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a b s t r a c t

Predefined pattern detection from time series is an interesting and challenging task. In order

to reduce its computational cost and increase effectiveness, a number of time series represen-

tation methods and similarity measures have been proposed. Most of the existing methods

focus on full sequence matching, that is, sequences with clearly defined beginnings and end-

ings, where all data points contribute to the match. These methods, however, do not account

for temporal and magnitude deformations in the data and result to be ineffective on several

real-world scenarios where noise and external phenomena introduce diversity in the class of

patterns to be matched. In this paper, we present a novel pattern detection method, which

is based on the notions of templates, landmarks, constraints and trust regions. We employ

the Minimum Description Length (MDL) principle for time series preprocessing step, which

helps to preserve all the prominent features and prevents the template from overfitting. Tem-

plates are provided by common users or domain experts, and represent interesting patterns

we want to detect from time series. Instead of utilising templates to match all the potential

subsequences in the time series, we translate the time series and templates into landmark

sequences, and detect patterns from landmark sequence of the time series. Through defin-

ing constraints within the template landmark sequence, we effectively extract all the land-

mark subsequences from the time series landmark sequence, and obtain a number of land-

mark segments (time series subsequences or instances). We model each landmark segment

through scaling the template in both temporal and magnitude dimensions. To suppress the

influence of noise, we introduce the concept of trust region, which not only helps to achieve

an improved instance model, but also helps to catch the accurate boundaries of instances of

the given template. Based on the similarities derived from instance models, we introduce the

probability density function to calculate a similarity threshold. The threshold can be used to

judge if a landmark segment is a true instance of the given template or not. To evaluate the

effectiveness and efficiency of the proposed method, we apply it to two real-world datasets.

The results show that our method is capable of detecting patterns of temporal and magnitude

deformations with competitive performance.
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1. Introduction

This paper focuses on the problem of detecting instances of predefined patterns from time series [15,56]. While most pattern

detection algorithms in time series deal with discovering previously unknown, frequently recurring regularities in the data, here

we assume that one or more example sequences (the templates) are provided by a domain expert, and instances of these need to

be identified in the actual data. During this detection, one needs to allow for a certain degree of difference between the template

and the instances, for example because the instance is somewhat longer or shorter in duration, the magnitude of the signal is

different, or parts of the signal are either stretched or compressed in time (so-called warps).

Li Wei et al. [56] mention a number of use-cases that motivate the predefined pattern detection problem. For example, in

ECG monitoring, a cardiologist may observe some interesting pattern that he or she wants to annotate, and flag any future

occurrences, to be investigated by the cardiologist or fellow experts. Alternatively, in insect pest control, one would like to observe

specific cases of harmful insects, as identified by specific patterns of audio signal (wing beats). In our application to infrastructure

monitoring, the predefined pattern detection problem is relevant for specifying and detecting known disturbances in the data,

that can then be removed from the signal, or accounted for in subsequent modelling steps. For example, when monitoring

the structural health of a bridge, the measured signal is dominated by recurring and understandable peaks due to vehicles

crossing the bridge and traffic jams. One can imagine an expert providing a template for each of these phenomena, after which

all instances should be identified, regardless of the speed and weight of the vehicles (influencing the width and height of the

hump in the signal), or the duration of the traffic jam.

When matching a predefined phenomenon (a template [40,41,48]) with the time series under investigation, it is not always

required to involve every individual measurement in the selected interval and in the template. In fact, when a certain level of

fuzzy matching is required, it makes sense to somehow simplify the signal, or extract some key features that are characteristic

for the sequence in question. This condensed representation can then be used to compare the time series with the template,

both effectively (the matching is only based on the characteristic aspects) and efficiently (no computation is wasted on insignif-

icant details). Specifically when large time series with high sampling rates are concerned, and the matching is nontrivial due to

warps, efficient representation methods can be helpful. A considerable number of such methods have been proposed in the past,

including Symbolic Aggregate approXimation (SAX) [29], bit-level approximation [7], and Piecewise Aggregate Approximation

(PAA) [25]. 1 In this paper specifically, we focus on the representation of time series by means of landmarks [43] (also referred

to as key-points [8], break-points [47] and change-points [37]), which can be thought of as those points in the time series that

are obviously remarkable (peaks, valleys, inflection points, …). Rather than matching every detail of the data and the template,

only the landmarks will be matched, and subsequent landmarks will be checked for their relationship to one another.

We match the given template to the actual data in three steps. The first step involves transforming the time series into a

sequence of landmarks, which preserves all the prominent features. The second step is landmark subsequence selection, which

is based on constraints over the landmarks occurring in the templates. The third step is instance model construction, which

introduces a trust region to model the time series segments corresponding to the selected landmark subsequence. Unlike most of

the representation and similarity methods, which are designed mainly for full sequence matching [15], our proposed approach

is capable of processing both full sequence and subsequence matching of various length, while being less sensitive to noise, and

being able to handle deformations in both magnitude and temporal dimensions.

