
)3(min1 











 

ii imjijiiiijijimjiijjiiiijijij zzzzyxSzzzzzzyxfff   

The individual worst objective value is: 

)}.,,,,,,,(:),,,,,,,,(max{ )1()1(1)1()1(1
)3(max0 
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The corresponding linear membership function )( )3(
ijij f

 
is defined as: 
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We can also use )( )3(
ijij f

 
to denote the satisfactory degree of the bottom-level follower ij towards an 

objective value 
)3(

ijf . 0)( 0 ijij f
 

implies that the satisfactory degree is 0 when the objective value 

0)3(
ijij ff  , while the objective value 

1)3(
ijij ff   such that 1)( 1 ijij f

 
means that the satisfactory degree is 

1. 

We use the proposed approach to evaluate the solutions enumerated in Example 1. For the leader, 

3)2,0,5.4,5.0,5.0,1,1()1(min1  fff
 

and 5.9)5.2,0,3,3,5.0,1,0()1(max0  fff , thus, by the formula 

(14) the leader’s satisfactory degrees are 1.0, 0.92 and 0.62 respectively towards the vertices

)2,0,5.4,5.0,5.0,1,1(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx , )5.2,0,4,1,5.0,1,1(),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx  
and ,,,,,( 3

12
3
11

3
2

3
1

3 zzyyx  

)5.1,1,3,2,5.0,1,1(), 3
22

3
21 zz . By the formulas (15) and (16), the satisfactory degrees of multiple followers 

towards each solution are presented in Table 3. 
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Table 3 Objective values and corresponding satisfactory degrees of decision entities in Example 1 

Vertex 

Leader Follower 1 Follower 2 Follower 11 Follower 12 Follower 21 Follower 22 

)1(f   )( )1(f  )2(
1f

 )(
)2(

11 f  )2(
2f  )(

)2(

22 f  )3(
11f  )(

)3(

1111 f  )3(
12f  )(

)3(

1212 f  )3(
21f  )(

)3(

2121 f  )3(
22f  )(

)3(

2222 f  

)2,0,5.4,5.0,5.0,1,1(  3.0   1.0 5.5   1.0 3.0   1.0 7.5   0.83 8.0   1.0 3.5    0 0   0.80 

)5.2,0,4,1,5.0,1,1(  3.5   0.92 5.5   1.0 3.5   0.67 8.0   0.67 8.0   1.0 4.0    0 -0.5  1.0 

)5.1,1,3,2,5.0,1,1(  5.5   0.62 5.5   1.0 3.5   0.67 9.0   1.0 8.0   1.0 0     1.0 2.5  1.0 

As we can see from Table 3, the vertex )2,0,5.4,5.0,5.0,1,1(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx  
is the individual best 

solution to the leader such that the satisfactory degree is 1.0, thus the leader anticipates that the followers can 

select )2,0,5.4,5.0,5.0,1(),,,,,( 2221121121 zzzzyy
 to respond to its own decision 1x . Under the decision

1x  given by the leader, the middle-level followers make their decisions )5.0,1(),( 21 yy
 as desired by 

the leader, and they also desire that the bottom-level followers can react to the given decision

)5.0,1,1(),,( 21 yyx
 by determining )2,0,5.4,5.0(),,,( 22211211 zzzz

 because their satisfactory degrees are 

both 1.0 under the solution. However, in view of the given decision by the leader and the middle-level 

follower 1, the bottom-level followers 11 and 12 will not choose the decision )5.4,5.0(),( 1211 zz  that are 

desired by the leader and the middle-level follower 1 since they still have space to optimize their objectives 

and improve their satisfactory degrees. Thus, )5.4,5.0(),( 1211 zz
 
is not an optimal solution to the 

bottom-level followers 11 and 12 and they will select )3,2(),( 1211 zz
 
to achieve the highest satisfactory 

degree 1.0, which also is the Nash equilibrium between them under the decision made by the leader and the 

middle-level follower 1. Similarly, the bottom-level followers 21 and 22 will make the decision 

)5.1,1(),( 2221 zz
 to respond to the leader and the middle-level follower 2. The leader and the middle-level 

followers have to reduce their individual satisfactory degrees to bend to the increase in the satisfactory 

degrees of the bottom-level followers throughout the MFTL decision-making process. In this way, the 

decision entities finally achieve a an optimal solution )5.1,1,3,2,5.0,1,1(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx , under 

which the satisfactory degrees of all the bottom-level followers go up to 1.0. 

