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Abstract: Tri-level decision-making arises to address compromises among interacting decision entities
distributed throughout a three-level hierarchy; these entities are respectively termed the top-level leader, the
middle-level follower and the bottom-level follower. This study considers an uncooperative situation where
multiple followers at the same (middle or bottom) level make their individual decisions independently but
consider the decision results of their counterparts as references through information exchanged among
themselves. This situation is called a reference-based uncooperative multi-follower tri-level (MFTL)
decision problem which appears in many real-world applications. To solve this problem, we need to find an
optimal solution achieving both the Stackelberg equilibrium in the three-level vertical structure and the Nash
equilibrium among multiple followers at the same horizontal level. In this paper, we first propose a general
linear MFTL decision model for this situation. We then develop a MFTL Kth-Best algorithm to find an
optimal solution to the model. Since the optimal solution means a compromised result in the uncooperative
situation and it is often imprecise or ambiguous for decision entities to identify their related satisfaction, we
use a fuzzy programming approach to characterize and evaluate the solution obtained. Lastly, a real-world
case study on production-inventory planning illustrates the effectiveness of the proposed MFTL decision
techniques.

Keywords: Tri-level decision-making; multilevel programming; Kth-Best algorithm; fuzzy programming;

production-inventory planning.

1. Introduction

Tri-level decision-making (also known as tri-level programming) technique has been developed to deal
with decentralized decision problems involving interacting decision entities that are distributed throughout a
three-level hierarchy, which is a subfamily of multilevel programming [30] motivated by Stackelberg game
theory [26]. Decision entities at the three hierarchical levels are respectively termed the top-level leader, the
middle-level follower and the bottom-level follower. The decision entities make their individual decisions in
sequence, from the top level to the middle level and then to the bottom level with the aim of optimizing their

respective objectives [36]. Specifically, the leader gives priority to making a decision; however, this decision
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is implicitly determined by the actions of the followers. The middle-level follower then reacts to the decision
made by the leader and optimizes its own objective function while taking into account the implicit reactions
of the bottom-level follower. Lastly, in view of the given decisions from the top and middle levels, the
bottom-level follower makes decision to optimize its own objective function. The decision process is
repeatedly executed until the Stackelberg equilibrium is achieved in the three-level vertical structure, which
differs from the traditional Stackelberg game where the decisions made by the followers do not affect the
decision, which has been already taken by the leader [11]. This category of the hierarchical decision-making
process often appears in many decentralized management problems in applications, such as supply chain
management [33], resource allocation optimization [20, 34] and hierarchical production operations [29].

The hierarchical production-inventory planning in a conglomerate enterprise can be taken as an example.
The conglomerate is composed of a sales company, a logistics center and a manufacturing factory, which are
distributed throughout a three-stage supply chain. To fully satisfy market demand and shorten time-to-market,
the sales company and the logistics center have to hold a certain amount of inventory using their respective
warehouses but both of them nonetheless seek to minimize their individual inventory holding costs. When
making the production-inventory plan within a stable sales cycle, the sales company (the leader) takes the
lead in developing an optimal inventory plan which considers the current market demand and implicit
reactions of other decision entities. The logistics center (the middle-level follower) then makes an optimal
inventory plan under the decision given by the sales company and considers the implicit production planning
of the manufacturing factory (the bottom-level follower). Lastly, the manufacturing factory makes the
production plan to minimize its own cost of production in light of the fixed inventory plans. The decision
process will not stop until the Stackelberg equilibrium among the decision entities is achieved. Consequently,
the example describes a typical tri-level decision-making problem in which decisions are sequentially and
repeatedly executed with all decision entities seeking to optimize their individual objectives until the
Stackelberg equilibrium is achieved.

In general, there are two fundamental issues in supporting such a tri-level decision-making process. One
is how to use a model to describe the decision-making process, which may manifest different characteristics
at the three decision levels, and the other is how to find an optimal solution to the problem. Whereas the
majority of studies on multilevel programming were focused on bi-level decision-making (also known as
bi-level programming) such as in [3, 5, 9, 10, 12, 14, 17, 31, 35], research on tri-level decision-making has
increasingly attracted investigations into decision models, solution algorithms and applications since it can
be used to deal with many decentralized decision problems in the real world. Bard [4] first presented an
investigation of linear tri-level programming and designed a cutting plane algorithm to solve such problems,
based on which White [32] proposed a penalty function approach for linear tri-level programming problems.
Fa®ca, Saraiva, Rustem and Pistikopoulos [11] studied a multi-parametric programming approach to solve
tri-level hierarchical and decentralized optimization problems. Yao, Edmunds, Papageorgiou and Alvarez
[34] built a tri-level optimization model for resource allocation in electric power network defense and
proposed a decomposition approach to find an optimal solution to the model. Recently, Alguacil, Delgadillo

and Arroyo [1] adopted a tri-level decision model to describe an electric grid defense planning problem and



solved it using a novel two-stage solution approach. Street, Moreira and Arroyo [27] developed a tri-level
decision model for energy reserve scheduling in electricity markets with transmission flow limits and found a
solution to it by a Benders decomposition approach.

Although numerous studies have been carried out, existing tri-level decision-making research has been
primarily limited to a specific situation in which one single decision entity is involved at each level.
However, more decision entities are often involved at the middle and bottom levels in a tri-level
decision-making case; these entities are called multiple followers. In the production-inventory planning
example, the sales company (the leader) may have several subordinate logistics centers (the middle-level
followers) and there may also be several manufacturing factories (the bottom-level followers) attached to
each logistics center. Moreover, multiple followers at the same level may have a variety of relationships with
one another. In our previous research [18], we developed 64 kinds of standard situations to describe various
relationships within multi-follower tri-level (MFTL) decision problems, such as the uncooperative
relationship, cooperative relationship, and semi-cooperative relationship. Such diverse relationships among
multiple followers will generate different decision processes which need to be described and solved using
different decision models and solution methods. As almost no research on MFTL decision-making has been
proposed apart from some limited discussion about programming models [18, 23], further investigation into
MFTL decision models together with solution methods is necessary and urgent. Furthermore, MFTL
decision techniques in real-world applications are crucially required.

This study considers an uncooperative situation where multiple followers at the same level make their
individual decisions independently but exchange information among themselves, which implies that
followers consider the decision results of their counterparts as references when making their individual
decisions. The situation is known as a reference-based uncooperative (or reference-uncooperative)
relationship, which is very common and popular among competitive or uncooperative decision entities in
some hierarchical organizations. For example, in the proposed production-inventory planning instance, the
independent logistics centers and factories may reference inventory or production plans determined by their
counterparts at the same level when making their individual decisions. More specifically, within MFTL
decision-making, if multiple followers at the same level determine their individual decision variables
independently but simultaneously take the decision results of their counterparts for references to optimize
their respective objectives, this can be called a reference-uncooperative MFTL decision problem. Solving
this kind of MFTL decision problem implies that we need to find an optimal solution known as a
Stackelberg-Nash solution to achieve not only the Stackelberg equilibrium in the tri-level vertical structure
but also the Nash equilibrium among multiple followers at the same horizontal level. To support such a
decision-making process, this paper will model this reference-uncooperative MFTL decision situation and
find an optimal solution to the model.

In addition, the optimal solution only means a compromised result for a MFTL decision problem, which
cannot reflect the operations of the complex MFTL decision-making process completely; that is, it is
imprecise or ambiguous for decision entities to evaluate the solution obtained whether or not they desire to in

real-world cases. It is necessary to find a practical way to identify the satisfaction of decision entities towards



the solution obtained by the MFTL Kth-Best algorithm. In terms of related research, Lai [15], Shih, Lai and
Lee [23] and Sinha [24, 25] have developed fuzzy approaches to identify the satisfaction of decision entities
and have obtained solutions to multilevel programming problems. Pramanik and Roy [21] have proposed
another fuzzy approach using linear goal programming to solve such problems. However, these fuzzy
approaches are limited to a special situation where decision entities from different levels share the same
constraint conditions with each other and the solutions obtained are not the compromised equilibrium. This
study will overcome this existing issue and extend these fuzzy programming approaches to evaluate the
solution obtained and analyze the decision-making process in the uncooperative MFTL decision situation.

The main contribution of this paper is twofold. First, it provides a general decision model and a solution
method with related algorithm to solve reference-uncooperative MFTL decision problems; and second, it
adopts a fuzzy programming approach to identify the satisfaction of decision entities towards the solution
obtained. We first present a linear MFTL decision model for the reference-uncooperative situation and
discusses related theoretical properties of the model. A MFTL Kth-Best algorithm is then developed to find
an optimal solution to the MFTL decision model and a fuzzy programming approach is used to evaluate the
solution obtained. Lastly, a detailed case study on production-inventory planning illustrates the proposed
MFTL decision-making techniques in applications.

The paper is organized as follows. Following the introduction, a general linear reference-uncooperative
MFTL decision model along with related theoretical properties are presented in Section 2. In Section 3, a
MFTL Kth-Best algorithm is proposed to find an optimal solution to the model. We then use a fuzzy
programming approach to analyze the satisfactory degree of decision entities towards obtained solutions in
Section 4. A case study and a related decision support system on production-inventory planning illustrate our

research in Section 5. Lastly, in Section 6, concluding remarks and further avenues of study are given.

2. Multi-follower tri-level decision model and related properties

This section will present the developed reference-uncooperative MFTL decision model and discuss

related theoretical properties.

2.1. A general reference-uncooperative MFTL decision model and related solution concepts
The organizational structure among decision entities in the three-level hierarchy that is studied in this

paper is shown as Fig. 1.

Leader
Middle-level | ... Middle-level
follower 1 follower n
| | |
Bottom-level | . | Bottom-level Bottom-level | | Bottom-level
follower 11 follower 1m, follower n1 follower nm,

Fig. 1. The organizational structure of the three-level hierarchy
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Let xe X =Ry, eY,cR%,z; eZ; <R denote the vectors of decision variables of the leader, the

middle-level follower i, and the bottom-level follower ij respectively where j=12,...,m;,i=12,...,n. We give
detailed definitions of the reference-uncooperative relationship as follows.

Definition 2.1 If the decision variables y,,..., Y1, Yix,-.-» Y, controlled by the counterparts of the
middle-level follower i are involved in its the objective function and constraint conditions apart from its
own decision variable y; and the decision variables X,z;,...,Z;, determined by the leader and the
bottom-level followers, this is a reference-uncooperative relationship among multiple followers at the middle
level.

Definition 2.2 If the decision variables Zzj,...,Zi(j_y), Zi(j+1)---» Zim, CONtrolled by the counterparts of the
bottom-level follower ij are involved in its objective function and constraint conditions apart from its own
decision variable z;;and the decision variables x and y; respectively determined by the leader and the

middle-level follower i, this can be called a reference-uncooperative relationship among multiple
bottom-level followers attached to the same middle-level follower i.

