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Abstract

In this work, we consider a complete lattice L and we study L-fuzzy context
sequences which represent the evolution in time of an L-fuzzy context. To
carry out this study, in the first part of the paper, we consider n-ary OWA
operators in complete lattices, which enable us to make a general analysis and
a temporal analysis at any moment in time of L-fuzzy context sequences. After
that, evolution in time of the relationship between the objects and the attributes
is considered. In particular, we analyze the concepts of Trend and Persistent
formal contexts. Finally, we illustrate our results with an example where we
consider the particular lattice L = J ([0, 1]).

Keywords: L-fuzzy context, L-fuzzy concept, L-fuzzy context sequences,
n-ary OWA operators.

1. Introduction

L-Fuzzy Concept Analysis [2, 7, 10, 11, 16, 25, 30] is a mathematical tool for
analyzing data and representing conceptual knowledge in a formal way. This
theory makes use of L-fuzzy concepts to extract information from an L-fuzzy
context. Recall that an L-fuzzy context consists of a tuple (L,X, Y,R), where
L is a complete lattice [19], X and Y are sets of objects and attributes, and
R ∈ LX×Y is an L-fuzzy relation between the objects and the attributes. L-
fuzzy contexts can be seen as an extension of Formal Concept Analysis [23, 36].

In some situations, we have several relations between the object set X and
the attribute set Y . Such relations lead to the notion of L-fuzzy context se-
quence. If this sequence recovers the evolution in time of an L-fuzzy context,
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we try to predict future trends from the analysis of past behaviors.

In Artificial Intelligence, there is a great need to represent temporal knowl-
edge and to modelize change over time. In many domains, as science, medicine,
treasury, population and weather patterns, change is noticeable from one mo-
ment to another. In this sense, the aim of this paper is to introduce an interest-
ing tool for the study of temporal phenomena. Specifically, the main goal of the
present work is the study of L-fuzzy context sequences for a complete lattice L.

We specially focus on searching trends in the evolution of the relationship be-
tween objects and attributes. Several works which consider temporal evolution
in a Formal context can be found in the literature as, for instance, [33, 37, 38].

In particular, in [37, 38], Wolff introduces a Conceptual Time System to de-
fine the Temporal Concept Analysis. In this Conceptual Time System, the state
and phase spaces are defined as concept lattices which represent the meaning of
the states with respect to the chosen time description. Besides, authors define
the hidden evolution trends in [33, 35], using temporal matching in the case of
Formal Concept Analysis.

The existence of Triadic contexts [27] gives us the possibility of using ternary
relations for representing time. However, this approach is very demanding for
our interest and, for this reason, it is only developed for formal contexts.

Trend analysis is usually referred to techniques for extracting an underlying
pattern of behavior in statistics. In this paper, we show a new and different
method for L-fuzzy Contexts with quantitative data that allows one to detect
some regularities. This method will establish trends that can be used as a basis
for making decisions.

In the paper, the behaviour of the observed data is described by the model
and some statements about tendencies are made. These are the other main
contributions of this work.

We apply our results to an illustrative example that shows the monthly sales
of sports items in certain shops throughout a period of time.

The paper is organized as follows: Section 2 provides a background about
L-fuzzy Concept Analysis and n-ary OWA operators. Section 3 sets up a general
study of L-fuzzy context sequences and Section 4 tackles a temporal study using
n-ary OWA operators. Section 5 analyzes temporal trends in the L-fuzzy context
sequence defining Trend and Persistent formal concepts. Finally, conclusions
and future work are drawn in Section 6.

2. Preliminaries

2.1. L-fuzzy contexts

The Formal Concept Analysis of R. Wille [36] extracts information from
a binary table that represents a formal context (X,Y,R), where R ⊆ X ×
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Y and X and Y are finite sets of objects and attributes, respectively. The
hidden information consists of pairs (A,B) with A ⊆ X and B ⊆ Y , called
formal concepts. A and B are such that A∗ = B and B∗ = A, where (·)∗ is
a derivation operator that associates attributes and objects: A∗ is the set of
attributes common to the objects in A and B∗ the set of objects which have all
attributes in B. A formal concept can be interpreted as a group of objects A
sharing the attributes of B.

In previous works [10, 11], we have defined L-fuzzy contexts (L,X, Y,R),
where L is a complete lattice, R ∈ LX×Y is a fuzzy relation between the set of
objects X and the set of attributes Y . This definition is an extension of Wille’s
Formal contexts to the fuzzy setting which allows us to study the relations
between objects and attributes with values in a complete lattice L, instead of
binary values.