Although the satisfactory degrees of the leader and the middle-level follower 2 drop to 0.62 and 0.67 

respectively, the numbers become the highest satisfactory degrees for them under the Stackelberg-Nash 

equilibrium and the uncooperative relationship among all decision entities. In real-world cases, the situation 

indicates that higher satisfactory degrees of the leader and the middle-level follower 2 cannot be achieved 

under the current decision conditions unless they may persuade the bottom-level followers to cooperate with 

them and to reduce the corresponding satisfactory degrees. For example, if the bottom-level followers 11, 21 

and 22 are willing to accept their respective satisfactory degrees 0.83, 0 and 0.80, the solution to Example 1 

would be )2,0,5.4,5.0,5.0,1,1(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx , which ensures that the corresponding satisfactory 

degrees the leader and the bottom-level follower 2 rise up to 1.0. Otherwise, they have to adjust the current 

decision context through changing objective functions or constraint conditions to generate a new round of the 
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decision-making process. We will illustrate how to adopt the evaluation criterion to deal with real-world 

MFTL decision problems through a case study in the following Section 5. 

5. A case study: Production-inventory planning 

In this section, we will use a case study on production-inventory planning to illustrate the proposed 

MFTL decision techniques. 

5.1. Case description 

Nowadays, manufacturers usually work in a distributed or decentralized manner in a complex supply 

chain network comprising of suppliers, sales and logistics companies, customers and other specialized 

service functions [7]. Researchers as well as practitioners in manufacturing industries have placed 

importance on developing production and inventory control capabilities to enhance their market position in 

supply chain management [22], which demands that manufacturing enterprises have to make right decisions 

on scheduling of their production and allocation of inventory to satisfy market requirements, shorten delivery 

time and reduce total production costs [2, 8, 28]. Therefore, it is increasingly important to have efficient and 

easily-applicable models and solution methods to describe and solve related production-inventory decision 

problems [6, 13] although modeling deception in a real-world conflict situation is usually difficult [16]. 

In this section, we adopt the proposed MFTL decision techniques to handle a production-inventory 

planning problem within a real-world conglomerate enterprise. The conglomerate is composed of a sales 

company, two logistics centers and two manufacturing factories attached to each logistics center, which are 

distributed throughout a three-stage hierarchical supply chain. The three-level hierarchical structure of the 

conglomerate is shown in Fig. 3. Specifically, the sales company covers products marketing of the enterprise 

and has an independent products warehouse to satisfy market demand and shorten time-to-market. Both 

logistics centers also hold a certain amount of products inventory to respond to market requirements and 

reduce the inventory pressure of the sales company. According to market requirements and the holding 

inventories of the sales company and the logistics centers, the manufacturing factories are responsible for the 

production organization involving making detailed production plans and executing production activities. 

.Sales Company

.Logistics center 1 .Logistics center 2

.Factory 11 .Factory 12 .Factory 21 .Factory 22

 

Fig. 3. Hierarchical structure of the conglomerate enterprise 

The decision situation we study in this paper is described as follows. During a peak season of products 

sales, the market requirements exceed the normal supply capacity of the enterprise so that four 

manufacturing factories have to organize overtime production. The sum of overtime outputs produced by 

four factories and safety stocks held by the sales company and two logistics centers are demanded to satisfy 
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the exceeded market requirements. The more safety stocks imply the fewer overtime production outputs, but 

also mean the more inventory holding costs. Under the given market requirements, the decision entities 

distributed throughout the three-level hierarchy try to minimize their individual costs by considering their 

own constraints and implicit decisions made by other decision entities. More specifically, the sales company 

at the top level has the priority to determine its safety stock to minimize its inventory holding cost by 

considering the given market requirements and implicit reactions of other decision entities. In view of the 

decision made by the sales company, the logistics centers at the middle level then determine their individual 

safety stocks to minimize their own inventory holding costs by considering their own constraints and implicit 

reactions of their subordinate factories. Finally, each manufacturing factory at the bottom level makes 

overtime production plans in the light of the inventories held by the top and middle levels. 

Furthermore, to reduce the total cost of the conglomerate, the conglomerate anticipates that decision 

entities whose inventory holding cost or overtime production cost is lower are able to keep more inventories 

or manufacture more production outputs. Thus, the conglomerate makes some management strategies to 

intervene and reconcile the decision process of its subordinate decision entities. For example, the 

conglomerate claims that each logistics center should take the inventory determined by the other logistics 

center as a reference when making its own decisions. If the inventory of a logistics center is less than the 

other, it means the less inventory holding cost but implies that the logistics center is demanded to undertake 

an opportunity cost for its own decision on holding less inventory. Also, each factory needs to reference the 

production plans made by other counterparts attached to the same logistics center when making its own 

production plans. If the production outputs of a factory are less than the other, it means the less overtime 

production costs but implies that the factory needs to cover an opportunity cost for its own decision on less 

production outputs. In addition, the sales company is demanded to afford the marketing cost and backlogging 

cost of the conglomerate. However, to reduce the total cost to the sales company, the conglomerate demands 

that both logistics centers must share part of the inventory holding cost and compensate for the marketing 

cost of the sales company. Similarly, to reduce the pressure of overtime production, the factories at the 

bottom level are also demanded to compensate the inventory holding cost of their superior logistics center to 

encourage it to keep more safety stocks. Therefore, under the current decision situation, the decision entities 

will try to minimize their individual overall costs by making their individual decisions, and the decision 

processes are executed sequentially, interactively and repeatedly within the tri-level hierarchy until the 

Stackelberg-Nash equilibrium is achieved among them. 