As we can see from Definitions 2.1 and 2.2, the reference-uncooperative relationship implies that each
decision entity at the middle or bottom level should consider decision results made by its counterparts as
references when determining its own decision variable to optimize its individual objective function. Based on
the definitions, we propose a general linear MFTL decision model together with the reference-uncooperative
relationship among both middle-level and bottom-level followers.

For  xeXxcR* , y,eY,cR% zijeZichkij , fO X XYy X XY, X Zyy XX 2y XX Z S RY
[P XYy %o XY, xZy % xZyy >R, X XY, xZy x.xZ >R, j=12,..,m , i=12,..,n, a linear
reference-uncooperative MFTL decision model in which one leader, n middle-level followers and m,

bottom-level followers attached to the middle-level follower i are involved is defined as follows:

min FO Y1 Yo Lo Ly e Zgeoer Zo ) = X+ Sd.y + i%eijzij (Leader) (1a)

xe " i=1 i=1j=1

s.t. Ax+Zn:Biyi +Zn: iCijzij <b, (1b)
i1 i=1 j=1

where Y;,zy,..., 2, (1=12,...,n), for the given (X, ¥1,..., Yi_1, Yis1s--- ¥n) , SOIve (1c-1f):

M0 XYy Yo T i) =X 30y, + 3hyz, (Middle-level follower i) (1c)
Yieti ' s=1 =1
n m;
St AXx+> Dyy + D Ejz; <b, (1d)
s=1 j=1

where Zj; (j=12,...,m,), for the given (X, Vi, Zis,--+ Zi(j1y, Zi¢js1)s--+ Zim, ) » SOIVeS (Le-1f):

i 69062 Zin ) = CX+ Py + t’“éqijtz“ (Bottom-level follower ij) (1e)
s.L. Ajx+ Py +ZIQijtZit <by, (1f)
t=1



where c,c;,c; R, d;, p; €R" , g, eR , e;,h, eRY , g R , AcR™ , A eR™, A eR"™, B eR™,
D, R™, P eR"™ ¢, cR™,E; eR™,Q, eR"™  ,beR",beR",b; eR" for j=12,...m, t=12..,m

i=12...,ns=12...,n
To find a Stackbelberg-Nash solution to the MFTL decision model (1), relevant solution concepts are

defined as follows based on the MFTL hierarchical structure.
Definition 2.3
(a) Constraint region of the MFTL decision model (1):

S={0& Yo Y Zagse oo iy vee s Zgeves Zp ) € X XHY X,HEZ'J AX+ZB Y +IZ]ZC”Z <b,
Ax+ ZD,SyS + ZE”Z <b;, Ajx+PByY; thmngijtzit <b;,j=12,...,m;,i=12,.,n}

(b) Feasible set of the middle-level follower i (i =1,2,...,n) and its bottom-level followers:

Si(X Yoree Vi Yistre-o Vo) ={(Vi s Zigs -1 Ziy ) €, ><11rﬂ:i[lzij :A1-x+§1Disys + ]_%'IEUZij <b, Ajx+ Ry, +lm§QijtZit <by, j=12,...m}.
(c) Feasible set of the bottom-level follower ij (j=12,...,m,i=12,...,n):

Sii O Vi Zigs o Zigjoay s Zigjuny -0 Zim ) =425 € Zij T AgX + By, +:H§Qijtzit <b;}
(d) Rational reaction set of the bottom-level follower ij (j=12,...,m;,,i=12,...,n):

By (X, Yis Zigse - Zigjay Zigisay -+ Zim ) =125 € Z5 1 7 eargmin] fij(s)(xa Yir Zinse s Zigjeays Zig Zigsay e Zim s

Zi; € Sii(X, Yir Zigs -+ Zigjaay Zigjaay o+ -+ Zim )

(e) Rational reaction set of all the bottom-level followers attached to the middle-level follower i
(i=12,...,n):

R yi)={(zy,---, Im)EHZI] zj € By (% Yis Zigs- - Zigjgy s Zijeyy o+ Zim ) S =12, i
(f) Rational reaction set of the middle-level follower i (i=1,2,...,n) and its bottom-level followers:
B Y1 Vi Yisrs o Ya) ={0Vi Zigso - Zim ) €4 leii[lzij (Yir Zigse -1 Zi, ) €@rgming £ (6 Yarr Vi T Yisase oo

yn’ﬁill o |m) (yI’ ilree |m)ES (X yl! lyi—llyi+1""lyn)1(ii11 o Im)EP(X yl)]}
(9) Inducible region (IR) of model (1):
IR={(X Yoo Vs Zagseeos Zampseoos Zamo o0 Zam ) SO0 Y e oy Yoo Zagseees Zamy o oo Zumy s+ 00 Zom, ) €S,

Yir Zigre s Zim) € BG Y10 Vi Yian -0 Yo ) 1 =120}
(h) Optimal solution set of model (1):

OS ={(X, Y1+ Yns Zatse s Zam s e os Zomy o0 Zom ) S (K Yoo s Vs Zas ooy Zamy v+ Zomy o+ +3 Zy ) € @FG MIN[

FO Y0 Yo Zugreeos Za oo Zogoeeos Zom ) 2060 Yoo Yo Zagsees Za oo s Zoga s Zo ) € IR



Based on related solution concepts, it can be concluded that the reference-uncooperative MFTL decision
model has the following features: (1) there are reference-uncooperative relationships among both multiple
middle-level followers and multiple bottom-level followers attached to the same middle-level follower; (2)

the leader has the priority to determine its decision variable x to optimize its objective function under the
constraint region S; (3) the middle-level follower i then determines its individual decision variable y; under
the feasible set S,(X,Yy,-..,Yig, Visss---» Y,) 1O react to the given decision (X, Vi,..., Y, Yisgr---»Y,) from
the leader and other middle-level followers; (4) the bottom-level follower ij determines its decision variable

z; under its feasible set  Sy(X, Vi, Zips- -0 Zijay) Zijugys--r Zim) 1O respond  to  the  decision

(X, Yis Zigs- -1 Zigjoayr Zijanyr-+ -0 Zim, ) Made by the leader, the middle-level follower i and its own counterparts;

(5) since each decision entity seeks to optimize its own objective function, the decision variable selection of

the bottom-level follower ij must be involved in its rational reaction set B (X, Y, iy, ..., Zi¢j 1) Zi¢juay -+ Zim )

which  ensures an optimal solution to problem (le-1f) under the given decision
(X, Yis Zigs- -+ Zigjay» Zigjoayo--- Zimy )+ (6) @S the decision of the middle-level follower i is affected by actions of

its bottom-level followers, it must consider implicit reactions of its bottom-level followers when making its

own decisions, thus, a Stackelberg-Nash solution (y;,z,...,z,) to the middle-level follower i and its
bottom-level followers must occur in their rational reaction set P.(x,y;,..., ¥; 1, Yiu1\---» ¥,) » Which can also be
considered as an optimal solution to problem (1c-1f) under the given decision (X, Yy,..., Yis Yiar--- ¥n) 3 (7)
a Stackelberg-Nash solution to all the followers under the given x by the leader must be involved in
POY={(Y1r- s Yas Zagse s Zam oo Zageoes Zom ) o (Vs Zinoo - Zin ) € B Vv Yicas Yigooon Yo )i =12,..,n} ; (8) as the
leader should consider implicit reactions of all the followers when making its own decisions, an optimal

solution (also known as a Stackelberg-Nash solution) to model (1) must occur over the inducible region (IR)

and the optimal solution set is expressed by OS.
2.2.Related theoretical properties

For the sake of developing an efficient algorithm to solve the MFTL decision model (1), we now turn our
attention to the geometry of the solution space shown as the following theoretical properties of model (1). To
ensure that the model (1) is well posed, it is necessary to make some assumptions about the MFTL decision
model as the basis for the existence of solutions.

(1) S is nonempty and compact.

(2) IR is nonempty.

(3) P(xy;) and P(x) have at most one solution respectively for each parameter (X,y;) and x, where

i=12,...,n.

Theorem 2.1 If the above assumptions (1-3) hold, there exists an optimal solution to the MFTL decision
model (1).

Proof. Since both S and IR are not empty, there is at least one parameter value x* and P(x") =< . Consider



a sequence {(X', Y1,--- Yns Zins--or Zim oo Zogs oo os Zom, Vs IR CONVEIGING 0 (X7, Y7 yee ey Vi Zigse e Ziy o-ves

v lpgr-

£

Zpgs- -+ Zom ) - Then, by the well-known results of linear parametric optimization, we have (yy,..., Y5, 233,

*

Zim e+ Zntoe-r Znp ) € P(X7) . Hence, IR is closed. Also, IR is bounded by IRcS and assumption (1).

Therefore, the inducible region IR is a nonempty and compact set. Furthermore, by assumption (3), the Nash
equilibrium (zj,...,z;,) among the bottom-level followers attached to the same middle-level follower i

*

o Dy s-- Znts - Znyy ) @Mong all the

(i=12,...,n) and the Stackelberg-Nash equilibrium (y;,...,y:, z5,..
middle-level and bottom-level followers are uniquely determined respectively for the given value (x",y;)

and X', which implies that the leader must optimize its objective over IR. According to the optimal solution
set OS in Definition 2.3(h), finding an optimal solution to model (1) is equivalent to solving the following

problem:

I (X Yy Vi ZagoeeosZa oo Zagoeeos Zom )26 Yareees Vi Zigaeon Zay oo Zge s 2oy ) € IR, )
Therefore, problem (2) consists of minimizing a continuous function over a nonempty and compact set IR,

which implies that there exists an optimal solution to the problem (2) that is also a Stackelberg-Nash solution
to the MFTL decision model (1). o

It is noticeable from the Theorem 2.1 that if the followers have multiple optimal solutions to respond to
the parameter value x of the leader, it will be difficult for the leader to realize its objective function value
prior to the determination of the optimal solution taken by the followers [19]. In this case, if the followers
cannot select the solution preferred by the leader, the leader may achieve its optimal solution outside IR,
which implies that the MFTL decision model (1) may not have an optimal solution. Therefore, to avoid this

situation in the presentation of solution algorithms, the assumption (3) is necessary.

Theorem 2.2 The IR can be expressed equivalently as a piecewise linear equality constraint comprised of
supporting hyperplanes of S.
Proof. First, define

Fi (X Yis Zigse o0 Zigoay s Zigjany - -+ Zim, ) = MIN{ Q255 2 Zi5 € S5 (X, Vi Zigs -+ Zigoay s Zijany s+ -0 Zim )

j=12,...,m;,i=12,...,n.
m R N N N
F Yoo Vit Yisar -0 Yo ) = Mi{ g5y + _Zlhijzij CViiZi s Zi ) € Si(Xy Yaoe oo Yicas Yiatse -0 Yn)s
j=
q'llill = FIJ(X’ 9i’2i1""’2i(j—l)’2i(j+l)""’2imi)’ j :1,2,...,mi},i :1,2,...,n.