One of the challenges when extracting landmarks from actual data is the noise and high-frequency vibrations that are in-

cluded. An obvious step to get rid of such distractions and to produce a set of meaningful landmarks is to convolve the signal

with a smoothing kernel. The question now becomes what level of smoothing is appropriate for the template in question. Too

much smoothing may cause one to miss characteristic landmarks in the data, and too little smoothing will cause an abundance

of landmarks at every little disturbance in the data. We propose an MDL-based solution to this challenge, that picks the correct

smoothing level. Minimum Description Length (MDL) [20,49,51] is an information-theoretic model-selection framework that

selects the best model according to its ability to compress the given data.

The contributions of this paper are summarised as follows:

• It provides a general definition of a template for time series.

• It proposes the use of landmarks: a triple involving temporal, magnitude and type information.

• It takes the relationship between landmarks within a landmark sequence as constraints for landmark subsequence selection.

• It introduces the concept of a trust region from the image processing domain [32] to time series to build a reliable instance

model.

• It employs MDL [20,49,51] for selection of the right smoothing level for landmark extraction.

The rest of this paper is organised as follows. Section 2 gives the definitions of template and landmark, and specifies the

task of predefined pattern detection. Section 3 introduces the concept of landmark constraints. The question of choosing the

right smoothing level through MDL is discussed in Section 4. In Section 5, instance models are used to fit the template to
1 A comprehensive list of representation methods for time series is given in Section 7.
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candidate instances in the data. Section 6 evaluates the proposed method by applying it to two datasets. Section 7 gives a litera-

ture review of related work, followed by a conclusion in Section 8.

2. Preliminaries

In this section, we will review and define some notation used throughout this paper. We begin by reviewing the concept of

time series and subsequences, then give precise definitions of templates and landmarks.

Definition 1. A time series T is an ordered sequence of n real values:

T = (t1,t2, . . . ,tn), ti ∈ R

For pattern detection purpose, instead of considering the full time series, we pay more attention to some interesting intervals.

Each interval is called a subsequence, which is formally defined as:

Definition 2. Given a time series T = (t1, . . . ,tn) of length n, a subsequence S of T is a series of length 1 ≤ m ≤ n consisting of

contiguous time points from T :

S = (ti,ti+1, . . . ,ti+m−1), 1 ≤ i ≤ n − m + 1

In this work, we assume query patterns, referred to as templates, to be given or predefined by domain experts.

Definition 3. A template H is a time series of length k that can serve as a model:

H = (h1,h2, . . . ,hk), hi ∈ R

A example is given in the Fig. 1. The template in the left picture of Fig. 1 stands for a piece of bird song [45], which helps us

find recurring subsequences from the time series in the right picture of Fig. 1.

2.1. Landmark extraction

Although we expect the user to specify the predefined pattern in terms of a template, we will not be matching the template

directly to subsequences of the given time series. Rather, we intend to extract important landmarks [43] from both the template

and the time series, and use these to match more efficiently and effectively. A landmark is defined as follows:

Definition 4. Given a time series T = (t1,t2, . . . ,tn) , a landmark is a remarkable point in T , specified by a triple l:

l = (id,mt ,type), id ∈ N,mt ∈ R

where id is the index of the landmark in the time series T,mt is the magnitude of the landmark, type is the peak type indicator,

which can be a local extreme, an inflection point or some other notable characteristic of the time series at this point.

We need to employ a landmark extraction method to produce a sequence L of landmarks from a given time series. Such a

method, generally identified as a function E, can be applied to obtain a sequence of remarkable points from a given time series,

but equally, it can be used to produce such points from a template, as that is essentially a time series also.

Landmark extraction methods are typically application dependent. In general, local extrema of the time series are good land-

mark candidates. They are found by considering the zero-crossings of the first derivative of the series. These zero-crossings (roots)

correspond to the extrema in the time series, which we assume to be of interest. The inflection points derived from the extrema

in the first derivative time series can also be considered as landmark candidates. Such landmarks can be found by looking at the

zero-crossings of the second derivative. For a discrete time series, it may happen that a root is between two successive points of

the time series. In this situation, we refer to the point close to zero as the zero-crossing point.

A landmark sequence preserves the main features of the time series, but significantly reduces its representation size. As

shown in Fig. 2, the subsequence of length 900 can be compressed to a landmark sequence of only 16 elements (l1,l2, . . . ,l16) .

Given a landmark subsequence La = (l1,l2, . . . ,lm′ ) and a time series T , there is a subsequence in the time series corresponding

to it. The subsequence is referred as a landmark segment LS . The index of the first point of LS is derived from the index of l1 , and

that of the end point of LS is derived from the index of lm′ .

2.2. Predefined pattern detection

With the definitions of templates and landmarks now established, we can proceed by formally specifying the main task that

we are concerned with in this paper, as follows:
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Fig. 1. An example of a template and time series. The curve in the left picture is a given template; the right picture illustrates a time series, in which subsequences

similar to the template are expected.

1700 1800 1900 2000 2100 2200 2300 2400 2500

-5

0

5

10

0 50 100 150 200

0

1

2

3

4

5

A

B

C

l
3

l
1

l
2

l
4

l
5

l
6

l
7

l
8

l
9

l
10

l
11

l
12

l
13

l
14

l
15

l
16

Template

The first derivative

Part of a time series

Fig. 2. The landmark sequence. The curve in the left picture is a template, marked with landmarks A, B and C; the black curve in the right picture is part of a

time series, and the grey curve is its first derivative transform; the landmarks l1,l2, . . . ,l16 are derived from the first derivative method.
Definition 5. The task of Predefined Pattern Detection takes as input a time series T of length n, a template H of length k and

a landmark extraction method Eσ , and produces a sequences of matches M = (LS1,LS2, . . . ,LSp) , where each LSi is a matched

landmark segment in T,0 ≤ p ≤ n is number of the matched subsequences.