This case clearly describes a MFTL decision process which includes one leader (the sales company), two 

middle-level followers (the logistics centers) and two bottom-level followers (the manufacturing factories) 

attached to each middle-level follower. The leader, the middle-level followers and the bottom-level followers 

make their individual decisions in sequence, and each decision entity cannot control decisions of the others 

but is affected by their reactions. It is noticeable that the multiple middle-level and bottom-level followers 

also consider decisions made by their counterparts as references, which implies a reference-uncooperative 

relationship among the multiple followers at both the middle and bottom levels. The case can thus be 

considered as a reference-uncooperative MFTL decision problem. 
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In the light of the above problem description, let n=2 be the number of logistics centers, and i be the index 

for logistics centers, 2,1i ; while let 2im be the number of manufacturing factories attached to the 

logistics center i, and j be the index for manufacturing factories, 2,1j . To model the problem 

conveniently, related notations of decision variables and some key parameters in the scenario are shown in 

Table 4. 

Table 4 Symbols for decision variables and parameters employed 

Symbols and Indexes 

x  The safety stock controlled by the sales company 

iy
 The independent safety stock determined by the logistics center i 

ijz
 

The overtime production plan determined by the factory ij 

iaa,
 The inventory holding cost per unit of the sales company and the logistics center i 

ija
 

The overtime production cost per unit afforded by the factory ij 

ibb,  
The marketing cost per unit of the sales company and the compensation cost per unit that the logistics 

center i has to pay for the marketing cost of the sales company 

c  The products backlogging cost per unit that is paid by the sales company 

iji dd ,  The opportunity cost per unit of the logistics center i and the factory ij 

iji eee ,,
 

The proportion of the inventory holding cost of the sales company that is respectively shared by the 

sales company, the logistics center i and the factory ij 

pw

ij

pw

i ee ,
 

The proportion of the inventory holding cost of the logistics center i that is respectively shared by itself 

and the factory ij 

p  The exceeded products requirements of the market 

q  The minimum inventories sum of all safety stocks anticipated by the sales company 

iq
 

The logistics center i must hold that the products sum of its own safety stock, the overtime production 

outputs of its lower-level factories and the safety stock of the sales company does not exceed iq  

ijq
 

The factory ij must satisfy that the products sum comprised of its own and its counterparts’ production 

outputs and the safety stocks of the sales company and the logistics center i exceeds ijq  

irr,
 The maximum safety stock of the sales company and the logistics center i 

ijr
 

The maximum overtime production outputs of the factory ij 

 

5.2. Model building 

Based on the above decision conditions and strategies, the MFTL decision model of the case is 

established as follows in the form of the general model (1) proposed in Section 2.1. 

(1) The decision problem of the sales company (top-level leader) 

 
  


2

1

2

1

2

1

2

1

2

1
2221121121

)1( )()(),,,,,,(min
i j

ijii
i j

ij
i

i
Xx

zybpzyxcbpaexzzzzyyxf            (17a) 

s.t. pzyx
i j

ij
i

i  
 

2

1

2

1

2

1

,                                                        (17b) 
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

2

1

,                                                                (17c) 

    rx 0 .                                                                   (17d) 
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The sales company’s objective function (17a) involves its safety stock’s inventory holding cost aex, the 

marketing cost bp, the backlogging cost )(
2

1

2

1

2

1

pzyxc
i j

ij
i

i  
 

 and the minus marketing compensation 

cost  
 


2

1

2

1

)(
i j

ijii zyb derived from the logistics centers. Constraint condition (17b) means the upper bound of 

the products sum of all safety stocks and overtime production outputs of all manufacturing factories, while 

constraint condition (17c) implies the upper bound of the sum of all safety stocks. Constraint condition (17d) 

represents the lower and upper limits to the sales company’s safety stock. 

(2) The decision problem of the logistics center (middle-level follower) i for i=1,2 

)(),,,,(min
2

1
2121

)2(




j

ijiiiiii
pw
iiiii

Yy
zybxaeydyeazzyyxf

ii

                           (17e) 

s.t. 
i

j
ij

i
i qzyx  



2

1

2

1

,                                                          (17f) 

    ii ry 0 .                                                                  (17g) 

The objective function (17e) of the logistics center i involves its safety stock holding cost i
pw
ii yea , the 

opportunity cost ii yd  , the shared inventory holding cost xaei  of the sales company’s safety stock and the 

marketing compensation cost )(
2

1





j

ijii zyb paid to the sales company. Note that 121 yyy  and 

212 yyy  . Constraint condition (17f) reflects the upper bound of the products sum consisting of all safety 

stocks and the overtime production outputs of the manufacturing factories attached to the middle-level 

follower i. Constraint condition (17g) represents the lower and upper limits to the safety stock of the logistics 

center i. 