Since  Fj(X, Vi, Zigs---s Zijay» Zigjaay -+ Zim ) €N be seen as a linear programming problem with parameters

X Yi and zy,..., Zi(jy Zigjaays -0 Zim » the dual problem of - F; (X, ¥i, Zig, ., Zijgy Zigjsayo--+ Zim ) €N bE written
as:

max{( A;x + Py ; + 1th QuiZin = byuy 1 QU =~y Uy =0}, j=12,...,m;,i=12,...,n. )
=’¢J

If both  F;(X, ¥i,Zig,- -+, Zigjay» Zigjeays---» Zim, ) @Nd problem (3) have feasible solutions, according to the dual



theorem of linear programming, both of them have optimal solutions and the same optimal objective function

value. We know that a solution to problem (3) occurs at a vertex of its constraint region
U;; ={(u;; : Qyuy = -0y, u;; = 0}. Adopting ujj,uj,. ,u:}"' to express all the vertices of U;;, problem (3)
can be written as:

nnx{(AjX+ y.+ Z Qut it — |) ulje{ulj’ ijre ﬁij}:j=1:21---:mi:i=1,2a---'n- 4)

Clearly, Fi(X, Vi, Ziy,---s Zi¢j-1) Zijsyr--+» Zim, ) 1S @ piecewise linear function according to problem (4).

In the next step, we prove that F(X, V..., Y1, Viur-- ¥Y,) 1S @lS0 a piecewise linear function. Suppose that
(24 2o 2 Do (28,250, 75y ) @FE SONUtiONS to the problem  {F;(x,y;, 2., 2y Zigaay -1 Zing )» § =12, M3}

for all i=12..,n . For each fixed i and a solution (z}i,z,...,z1 ) where t=12..5s ,

F (X Yis-eey Vi Yisgs---» Y,,) DECOMES @ programming problem with parameters X, Yy,..., Y1, Yisgs---» Y, and

(zi,2,...,z7 ) , and there are S; parameterized programming problems such as

ROV Yo Yionr Y g g yreers B Y Yoo Vo) gy - COMSidering. different

i Yforall i=12,...,n, therefore, there are f[si parameterized programming

i=1

problems E(x,yl,...,yi_l,yi+1,...,yn)|(z;ilyz;i2’_w2}nz). Similarly, F(X, Yi,--o Yigs Viagr-- ,yn)|( ) is

combinations of (z},z,..

’|m

also a piecewise linear function as F;(X, i, Zi,- -+ Zi(j_gys Zi(jeg)r-- -+ Zim ) - LaStly, according to the above

definition of F(X,Yy,..-, Yig: Yists--+» Yy , the inducible region (IR) can be rewritten as:

t t t, t, .
IR={(% Y1, s Yoo Zit oo Ly oo Ziree s Zy ) €S

g|yi+_zllhijzitji :Fi(xy ylxn-ryif]_iyi+1v~iyn)|(z_‘i 2 gt )1ti :112a X |a 12 }
j= 1152001 %imy

t t t t .
={(X, Yyreoor Yno Zs ey Ziy oo 2o 2y ) €S

GitYi = RO Yareo Yicws Vi oo Yo _Zilhijzit}=0,ti:1,2, ,Si,1=12,...,n}, (®)
J=

and it can be seen as a piecewise linear equality constraint for problem (2). o

Corollary 2.1 The MFTL decision model (1) is equivalent to optimizing f® over a feasible region

comprised of a piecewise linear equality constraint.

Corollary 2.2 An optimal solution to the MFTL decision model (1) occurs at a vertex of IR.

Proof. According to the equivalent form (2) of the MFTL decision model (1) and since
O (X Yarer Yo Zgree o a1 es Zogse o oy )i linear, an optimal solution to the problem must occur at a

vertex of IR if it exists. o

Theorem 2.3 An optimal solution (X", ¥ ,...,Yn,Z1,---, zfml,..., Zogyeo z:mn) to the MFTL decision model (1)



occurs at a vertex of S.
Proof. Let (X\,Yy....YniZipeeo Zig oo Zagseees Zog Dooees (X3 Vevos Vs g Ziy oo Zag oo 2 ) €XPIESS  the  distinet

vertices of S. Since any point in S can be written as a convex combination of these vertices, we can obtain

i i
(x ,yl,...,yn,211,...,zlm1,...,znl,...,znmn)=Zlér(xr,y{,...,y;,z{l,...,z{nh,...,zrﬁl,...,z;mn) where 35, =16, >0,
r= r=1

r=12,....,t and t <t. By the convexity of F (X", ¥;,.... Vi 1, Yii1--» ¥s), let us write the constraints of

model (1) in the piecewise linear form (5) discussed in Theorem 2.2:

m; .
0= Fi(X*’yI! . 1y| lvy|+1' vyn)l(z s aZin gllyl éhijzij
_F(Z5 (X yl! ’y|—11y|+1' vyn))|(z i g||25 yl Zh”(25r IJ)

t m;
< 25 F (X ylv 1y| l’y|+ll vyn)l(z 25 gllyl Z‘ié}(_zlhijzil})
r= J=

t m N -
= leé‘r(Fl (XI‘, y{"--a yir—li yir+11"'1 yr:) |(Zi*1vzi*2"”'zi*mr) _giiyir - _Z‘?Lhijzij)’l :1!2!---! n. (6)
r= d J=

By the definition of FOX Yoo Vit Yietse - Vi) |(Zisli ) , we have

RO YL Vi Yiewe o Y L e ) min( g;; y; + Zi:lhijzitji )<Y + _Zillhijziliir =12,...,t,i=12,...,n
1 J: J=

(zi1,2i>

Thus, FOX Y Vi Vi -- ’yn)|(zz . —0iYi — %hijzigSO,r:1,2,...,t',i:1,2,...,n. Because  the
il imj J.Zl

preceding expression (6) must be held with S, >0,r=12...,t , there must exist

FOX Y Vg, Vi, ,yn)|(z _ —0i Y — %hijzIJ 0,r=12,....§ 1=12..,n. These statements imply
1542 =

that (X", Y1, Yoo Zigseeos 2 oo Zagse o 2oy ) €IR, 1=1,2, T, and that (X, Yy, Yo Zitse o Zag oo Zagse s 2y ) CAN

be denoted as a convex combination of the points in the IR. Since (SR /TS A0 ACTONNY AR AT Ay is a

vertex of the IR according to Corollary 2.2, there must exist £ =1 , which implies that

s

(X Yr sy Yo Zigseees Za oo Znoeos Zo ) IS @ VEItEX OF S, O

*

Corollary 2.3 If (X", ¥ ,..es Vs Zigse e zl*ml,..., Zogseeos z,’jmn) is a vertex of the IR, it is also a vertex of S.

3. A MFTL Kth-Best algorithm

Theorem 2.3 and Corollary 2.3 imply that we can find an optimal solution to the MFTL decision model (1)
by enumerating vertices (also called extreme points) of the constraint region S, which clearly provide an
appropriate way to develop the following MFTL Kth-Best algorithm to solve the problem. According to the
notations and theoretical foundation respectively defined and demonstrated in Section 2, the main principle
of the MFTL Kth-Best algorithm is proposed as follows.

To begin, consider the following linear programming problem:

min{ cx + %diyi + %Z'leijzij S(X, Yareer Yor Zagoees Zay oo Zygoee o Zo ) € ST (7)
= i=1 j=

10



Let the vertices (X', Yy,...Vn ZiyooZig v ZopreeorZum Joeeer (XYL e Y0 20 ees i oo Zmge s 2y ) OF - the

constraint region S denote the N-ranked basic feasible solutions to problem (7), such that

I] !

oxk 4 3 d.yX +i%euzi§ gxk*1+idiyf*l+i%e kil | =12 N—1. Solving the equivalent problem (2) of
i=l i=lj=1 i=1l i=l]j

i=1j=1

model (1) is then equivalent to finding the index K*=min{k e{L2,....N}:(X,y{\ ... Vn. 2y n 2 ooo
Zys-r 2y ) € IR}, Which ensures that (X', y ...y} 2} ... 25 ... 2f ..., 2K, ) is an optimal solution
to model (1). Therefore, we need to verify whether or not (x*",y",...y<" 2} ....28 .2 o0zl )€ IR
under the condition (x*",y/ ..., y& 2 ...z oz i ) es I (v, 2%, Im)eP(x YR

v YKL, yK) forall i=12,...,n that means (yiK*,ZE*,...,zi'fn:) is an optimal solution to the problem

(1c-1f) under the fixed x=x*",y; =y, ., Via = V50 Via = Vit Vo = Y fOr i=12,...,n, there exists
Oy 2 e 22 ) e PO thus, 8y Ly a2 ) e IR by

Definition 2.3(g). As this requires finding the K*th best vertex of S to obtain an optimal solution to model

(1), the algorithm is named the MFTL Kth-Best algorithm.
Second, we need to verify whether or not (yf',zf ,....z5) e R(XX vy v ) through
solving problem (lc-1f). For i=12..,n and fixing the given x=x,y,=y< ..y, =yK,

Via =YY, = YK, (Lc-1f) can be seen as the problem (8) by Definition 2.3(f):

min{CiX+SZlgisys +_Zi:lhijzij CViiZi o Zim ) € B Yo Vi Yiso - Va3 )
= J=
For the given x=xy, =y . .y, =y, Vin= y,+1, ,yn:y,f* , consider the following linear

programming problem (9):
min{ ¢;x + Zlgisys + _zi:lhijzij SV Zigseeos Zim ) € Si 06 Yaoeees Yicas Yiaas -0 Ya)d )
S= J=

and the vertices (y;,zi,....Zim Do (Vi Zi' 1o Zint ) OF Si(X, Vit Vicgs Vg Vo) become the ranked

* « m;
basic feasible solutions to problem (9), such that cxX +igisys'< + Y+ Yz <
_ j=1

s#i

* n *
X+ 39,y + gy +Zh”zk+1, =12,...,N, -1, i=12,...,n. Solving problem (8) is then equivalent
5
to finding the index K;' =min{k, e{L2.....N}: (v, zff ...z ) € ROyl vyl v )}, which ensures that
(v, 2} ,...,2/¢) is an optimal solution to (Lc-1f) where i=1,2,...,n. If AN Im) vz ),

we can conclude that (y[",z5 ...,z ) e ROX v o v v v )

Before the detailed procedures of the MFTL Kth-Best algorithm are presented, the notations and indexes

used in the algorithm are explained in Table 1.