To work with these L-fuzzy contexts, we have defined the derivation opera-
tors 1 and 2 by means of the expressions:

For all A ∈ LX , for all B ∈ LY

A1(y) = inf
x∈X
{I(A(x), R(x, y))}

B2(x) = inf
y∈Y
{I(B(y), R(x, y))}

with I being a fuzzy implication operator defined in the lattice (L,≤).
Although any fuzzy implication operator can be used to define the derivation

operators, in this paper we use residuated implications. Other authors have also
used residuated implication operators for defining derivation operators [9, 31,
32].

The information stored in the context is visualized by means of the L-fuzzy
concepts, which represent a group of objects that share a group of attributes in
a fuzzy way. These are pairs (M,M1) ∈ LX ×LY , where M ∈ fix(ϕ) is the set
of fixed points of the operator ϕ, which is defined from the derivation operators
1 and 2 as ϕ(M) = (M1)2 = M12. The first and the second components of an
L-fuzzy concept are called fuzzy extension and intension, respectively.

Using the usual order relation between fuzzy sets, that is,

for all M,N ∈ LX , M ≤ N ⇐⇒M(x) ≤ N(x) for all x ∈ X,

we define the set L = {(M,M1)/M ∈ fix(ϕ)} with the order relation � given
by:

for all (M,M1), (N,N1) ∈ L, (M,M1) � (N,N1) if M ≤ N( orN1 ≤M1).

As ϕ is an order preserving operator, by Tarski’s theorem [34], the set fix(ϕ)
is a complete lattice and (L,�) is also a complete lattice, called [10, 11] the L-
fuzzy concept lattice.

Moreover, given A ∈ LX (or B ∈ LY ), we can obtain the associated L-fuzzy
concept applying the derivation operators twice. If we use a residuated impli-
cation, as it is the case in this work, the associated L-fuzzy concept is (A12, A1)
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(or (B2, B21)).

Other important results about this theory can be found in [6, 8, 9, 12].
Extensions of Formal Concept Analysis to the interval-valued case are in [3, 20,
21] and to the fuzzy property-oriented concept lattice framework, in [24, 26, 29].

Next section summarizes the main results about n−ary OWA Operators that
will be of interest in the study of L-fuzzy context sequences.

2.2. n−ary OWA Operators

Families of OWA operators were introduced by Yager [39] as a new aggrega-
tion technique based on the ordered weighted averaging. The definition of these
operators is as follows:

Definition 1. A mapping F : [0, 1]n −→ [0, 1] is an OWA operator of dimen-
sion n if it exists a weighting n−tuple W = (w1, w2, . . . , wn) such that wi ∈[0,1]
and

∑
1≤i≤n

wi = 1, such that F (a1, a2, . . . , an) = w1.b1 + w2.b2 + · · · + wn.bn,

where bi is the ith largest element in a1, a2, . . . , an.

To study fuzzy context sequences, we are interested in the use of operators
which are close to the or operator. To measure this closeness, we can use the
concept of orness degree [39].

The extension of Yager’s OWA operators to a complete lattice L is not an
easy task. The main difficulty is that Yager’s construction is based on a previous
arrangement of the real values to be aggregated and such an arrangement is not
always possible in a partially ordered set. To overcome this problem, Lizasoain
and Moreno [28] built an ordered vector for each given vector of elements in the
lattice. This construction allowed them to define an n-ary OWA operator on
any complete lattice, in such a way that Yager’s OWA operator is recovered as
a particular case.
The construction, for each vector (a1, . . . , an) ∈ Ln, of a totally ordered vector
(b1, . . . , bn) is done as shown in the following proposition:

Proposition 1. Let (L,≤L) be a complete lattice. For any (a1, a2, . . . , an) ∈
Ln, consider the values

• b1 = a1 ∨ · · · ∨ an ∈ L

• b2 = [(a1∧a2)∨· · ·∨(a1∧an)]∨[(a2∧a3)∨· · ·∨(a2∧an)]∨· · ·∨[an−1∧an] ∈ L

...

• bk =
∨
{aj1 ∧ · · · ∧ ajk |{j1, . . . , jk} ⊆ {1, . . . , n}} ∈ L

...

• bn = a1 ∧ · · · ∧ an ∈ L
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Then a1 ∧ · · · ∧ an = bn ≤L bn−1 ≤ · · · ≤L b1 = a1 ∨ · · · ∨ an.
Moreover, if the set {a1, . . . , an} is totally ordered, then the vector (b1, . . . , bn)

is the same as (aσ(1), . . . , aσ(n)) for some permutation σ of {1, . . . , n}.