(3) The decision problem of the manufacturing factory (bottom-level follower) ij for j=1,2, i=1,2 

i
pw
ijiijijijijijiiiij

Zz
yeaxaezdzazzyxf

ijij




),,,(min 21
)3(                                   (17h) 

s.t. ij
j

iji qzyx  


2

1

,                                                            (17i) 

    ijij rz 0 .                                                                 (17j) 

The objective function (17h) of the manufacturing factory ij involves its overtime production cost ijij za , 

the opportunity cost ijij zd  , and the shared inventory holding cost xaeij  and i
pw
iji yea  respectively for the 

safety stocks of the sales company and the logistics center i. Note that 121 iii zzz  and 212 iii zzz  . 

Constraint condition (17i) reflects the upper bound of the products sum consisting of overtime production 

outputs of the manufacturing factories attached to the logistics center i and safety stocks of the sales 

company and the logistics center i. Constraint condition (17j) represents the lower and upper limits to the 

overtime production outputs of the manufacturing factory ij. 
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This MFTL decision model (17) describes the real-world production and inventory decision problem 

which is a concretization of the general model (1) proposed in Section 2.1. We then adopt the MFTL 

Kth-Best algorithm to solve the model by a numerical experiment. 

5.3. Numerical experiment and results analysis 

This section shows the computational results achieved by the proposed MFTL Kth-Best algorithm and 

evaluation of solutions. The experimental data employed for the model (17) is provided in Tables 5-7. 

Table 5 Data for the sales company 

a  b  c  e  p  q  r  

5.0 2.0 2.0 0.20 9.0 3.5 2.5 

Table 6 Data for the logistics centers 

i  ia  ib  id  ie  pw
ie

 iq
 ir  

1 4.0 1.0 4.0 0.20 0.50 8.0 1.0 

2 4.0 3.0 4.0 0.20 0.50 6.0 0.50 

Table 7 Data for the manufacturing factories 

i  j
 ija  ijd  ije  pw

ije
 

ijq  ijr
 

1 1 1.0 2.0 0.10 0.25 7.0 3.0 

1 2 3.0 2.0 0.10 0.25 7.0 3.0 

2 1 2.0 3.0 0.10 0.25 4.0 1.0 

2 2 4.0 3.0 0.10 0.25 4.0 2.0 

We use a tri-level decision support system to build the mathematics formula of model (17) based on the 

experimental data in Tables 5-7, shown as Fig. 4. 

 

Fig. 4. Model building of the MFTL decision problem 

The tri-level decision support system driven by the MFTL Kth-Best algorithm then finds an optimal 

solution (also called a Stackelberg-Nash solution) to the model (17) shown in Fig. 5, which clearly shows 

that a solution is attained at the vertex ),,,,,,( 2221121121 zzzzyyx )5.0,1,1,3,5.0,1,2(
 
and the objective 
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values of all decision entities are 0.9)1( f , 0.7
)2(

1 f , 0.11
)2(

2 f , 0.1)3(
11 f , 0.9)3(

12 f , 0.2)3(
21 f , 0.5

)3(
22 f . 

Fig. 5 also displays that an optimal solution is found after 12 iterations and the computing process has spent 

862 milliseconds of CPU time. 12 iterations imply that we must search 12 vertices at least to find an optimal 

solution, and this task would take a long time if the computing was conducted manually as well as solving 

the Example 1 in Section 3. The convenience of a decision support system is its very short computing time 

especially for solving complex MFTL decision problems in applications. Also, the decision support systems 

can output the detailed computing process driven by the MFTL Kth-Best algorithm, which can help us to 

analysis the satisfactory degree of decision entities towards solutions and can provide references for decision 

conditions adjustment in the real-world case. In addition, the web-based decision support system has another 

advantage that it can be integrated with other application systems commonly implemented in manufacturing 

enterprises, business organizations and governments, such as ERP, MES, e-business systems and common 

service platforms, which provides an opportunity to share data with other systems and support the 

decision-making of other systems. In this way, the tri-level decision support system is able to be a convenient 

means of decision-making in applications. 

 

Fig. 5. Computing results display of the MFTL decision problem 

The detailed computing process driven by the MFTL Kth-Best algorithm is shown in Table 8 which 

includes related data and parameters generated in the computing process. Specifically, Table 8 presents the 

vertex ks that is searched in the current iteration k, and the adjacent vertices set kW of the current vertex ks . 

T represents the set of vertices that have been searched in the past iterations while W is the set of vertices that 

are needed to verify whether or not an optimal solution occurs inside in the following iteration. Following 

procedures of the MFTL Kth-Best algorithm, we finally obtain an optimal solution after 12 iterations. Note 

that 7W , 8W and 10W in Table 8 do not mean that adjacent vertices of 87 , ss and 10s do not 

exist, but imply that their adjacent vertices have been found in previous iterations and have been involved in 
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W. 