11



Table 1 Notations and indexes used in the MFTL Kth-Best algorithm

k Current iteration number for solving the MFTL decision model (1)

T The feasible vertices set of the constraint region S that has been searched for solving model (1)
W The feasible vertices set of the constraint region S that needs to be searched for solving model (1)
i The ith middle-level follower

n The total number of middle-level followers
W,  The adjacent vertices set of the current vertex (x*,yy....,yk,2fi,.... 280 ... 20 2k, ) OVEr'S

K* The iteration number when finding an optimal solution to model (1)

k. Current iteration number for solving problem (1c-1f) involving the ith middle-level follower and its
bottom-level followers
T, The feasible vertices set of S, (x,y;,-.., Y4, Vius---» ¥,) that has been searched for solving problem (1c-1f)
W, The feasible vertices set of S;(x,y,,..., Vi, Yiu---» ¥n) that needs to be searched for solving problem (1c-1f)
j The jth bottom-level follower attached to the ith middle-level follower

m. The total number of bottom-level followers attached to the ith middle-level follower

W, The adjacent vertices set of the current vertex (y z% . z%) over S;(X,V;,..., Vit Yistseees Yn)

' Eim;

K/ The iteration number when finding an optimal solution to problem (1c-1f)

The MFTL Kth-Best algorithm: The input is the coefficients of model (1), and the output is an optimal

solution to model (1) and the iteration number K*.

[Begin]

Step1l: Set k=1, adopt the simplex method to obtain an  optimal  solution
O Yereo Yo Zgee s Zig e en Zogoe o 2oy ) O the linear programming problem (7). Let T=2 and
W ={(X", Y11 Yoo Zigreeo Dy oo Zige i 2y )3+ Seti=1 and go to Step 2.

Step 2: Put X= X Y = yl, o Yia y,_l, Yig = y,+l, oYy = y,f , solve the problem (1c-1f) or problem (8)
and obtain an optimal solution (¥;,Z;,..., Im) using the following subroutine Step 2.1-Step 2.5.
Then go to Step 3.
Step 2.1: Set x=x" and k,=1, adopt the simplex method to obtain the optimal solution
(yh 2., Im) to the linear programming problem (9). Within the subroutine, let T, =&
and W/={(y\",z0,..., Im)} Set j=1 and go to Step 2.2.
Step 2.2: Put X=X Y, =V, 2y = 28" ... Zyj 1y = 21y Lijan) = Zighsny -2 Zim, = Zimt @ndl adlopt

the simplex method to solve the problem (10):

min{ ¢;;X + p;;; +§lqijtzit 125 € S5 (X, Vi Zigs -0 Zigjaay Zigjany -0 Zim )3 (10)

12



and obtain the optimal solution Z;.
Step 2.3: If Z; =z;%, go to Step 2.4. If Z; =z and j#m;, set j=j+1 and go to Step 2.2. If
Z; =z and j=m;, stop the subroutine, K=k and go to Step 2 with

(9i12i1’ . |mi) (yll'zll’ . m)

Step 2.4: Let W, denote the set of adjacent vertices of (yis,z%, .., 2%) that (Vi Zy,... 2 ) W

A im; 111
implieS GiX +zglsys +8iiYi +Zhljzlj >CX +Zg|sys + 0iYi +Zlhijziijki ! Let
s=1, s=1, j=1
T =T, U{(y}.25,..., m)} and W= (W/UW, )\T,. Go to Step 2.5.

Step 2.5: Set k; =k; +1and choose (y/,z%,..., Irn) such that ¢, x +Zg.sysk +g; Y +§i‘,hijzii,-k‘
j=1
= min{ c;x" + igisysk +0iYi + %hijzij :(Yir Zigye-0 Ziy ) €W} Setj=1and go to Step 2.2.
s=l, =
S#1

Step 3: If (9,240 20) # (V1 2300280 ), 90 to Step 4. If (9,2, 2, ) = (¥, 28, zi) and i=n, set

imy

i=i+1 and go to Step 2. If (Y,2y,...2,)= (yf,zf,...,25) and i=n , stop and

> Simy

(X YE o Yo 2 2y 1o 2, 20 ) s an Optimal solution to the MFTL decision model (1) and

K"=k.

Step 4: Let W, denote the set of adjacent vertices Of (X“,y),....Yp, 2 cs 2y veosZoge s 2y ) SUCH that

(Xiyli"'!yn’zll’ Zlml! !ani o nm )EWk Imp“es CX"’Zd y|+zzeuzu >CX +zd Y| +Zzeuzu'
i=1 j=1 i=1 j=1

Let T=TU{X Yoo Yo 2 2y o 2 2 )} @NA W = (W UW, )\T . Go to Step 5.

n m

Step 5: Set k=k+1 and choose (X, yy,.... Yu: 2y oes 2y seoer 2y ) such that cx +Zd RIS

nlr: ’nm
i=1 j=1

=min{cx+idiyi +i%eijzij SO Yareee Yoo Zags s Zay oo os Zi oo Zo ) €W3 Seti=1 and go to Step 2.
i=1 i=1j=1 "

[End]
Within the MFTL Kth-Best algorithm, Step 2 and its subroutine (Step 2.1-2.5) are adopted to obtain an
optimal solution to problem (1c-1f) of the ith middle-level follower and its bottom-level followers under the

given decision (X,Y;,..., Yi1s Yiss---» Y,) from the leader and other middle-level followers. Step 3 is

repeatedly performed to see whether or not the current vertex is an element involved in the IR. If the current
vertex occurs outside IR, the algorithm will go to Step 4 in which the adjacent vertices of the current vertex
will be found and added to the vertices set W that needs to be searched. Step 5 is developed to choose a
vertex from the vertices set W to optimize the objective function of problem (7) and prepare for the next

iteration to verify whether or not the vertex is an element of the IR.

13



We then use a simple numerical example, shown as the following Example 1, to illustrate how the MFTL

Kth-Best algorithm works. Also, we will illustrate the algorithm through a case study in Section 5.

Example 1 We assume that the example involves one leader, two middle-level followers and two
bottom-level followers attached to each middle-level follower, which means that n=2,m, =m, =2 in
model (1). For X ={x:x>0}Y; ={y; :y; >0}, Z; ={z; : z; 20}, j =1,2, i =1,2, coefficients of the decision

variables in model (1) are shown in Table 2.

Table 2 Coefficients of model (1) in Example 1

Coefficients of model (1)

Decision entity

Coefficients of objective functions Coefficients of constraint conditions
Leader c=-1, d1 =1, dz =-2, €y = 3, A= (1]1)T B, = (1,O)T B, = (110)1' .Cyy = (l,O)T ,
i ~hn =6 = Cp, =(20)7,Cy = (20)".C, = (LO)" b= (14,1.5)"
Follower 1 ¢, =101 =10, =Lhy, =1hy, =1 A =(20),Dy =@, Dy, = (10)" Eyy =@O),
E, =(10)",b, =(851)"
Follower 2 =10y =192 =2,y =1, =1 A, =(10)",D, =(-1-1)",D, =(L-1)",Ey =(1L0)",
E, =@0)",b, =(3-15)"
Follower 11 Cu1 =1 Py = 1 Oy = 2:Q112 =1 Ay = (—1,0)T Py = (—110)T Quy = (—1:1)T,
Q112 = (_210)T ’bll = (—10,3)T
Follower 12 Co =2, P, =105 =1,Gppp =1 Ay =(-1)7,P, = (-10)",Qpy = (-11)7,
Q].ZZ = (_111)T 'b12 = (—7,6)T
Follower 21 Cpy =1, Py =1,0pyy = 3,0y, =1 Ay = (-10)", Py = (-1)7,Qypy = (-11)7,
Q212 = (_210)T 1b21 = (—55,15)T
Follower 22 Coy =l, Py, = 2, Qg1 = 2, Uppp = -1 A22 - (LO)T , |:>22 — (1,0)T ,Q221 _ (111)1' ’

Qoo =(LY)7 by, =(4,25)"

Detailed procedures of the MFTL Kth-Best algorithm that are executed to solve the example 1 are shown
as follows.
Iteration 1
Step 1: Set k=1 and adopt the simplex method to obtain an optimal solution to the following linear
programming problem (11) in the format (7):

min{cx+édiyi +izzl:j22‘ieijzij SO Y1 Y21 2000 209,251, 2,5,) € ST (12)
The optimal solution to problem (12) is (X', Y1, V3,211,215, 231, 23) = (11,0.5,0.5,4.5,0,2) and now T =,
W={(1,1,0.5,0.5,4.5,0,2)}. Set i=1 and go to Step 2.

Step 2: Put x=x'=1, y, = y; = 0.5and solve the problem (12) of the middle-level follower i(=1) and its

bottom-level followers in the format (8):

2 2
min{ e, X+ GysYs + 20215 0 (Y1, 201, 215) € B(X, Y,)}- (12)
s=1 j=1

We can get an optimal solution (Y,,2,,,2,,) = (123) by Steps 2.1-2.5 of the MFTL Kth-Best algorithm and
go to Step 3.

14



Step 3: (Y,,2,25,) # (y1,241,21,) and go to Step 4.
Step 4: Find the set W, of adjacent vertices of (x' y! yi z,2.,2,,25,) and NOWw, ={(1,1,0.514,0,2.5),
(11,0.5,2,311.5),(1,1,0.5,2,3,0,2),(0,11.5,2.5,3.5,0,2),(0,1,0.5,2,4,0,2.5)} , T =T U{(11,0.5,0.5,4.5,0,2)} ={(1.1,0.5,0.5,4.5,0,2)} ,

w =w Uw, \T =w,. Go to Step 5.

Iteration 2

Step 5: Set k=k+1=2 and choose (x?,y?,ys,z2,25,25,2%) = (1,1,0.51,4,0,2.5) from the vertices set W such

2 2 2 .

that £©(x?,y7,y3, 281,25, 251, 23) = min{ox+ 2o d; Y + 202 €52y (% Y1, Va1 21 Zip, 21, 25,) €W} Seti=1 and
i=1 i=1 j=1

go to Step 2.

Step 2: Put x=x"=1, y,=y2=05 and solve the problem (12). We can get an optimal solution

(9,,2,4,25,) =(1,23) by Steps 2.1-2.5 of the MFTL Kth-Best algorithm and go to Step 3.
Step 3: (Y,,2,,25,) #(y2,24,2%) and go to Step 4.
Step 4: Find the set W, of adjacent vertices of (x?y? y2,23,25,25,2%) and now

W, ={(1,1,0.5,2,3,0,2.5),(0,1,1.5,3,3,0,2.5)}, T =T U{(1,1,0.51,4,0,2.5)} ={(1,1,0.5,0.5,4.5,0,2), (1,1,0.51,4,0,2.5)} ,

W =W UW, \T ={(1,1,0.5,2,311.5),(1,1,0.5,2,3,0,2), (0,1,1.5,2.5,3.5,0,2), (0,1,0.5,2,4,0,2.5), (1,1,0.5,2,3,0,2.5),
(011.5,3,3,0,2.5)}. Go to Step 5.