There are two terms in the definition that should be addressed in more detail, one of which is the landmark extraction method

Eσ . As mentioned, we are not matching the template to the time series directly, but rather extracting landmarks from both first,

using Eσ . An important parameter in E is σ , which helps to extract landmarks from the time series. If landmarks are defined as

zero-crossings, σ determines the level of smoothing applied to the raw time series. By smoothing, we prevent noise from playing

a role in determining what constitutes a landmark. Of course, the level of noise (as opposed to the actual signal) depends on the

application, so for the moment we assume this as simply a parameter of the task.

Another term is the sequence of matches M . A time series subsequence is considered a matching landmark segment LSi , if it

can be conditionally transformed from the given template H , with acceptable similarity. Given a template, we want to detect its

instances from the time series T . These instances are allowed to have a certain level of temporal or amplitude variation, but they

should preserve all the prominent features of the template. The matches can be obtained with landmark constraints (in Section

3) and instance models (in Section 5).

In general, we assume the domain expert to provide additional information on the template in the form of constraints on

the duration of the pattern as well as its magnitude. These will be expressed as lower and upper bounds on the duration of the

pattern, as well as lower and upper bounds on the difference between the highest peak and the lowest valley. Clearly, without

providing such constraints, one could stretch or compress the template to, say, a single data point or zero magnitude, losing all

descriptive information in the template, while still matching many segments of the data.

3. Landmark constraints

In theory, for a given template landmark sequence of length k′ and a time series landmark sequence of length n′ , there

are n′ − k′ + 1 candidate landmark subsequences. Compared with the subsequence candidates from the original time series,

the number has already been reduced a lot. However, the candidate number can be further reduced by employing landmark

constraints of template landmark sequence. In this section, we introduce landmark constraints to break the time series landmark

sequence into a number of meaningful landmark subsequences.

For a given template, the landmarks in its landmark sequence signify more than just several data points obtained with land-

mark extraction methods. Constraints exist among the landmark sequence of the template. These constraints should be general

enough to cover most potentially interesting patterns.
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For example, given the template of length 200 (marked with landmarks A,B and C), shown as the left picture of Fig. 2, we are

required to extract all the instances, whose lengths are between 80 and 350, from the time series, shown as the right picture of

Fig. 2. The constraint set could be specified as follows:

• The length of landmark subsequences should be 3.

• The first and last landmark of each subsequence should be valley points.

• The second landmark of each subsequence should be a peak point.

• The index difference between the last landmark and the first landmark should be between 80 and 350.

The first three constraints are used to preserve the main features of the template, and the forth constraint is used to

meet conditions provided by users or domain experts. With these constraints, the number of landmark subsequence candi-

dates can be significantly reduced (for the given subsequence, the number is reduced from 14 to 7, by 50%). Each landmark

subsequence corresponds to a landmark segment, so the number of landmark segments is also significantly reduced. We

will introduce instance model to fit the selected landmark segments in the Section 5, which helps to further filter out false

instances.

4. Determining the smoothing level

In practice, a time series, collected from a specific field, is composed of both meaningful events and noise. Sometimes, the

meaningful events are even buried by the noise. In order to make landmark extraction methods work effectively, we need to

smooth the time series. When smoothing a time series, there is clearly a trade-off at play. Smoothing too little will produce

a time series that shows too many landmarks, and smoothing too much will remove most of local features, such that impor-

tant landmarks may be overlooked (see Fig. 3). In this section, we tackle the challenge of setting an appropriate value for the

smoothing scale σ in Eσ .

Our solution to this challenge employs the Minimum Description Length principle [20]. The MDL principle states that, when

choosing between several different candidate models of the data, the one that produces the cheapest encoding is the most

desirable. In this context, the different candidate models are produced by different choices of the smoothing scale σ . In a nutshell,

we consider a range of values for σ , applying landmark extraction method Eσ to the smoothed time series. The idea of using

MDL as a guiding principle to model various aspects of time series data has been introduced before in [22,51], but not with the

specific intent of selecting an appropriate choice of σ .

4.1. Minimum description length

We concentrate on the two-part version of the MDL principle, which states that the best instance model IM to describe the

time series T is the one that minimises the sum L(IM) + L(T|IM) , where

• L(IM) is the cost, in bits, of the instance model derived from the given template.

• L(T|IM) is the length, in bits, of the description of the time series when encoded with the help of the instance model IM ,

that is the residual information not represented by IM .

A good, detailed model that catches most features of the target dataset leads to a low cost of L(T|IM) , but a good model also

means a higher cost compared with a simple model. Therefore, a trade-off between model fit and its complexity is guaranteed

by considering the size of the encoding. This property prevents the MDL method from overfitting.