Besides, it is very easy to see that if {a1, . . . , an} is a chain, bk is the kth
order statistic.

Proposition 1 allows one to generalize Yager’s n−ary OWA operators from
[0, 1] to any complete lattice. To do so, Lizasoain and Moreno gave the following:

Definition 2. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm T
and a t-conorm S. We will say that (α1, α2, . . . , αn) ∈ Ln is

(i) a weighting vector in (L,≤L, T, S) if S(α1, . . . , αn) = 1L, and

(ii) a distributive weighting vector in (L,≤L, T, S) if it is a weighting vec-
tor such that a = T (a, S(α1, . . . , αn)) = S(T (a, α1), . . . , T (a, αn)) for any
a ∈ L.

Definition 3. Let (α1, . . . , αn) ∈ Ln be a distributive weighting vector in (L,≤L, T, S).
For each (a1, . . . , an) ∈ Ln, let (b1, . . . , bn) be the totally ordered vector con-
structed in Proposition 1. The function Fα : Ln −→ L given by

Fα(a1, . . . , an) = S(T (α1, b1), . . . , , T (αn, bn)),

(a1, . . . , an) ∈ Ln, is called n−ary OWA operator.

We will use these n−ary OWA operators in the following sections.

3. General study of L-fuzzy context sequences

A first study of L-fuzzy context sequences when L = [0, 1] is done in [5]. We
begin by recalling the main definition:

Definition 4. An L-fuzzy context sequence is a sequence of tuples (L,X, Y,Ri),
i ∈ {1, . . . , n}, n ∈ N, with L a complete lattice, X and Y sets of objects and
attributes, respectively, and Ri ∈ LX×Y for all i ∈ {1, . . . , n}, a family of L-
fuzzy relations between X and Y.

In [1] we have developed a general study of these L-fuzzy context sequences
using n−ary OWA operators.

For summarizing the information stored in the L-fuzzy context sequence, we
define:

Definition 5. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm
T and a t-conorm S. Let (L,X, Y,Ri), i ∈ {1, . . . , n}, be an L-fuzzy context
sequence, α = (α1, α2, . . . , αn) a distributive weighting vector and Fα the n−ary
OWA operator associated with α. We can define an L-fuzzy relation RFα that
aggregates the information of the different L-fuzzy contexts by means of the
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following expression:
For all x ∈ X, y ∈ Y,

RFα(x, y) =Fα(R1(x, y), R2(x, y), . . . , Rn(x, y)) =

=S(T (α1, b1(x, y)), T (α2, b2(x, y)), . . . , T (αn, bn(x, y)),

with (b1(x, y), b2(x, y), . . . , bn(x, y)) the totally ordered vector constructed in Propo-
sition 1 for (R1(x, y), R2(x, y), . . . , Rn(x, y)).

Given a certain k ∈ N, k ≤ n, we define the relation RF
αk

using an n−ary

OWA operator Fαk with the distributive weighting vector αk = (α1, α2, . . . , αn)
such that αk = 1L and αi = 0L, for all i 6= k :

RF
αk

(x, y) = Fαk(R1(x, y), R2(x, y), . . . , Rn(x, y)) =

= S(T (0L, b1(x, y)), T (0L, b2(x, y)), . . . , T (1L, bk(x, y)), . . . , T (0L, bn(x, y)),

for all x ∈ X, y ∈ Y.

For every pair (x, y), this relation represents the minimum of the k largest
observations as long as there are k observations which are greater than the other
ones, and will be used in next section.

Moreover, in [1] we studied different results in order to establish comparisons
between the L-fuzzy concepts associated with the different relations RFkα .

4. Temporal analysis of L-fuzzy context sequences

4.1. Temporal analysis in any complete lattice L

The general study of L-fuzzy context sequences as defined in the previous
section uses different n-ary OWA operators to aggregate values. However, such
an study may not allow one to make an analysis of their evolution in time.

To accomplish this analysis, the following definition tries to provide a value
to estimate the relation between each object and each attribute at an instant h.