Iteration 3

Step 5: Set k=k+1=3 and choose (x*,v;,ys,z2,2},,25,25,) = (1L1,0.5,2,31,15) from the vertices set W such that

2 2

2 -
FOCC, Y Y520, 285,251, 25) = minf ox+ X d Y, + X €52y 1 (X, Yy, Va0 2311 212, 251, 25,) €W, set i=1 and go
i1 i1 =

to Step 2.

Step 2: Put x=x>=1, Yy, =ys =0.5and solve the problem (12). We can get an optimal solution
($1,2,1,25,) = (1,23) by Steps 2.1-2.5 of the MFTL Kth-Best algorithm and go to Step 3.

Step 3: Clearly, (¥,,2,,,2,,)=(y;,25,25)=(123) ,and i=n,seti=i+1=2 and go to Step 2.

Step 2: Put x=x*=1, y; = y: =1and solve the problem (13) of the middle-level follower i(=2) and its

bottom-level followers in the format (8):

s=1

We can get an optimal solution (Y,,2,,,7,,) =(0.51,1.5) by Steps 2.1-2.5 of the MFTL Kth-Best algorithm

2 2
min{ C,X+ > 955 Ys +Zh2j22j “(Y1y 201, 252) € P (X Y1)} (13)
i1

and go to Step 3.
Step 31 (Y5,241,25) = (¥5,23,,23,) = (0.511.5) and i=n=2, stop and (x°,y?,y3,2%,2,,23,,23,) = (11,0.5,2,311.5)

is an optimal solution to the example 1 and the iteration number K* =k =3.

We finally find an optimal solution to the Example 1 through three iterations, which means that we

enumerated three vertices to get an optimal solution. The objective function values of all decision entities are

15



f®=551f®=551f2=35f%=00f=8012=0fP=25. As we can see from the simple
numerical example, the MFTL Kth-Best algorithm provides a convenient way to solve this kind of
reference-uncooperative MFTL decision problem. However, there are still two practical issues in applying
the proposed MFTL decision model and Kth-Best algorithm to deal with MFTL decision cases in the real
world. One is that it is imprecise or ambiguous for decision entities to evaluate a solution whether or not
decision entities desire this through their respective objective values; the other is that it remains difficult and
inefficient to find an optimal manual solution if we have to search a mass of vertices using the MFTL
Kth-Best algorithm. Therefore, it is becoming necessary and urgent to propose an approach to recognize the
satisfactory degree of decision entities towards solutions, and develop a decision support system driven by
the MFTL Kth-Best algorithm to assist decision makers in solving such MFTL decision problems accurately
and efficiently. To overcome these issues, an evaluation approach of solutions using fuzzy programming will
be proposed in Section 4. In Section 5, we will deal with a real-world reference-uncooperative MFTL
decision problem by means of a tri-level decision support system driven by the proposed MFTL decision
techniques.

4. Evaluation of solutions

We are able to find an optimal solution for the MFTL decision model (1) using the proposed MFTL
Kth-Best algorithm based on related theoretical properties. However, it is difficult to illustrate the operations
of the complex MFTL decision-making process by the optimal solution defined by Definition 2.3 because the
solution only represents the decision result rather than the decision process. In this section, we will use a
fuzzy programming approach to evaluate the solution obtained and illustrate why decision entities have to
achieve and accept the final result during the MFTL decision-making process.

Within a MFTL decision-making process, each decision entity seeks to optimize its own objective but its
decision is affected by actions of others, thus, decision entities achieve a compromised result with a possible
relaxation rather than their individual best solutions as desired. Since it is imprecise or ambiguous for

decision entities to identify a compromised result whether or not they desire it, the objective functions can be
transformed into fuzzy goals using an imprecise aspiration level. We use f™" and f™* to denote the
individual best and worst results respectively that a decision entity may achieve. Finally, the compromised
f min f max

objective value of the decision entity must be involved in the interval [ ]. Therefore, we can elicit

membership functions x(f) to characterize fuzzy goals over the domain [f™", f ™]for the objective

functions, which can also be adopted to describe the satisfactory degree of decision entities towards a

solution or an objective value. For example, a decision entity specifies the objective value f° such that the
satisfactory degree is 0, that is (%) =0, while the value f'of the objective function such that z(f')=1
means that the satisfactory degree is 1. Clearly, if an objective value f is undesired (larger) than f°, it is
defined that s(f)=0; whereas u(f)=1 if an objective value f is desired (smaller) than f'. In this

study, for the sake of simplicity, we assume that f° and f' are specifiedas f%=f™ and f'=f™",

16


app:ds:efficiently

and that the membership functions are linear versions shown as Fig. 2 although they do not always need to

be linear. Also, note that in this research the satisfactory degree x(f)=1 if there exists f™" = f ™

u(ha

1.0

o

0 f f0
Fig. 2. Linear membership function
(1) The membership function of the leader
The individual best objective value of the leader is:

= ™ = mind £ 906 Yoo Yo Zugoeeo Zim e oes Zagreer Zom ) (6 Yoo oes Y Zagsees iy 1o Zig oo 2 ) €S-

The individual worst objective value is:

£O= £ = max{ £ (X, Yyroo Yo Zagreeor Zamy oo ZogoeeonZam ) 506 Yo Yoo g s Zamy oo Zagoe s Zo ) € ST

The corresponding linear membership function z(f®) is defined as:

0, fFO > §0
fO_ 0 o

ﬂ(f(l)): 1 10 fl<f(l)<fo, (14)
fl_f fO<f

1(f®) can be used to denote the satisfactory degree of the leader towards an objective value f©®.
#(f°) =0 implies that the satisfactory degree of the leader is 0 when the objective value f® = f°, while

the objective value f® = f* suchthat x(f')=1 means that the satisfactory degree of the leader becomes

1.
(2) The membership function of the middle-level follower i (i=1,2,---,n)
The middle-level follower i makes its decision under the given decisions (X*,Y,,..., Vi, Yiigs---s Yr)

from the leader and other middle-level followers, thus, its individual best objective value is:

f = £™" = min{ fi(Z)(X*yy;vu-;yi*—liyiiyi*+1!--wy;:izilw--vzim,):(yiizill"'izim,)Esi(x*'yfl"'!yi*—l’yi*+1""’y:)}‘

The individual worst objective value is:

f = fm :max{fi(Z)(X*!yf!'”'yi*—l'yi'yiil"”!y:'zil""'zimi):(yi!zil""’zimi)eSi(X*!yfl"’!yr—l!yr+1!"’!y:)}'
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The corresponding linear membership function  (f,) is defined as:

f(2>0’ £0 2 £,
i (£12) = ﬁ, fir < £ < £, (15)
! £ <l

We can use  (f?) to denote the satisfactory degree of the middle-level follower i towards an
objective value ;¥ . 4 (f,°)=0 implies that the satisfactory degree of the middle-level follower i is O

when the objective value f,® = f,°, whereas the objective value f® = f! such that s (f')=1 means

that the satisfactory degree becomes 1.

(3) The membership function of the bottom-level follower ij (j=12,...,m;,i=12,...,n)
The  bottom-level  follower ij makes its decision under the given  decision

(X Y53 Zise s Zigjoays Zigjsay -2 Zi, ) TrOm the leader, the middle-level follower i and its own counterparts,
thus, its individual best objective value is:
1 3 * * * * * * * *
fiy = fijmm = min{ f( (XY, 1 Zigy e+ Zigay o Zijo Zigjany re e o m) z; €S (X, Y7 2y cor Zigjaay Zigisny -+ Zim )3
The individual worst objective value is:

0 3 * k% * * *
fij =f'max—max{f()(x Vi Zitse oo Zigjays Zips Zigjaay e oo Zim ) 1 Zij € S (X7, Y73 Zigs e Zigoays Zigjaay o+ -+ Zim )1

The corresponding linear membership function z; (f; (3)) is defined as:

0 £ > £
®3) f"(s) - 1Eij0 (33 , 0
M,(f ) 1 o0 f < f < f” y (16)
fij = i f__(3) f__l
1’ i < ij*

We can also use g (f; ©) to denote the satisfactory degree of the bottom-level follower ij towards an
objective value f‘3). ,uij(fijo)zo implies that the satisfactory degree is 0 when the objective value

fi® = £, while the objective value ¥ = f! such that 4 (f)=1 means that the satisfactory degree is

1.

We use the proposed approach to evaluate the solutions enumerated in Example 1. For the leader,
fl=f™=f®1105054502)=3 and f°=f" ={®(010533,0,2.5) =95, thus, by the formula
(14) the leader’s satisfactory degrees are 1.0, 0.92 and 0.62 respectively towards the vertices
(<t yiyh,2h 7Y 28, 2h,) = (14,05054.502) , (X%, y2,y2,24.25,224,25) = (110514025 and (x°,y?,y3,z23,25,,
23,73,)=(1105,2,3115). By the formulas (15) and (16), the satisfactory degrees of multiple followers

towards each solution are presented in Table 3.
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Table 3 Objective values and corresponding satisfactory degrees of decision entities in Example 1

Leader Follower 1 Follower 2 Follower 11  Follower 12 Follower 21  Follower 22

Vertex
o u(f (1)) f1(2) i ( f1(2) ) fz(z) #( fz(z)) f1(13) Har( f1<13) ) f1(23) Hao ( f1(23)) fz(13) Ho( fz<13) ) fz(za) Hao( fz(zs) )

(1105054502 3.0 1.0 55 10 30 10 75 083 80 10 3.5 0 0 0.80
(110514,025) 35 092 55 10 35 067 80 067 80 10 4.0 0 -05 1.0

(110523115 55 0.62 55 1.0 35 067 90 10 80 1.0 0 1.0 25 10

As we can see from Table 3, the vertex (x*,y1,y3,21,,21,, 231, 23,) = (11,0.5,0.5,4.5,0,2) is the individual best
solution to the leader such that the satisfactory degree is 1.0, thus the leader anticipates that the followers can
select (Y1,Y,,211,215, 291, 2Z5,) =(1,0.5,0.5,4.5,0,2) to respond to its own decision x=1. Under the decision
x=1 given by the leader, the middle-level followers make their decisions (y,,Y,)=(1,0.5) as desired by
the leader, and they also desire that the bottom-level followers can react to the given decision
(x,¥1,Y,)=(@10.5) by determining (z,;,2,,,25,2,,) =(0.5,4.5,0,2) because their satisfactory degrees are
both 1.0 under the solution. However, in view of the given decision by the leader and the middle-level
follower 1, the bottom-level followers 11 and 12 will not choose the decision (z;,2;,) =(0.5,4.5) that are
desired by the leader and the middle-level follower 1 since they still have space to optimize their objectives

and improve their satisfactory degrees. Thus, (z;;,7;,)=(0.5,4.5) is not an optimal solution to the

bottom-level followers 11 and 12 and they will select (z;;,2;,) =(2,3) to achieve the highest satisfactory

degree 1.0, which also is the Nash equilibrium between them under the decision made by the leader and the

middle-level follower 1. Similarly, the bottom-level followers 21 and 22 will make the decision
(z51,2,5,) =(1.5) to respond to the leader and the middle-level follower 2. The leader and the middle-level

followers have to reduce their individual satisfactory degrees to bend to the increase in the satisfactory
degrees of the bottom-level followers throughout the MFTL decision-making process. In this way, the
decision entities finally achieve a an optimal solution (x°,y;,y3,23,z},23,23,) =(110.5,2,3115), under
which the satisfactory degrees of all the bottom-level followers go up to 1.0.