When we calculate L(IM) and L(T|IM) , we assume that the values ti of the input time series T have been quantised to a

finite number of symbols by employing the function defined below:

Q(ti) = �(ti − min(T))/(max(T) − min(T)) · N� − N/2

where N, assumed to be even, is the number of bins to use in the discretisation, while min(T) and max(T) are respectively

the minimum and maximum value in T . Throughout the rest of the paper, we assume N = 256 , in correspondence with similar

work on MDL in time series [22,51]. One question that might arise is if such a quantisation removes meaningful information

from the time series. In [22], the authors show that the effect of quantisation is rather modest on several time series from various

domains.

4.1.1. Encoding of the model

We will first discuss the encoding of the instance model IM , which is derived from a given template. In the time series, the

cost for encoding the instance model is composed of two parts: the index and the model parameters. The location of any instance

is less than the total length of the time series T , so it can be encoded with log2n bits. Assuming there are m parameters for each

model (m is the cost of transformations), and each parameter can be modelled with b bits, the total cost can be obtained by

summing up these two parts:
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L(IM) = k · (log2n + mb)

where k is the number of instances in the time series that meet the landmark constraints.

4.1.2. Encoding the data

The second part of MDL, L(T|IM) , represents the residual information after subtracting the instance model IM from the time

series T . To encode this part, we first need to introduce the notion of entropy.

Definition 6. The entropy of a time series T , discretised according to a set of values D, is defined as below

Entropy(T) = −
∑
v∈D

P(ti = v)log2P(ti = v)

where ti stands for the ith element in the time series T,Plog2P = 0 in the case of P = 0 , and P(ti = v) indicates the fraction

of points in the time series which has value v.

Given the definition of entropy, we can define the description length of the second part of MDL as follows:

Definition 7. Given a time series T of length n, the description length of L(T|IM) (in bits) is given by

L(T|IM) = n · Entropy(T|IM)

4.2. Smoothing scale selection

To assess the performance of a given smoothing scale σ , we first smooth the raw time series with the smoothing scale σ , and

then transfer the smoothed time series Ts into landmark sequence with the landmark extraction method E. Under the landmark

constraints derived from a given template, we can obtain a number of instances from the smoothed time series. The obtained

instances work as instance models, and the residual, obtained by subtracting the values of the instance models from the related

segments in the raw time series, works as the second part of MDL. We need two parameters (the indexes of the first and last data

points of a landmark segment) to identify each instance model. Assuming there are r interesting landmark segments (instances)

under a smoothing scale σ , the instance model cost L(IM) becomes:

L(IM) = 2r · log2n

The second MDL part L(T|IM) , according to Definition 7 is represented as:
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L(T|IM) = n · Entropy

(
T −

i=r∑
i=1

Tsi

)

where Tsi is the i th landmark segment in the smoothed time series Ts .

For a given template and a set of smoothing scale candidates, we assume that the optimal smoothing scale is the one that

leads to the minimal MDL score.

5. Instance models

Given a landmark segment LS of length m and a template H of length k, we can simply model LS by scaling H in both

temporal and magnitude dimensions. The temporal scale operation X − scale results in a new sequence IMX , whose length is

the same as that of the landmark segment.

IMX = X − scale(H,m,k), k,m ∈ N

X − ratio = m/k

If X − ratio > 1 , the X − scale is an up-sampling operation, and if X − ratio < 1 , the X − scale is a down-sampling operation,

otherwise, the IMX is the same as the template H .

We continue to process the obtained model IMX with the magnitude scale operation Y − scale , and obtain an instance model

IMY , which can be taken as a primary approximation of the landmark segment LS .

IMY = Y − scale(H,IMX )

Y − ratio = (max(LS) − min(LS))/(max(H) − min(H))

where IMY is obtained by first scaling IMX with a ratio Y − ratio , resulting in a temporary model IMXY , then shifting along

magnitude dimension by min(LS) − min(IMXY ) .

Based on the transformations mentioned above, we can define the instance model as:

Definition 8. Given a landmark segment LS of length m, and a template H of length k, the instance model IM of LS is a sequence

derived from transformations of the template H :

IM = Trans f (LS,H)

where Trans f are the transformations defined above (X − scale and Y − scale ).

The advantage of obtaining instance models with the transformations mentioned above, is that they are straightforward and

work well with regular landmark segments. However, when warps or distortions exist in landmark segments, the transformations

will become insufficient. To illustrate the problem, we present a template, shown as the curve in the top left picture of Fig. 4,

and use it to model three landmark segments: the curve in the top middle picture of Fig. 4 is the first landmark segments,

which is a single peak; the curve in the top right picture of Fig. 4 is the second and the third landmark segments, which is

composed of two overlapping peaks. The dotted curve IM1 in the bottom left picture of Fig. 4 is an instance model obtained by

simply transforming the given template. The instance model indicates that the left boundary of the first landmark segment is

incorrect, which is caused by the false landmark A1. The dotted curves IM2 and IM3 in the bottom right picture of Fig. 4 are two

instances models, which are also obtained by simply transforming the given template. The boundaries of the landmark segments

are correctly caught, but their instance models are still incorrect. This is caused by the complex (overlapping) nature of the time

series. To overcome all these limitations, we introduce the notion of trust region.