Definition 6. In the complete lattice (L,≤L, T, S) endowed with the t-norm T
and the t-conorm S, let us consider the L-fuzzy context sequence (L,X, Y,Ri),
i ∈ {1, . . . , n}. Fixed h ∈ N, h ≤ n, let α = (α1, α2, . . . , αk) be a distributive
weighting vector with k = n−h+ 1 and Fα the k−ary OWA operator associated
with α. We can define an L-fuzzy relation RhFα that aggregates the information
of the different L-fuzzy contexts by means of the following expression:

RhFα(x, y) = Fα(Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)) =

= S(T (α1, b
h
1 (x, y)), T (α2, b

h
2 (x, y)), . . . , T (αk, b

h
k(x, y)),

for all x ∈ X, y ∈ Y,

where (bh1 (x, y), bh2 (x, y), . . . , bhk(x, y)) is the totally ordered vector constructed in
Proposition 1 for (Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)).
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Remark 1. Note that the chain

bh1 (x, y) ≥L · · · ≥L bhk(x, y)

where k = n−h+1, obtained in this case is not necessarily contained in the chain
b1(x, y) ≥L · · · ≥L bn(x, y) obtained starting from the whole family {Ri(x, y) |
i ∈ {1, . . . , n}}. For instance,

bhk(x, y) = Rh(x, y) ∧ · · · ∧Rn(x, y) ,

whereas

bk(x, y) = (R1(x, y) ∧ · · · ∧Rk(x, y)) ∨ · · · ∨ (Rh(x, y) ∧ · · · ∧Rn(x, y)) ,

with all the possible intersections Rj1(x, y) ∧ · · · ∧ Rjk(x, y) inside the dots. In
particular, in this case we see that bk(x, y) ≥L bhk(x, y) for any 1 ≤ h ≤ n.

A particular case of special interest is obtained when we take distributive
weighting vectors with a single non null value:

Relevant case 1. Let (L,X, Y,Ri), i ∈ {1, . . . , n}, be an L-fuzzy context se-
quence with (L,≤L, T, S) a complete lattice, Ri ∈ LX×Y and X and Y are
sets of objects and attributes, respectively, and consider h, k ∈ N, h ≤ n and
k = n − h + 1. We define the relation RhFα using a k−ary OWA operator Fα
with α = (α1, α2, . . . , αk) being such that αk = 1L and αi = 0L, for all i 6= k,
as:

RhFα(x, y) = Fα(Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)) =

= S(T (0L, b
h
1 (x, y)), T (0L, b

h
2 (x, y)), . . . , T (1L, b

h
k(x, y)))

for all x ∈ X, y ∈ Y.

with (bh1 (x, y), bh2 (x, y), . . . , bhk(x, y)) the totally ordered vector constructed in Propo-
sition 1 for (Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)).

RhFα is said to be the h-minimum L-fuzzy relation associated with α.

Observe that α is a distributive weighting vector. Moreover, notice that if
L = [0, 1], then we are using step-OWA operators [40].

These h-minimum L-fuzzy relations have interesting properties as shown
below.

Proposition 2. For any t-norm T and t-conorm S, it holds that RhFα(x, y) =

bhk(x, y), for all x ∈ X, y ∈ Y, with k = n− h+ 1.

Proof: The proof is straightforward taking into account the basic properties
of a t-norm T and a t-conorm S, and the definition of a distributive weighting
vector. �
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Remark 2. As L is a complete lattice, then

RhFα(x, y) =
∧
i≥h

Ri(x, y), for all x ∈ X, y ∈ Y.

In particular, if we take L = [0, 1], α is the distributive weighting vector of
Yager and Filev [41] when λ = 1.

Note that in this case, and after Proposition 2 and Remark 2, it is not
necessary to build the corresponding chain in order to get the h-minimum L-
fuzzy relation.

Another interesting case is the following one:

Relevant case 2. If L = [0, 1], T (a, b) = ab and S(a, b) = min{a+b, 1}, for all a, b ∈
[0, 1], and k = n−h+1, using a distributive weighting vector α̂ = (α1, α2, . . . , αk)
such that αi = 1/k, for all i, the resulting relation RhFα̂ is given by:

RhFα̂(x, y) =

k∑
i=1

bhi (x, y)

k
, for all (x, y) ∈ X × Y .

RhFα̂ is said to be the h-average L-fuzzy relation associated with α̂.

Remark 3. Note that in this case, as any rearrangement of the values {Rh(x, y), . . . , Rn(x, y)}
would provide the same result, it is not necessary to build the corresponding chain
and the resulting relation can be written as:

RhFα̂(x, y) =

n∑
i=h

Ri(x, y)

k
, for all (x, y) ∈ X × Y

From this point on, we will use the definition of h-minimum relation in order
to obtain the following results.

First, we can compare the different L-fuzzy concepts obtained from the dif-
ferent relations RhFα , for all h ≤ n.