Although the satisfactory degrees of the leader and the middle-level follower 2 drop to 0.62 and 0.67
respectively, the numbers become the highest satisfactory degrees for them under the Stackelberg-Nash
equilibrium and the uncooperative relationship among all decision entities. In real-world cases, the situation
indicates that higher satisfactory degrees of the leader and the middle-level follower 2 cannot be achieved
under the current decision conditions unless they may persuade the bottom-level followers to cooperate with
them and to reduce the corresponding satisfactory degrees. For example, if the bottom-level followers 11, 21
and 22 are willing to accept their respective satisfactory degrees 0.83, 0 and 0.80, the solution to Example 1
would be (x',vyi,y3.21,,25, 251, 25,) = (1,1,0.5,0.5,4.5,0,2), which ensures that the corresponding satisfactory

degrees the leader and the bottom-level follower 2 rise up to 1.0. Otherwise, they have to adjust the current

decision context through changing objective functions or constraint conditions to generate a new round of the
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decision-making process. We will illustrate how to adopt the evaluation criterion to deal with real-world

MFTL decision problems through a case study in the following Section 5.

5. A case study: Production-inventory planning

In this section, we will use a case study on production-inventory planning to illustrate the proposed

MFTL decision techniques.
5.1. Case description

Nowadays, manufacturers usually work in a distributed or decentralized manner in a complex supply
chain network comprising of suppliers, sales and logistics companies, customers and other specialized
service functions [7]. Researchers as well as practitioners in manufacturing industries have placed
importance on developing production and inventory control capabilities to enhance their market position in
supply chain management [22], which demands that manufacturing enterprises have to make right decisions
on scheduling of their production and allocation of inventory to satisfy market requirements, shorten delivery
time and reduce total production costs [2, 8, 28]. Therefore, it is increasingly important to have efficient and
easily-applicable models and solution methods to describe and solve related production-inventory decision
problems [6, 13] although modeling deception in a real-world conflict situation is usually difficult [16].

In this section, we adopt the proposed MFTL decision techniques to handle a production-inventory
planning problem within a real-world conglomerate enterprise. The conglomerate is composed of a sales
company, two logistics centers and two manufacturing factories attached to each logistics center, which are
distributed throughout a three-stage hierarchical supply chain. The three-level hierarchical structure of the
conglomerate is shown in Fig. 3. Specifically, the sales company covers products marketing of the enterprise
and has an independent products warehouse to satisfy market demand and shorten time-to-market. Both
logistics centers also hold a certain amount of products inventory to respond to market requirements and
reduce the inventory pressure of the sales company. According to market requirements and the holding
inventories of the sales company and the logistics centers, the manufacturing factories are responsible for the

production organization involving making detailed production plans and executing production activities.

Sales Company

Logistics center 1 Logistics center 2
Factory 11 Factory 12 Factory 21 Factory 22

Fig. 3. Hierarchical structure of the conglomerate enterprise

The decision situation we study in this paper is described as follows. During a peak season of products
sales, the market requirements exceed the normal supply capacity of the enterprise so that four
manufacturing factories have to organize overtime production. The sum of overtime outputs produced by

four factories and safety stocks held by the sales company and two logistics centers are demanded to satisfy
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the exceeded market requirements. The more safety stocks imply the fewer overtime production outputs, but
also mean the more inventory holding costs. Under the given market requirements, the decision entities
distributed throughout the three-level hierarchy try to minimize their individual costs by considering their
own constraints and implicit decisions made by other decision entities. More specifically, the sales company
at the top level has the priority to determine its safety stock to minimize its inventory holding cost by
considering the given market requirements and implicit reactions of other decision entities. In view of the
decision made by the sales company, the logistics centers at the middle level then determine their individual
safety stocks to minimize their own inventory holding costs by considering their own constraints and implicit
reactions of their subordinate factories. Finally, each manufacturing factory at the bottom level makes
overtime production plans in the light of the inventories held by the top and middle levels.

Furthermore, to reduce the total cost of the conglomerate, the conglomerate anticipates that decision
entities whose inventory holding cost or overtime production cost is lower are able to keep more inventories
or manufacture more production outputs. Thus, the conglomerate makes some management strategies to
intervene and reconcile the decision process of its subordinate decision entities. For example, the
conglomerate claims that each logistics center should take the inventory determined by the other logistics
center as a reference when making its own decisions. If the inventory of a logistics center is less than the
other, it means the less inventory holding cost but implies that the logistics center is demanded to undertake
an opportunity cost for its own decision on holding less inventory. Also, each factory needs to reference the
production plans made by other counterparts attached to the same logistics center when making its own
production plans. If the production outputs of a factory are less than the other, it means the less overtime
production costs but implies that the factory needs to cover an opportunity cost for its own decision on less
production outputs. In addition, the sales company is demanded to afford the marketing cost and backlogging
cost of the conglomerate. However, to reduce the total cost to the sales company, the conglomerate demands
that both logistics centers must share part of the inventory holding cost and compensate for the marketing
cost of the sales company. Similarly, to reduce the pressure of overtime production, the factories at the
bottom level are also demanded to compensate the inventory holding cost of their superior logistics center to
encourage it to keep more safety stocks. Therefore, under the current decision situation, the decision entities
will try to minimize their individual overall costs by making their individual decisions, and the decision
processes are executed sequentially, interactively and repeatedly within the tri-level hierarchy until the
Stackelberg-Nash equilibrium is achieved among them.

This case clearly describes a MFTL decision process which includes one leader (the sales company), two
middle-level followers (the logistics centers) and two bottom-level followers (the manufacturing factories)
attached to each middle-level follower. The leader, the middle-level followers and the bottom-level followers
make their individual decisions in sequence, and each decision entity cannot control decisions of the others
but is affected by their reactions. It is noticeable that the multiple middle-level and bottom-level followers
also consider decisions made by their counterparts as references, which implies a reference-uncooperative
relationship among the multiple followers at both the middle and bottom levels. The case can thus be

considered as a reference-uncooperative MFTL decision problem.
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In the light of the above problem description, let n=2 be the number of logistics centers, and i be the index

for logistics centers, i=1,2; while let m, =2be the number of manufacturing factories attached to the

logistics center i, and j be the index for manufacturing factories, j=1,2. To model the problem

conveniently, related notations of decision variables and some key parameters in the scenario are shown in

Table 4.

Table 4 Symbols for decision variables and parameters employed

Symbols and Indexes

X

Yi
Z
a,a

a

b,b,
C
d;,d

i Hij

ee;,e

|i1ij

e

pw
ei (]

0;

Q;

r,r

The safety stock controlled by the sales company
The independent safety stock determined by the logistics center i

The overtime production plan determined by the factory ij

The inventory holding cost per unit of the sales company and the logistics center i

The overtime production cost per unit afforded by the factory ij

The marketing cost per unit of the sales company and the compensation cost per unit that the logistics
center i has to pay for the marketing cost of the sales company

The products backlogging cost per unit that is paid by the sales company

The opportunity cost per unit of the logistics center i and the factory ij

The proportion of the inventory holding cost of the sales company that is respectively shared by the
sales company, the logistics center i and the factory ij

The proportion of the inventory holding cost of the logistics center i that is respectively shared by itself
and the factory ij

The exceeded products requirements of the market

The minimum inventories sum of all safety stocks anticipated by the sales company

The logistics center i must hold that the products sum of its own safety stock, the overtime production
outputs of its lower-level factories and the safety stock of the sales company does not exceed g;

The factory ij must satisfy that the products sum comprised of its own and its counterparts’ production

outputs and the safety stocks of the sales company and the logistics center i exceeds g

The maximum safety stock of the sales company and the logistics center i

The maximum overtime production outputs of the factory ij

5.2. Model building

Based on the above decision conditions and strategies, the MFTL decision model of the case is

established as follows in the form of the general model (1) proposed in Section 2.1.

(1) The decision problem of the sales company (top-level leader)

2 2 2 2 2
miQ fO(x, Y1s Va1 Zi1s 2125 2915 Z3p) = @8X+Dp+C(X+ 2 Y; +ZZZU -p)-2b(y +Zzij) (17a)
xe i1 i=L j=L i-1 =
2 2 2
St X+ yi+>27,2p, (17b)
i=1 i=1 j=1
2
X+2Y; >4, (17c)
i=1
0<x<r. (17d)
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The sales company’s objective function (17a) involves its safety stock’s inventory holding cost aex, the

2 2 2
marketing cost bp, the backlogging cost c(x+>y; +2°3°2; =) and the minus marketing compensation
i=1 i=1 j=1

2 2
cost > by (y; +Zzij)derived from the logistics centers. Constraint condition (17b) means the upper bound of
i=1 =1
the products sum of all safety stocks and overtime production outputs of all manufacturing factories, while
constraint condition (17¢) implies the upper bound of the sum of all safety stocks. Constraint condition (17d)

represents the lower and upper limits to the sales company’s safety stock.

(2) The decision problem of the logistics center (middle-level follower) i for i=1,2

2
mig @ (X V1, Y2, 24, 2,,) = aeP"y; +d, Ay, +ae x+b (y, +Zzi,-) (17e)
Yi€Yi j=1
2 2
SLoX+2 Y+ 2; <0, (17)
i1 =i
0<y; <r,. (179)

The objective function (17e) of the logistics center i involves its safety stock holding cost aey;, the

opportunity cost d,Ay;, the shared inventory holding cost ae,x of the sales company’s safety stock and the
marketing compensation cost b (y, + izij) paid to the sales company. Note that Ay, =y, -y, and
j=1

Ay, =y, — Y, . Constraint condition (17f) reflects the upper bound of the products sum consisting of all safety

stocks and the overtime production outputs of the manufacturing factories attached to the middle-level
follower i. Constraint condition (17g) represents the lower and upper limits to the safety stock of the logistics

center i.