Table 8 The detailed computing process of the MFTL Kth-Best algorithm 

Iteration k ),,,,,,( 2221121121

kkkkkkkk zzzzyyxs   
kW  T W 

1 (2,1,0.5,1,3,0.5,2) {(2.5,1,0,0.5,3,0.5,2), 

(2,1,0.5,1,3,0,2), 

(2.5,1,0.5,0.5,3,0,2), 

(2,1,0.5,3,1,0.5,2), 

(2,1,0.5,1,3,1,1.5), 

(2.5,0.5,0.5,1,3,0.5,2)} 

{
1s } 1W  

2 (2,1,0.5,3,1,0.5,2) {(2.5,1,0,3,0.5,0.5,2), 

(2,1,0.5,3,1,0,2), 

(2.5,1,0.5,3,0.5,0,2), 

(2,1,0.5,3,1,1,1.5), 

(2.5,0.5,0.5,3,1,0.5,2)} 

{ 21, ss } TWW \)( 2  

3 (2,1,0.5,1,3,1,1.5) {(2.5,1,0,0.5,3,1,1.5), 

(2.5,0.5,0.5,1,3,1,1.5), 

(2.5,1,0.5,0.5,3,1,1), 

(2,1,0.5,1,3,1,0.5)}
 

{ 321 ,, sss } TWW \)( 3  

4 (2,1,0.5,3,1,1,1.5) {(2.5,1,0,3,0.5,1,1.5), 

(2.5,0.5,0.5,3,1,1,1.5), 

(2.5,1,0.5,3,0.5,1,1), 

(2,1,0.5,3,1,1,0.5)} 

{ 4321 ,,, ssss } TWW \)( 4  

5 (2,1,0.5,1,3,0,2) {(2.5,1,0,0.5,3,0,2), 

(2.5,0.5,0.5,1,3,0,2), 

(2,1,0.5,1,3,0,1.5)} 

{ 54321 ,,,, sssss } TWW \)( 5  

6 (2,1,0.5,3,1,0,2) {(2.5,1,0,3,0.5,0,2), 

(2.5,0.5,0.5,3,1,0,2), 

(2,1,0.5,3,1,0,1.5)} 

{ 654321 ,,,,, ssssss } TWW \)( 6  

7 (2.5,0.5,0.5,1,3,0.5,2)   { 7654321 ,,,,,, sssssss } TWW \)( 7  

8 (2.5,0.5,0.5,3,1,0.5,2)   { 8654321 ,,,,,, sssssss } TWW \)( 8  

9 (2.5,0.5,0.5,1,3,1,1.5) {(2.5,0.5,0.5,1,3,1,0.5)} { 98654321 ,,,,,,, ssssssss } TWW \)( 9  

10 (2,1,0.5,1,3,1,0.5)   { 1098654321 ,,,,,,,, sssssssss } TWW \)( 10  

11 (2.5,0.5,0.5,3,1,1,1.5) {(2.5,0.5,0.5,3,1,1,0.5)} { 111098654321 ,,,,,,,,, ssssssssss } TWW \)( 11  

12 (2,1,0.5,3,1,1,0.5) --- -- --- 

Table 9 displays the objective values of all decision entities respectively towards each solution 

enumerated by the MFTL Kth-Best algorithm, while Table 10 shows the corresponding satisfactory degrees 

that are computed by the formulas (14), (15) and (16). As we can see from Table 9, under the current 

decision context within the conglomerate enterprise, )2,5.0,3,1,5.0,1,2(),,,,,,( 1
22

1
21

1
12

1
11

1
2

1
1

1 zzzzyyx ,

)2,5.0,1,3,5.0,1,2(),,,,,,( 2
22

2
21

2
12

2
11

2
2

2
1

2 zzzzyyx , )5.1,1,3,1,5.0,1,2(),,,,,,( 3
22

3
21

3
12

3
11

3
2

3
1

3 zzzzyyx and ,,,( 4
2

4
1

4 yyx

),,, 4
22

4
21

4
12

4
11 zzzz )5.1,1,1,3,5.0,1,2(  

are the individual best solutions to the leader (the sales company), which 

implies that the leader anticipates that the middle-level and bottom-level followers (the logistics centers and 
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manufacturing factories) can choose )2,5.0,3,1,5.0,1(),,,,,( 1
22

1
21

1
12

1
11

1
2

1
1 zzzzyy , ),,,,,( 2

22
2
21

2
12

2
11

2
2

2
1 zzzzyy

)2,5.0,1,3,5.0,1( , )5.1,1,3,1,5.0,1(),,,,,( 3
22

3
21

3
12

3
11

3
2

3
1 zzzzyy or )5.1,1,1,3,5.0,1(),,,,,( 4

22
4
21

4
12

4
11

4
2

4
1 zzzzyy  to 

respond to itself after it determined x=2. However, it can be seen from Table 10 that the middle-level 

follower 2 and the bottom-level followers 11, 21, and 22 cannot always achieve individual best satisfactory 

degrees if they make the decisions desired by the leader. In the reference-uncooperative decision situation, 

the followers will choose ),,,,,( 12
22

12
21

12
12

12
11

12
2

12
1 zzzzyy )5.0,1,1,3,5.0,1(  to react to the leader’s decision x=2 

such that their satisfactory degrees all grow up to 1.0. 