5.1. Trust region

By assuming part of the landmarks within a landmark subsequence are reliable, in its landmark segment, we can define the

corresponding segment between these landmarks as the trust region, shown as the thick regions in the top middle and right

pictures of Fig. 4. Trust region is a concept borrowed from the field of image processing. We introduce the concept into time

series (or to be more precise, into the instance model), and define it as:

Definition 9. Given a landmark segment LS of length m, and its landmark sequence L = (l1,l2, . . . ,lm′ ) of length m′ , if the

segment between landmarks li and l j (1 ≤ i < j ≤ m′ ) is influenced less by noise, then the trust region of LS is defined as:

LStrust = (tc1, . . . ,td1), 1 ≤ c1 < d1 ≤ m

where c1 is the index of landmark li in the landmark segment LS , and d1 corresponds to the index of landmark l j . The

dashed curves in the bottom left and right pictures of Fig. 4 are instance models obtained with the trust regions given in the top

middle and right pictures, which indicate that the trust regions help to achieve improved instance models and updated landmark

segments. The detailed procedure is illustrated in Algorithm 1.
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Algorithm 1. The instance model.

Require: a template H , and its landmark sequence LH of length k′ , a landmark segment LS , and its landmark sequence LS of length k′ .

Ensure: an improved instance model IMimp and an updated landmark segment LSup

LStrust = LS,Htrust = H

[IMimp,LSup] = Model(LS,LStrust ,H,Htrust )

simmax = Similarity(IMimp,LSup)

for len = 2 to k′ do

for index = 1 to k′ − len + 1 do

[LHtrust ,LStrust ] = LandmarkRegion(LH ,LS ,index,len)

[Htrust ,LStrust ] = SegmentRegion(LS,H,LHtrust ,LStrust ,index,len)

[IMtemp,LStemp] = Model(LS,LStrust ,H,Htrust )

sim = Similarity(IMtemp,LStemp)

if sim > simmax then

simmax = sim

IMimp = IMtemp

LSup = LStemp

end if

end for

end for

The inputs of the algorithm are: a template H of length k, a landmark segment LS of length m, and their landmark sequences

(LH and LS , respectively, both of length k′ ). The outputs of the algorithm are an improved instance model and an updated

landmark segment.

Given a landmark sequence, we assume that the subsequence between the i th (1 ≤ i ≤ k′) and the j th (1 ≤
j ≤ k′) landmarks is reliable, which is referred as the trust landmark subsequence, and can be obtained with the

LandmarkRegion(LH ,LS,index,len) operation. In the operation, index is equal to i, and len (len = j − i + 1) is the length of the

trust landmark subsequence LHtrust of LH or the trust landmark subsequence LStrust of LS (LHtrust and LStrust are of the same

length).

Assuming the corresponding indexes of the first landmark li and the last landmark l j are a1 and b1 for LHtrust , and are c1

and d1 for LStrust . The trust region Htrust is the subsequence of H , indexed by a1 and b1 , and the trust region LStrust is the sub-

sequence of LS , indexed by c1 and d1 . These trust regions can be obtained with the SegmentRegion(LS,H,LHtrust ,LStrust ,index,len)

operation.
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Based on the trust regions Htrust and LStrust , the associated instance model IMtemp and the updated landmark segment LStemp

can be obtained with the Model(LS,LStrust ,H,Htrust ) operation. The procedure of this operation is illustrated as follows:

• Temporal scaling: Based on the candidate trust regions LStrust and Htrust , we can obtain a new sequence IMX with the

X − scale operation:

IMX = X − scale(H,d1 − c1 + 1,b1 − a1 + 1)

The indexes of the i th and the j th landmarks in IMX are a′ and b′ . The length of IMX is m1 , which equals �k · (b1 − a1 +
1)/(d1 − c1 + 1)� .

• Amplitude scaling: Following the same Y − scale operation procedure as mentioned above, we obtain an instance model IMY

:

IMY = Y − scale(H,IMX )

• Aligning and pruning: We should note that the lengths of IMY and LS may be different. To make them the same, we need to

align and prune them. Assuming the indexes of the first and the last landmarks of LS are c′ and d′ , and those of IMY are 1 and

m1 , the pre-trust region (the region before the trust region) lengths of IMY and LS are LSpreL = c1 − c′ and IMpreL = a′ − 1

respectively, and the post-trust region (the region after the trust region) lengths of IMY and LS are LSpostL = d′ − d1 and

IMpostL = m1 − b′ respectively.

If LSpreL > IMpreL or LSpostL > IMpostL , we need to prune the landmark segment LS , otherwise, fix the instance model IMY .

The pruned landmark segment is LStemp , and the fixed instance model is IMtemp .

Finally, the fit of each candidate instance model is evaluated with the Similarity() operation, which can be any of the choices

as outlined in Section 7, most typically a similarity function based on the Euclidean Distance or Pearson’s correlation.