Proposition 3. Consider A ∈ LX . Let h, l ≤ n and let (Ah, Bh) and (Al, Bl)
be the L-fuzzy concepts associated with A in the L-fuzzy contexts (L,X, Y,RhFα)

and (L,X, Y,RlFα). If h ≤ l then Bh ≤ Bl.
Moreover, if we use a residuated implication operator I and a crisp singleton

A = {x0}, then
Ah(x0) = Al(x0) = 1L

A similar result is obtained taking as starting point an L-fuzzy set of at-
tributes B ∈ LY .

Proof:
Consider A ∈ LX and RhFα and RlFα . If h ≤ l,

RhFα(x, y) = Rh(x, y)∧· · ·∧Rl(x, y)∧· · ·∧Rn(x, y) ≤ Rl(x, y)∧· · ·∧Rn(x, y) = RlFα(x, y)
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Hence, unfolding the fuzzy extensions of both L-fuzzy concepts and taking into
account that a fuzzy implication operator is increasing on its second argument:

Bh(y) = inf
x∈X
{I(A(x), RhFα(x, y))} ≤ inf

x∈X
{I(A(x), RlFα(x, y))} = Bl(y)

This result holds for every L-fuzzy set A and for every implication operator.
Besides, if we take a crisp singleton {x0} and a residuated implication, then

the membership degree of x0 in the fuzzy extension of the L-fuzzy concepts is
equal to 1L :

Bh(y) = inf
x∈X
{I(A(x), RhFα(x, y))} = RhFα(x0, y)

Ah(x) = inf
y∈Y
{I(Bh(y), RhFα(x, y))} = inf

y∈Y
{I(RhFα(x0, y), RhFα(x, y))}.

Therefore, Ah(x0) = 1L. In the same way, we can prove that Al(x0) = 1L.

The result for the other L-fuzzy set B ∈ LY can be proved analogously.
�

This result can be interpreted highlighting that the fuzzy intensions obtained
for the different L-fuzzy contexts of the sequence represent a non-decreasing
chain for all y ∈ Y.

Remark 4. Observe that if we take the h−average relation RhFα̂ , this result is

not true since if h ≤ l then RhFα̂ ≤ R
l
Fα̂

does not necessarily hold.

Furthermore, if an object and an attribute are related from instant h, then
they are related at least k = n− h+ 1 times, hence the following result can be
proved:

Consider k ∈ N, k ≤ n. Let RF
αk

be defined as in Section 3, using an n−ary

OWA operator Fαk with the distributive weighting vector αk = (α1, α2, . . . , αn)
such that αk = 1L and αi = 0L, for all i 6= k. Then, we have:

Proposition 4. Consider A ∈ LX , and h ≤ n. The fuzzy intension Bh of
the L-fuzzy concept (Ah, Bh) obtained in (L,X, Y,RhFα) is included in the fuzzy

intension B̄k of the L-fuzzy concept (Āk, B̄k) obtained in (L,X, Y,RF
αk

) with
k = n− h+ 1. That is,

Bh(y) ≤ B̄k(y), for all y ∈ Y

We also have a similar result for B ∈ LY .

Proof: It is straightforward taking into account the proof of the previous propo-
sition and the fact that, when k = n− h+ 1, the following inequality holds:

RhFα(x, y) = Rh(x, y) ∧ · · · ∧Rn(x, y) ≤

≤
∨
{Rj1(x, y) ∧ · · · ∧Rjk(x, y) | {j1, . . . , jk} ⊆ {1, . . . , n}} = RF

αk
(x, y)
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�
To conclude this subsection, we present the following important result which

allows us to study the attributes associated with some elements of X from an
instant h in two different ways:

Theorem 1. Let (L,≤L) be a complete lattice, A a crisp subset of X, and I a
residuated implication. Let h ≤ n and RhFα the h-minimum L relation associated
with a weighting vector as defined in relevant case 1 with respect to the weighing
vector α = (α1, . . . , αk) with αk = 1L and αi = 0L for every i 6= k.

The fuzzy intension Bh ∈ LY of the L-fuzzy concept derived from A in
(L,X, Y,RhFα) is equal to the intersection of the fuzzy intensions Bi of the L-
fuzzy concepts obtained in the L-fuzzy contexts (L,X, Y,Ri) with i ≥ h. That
is,

Bh(y) =
∧
i≥h

Bi(y), for all y ∈ Y

Proof:
If we use a residuated implication operator I, then for all y ∈ Y we have

Bh(y) = inf
x∈X
{I(A(x), RFhα (x, y))} =

∧
x∈X/A(x)=1L

RhFα(x, y)

Therefore, by the definition of RhFα(x, y), we can say that:

Bh(y) =
∧

x∈X/A(x)=1L

{
∧
i≥h

{Ri(x, y)}} =
∧
i≥h

{
∧

x∈X/A(x)=1L

{Ri(x, y)}} =
∧
i≥h

Bi(y).