Table 9 Solutions and objective values of decision entities 

Iteration k Vertex ks  F  
)2(

1f  

)2(

2f
 

)3(

11f
 

)3(

12f
 

)3(

21f
 

)3(

22f
 

1 (2,1,0.5,1,3,0.5,2) 8.0 7.0 14.0 7.0 7.0 7.0 5.0 

2 (2,1,0.5,3,1,0.5,2) 8.0 7.0 14.0 1.0 9.0 7.0 5.0 

3 (2,1,0.5,1,3,1,1.5) 8.0 7.0 14.0 7.0 7.0 5.0 6.0 

4 (2,1,0.5,3,1,1,1.5) 8.0 7.0 14.0 1.0 9.0 5.0 6.0 

5 (2,1,0.5,1,3,0,2) 8.5 7.0 12.5 7.0 7.0 7.5 3.5 

6 (2,1,0.5,3,1,0,2) 8.5 7.0 12.5 1.0 9.0 7.5 3.5 

7 (2.5,0.5,0.5,1,3,0.5,2) 9.0 8.0 12.5 6.75 6.75 7.25 5.25 

8 (2.5,0.5,0.5,3,1,0.5,2) 9.0 8.0 12.5 0.75 8.75 7.25 5.25 

9 (2.5,0.5,0.5,1,3,1,1.5) 9.0 8.0 12.5 6.75 6.75 5.25 6.25 

10 (2,1,0.5,1,3,1,0.5) 9.0 7.0 11.0 7.0 7.0 2.0 5.0 

11 (2.5,0.5,0.5,3,1,1,1.5) 9.0 8.0 12.5 0.75 8.75 5.25 6.25 

12 (2,1,0.5,3,1,1,0.5) 9.0 7.0 11.0 1.0 9.0 2.0 5.0 

More specifically, for the given decision )1,2(),( 1 yx  by the leader and the middle-level follower 1, the 

bottom-level followers 11 and 12 achieve a Nash equilibrium solution )1,3(),( 1211 zz  to respond to the 

leader and the middle-level follower 1. Similarly, for the given decision )5.0,2(),( 2 yx  by the leader and 

the middle-level follower 2, the bottom-level followers 21 and 22 achieve a Nash equilibrium solution 

)5.0,1(),( 2221 zz  to respond to the leader and the middle-level follower 2. Therefore, )1,3,1(),,( 12111 zzy
 

and )5.0,1,5.0(),,( 22212 zzy
 
are Stackelberg-Nash solutions respectively for the middle-level follower i 

(i=1,2) and its bottom-level followers under the given decision 1x  by the leader. Also, for the given 

decision x=2 by the leader, )5.0,1(),( 21 yy
 
is a Nash equilibrium solution for the middle-level followers 

while taking into account implicit reactions of their respective bottom-level followers. Therefore, 

),,,,,,( 12
22

12
21

12
12

12
11

12
2

12
1

12 zzzzyyx )5.0,1,1,3,5.0,1,2(  is a Stackelberg-Nash solution to the production-inventory 
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planning problem. 

Table 10 The satisfactory degree of decision entities towards solutions 

Iteration 

k 

Leader Follower 1 Follower 2 Follower 11 Follower 12 Follower 21 Follower 22 

1f  
0f  )( )1(f  

1
1f  

0
1f  )(

)2(
11 f  

1
2f  

0
2f  )(

)2(

22 f  
1

11f  
0

11f  )(
)3(

1111 f  
1

12f  
0

12f  )(
)3(

1212 f  
1
21f  

0
21f  )(

)3(

2121 f  
1
22f  

0
22f  )(

)3(

2222 f  

1 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 5.0 7.0 0 7.0 7.0 1.0 6.5 7.5 0.5 4.0 5.0 0 

2 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 1.0 1.0 1.0 9.0 11.0 1.0 6.5 7.5 0.5 4.0 5.0 0 

3 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 5.0 7.0 0 7.0 7.0 1.0 5.0 6.0 1.0 5.0 6.5 0.33 

4 8.0 11.5 1.0 7.0 9.5 1.0 11.0 15.0 0.25 1.0 1.0 1.0 9.0 11.0 1.0 5.0 6.0 1.0 5.0 6.5 0.33 

5 8.0 11.5 0.86 7.0 9.5 1.0 11.0 15.0 0.63 5.0 7.0 0 7.0 7.0 1.0 6.5 7.5 0 3.0 3.5 0 