5.2. Model evaluation

To judge if a landmark segment is an true instance of the template, we need to set a threshold on the similarity of the

landmark segment and its instance model. We calculate the similarity threshold based on the probability density function

(PDF) [36]. Assuming there are j landmark segments that meet the landmark constraints, we can obtain a similarity sequence

SIM = (sim1,sim2, . . . ,sim j) , in which simi (1 ≤ i ≤ j) is the similarity between the i th landmark segment and its instance

model. We employ the kernel smoothed probability density function to detect the density distribution of SIM . The similari-

ties of true instances are relatively high, and are assumed to produce a different density distribution from those of false in-

stances. The changing point between the highest similarity density distribution and a lower similarity density distribution

is taken as the similarity threshold. More formally, we determine the changing point by finding the first local minimum left

of the highest peak in the PDF. Concrete examples are illustrated in Section 6. If a similarity is below this threshold, then

the corresponding landmark segment will be taken as a false instance. Otherwise, we treat the landmark segment as a true

instance.

5.3. Complexity analysis

Given a smoothing scale candidate set of length s, we need to computer s convolutions to detect the right one. This can be

done efficiently using the Fast Fourier Transform in O(snlog2n) time. For each smoothing scale, we then need to calculate the

MDL score. This takes O(sn) time. The computation of the landmark detection can be done with a linear scan and thus has

O(n) complexity. The transforms in instance models are linear operations, and both the number of landmark segments and the

number of trust regions are relative small, so the complexity of this task also has O(n) complexity. Overall, our method has a

complexity equal to the sum of these three complexities, which is O(snlog2n) time.

6. Experiments

To show the effectiveness of the proposed method, we apply it to two real-life datasets (traffic and ECG signals). Based on

a given template and prior knowledge, we begin with setting landmark constraints, then choose the right smoothing scale

based on MDL. From the smoothed dataset, we can obtain a number of landmark segments. We model these segments with

the given template, and obtain a number of instance models. The qualities of instance models are evaluated with similarities.

In this paper, we choose correlation as the similarity method, and set a similarity threshold with PDF. If the similarity of an

instance model is above the threshold, then the corresponding landmark segments will be taken as a true instance of the given

template.
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6.1. Traffic dataset

The traffic dataset is collected from a highway bridge within the InfraWatch project [27,36,50]. The dataset is composed of

360,000 data points (1 h), sampled at 100 Hz. There are 20 struck events and 173 car events within this dataset, as identified

manually by inspecting the data and a video recording. Our task is to extract these traffic events from the datasets. Needless to

say, the manual inspection is quite time consuming, and would be impractical for larger datasets. We address the task with the

procedure mentioned in previous sections. From domain experts, we obtain a template of length 200, shown as the bottom left

picture in Fig. 5. The sensor network is installed on one span of the bridge, whose length is 50 m, and the local speed limit is

120 km/h, such that we can assume an event duration of at least 1.5 s.

Based on the template, we take local extrema and inflection points as landmarks. The template is marked with five landmarks

(A,B,C,D and E). Based on the properties of these landmarks, we can further set constraints for landmark subsequence candidates:

• The length of landmark subsequences should be 5.

• The first landmark and last landmark should be valley points.

• The second landmark and fourth landmark should be inflection points.

• The third landmark should be a peak point.

• The time between the first landmark and last landmark should be no less than 1.5 s (150 data points).

We employ the first derivative and second derivative methods to extract landmarks from the dataset. Derivative methods are

sensitive to noise, so we need to smooth the original dataset before extracting landmarks from it, by means of a Gaussian Kernel.

We employ MDL to select the proper smoothing scale σ from a given set { No smoothing,20,21,22, . . . ,29} . In the top picture of

Fig. 6 , the MDL-score as a function of the level of smoothing is indicated. As can be seen, the optimal value for σ is 24 , which

will be the smoothing level used for subsequent landmark extraction and matching with the template.

Based on the landmark constraints and the right smoothing scale, we obtain 245 landmark segments from the smoothed

datasets. We continue to evaluate these segments with instance models. For each trust region, there is an instance model cor-

responding to it. Our template is marked with 5 landmarks, which can form 10 trust region candidates. In practice, the first

landmark and the last landmark are sensitive to noise, so we just use the middle three landmarks, which generate 3 trust re-

gions. We model each landmark segment based on these trust regions, and select the best-matching model. If the similarity

between an obtained instance model and its landmark segment is higher than a given threshold, then the landmark segment

will be taken as an instance of the given template. In this case, we choose Pearson’s correlation as the similarity method, and

explore the similarity threshold based on the probability density distribution of all similarities. As shown in the bottom picture

of Fig. 6, the peak on the left hand side stands for the similarity distribution of true instances, and the index of the changing point

(0.918) is taken as the similarity threshold.

Based on the similarity threshold, 221 out of 245 landmark segments are selected as traffic instances. Of these, 20 matches

are truck events, corresponding to the 20 trucks identified manually. Of the remaining matches, 161 landmark segments are

actual car events (out of the 173 cars), 40 landmark segments are false positives, where sections of noise are recognised as

potential cars. The precision of the method is thus 81.9%, and the recall is 93.8%. Note that our recall is 100% for the trucks,

which, due to their large size and impact on the strain on the bridge, are much easier to identify than cars. In Fig. 7 , we

plot two features of the manually identified traffic events, demonstrating the case with which trucks can be distinguished
Fig. 5. Traffic event detection from a traffic dataset. The grey curve in the top picture is a raw dataset collected from a highway bridge; the black curve in the top

picture is the smoothed dataset with the smoothing scale σ = 24; the solid curve in the bottom left picture is the given template, marked with landmarks A, B,