�

Remark 5. This result justifies the utility of the defined relations RhFα since
they allow one to study the attributes associated with some objects from an
instant h looking only at the L-fuzzy context (L,X, Y,RhFα) instead of at all the
L-fuzzy contexts of the sequence.

4.2. Temporal analysis of J ([0, 1])-fuzzy context sequences

The use of interval-valued L-fuzzy contexts gives us the opportunity to rep-
resent some real problems. We have previously published some papers [3, 14] in
which the considered lattice is L = J ([0, 1]).

Note that if we take (J ([0, 1]),≤) with the usual order ([a1, c1] ≤ [a2, c2]⇐⇒
a1 ≤ a2 and c1 ≤ c2), this is a complete but not totally ordered lattice. In this
setting, for an interval-valued L-fuzzy context sequence (J ([0, 1]), X, Y,Ri), i ∈
{1, . . . , n}, Definition 5 translates into the following:

RF[α,β]
(x, y) =F[α,β](R1(x, y), R2(x, y), . . . , Rn(x, y)) =

=S(T([α1, β1], [b1(x, y), d1(x, y)]), . . . ,T([αn, βn], [bn(x, y), dn(x, y)])

where ([b1(x, y), d1(x, y)], [b2(x, y), d2(x, y)], . . . , [bn(x, y), dn(x, y)]) is the totally
ordered vector constructed from (R1(x, y), R2(x, y), . . . , Rn(x, y)) and T, S are
an interval-valued t-norm and t-conorm, respectively.

In this setting, relevant case 1 becomes the following:
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Relevant case 3. Consider h, k ∈ N such that h ≤ n and k = n− h+ 1. If we
represent by JαK the distributive weighting vector JαK = ([α1, β1], [α2, β2], . . . , [αk, βk])
such that [αk, βk] = [1, 1], and [αi, βi] = [0, 0], for all i 6= k, we can define the
relation RhFJαK

as:

RhFJαK
(x, y) = [bhk(x, y), dhk(x, y)]

for all (x, y) ∈ X×Y where ([bh1 (x, y), dh1 (x, y)], [bh2 (x, y), dh2 (x, y)], . . . , [bhk(x, y), dhk(x, y)])
is the totally ordered vector constructed from (Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)).

RhFJαK
is said to be the h-minimum L-fuzzy relation associated with JαK.

Remark 6. Observe that, if for all (x, y) ∈ X × Y we denote Ri(x, y) =[
Ri(x, y), Ri(x, y)

]
, the previous h-minimum L-fuzzy relation can be written as:

RhFJαK
(x, y) =

∧
i≥h

Ri(x, y),
∧
i≥h

Ri(x, y)


Besides, relevant case 2 can also be translated into this interval-valued set-

ting, as follows.

Relevant case 4. In the complete lattice (J ([0, 1]),≤),
considering h ≤ n, k = n−h+1 and the weighting vector Jα̂K = ([α1, β1], . . . , [αk, βk]) ∈

J ([0, 1])n verifying [αi, βi] = [ 1k ,
1
k ], for all i, we can define the relation RhFJα̂K

, for all (x, y) ∈
X × Y , as follows:

RhFJα̂K
(x, y) =

[
k∑
i=1

bhi (x, y)

k
,

k∑
i=1

dhi (x, y)

k

]

where ([bh1 (x, y), dh1 (x, y)], [bh2 (x, y), dh2 (x, y)], . . . , [bhk(x, y), dhk(x, y)]) is the totally
ordered vector constructed from (Rh(x, y), Rh+1(x, y), . . . , Rn(x, y)).

RhFJα̂K
is called the h-average L-fuzzy relation associated with Jα̂K.

Remark 7. Note that, also in this case, any rearrangement of the values Ri(x, y),
with i ≥ h, would provide the same result:

RhFJα̂K
(x, y) =

[
n∑
i=h

Ri(x, y)

k
,

n∑
i=h

Ri(x, y)

k

]

In order to clarify our study in this specific interval-valued case, let us con-
sider the following example.