6 8.0 11.5 0.86 7.0 9.5 1.0 11.0 15.0 0.63 1.0 1.0 1.0 9.0 11.0 1.0 6.5 7.5 0 3.0 3.5 0 

7 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 4.75 6.75 0 6.75 6.75 1.0 6.75 7.75 0.5 3.75 5.25 0 

8 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 0.75 0.75 1.0 8.75 10.75 1.0 6.75 7.75 0.5 3.75 5.25 0 

9 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 4.75 6.75 0 6.75 6.75 1.0 5.25 6.25 1.0 4.75 6.75 0.25 

10 8.0 11.5 0.71 7.0 9.5 1.0 11.0 15.0 1.0 5.0 7.0 0 7.0 7.0 1.0 2.0 2.0 1.0 5.0 6.5 1.0 

11 8.0 11.5 0.71 7.0 9.5 0.6 8.0 13.5 0.18 0.75 0.75 1.0 8.75 10.75 1.0 5.25 6.25 1.0 4.75 6.75 0.25 

12 8.0 11.5 0.71 7.0 9.5 1.0 11.0 15.0 1.0 1.0 1.0 1.0 9.0 11.0 1.0 2.0 2.0 1.0 5.0 6.5 1.0 

Although the leader’s satisfactory degree has dropped to 0.71 under the solution

)5.0,1,1,3,5.0,1,2(),,,,,,( 12
22

12
21

12
12

12
11

12
2

12
1

12 zzzzyyx , the leader cannot obtain a better objective value or a higher 

satisfactory degree by moving away from the vertex over the inducible region (IR) under the 

Stackelberg-Nash equilibrium among all decision entities. Also, it is noticeable that each follower and its 

counterparts have to achieve the Nash equilibrium when making their individual decisions, because their 

decisions are interactively affected by each other. Therefore, within the real-world case study, the 

Stackelberg-Nash solution )5.0,1,1,3,5.0,1,2(),,,,,,( 12
22

12
21

12
12

12
11

12
2

12
1

12 zzzzyyx  is the optimal solution to the 

MFTL decision model (17), which means a final compromised result among all decision entities under the 

current decision context in the conglomerate enterprise. This MFTL hierarchical decision situation indicates 

that the leader may not achieve an individual optimal solution under the constraint region even though it has 

priority in making decisions, since its decisions are determined by implicit reactions of the followers. 

Moreover, the decision process and results of an MFTL decision problem are affected by the 

reference-uncooperative relationship among multiple followers at the same level. In summary, the proposed 

MFTL decision techniques provide an effective way to model and solve real-world MFTL decision problems 

and to recognize the satisfactory degree of decision entities towards solutions. 

Furthermore, by the optimal solution, we can analyze whether or not the conglomerate employed practical 

and effective management strategies to balance the production-inventory planning among its subordinate 

sales company, logistics centers and manufacturing factories. Based on the given experimental data in Table 

5, the contrastive analysis between the upper limits to the holding inventory or overtime production capacity 

of each decision entity and the final solution is shown as Fig. 6. It can be seen from Fig. 6 that the holding 
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inventories of the logistics centers peak at their respective upper limits. Also, the production outputs of the 

manufacturing factories 11 and 21 reach their maximum overtime production capacities respectively. In 

contrast, the holding inventory or overtime production outputs of other decision entities are less or much less 

than their corresponding upper limits. These results indicate that decision entities whose inventory holding 

cost or overtime production cost is lower prefer to keep more inventories or manufacture more production 

outputs under the current decision context, which is exactly desired by the conglomerate as presented in 

Section 5.1. Therefore, the current management strategy implemented by the conglomerate is an available 

way to balance the production-inventory planning throughout the three-stage supply chain with conflicting 

objectives of decision entities. 

 

Fig. 6. The contrastive analysis of results 

5.4. Further discussions 

This section will discuss in depth characteristics of the MFTL Kth-Best algorithm and the evaluation 

criterion defined by fuzzy programming. Also, we will analyze limitations to our research and address future 

studies. 

Table 8 clearly shows that we finally find an optimal solution by completing the enumeration of 12 

vertices, of which most (8 in 12) are accompanied by the same decision made by the leader and the 

middle-level followers, which implies that the search approach of the MFTL Kth-Best algorithm is easily 

convergent. Also, only a few data involving kW , T, and W are necessary to write down within the algorithm 

operation. We can also observe the features of the algorithm through computing Example 1 in Section 3. 

Thus, the MFTL Kth-Best algorithm can be carried out efficiently because each successive pair of points is 

adjacent. Moreover, note that the other 11 vertices searched, apart from the optimal vertex 12, are all feasible 

solutions to the MFTL decision problem even if they cannot be an optimal solution. The property gives us 

another advantage of the MFTL Kth-Best algorithm in that the upper and lower bounds on an optimal 

solution are generated by the procedure even if storage or computational limits are reached before 

convergence. However, when plenty of followers are involved at the middle and bottom levels or a large 

0
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1.5

2

2.5
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3.5

Leader Follower 1 Follower 2 Follower 11 Follower 12 Follower 21 Follower 22

Decision entities

Decision results Upper limits to decision variables
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number of decision variables and constraints exist, the execution efficiency of the algorithm may experience 

a steep decline as superabundant vertices are needed to complete the search. Our future research will explore 

the performance of the MFTL Kth-Best algorithm through sufficient numerical experiments. 