C, D and E; the dashed curve Deriv1 in the bottom left picture is the first derivative curve of the template; the dash-dotted curve Deriv2 in the bottom left picture

is the second derivative curve of the template; the black peaks in the bottom right picture are instance models.
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Fig. 6. The smoothing scale and similarity threshold of the traffic dataset. The top picture shows a scatter plot of the MDL score as a function of smoothing scale,

in which the sixth smoothing scale 24 is selected as the right smoothing scale; the bottom picture shows the probability density distribution of the similarities,

the changing point 0.918 is selected as the similarity threshold.
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Fig. 7. Scatter plot of two features of traffic events. With two features (area and amplitude), traffic event candidates are classified into five groups (noise, car on

lane 1, car on lane 4, truck on lane 1, truck on lane 4); the plot indicates that the bounds between noise and car events are blurred.
from cars, as well as traffic-free periods. In the detail in the right of this figure, we note how cars can sometimes be confused

with traffic-free periods, due to the level of noise present in the data. Fig. 8 shows two car events in detail, which are clearly

hidden by the serious level of noise in the data. Even after being smoothed, the segments are seriously distorted, and cannot be

matched with the given template.

6.2. ECG signal

The electrocardiogram (ECG) signal is used to measure the electrical activity of the (human) heart [53]. A single heart beat

is typically composed of 5 deflections, called the P, Q, R, S and T wave, in which the Q, R and S waves are often considered

together as the QRS complex, because they are closely linked. Note that not every QRS complex contains all the three wave

elements, and any combination of these waves can also be referred to as a QRS complex [1]. Accurately recognising the QRS

complex and distinguishing them from the other noise sources such as P and T waves is a critical technology for many clinical

instruments [2].

In this section, we choose an ECG dataset of 20,000 data points from [26], which contains 119 QRS complexes, and is col-

lected at a frequency of 250 Hz. The curve in the bottom left picture of Fig. 9 is a QRS template, which is composed of an R

wave and an S wave. The template is marked with four landmarks (A,B,C , and D). All the landmarks are local extrema, which

can be extracted with the first-derivative method. The length of the template is 16, and its amplitude (the amplitude differ-

ence between the landmark B and the landmark C) is 0.449. From domain experts, we learn that the QRS complex normally
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Fig. 8. Car events in the traffic dataset. This picture shows two car events with a lot of noise, such that it is very hard for a human to even recognise where the

car events are.

Fig. 9. The QRS complex detection from an ECG dataset. The grey curve in the top picture is an ECG dataset taken from a real patient; the curve in bottom left

picture is a template of QRS complex, which is composed of an R wave and an S wave, and can be marked with 4 landmarks A, B, C and D; in the bottom right

picture, black curves stand for matched instance models, and there is also an example of unmatched QRS complex.
lasts 0.06–0.10 s, which is 15–25 data points (at 250 Hz). To be on the safe side, we assume the length of QRS instances ranges

between 10 and 30 points. Being the most visually obvious part of ECG signals, the QRS complex features a high R wave and a

low S wave, marked as B and C in the template. The amplitude difference between B and C varies with QRS instances, but should

also be within a reasonable range. In this experiment, we assume the amplitude range is between 0.2 and 0.8. Based on this prior

knowledge, the landmark constraints are set as:

• The length of each landmark subsequence should be 4.

• The first and third landmarks should be valley points.

• The second and the fourth landmarks should be peak points.

• The magnitude of the second landmark should be the highest one in the landmark subsequence.

• The magnitude of the third landmark should be the lowest one in the landmark subsequence.

• The temporal difference between the last and the first landmark should be between 10 and 30.

• The magnitude difference between the second and the third landmark should be between 0.2 and 0.8.

Following the same smoothing scale set as the previous experiment, we calculate the MDL scores of each scale. As shown

in the top picture of Fig. 10 , the original ECG dataset has the minimal MDL score, which indicates that the ECG dataset is best
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Fig. 10. The smoothing scale and similarity threshold for the ECG dataset. This top picture shows a scatter plot of the MDL score as a function of smoothing scale,

and indicates that the ECG dataset need not be smoothed; the bottom picture shows the probability density distribution of the similarities. The changing point

0.901 is selected as the similarity threshold.
left unsmoothed. Based on landmark constraints set above, we manage to catch 142 landmark segments from the original ECG

dataset. We continue to detect the similarity threshold with the probability density distribution of the similarities of selected

segments. As shown in the bottom picture of Fig. 10, the index of the changing point (0.901) is selected as the similarity threshold.

Based on the similarity threshold, 110 out of 142 landmark segments are selected as QRS instances. Of these, 108 are true QRS

complexes and 2 are false QRS complexes. The precision of the instance model is thus 90.8%, and the recall is 97.3%.

7. Related work

In this paper, we have presented three concepts that have been extensively used in image matching fields: templates [5,31],

landmarks [31,33] and trust regions [32].