Example 1. Consider the L-fuzzy context sequence (L,X, Y,Ri), i ∈ {1, . . . , 5},
that represents the sports items X = {x1, x2, x3} sales in some establishment
Y = {y1, y2, y3} during 5 months. Every interval-valued observation of the
relations Ri ∈ J ([0, 1])X×Y , represents the variation of the percentage of the
daily product sales in each establishment along a month.
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R1 y1 y2 y3
x1 [0. 7, 0. 8] [1, 1] [0. 8, 1]
x2 [0, 0] [0. 1, 0. 4] [0. 1, 0. 3]
x3 [0, 0] [0. 1, 0. 3] [0, 0. 4]

R2 y1 y2 y3
x1 [1, 1] [0. 8, 1] [1, 1]
x2 [0. 8, 0. 9] [0. 4, 0. 5] [0. 1, 0. 3]
x3 [0, 0] [0, 0. 2] [0. 2, 0. 4]

R3 y1 y2 y3
x1 [1, 1] [1, 1] [1, 1]
x2 [0. 6, 0. 8] [0. 5, 0. 5] [0. 7, 0. 8]
x3 [0, 0] [0. 1, 0. 2] [0. 2, 0. 4]

R4 y1 y2 y3
x1 [0. 5, 0. 5] [0. 4, 0. 6] [0. 6, 0. 8]
x2 [0. 1, 0. 3] [0. 5, 0. 6] [0. 3, 0. 5]
x3 [0. 6, 0. 6] [0. 8, 0. 9] [0. 8, 1]

R5 y1 y2 y3
x1 [0. 1, 0. 4] [0, 0. 2] [0, 0. 2]
x2 [0, 0] [0. 6, 0. 8] [0, 0. 2]
x3 [0. 8, 1] [1, 1] [0. 9, 1]

If we want to study the evolution of the sequence, we can take a value h and
analyze the corresponding L-fuzzy concepts.

For instance, if h = 4 (fourth month), using the h-minimum L-fuzzy relation
associated with JαK, we have:

R4
FJαK

y1 y2 y3

x1 [0. 1, 0. 4] [0, 0. 2] [0, 0. 2]
x2 [0, 0] [0. 5, 0. 6] [0, 0. 2]
x3 [0. 6, 0. 6] [0. 8, 0. 9] [0. 8, 1]

and, taking as L-fuzzy context (L,X, Y,R4
FJαK

), we can obtain the L-fuzzy

concepts starting from the crisp singletons:

{x1} −→({x1/[1, 1], x2/[0.6, 0.6], x3/[1, 1]},
{y1/[0.1, 0.4], y2/[0, 0.2], y3/[0, 0.2]})

{x2} −→({x1/[0.5, 0.6], x2/[1, 1], x3/[1, 1]},
{y1/[0, 0], y2/[0.5, 0.6], y3/[0, 0.2]})

{x3} −→({x1/[0.2, 0.2], x2/[0.2, 0.2], x3/[1, 1]},
{y1/[0.6, 0.6], y2/[0.8, 0.9], y3/[0.8, 1]})
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We can say that the future tendency from the fourth month on is that item
x3 is the only one which will achieve good sales in all the establishments. The
other articles, x1 and x2, will have poor sales, and all of them associated with
x3. Item x1 will be sold essentially in establishment y1, while x2 will be sold in
y2.

Now, using the h− average L-fuzzy relation associated with Jα̂K, we obtain:

R4
FJαK

y1 y2 y3

x1 [0. 3, 0. 45] [0. 2, 0. 4] [0. 3, 0. 5]
x2 [0. 05, 0. 15] [0. 55, 0. 7] [0. 15, 0. 35]
x3 [0. 7, 0. 8] [0. 9, 0. 95] [0. 85, 1]

And, in this case:

{x1} −→({x1/[1, 1], x2/[0.7, 0.7], x3/[1, 1]},
{y1/[0.3, 0.45], y2/[0.2, 0.4], y3/[0.3, 0.5]})

{x2} −→({x1/[0.65, 0.7], x2/[1, 1], x3/[1, 1]},
{y1/[0.05, 0.15], y2/[0.55, 0.7], y3/[0.15, 0.35]})

{x3} −→({x1/[0.3, 0.45], x2/[0.3, 0.35], x3/[1, 1]},
{y1/[0.7, 0.8], y2/[0.9, 0.95], y3/[0.85, 1]})

We can see that the sales tendency for all the items and establishments is
better since the demand for this new relation is lower.

Obviously, the smaller the value of h the more certain the prediction that
we do.

5. Temporal trends

In this section, we want to study temporal trends to identify the evolution
in time of the L-fuzzy context sequence (L,X, Y,Ri), i ∈ {1, . . . , n}, when L is
a complete lattice.

Our interest is focused on the study of the evolution of the relationship
between the objects (or attributes) with respect to one or several attributes (or
objects). In the first part of the paper, we have done different approximations
considering different instants h. Now, we want to conduct a general study of
the complete sequence by means of new tools.