It is noticeable from Tables 9 and 10 that the middle-level follower 2 obtains the same individual 

objective value 12.5 at the vertices 
5s  and 

7s ; however, following this, the decision entity achieves two 

different satisfactory degrees 0.63 and 0.18 respectively. Also, note Table 3 in Section 4 that the objective 

value of the bottom-level follower 11 in Example 1 becomes worse from 7.5 to 9.0; however, following this, 

the corresponding satisfactory degree increases from 0.83 to 1.0. Evidently, it is not a positive correlation 

between the objective value and the corresponding satisfactory degree for followers. In this case study, the 

situation means that the feasible set and the rational set of the middle-level follower 2 are changed as the 

leader and the middle-level follower 1 change their decisions )1,2(),( 1 yx
 
to )5.0,5.2(),( 1 yx . 

Therefore, the satisfactory degree can be considered as a relative but not an absolute evaluation criterion as 

individual best and worst objective values of each decision entity would vary with the changing externalities 

determined by others, which clearly reflects the characteristic of the MFTL hierarchical decision-making 

process. 

In this study, we focus on the reference-uncooperative relationship within a three-stage supply chain 

comprised of one leader and multiple followers. All decision entities have to achieve a Stackelberg-Nash 

solution under the current decision conditions within the three-stage supply chain. Thus, under the 

uncooperative situation, decision entities have to adjust the current decision context through changing 

objective functions or constraint conditions to generate a new round of decision-making processes if they 

desire to improve their respective satisfactory degrees. However, all decision entities that are distributed 

throughout a conglomerate enterprise may have chances to cooperate with each other and achieve an 

agreement on their decisions in the real world. For example, if the leader desires to improve its own 

satisfactory degree, it may persuade the middle-level follower 2 and the bottom-level follower 22 to react to 

others’ decisions )1,3,1,1,2(),,,,( 2112111 zzzyx  by determining their own decisions )5.1,5.0(),( 222 zy
 

such that the leader can achieve its individual best solution, yielding the solution 

),,,,,,( 4
22

4
21

4
12

4
11

4
2

4
1

4 zzzzyyx )5.1,1,3,1,5.0,1,2( . Thus, definitions of the satisfactory degree provide a practical 

way in finding some possibly satisfactory solutions but not just a Stackelberg-Nash solution to a MFTL 

decision case in the real world, because the satisfactory degree can be considered as an evaluation criterion 

that can be adopted to recognize a solution whether or not decision entities desire it. Also, the evaluation 

criterion provides an available approach to solve a MFTL decision problem without a Stackelberg-Nash 

solution. As we discussed above, if decision entities are willing to cooperate with each other, we can find a 

satisfactory solution through recognizing the satisfactory degree of decision entities. Our future research will 

extend the evaluation criterion defined by the fuzzy programming approach to handle real-world MFTL 

decision cases in which there does not exist a Stackelberg-Nash solution or decision entities prefer to 

cooperate with one another. 
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6. Conclusions and further study 

This paper presents our development to handle the reference-uncooperative MFTL decision problem: 

information exchange among multiple followers at the same level even though they are independent and 

uncooperative decision entities. Solving this decision problem needs to find an optimal solution achieving 

not only the Stackelberg equilibrium in the vertical structure but also the Nash equilibrium among multiple 

followers at the same horizontal level. The paper therefore first proposed a general MFTL decision model to 

describe the reference-uncooperative situation. It then developed a MFTL Kth-Best algorithm to find an 

optimal solution (also known as a Stackelberg-Nash solution) to the model based on related theoretical 

properties. Moreover, we evaluated the solution obtained and identified the satisfaction of decision entities 

using a fuzzy programming approach. Lastly, a real-world case study on production-inventory planning 

illustrated the effectiveness of the proposed MFTL decision techniques in handling such problems of 

applications. The results indicate that this paper provides a practical way to deal with reference-based 

uncooperative MFTL hierarchical decision-making problems from the perspective of theory and application. 

The limitation of this study is that the computational load of the MFTL Kth-Best algorithm may increase 

steeply with increase in the mass of variables and constraints. Thus, we will explore the execution efficiency 

of the algorithm through sufficient numerical experiments in our future study. We will also extend the 

evaluation criterion defined by the fuzzy programming approach to solve MFTL decision problems without 

Stackelberg-Nash solutions. In addition, we will focus our future research on other relationships, such as 

cooperative and semi-cooperative situations [18], among multiple followers in MFTL decision problems. 
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