(3) The decision problem of the manufacturing factory (bottom-level follower) ij for j=1,2, i=1,2

anllgj DX, .24, 2;,) = 3 Z;; + Az, +ae;x +a;ef"y; (17h)

2 -

StoX+y;+2.2; >0y, (17i)
=

0<z, <r,. 7))

The objective function (17h) of the manufacturing factory ij involves its overtime production cost&;;z;; ,

the opportunity cost dijAz and the shared inventory holding cost ag;X and aieiﬁ’wyi respectively for the

ij
safety stocks of the sales company and the logistics center i. Note that Az, =z,, —z;;and Az, =z;; —7;,.
Constraint condition (17i) reflects the upper bound of the products sum consisting of overtime production
outputs of the manufacturing factories attached to the logistics center i and safety stocks of the sales
company and the logistics center i. Constraint condition (17j) represents the lower and upper limits to the

overtime production outputs of the manufacturing factory ij.
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This MFTL decision model (17) describes the real-world production and inventory decision problem
which is a concretization of the general model (1) proposed in Section 2.1. We then adopt the MFTL

Kth-Best algorithm to solve the model by a numerical experiment.
5.3. Numerical experiment and results analysis

This section shows the computational results achieved by the proposed MFTL Kth-Best algorithm and
evaluation of solutions. The experimental data employed for the model (17) is provided in Tables 5-7.

Table 5 Data for the sales company

a b C e p q r

5.0 2.0 2.0 0.20 9.0 3.5 2.5

Table 6 Data for the logistics centers

i 2l b; d; & e’ Qi fi
1 4.0 1.0 4.0 0.20 0.50 8.0 1.0
2 4.0 3.0 4.0 0.20 0.50 6.0 0.50

Table 7 Data for the manufacturing factories

i J 3 di & & G fj
1 1 10 20 010 025 70 30
1 2 30 20 010 025 70 30
2 1 20 30 010 025 40 10
2 2 40 30 010 025 40 20

We use a tri-level decision support system to build the mathematics formula of model (17) based on the
experimental data in Tables 5-7, shown as Fig. 4.
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Fig. 4. Model building of the MFTL decision problem

The tri-level decision support system driven by the MFTL Kth-Best algorithm then finds an optimal
solution (also called a Stackelberg-Nash solution) to the model (17) shown in Fig. 5, which clearly shows

that a solution is attained at the vertex (X, Yy, Y,,Z11, 210,251, 25) = (21,0.53110.5) and the objective
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values of all decision entities are f® =9.0,® =70, f? =11.0, £ =1.0, £ =9.0, £ =20, 1L =50.
Fig. 5 also displays that an optimal solution is found after 12 iterations and the computing process has spent
862 milliseconds of CPU time. 12 iterations imply that we must search 12 vertices at least to find an optimal
solution, and this task would take a long time if the computing was conducted manually as well as solving
the Example 1 in Section 3. The convenience of a decision support system is its very short computing time
especially for solving complex MFTL decision problems in applications. Also, the decision support systems
can output the detailed computing process driven by the MFTL Kth-Best algorithm, which can help us to
analysis the satisfactory degree of decision entities towards solutions and can provide references for decision
conditions adjustment in the real-world case. In addition, the web-based decision support system has another
advantage that it can be integrated with other application systems commonly implemented in manufacturing
enterprises, business organizations and governments, such as ERP, MES, e-business systems and common
service platforms, which provides an opportunity to share data with other systems and support the
decision-making of other systems. In this way, the tri-level decision support system is able to be a convenient
means of decision-making in applications.
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ReLogin [ Exit |

Fig. 5. Computing results display of the MFTL decision problem

The detailed computing process driven by the MFTL Kth-Best algorithm is shown in Table 8 which

includes related data and parameters generated in the computing process. Specifically, Table 8 presents the
vertex s“that is searched in the current iteration k, and the adjacent vertices set W, of the current vertexs® .

T represents the set of vertices that have been searched in the past iterations while W is the set of vertices that
are needed to verify whether or not an optimal solution occurs inside in the following iteration. Following

procedures of the MFTL Kth-Best algorithm, we finally obtain an optimal solution after 12 iterations. Note
thatw, =&, W, = @andW,, = in Table 8 do not mean that adjacent vertices of s’,s®and s'do not

exist, but imply that their adjacent vertices have been found in previous iterations and have been involved in
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W.

Table 8 The detailed computing process of the MFTL Kth-Best algorithm

lteration k  s*=(x*, v, y%, 28,25, 25, 2%) W, T w
1 (2,1,0.5,1,3,0.5,2) {(2.5,1,0,0.5,3,0.5,2), (s} W,

(2,1,05,1,3,0,2),
(2.5,1,0.5,0.5,3,0,2),
(2,1,05,3,1,0.5,2),
(2,1,05,1,3,1,1.5),
(2.5,05,0.5,1,3,0.5,2)}
2 (2,1,05,3,1,0.5,2) {(2.5,1,0,3,0.5,0.5,2), {s',5?} W UW)\T
(2,1,05,3,1,0,2),
(2.5,1,0.5,3,0.5,0,2),
(2,1,05,3,1,1,1.5),
(2.5,05,0.5,3,1,0.5,2)}
3 (2,1,05,1,3,1,1.5) {(2.5,1,0,0.5,3,1,1.5), {s',s%,5°} W UW)\T
(2.5,0.5,0.5,1,3,1,1.5),
(2.5,1,05,0.5,3,1,1),
(2,1,05,1,3,1,0.5)}
4 (2,1,05,3,1,1,1.5) {(2.5,1,0,3,0.5,1,1.5), {s's%,s%s*} W UW)\T
(2.5,0.5,0.5,3,1,1,1.5),
(2.5,1,05,3,0.5,1,1),
(2,1,05,3,1,1,0.5)}
5 (2,1,05,1,3,0,2) {(2.5,1,0,05,3,0,2), {s',s%,s°s%,5°} W UW )T
(2.5,05,0.5,1,3,0,2),
(2,1,05,1,3,0,1.5)}
6 (2,1,05,3,1,0,2) {(2.5,1,0,3,0.5,0,2), {s',s?,5%,s%5% 5%} W UW)\T
(2.5,05,0.5,3,1,0,2),
(2,1,05,3,1,0,1.5)}

7 (2.5,0.5,0.5,1,3,0.5,2) %) {s',s?s%s%s%s%s"} W UW )T
8 (2.5,0.5,0.5,3,1,0.5,2) (%) {s',s?,s%,s%,s%,s% s} W UW)\T
9 (2.5,0.5,0.5,1,3,1,1.5) {(2.5,0.5,0.5,1,3,1,0.5)} {s',s%,s%s%,s% %% s°} W UW)AT
10 (2,1,0.5,1,3,1,0.5) (%) {s!,s%,s% 5% 5% 5% s 5% s} W UW)\T
11 (2.5,0.5,0.5,3,1,1,1.5) {(2.5,0.5,0.5,3,1,1,0.5)} {s',s?,s% 5% 5% s s8 5% s s} W UW)\T
12 (2,1,05,3,1,1,0.5) -

Table 9 displays the objective values of all decision entities respectively towards each solution
enumerated by the MFTL Kth-Best algorithm, while Table 10 shows the corresponding satisfactory degrees

that are computed by the formulas (14), (15) and (16). As we can see from Table 9, under the current

decision context within the conglomerate enterprise, (X',Vi,VY3,2i, 215,231, 23,) = (21,0.513,05,2) ,
(x%,y2,y%,22,25,22,2%,) = (210531052) , (x*,y7,y5,23,,23,,25,,25,)=(210513115) and (x*,y;,y;,

21,255,251, 25,) = (21,0.531,1,1.5) are the individual best solutions to the leader (the sales company), which

implies that the leader anticipates that the middle-level and bottom-level followers (the logistics centers and
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manufacturing factories) can choose (yi,y:,zi,,7,,75,75) =(10513052) , (y2,Y5,2,25,25,,25,) =

1,0531052) , (¥7.ys.z0.25,23,,23,) = (1,0513115) or (y! yi z}. 2}, 25.25)=(10531115) to
respond to itself after it determined x=2. However, it can be seen from Table 10 that the middle-level
follower 2 and the bottom-level followers 11, 21, and 22 cannot always achieve individual best satisfactory

degrees if they make the decisions desired by the leader. In the reference-uncooperative decision situation,
the followers will choose (yi2,y32,z2, 222, 222,222) = (10.5,311,0.5) to react to the leader’s decision x=2

such that their satisfactory degrees all grow up to 1.0.

Table 9 Solutions and objective values of decision entities

lteration k Vertex s* F £ £ £ £ £ £.9
1 (2,1,0.5,1,3,0.5,2) 8.0 7.0 14.0 7.0 7.0 7.0 5.0
2 (2,1,0.5,3,1,0.5,2) 8.0 7.0 14.0 1.0 9.0 7.0 5.0
3 (2,1,05,1,3,1,1.5) 8.0 7.0 14.0 7.0 7.0 5.0 6.0
4 (2,1,05,3,1,1,1.5) 8.0 7.0 14.0 1.0 9.0 5.0 6.0
5 (2,1,05,1,3,0,2) 8.5 7.0 125 7.0 7.0 7.5 35
6 (2,1,05,3,1,0,2) 8.5 7.0 125 1.0 9.0 7.5 35
7 (2.5,0.5,0.5,1,3,0.5,2) 9.0 8.0 125 6.75 6.75 7.25 5.25
8 (2.5,0.5,0.5,3,1,0.5,2) 9.0 8.0 125 0.75 8.75 7.25 5.25
9 (2.5,0.5,0.5,1,3,1,1.5) 9.0 8.0 125 6.75 6.75 5.25 6.25
10 (2,1,05,1,3,1,0.5) 9.0 7.0 11.0 7.0 7.0 2.0 5.0
11 (2.5,0.5,0.5,3,1,1,1.5) 9.0 8.0 125 0.75 8.75 5.25 6.25
12 (2,1,05,3,1,1,0.5) 9.0 7.0 11.0 1.0 9.0 2.0 5.0

More specifically, for the given decision (x,y,)=(21) by the leader and the middle-level follower 1, the
bottom-level followers 11 and 12 achieve a Nash equilibrium solution (z,,,z,,)=(31) to respond to the

leader and the middle-level follower 1. Similarly, for the given decision (X,y,)=(2,0.5) by the leader and
the middle-level follower 2, the bottom-level followers 21 and 22 achieve a Nash equilibrium solution
(z4,2,,)=(0.5) to respond to the leader and the middle-level follower 2. Therefore, (y;,z,,,2,) =132
and (Y,,2,,2,)=1(0.510.5) are Stackelberg-Nash solutions respectively for the middle-level follower i
(i=1,2) and its bottom-level followers under the given decision x=1 by the leader. Also, for the given
decision x=2 by the leader, (y,,Y,)=(10.5) is a Nash equilibrium solution for the middle-level followers
while taking into account implicit reactions of their respective bottom-level followers. Therefore,

(X2 Y2, Y5 T, 15, 75 7) = (2,1,0.5,31,1,0.5) is a Stackelberg-Nash solution to the production-inventory
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planning problem.