Template matching can be used for face detection [23], duplicate document detection [10] and motion classification [38]. The

concept of template has been introduced to time series to detect specific patterns or shapes [18,19,40,41,48]. Frank et al. [18]

propose Geometric Template Matching (GeTeM) which uses time-delay embeddings for building models from segments of time

series and compares the reconstructed dynamical systems in terms of their state space as well as their dynamics. In [19], a novel

and flexible approach is proposed based on segmental semi-Markov models. In [40,41,48], meaningful templates are constructed

with shape-based averaging algorithms, such as Prioritized Shape Averaging (PSA) [40] and Accurate Shape Averaging (ASA)

[48]. Wei et al. propose the Atomic Wedgie method “that exploits the commonality among the predefined patterns to allow

monitoring at higher bandwidths, while maintaining a guarantee of no false dismissals” [56]. Most of the proposed methods are

mainly designed for full sequence matching, which are ineffective in detecting predefined patterns from time series.

Landmarks can be used to break time series into meaningful segments, which are also referred to as key-points [8], break-

points [47] and change-points [37]. Perng et al. [43] propose a feature-based technique, which uses landmarks instead of the

raw data for processing. A two-level representation [8] is proposed to recognise gestures, using both local and global features. In

practice, the reliability of each landmark varies with its location. To the best of our knowledge, this has not been mentioned in

the literature.

It has been pointed out by researchers that some unspecified portions of time series should be ignored [3,45] to achieve a

better matching result, which means some data points have nothing to do with predefined patterns, and should be filtered out.

Ye and Keogh [57] propose a new time series primitive, time series shapelets, for time series classification. The shapelets are

informally defined as the subsequences that are in some sense maximally representative of a class. This method is interpretable

and accurate in classifying static time series [42], but is ineffective in handling real time time series. Inspired by these works, we

introduce trust region into time series to obtain more reliable instance models.

A number of representation methods have been developed in the literature to reduce the dimensionality of time series,

such as Discrete Fourier Transform (DFT) [17], Single Value Decomposition (SVD) [28], Discrete Wavelet Transform (DWT)

[12]. There are also some researchers who employ symbolic representations, such as Symbolic Aggregate approximation
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(SAX) [29] and bit-level approximation [7]. Features extracted from time series carry summarised information of the time series

[4,55], which can represent the original time series concisely [21], and are less sensitive to noise [39], so the feature extraction

operation can also be used to reduce dimensionality (reduce the size of the data), such as Amplitude-Level Features (ALF) [6],

Characteristic-based Clustering (CBC) [55]. Some representations are based on piecewise techniques, such as Piecewise Linear

Approximation (PLA) [47], Piecewise Aggregate Approximation (PAA) [25], Adaptive Piecewise Constant Approximation (APCA)

[11], Derivative Time Series Segment Approximation (DSA) [21] and Piecewise Vector Quantized Approximation (PVQA) [34,54].

Some representations aim to keep both local and global information about the original time series, such as Multi-resolution

Vector Quantization (MVQ) approximation [35] and multi-resolution PAA (MPAA) [30].

Next to the representation methods, a number of similarity measures have been proposed [16], of which the Euclidean Dis-

tance (ED) [17,58] is the most common [4,15]. However, when shifting and temporal distortions exist in the given time series, the

ED is proven to be ineffective [15]. To handle stretching and compression along the temporal dimension, Dynamic Time Warp-

ing (DTW) [9] was proposed, which achieves an optimal temporal alignment through detecting the shortest warping path in a

distance matrix [16,41,44,48]. Finding the shortest warping path is a non-trivial problem, whose computation complexity can

reach O(n2) , where n is the number of data points. To speed up the computation of DTW, some lower bounding constraints, like

LB_Keogh [24,44] and the Ratanamahatana-Keogh Band [46], have been introduced to prune expensive computations, which can

reduce the complexity to O(n) . There are also some other edit-based methods proposed to handle outliers and noise [16], such as

Longest Common Subsequence (LCSS) [52], Edit Distance with Real Penalty (ERP) [13] and Edit Distance on Real sequence (EDR)

[14]. However, most of the proposed methods focus mainly on temporal deformations [19], which are inadequate in dealing with

shifting and scaling in the amplitude dimension [15]. Consequently, Spatial Assembling Distance (SpADe) [15] is proposed to

handle shifting and scaling in both the temporal and amplitude dimensions.

8. Conclusion

Predefined pattern detection from time series is a quite challenging topic, because it is not only sensitive to noise, but also

sensitive to temporal and magnitude deformations. A number of representation and similarity measure methods have been

proposed to approximate interesting subsequences, but most of them are mainly designed for full sequence matching, and are

ineffective when the disturbances mentioned above exist. We refer a predefined pattern as a template, and featured it with a

sequence of landmarks (important points). Instead of comparing the template with subsequences of a given times series, we first

transfer the time series into a landmark sequence, and compare the template landmark sequence with the time series landmark

subsequences. The landmark constraints derived from the template and prior knowledge play a key role in finding matched

landmark subsequences and landmark segments. We model the landmark segments with the template, and obtain a number of

instance models. If the similarity between a landmark segment and its instance model is above a threshold, then the segment

will be taken as an instance of the template. We introduce advanced methods, like MDL and PDF, to set important parameters,

such as smoothing scale and similarity threshold. Most of the existing feature-based methods just focus on the quality of models,

and pay little attention to the reliability of candidate patterns. Our instance model overcomes this problem by transferring the

template in both temporal and magnitude dimensions according to trust regions.
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