Table 10 The satisfactory degree of decision entities towards solutions

lteration Leader Follower 1 Follower 2 Follower 11 Follower 12 Follower 21 Follower 22

k frOF0 u(f®) f1l flo #1(f1(2)) le f2O #z(fz(z)) f111 fﬁ /111(f1(13) f112 f1g #12(f1(23)) f211 f201 #21(f2(13) lez f202 ﬂzz(fz(;)

1 8.0 115 1.0 7095 10 11.0 15.0 0.25 50 70 O 70 7.0 1.0 65 75 05 40 50 O

2 8.0 115 1.0 7095 10 11.0 15.0 0.25 1.0 1.0 10 9.0 110 10 65 75 05 40 50 O

3 8.0 115 1.0 7095 10 11.0 15.0 0.25 50 70 O 70 7.0 1.0 50 6.0 1.0 50 65 033

4 8.0 115 1.0 7095 10 11.0 15.0 0.25 1.0 1.0 10 9.0 110 10 50 6.0 1.0 50 65 033

5 8.0 115 086 7.0 95 1.0 11.0 15.0 0.63 50 70 O 70 7.0 1.0 65 75 0 30 35 O
6 8.0 115 086 7.0 95 1.0 11.0 15.0 0.63 1.0 1.0 1.0 9.0 110 1.0 65 75 0 30 35 0
7 8.0 115 071 7.0 95 06 8.0 135 0.18 4756.75 0 6.756.75 1.0 6.757.75 05 375525 0

8 8.0 115 071 7.0 95 06 8.0 135 0.18 0.750.75 1.0 8.7510.75 1.0 6.757.75 05 375525 0

9 8.0 115 071 7.0 95 06 8.0 135 0.18 4756.75 0 6.756.75 1.0 525625 1.0 4756.75 0.25

10 8.0 115 071 7.095 10 11.015.0 1.0 50 70 0 70 7.0 1.0 20 20 10 50 65 1.0

11 8.0 115 071 7.0 95 06 8.0 135 0.18 0.750.75 1.0 8.7510.75 1.0 525625 1.0 4756.75 0.25

12 8.0 115 071 7.095 10 11.015.0 1.0 1.0 1.0 1.0 9.0 110 1.0 20 20 10 50 65 1.0

Although the Ileader’s satisfactory degree has dropped to 0.71 under the solution
(X2, yi2, 3 717, 235, 255, 735 ) = (2,1,0.5,31,1,0.5) , the leader cannot obtain a better objective value or a higher
satisfactory degree by moving away from the vertex over the inducible region (IR) under the
Stackelberg-Nash equilibrium among all decision entities. Also, it is noticeable that each follower and its
counterparts have to achieve the Nash equilibrium when making their individual decisions, because their
decisions are interactively affected by each other. Therefore, within the real-world case study, the
Stackelberg-Nash solution (x'?,y1%,v3, 217, 217, 250, Z35) = (2,1,0.5,3,1,1,0.5) is the optimal solution to the
MFTL decision model (17), which means a final compromised result among all decision entities under the
current decision context in the conglomerate enterprise. This MFTL hierarchical decision situation indicates
that the leader may not achieve an individual optimal solution under the constraint region even though it has
priority in making decisions, since its decisions are determined by implicit reactions of the followers.
Moreover, the decision process and results of an MFTL decision problem are affected by the
reference-uncooperative relationship among multiple followers at the same level. In summary, the proposed
MFTL decision techniques provide an effective way to model and solve real-world MFTL decision problems
and to recognize the satisfactory degree of decision entities towards solutions.

Furthermore, by the optimal solution, we can analyze whether or not the conglomerate employed practical
and effective management strategies to balance the production-inventory planning among its subordinate
sales company, logistics centers and manufacturing factories. Based on the given experimental data in Table
5, the contrastive analysis between the upper limits to the holding inventory or overtime production capacity

of each decision entity and the final solution is shown as Fig. 6. It can be seen from Fig. 6 that the holding
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inventories of the logistics centers peak at their respective upper limits. Also, the production outputs of the
manufacturing factories 11 and 21 reach their maximum overtime production capacities respectively. In
contrast, the holding inventory or overtime production outputs of other decision entities are less or much less
than their corresponding upper limits. These results indicate that decision entities whose inventory holding
cost or overtime production cost is lower prefer to keep more inventories or manufacture more production
outputs under the current decision context, which is exactly desired by the conglomerate as presented in
Section 5.1. Therefore, the current management strategy implemented by the conglomerate is an available
way to balance the production-inventory planning throughout the three-stage supply chain with conflicting
objectives of decision entities.

m Decision results = Upper limits to decision variables

25
2 -
15 ~
1 -
0.5 -
. N

Leader Follower 1  Follower 2 Follower 11 Follower 12 Follower 21 Follower 22

Decision entities

Fig. 6. The contrastive analysis of results

5.4. Further discussions

This section will discuss in depth characteristics of the MFTL Kth-Best algorithm and the evaluation
criterion defined by fuzzy programming. Also, we will analyze limitations to our research and address future
studies.

Table 8 clearly shows that we finally find an optimal solution by completing the enumeration of 12
vertices, of which most (8 in 12) are accompanied by the same decision made by the leader and the

middle-level followers, which implies that the search approach of the MFTL Kth-Best algorithm is easily
convergent. Also, only a few data involving W, , T, and W are necessary to write down within the algorithm

operation. We can also observe the features of the algorithm through computing Example 1 in Section 3.
Thus, the MFTL Kth-Best algorithm can be carried out efficiently because each successive pair of points is
adjacent. Moreover, note that the other 11 vertices searched, apart from the optimal vertex 12, are all feasible
solutions to the MFTL decision problem even if they cannot be an optimal solution. The property gives us
another advantage of the MFTL Kth-Best algorithm in that the upper and lower bounds on an optimal
solution are generated by the procedure even if storage or computational limits are reached before

convergence. However, when plenty of followers are involved at the middle and bottom levels or a large
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number of decision variables and constraints exist, the execution efficiency of the algorithm may experience
a steep decline as superabundant vertices are needed to complete the search. Our future research will explore
the performance of the MFTL Kth-Best algorithm through sufficient numerical experiments.

It is noticeable from Tables 9 and 10 that the middle-level follower 2 obtains the same individual

objective value 12.5 at the vertices s° and s’; however, following this, the decision entity achieves two
different satisfactory degrees 0.63 and 0.18 respectively. Also, note Table 3 in Section 4 that the objective
value of the bottom-level follower 11 in Example 1 becomes worse from 7.5 to 9.0; however, following this,
the corresponding satisfactory degree increases from 0.83 to 1.0. Evidently, it is not a positive correlation
between the objective value and the corresponding satisfactory degree for followers. In this case study, the
situation means that the feasible set and the rational set of the middle-level follower 2 are changed as the
leader and the middle-level follower 1 change their decisions (x,y;)=(21) to (X Y,)=(2.50.5) .

Therefore, the satisfactory degree can be considered as a relative but not an absolute evaluation criterion as
individual best and worst objective values of each decision entity would vary with the changing externalities
determined by others, which clearly reflects the characteristic of the MFTL hierarchical decision-making
process.

In this study, we focus on the reference-uncooperative relationship within a three-stage supply chain
comprised of one leader and multiple followers. All decision entities have to achieve a Stackelberg-Nash
solution under the current decision conditions within the three-stage supply chain. Thus, under the
uncooperative situation, decision entities have to adjust the current decision context through changing
objective functions or constraint conditions to generate a new round of decision-making processes if they
desire to improve their respective satisfactory degrees. However, all decision entities that are distributed
throughout a conglomerate enterprise may have chances to cooperate with each other and achieve an
agreement on their decisions in the real world. For example, if the leader desires to improve its own
satisfactory degree, it may persuade the middle-level follower 2 and the bottom-level follower 22 to react to
others’ decisions (X, Y;,211,215,25,) =(21131) by determining their own decisions (y,,z,,)=(0.51.5)
such that the leader can achieve its individual best solution, vyielding the solution
(X, Y1, Yo 240, 2 T, 29,) = (21,0.51,31,1.5) . Thus, definitions of the satisfactory degree provide a practical
way in finding some possibly satisfactory solutions but not just a Stackelberg-Nash solution to a MFTL
decision case in the real world, because the satisfactory degree can be considered as an evaluation criterion
that can be adopted to recognize a solution whether or not decision entities desire it. Also, the evaluation
criterion provides an available approach to solve a MFTL decision problem without a Stackelberg-Nash
solution. As we discussed above, if decision entities are willing to cooperate with each other, we can find a
satisfactory solution through recognizing the satisfactory degree of decision entities. Our future research will
extend the evaluation criterion defined by the fuzzy programming approach to handle real-world MFTL
decision cases in which there does not exist a Stackelberg-Nash solution or decision entities prefer to

cooperate with one another.
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6. Conclusions and further study

This paper presents our development to handle the reference-uncooperative MFTL decision problem:
information exchange among multiple followers at the same level even though they are independent and
uncooperative decision entities. Solving this decision problem needs to find an optimal solution achieving
not only the Stackelberg equilibrium in the vertical structure but also the Nash equilibrium among multiple
followers at the same horizontal level. The paper therefore first proposed a general MFTL decision model to
describe the reference-uncooperative situation. It then developed a MFTL Kth-Best algorithm to find an
optimal solution (also known as a Stackelberg-Nash solution) to the model based on related theoretical
properties. Moreover, we evaluated the solution obtained and identified the satisfaction of decision entities
using a fuzzy programming approach. Lastly, a real-world case study on production-inventory planning
illustrated the effectiveness of the proposed MFTL decision techniques in handling such problems of
applications. The results indicate that this paper provides a practical way to deal with reference-based
uncooperative MFTL hierarchical decision-making problems from the perspective of theory and application.
The limitation of this study is that the computational load of the MFTL Kth-Best algorithm may increase
steeply with increase in the mass of variables and constraints. Thus, we will explore the execution efficiency
of the algorithm through sufficient numerical experiments in our future study. We will also extend the
evaluation criterion defined by the fuzzy programming approach to solve MFTL decision problems without
Stackelberg-Nash solutions. In addition, we will focus our future research on other relationships, such as

cooperative and semi-cooperative situations [18], among multiple followers in MFTL decision problems.
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