For this purpose, we also use residuated implication operators in the calcu-
lation of the L-fuzzy concepts associated with certain objects or attributes.

In [5], we conducted a preliminary study in [0, 1] and we want to extend and
deepen those results to any complete lattice L. In this case, we have to take into
account that, except for a complete chain, the elements of the lattice L are not
necessarily comparable.
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5.1. Trend and persistent objects and attributes

The best way to study the evolution in time of an object or attribute is to
study its associated L-fuzzy concepts in the different L-fuzzy contexts of the
sequence. This is the idea for the following:

Definition 7. Consider x0 ∈ X, y0 ∈ Y. Let (Ai{x0}, Bi{x0}) and (Ai{y0}, Bi{y0})
be the L-fuzzy concepts associated with the crisp singletons {x0} and {y0} in the
L-fuzzy context sequence (L,X, Y,Ri) with i ≤ n.

Then:

(i) Trend(x0) = {y ∈ Y /Bi{x0}(y) ≤ Bi+1{x0}(y), for all i < n}

is the attribute set whose membership degrees in the different intensions
of the L-fuzzy concepts (Ai{x0}, Bi{x0}) are non decreasing.

(ii) Trend(y0) = {x ∈ X /Ai{y0}(x) ≤ Ai+1{y0}(x), for all i < n}

is the object set whose membership degrees in the different extensions of
the L-fuzzy concepts (Ai{y0}, Bi{y0}) are non decreasing.

We can say that they are the attributes that are more and more related to
object x0 and the objects more and more related to attribute y0.

Example 2. In our example, L = J ([0, 1]) and we obtain that Trend(x3) =
{y1, y3} and Trend(y1) = Trend(y3) = {x3}.

This is a very demanding definition but it allows us to establish trends with
a high degree of fulfillment.

Moreover, it is easy to prove the following result:

Proposition 5. Consider x ∈ X, y ∈ Y . Then:

y ∈ Trend(x)⇐⇒ x ∈ Trend(y)

Proof: Consider the crisp singleton {x}. Using a residuated implication opera-
tor, Bi{x}(y) ≤ B(i+1){x}(y), for all i < n⇐⇒ Ri(x, y) ≤ Ri+1(x, y), for all i <
n⇐⇒ Ai{y}(x) ≤ A(i+1){y}(x), for all i < n⇐⇒ x ∈ Trend(y). �

We can extend this definition to the case of more than one object or attribute:

Definition 8. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y :

(i) We define Trend(Z) as:

Trend(Z) = {y ∈ Y /Bi{x}(y) ≤ Bi+1{x}(y), for all i < n, for all x ∈ Z}

(ii) And Trend(T ) as:

Trend(T ) = {x ∈ X /Ai{y}(x) ≤ Ai+1{y}(x), for all i < n, for all y ∈ T}

In this case, the following can also be proven:
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Proposition 6. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y :

(i) If Trend(Z) = T, then Z ⊆ Trend(T )

(ii) If Trend(T ) = Z, then T ⊆ Trend(Z)

Proof:

(i) If y ∈ Trend(Z) = T thenBi{x}(y) ≤ B(i+1){x}(y), for all i < n, for all x ∈
Z ⇐⇒ Ri(x, y) ≤ Ri+1(x, y), for all i < n, for all x ∈ Z, for all y ∈
Trend(Z) = T ⇐⇒ Ai{y}(x) ≤ A(i+1){y}(x), for all i < n, for all x ∈
Z, for all y ∈ Trend(Z) = T ⇐⇒ Z ⊆ Trend(T ).

(ii) Analogous to the previous one.

�
As a particular case, we have the sets Trend(X) and Trend(Y ) for which

the following remark holds:

Remark 8. Trend(X) = Y ⇐⇒ Trend(Y ) = X.

Moreover, it is verified:

Proposition 7. Trend(X) = Y (equiv. Trend(Y ) = X ) if and only if the
L-fuzzy relations RF

αk
and RhFα defined in Sections 3 and 4, and Rh given in

the L-fuzzy context sequence definition, are the same for k = n− h+ 1.

Proof: If for all y ∈ Y, it is verified that y ∈ Trend(x) for all x ∈ X, then this
means that for all y ∈ Y, for all x ∈ X,Bi{x}(y) ≤ Bi+1{x}(y), for all i < n
where Bi{x} is the Fuzzy intension of the L-fuzzy concept derived from the basic
point associated with x ∈ X in the L-fuzzy context (L,X, Y,Ri).

As we are using a residuated implication operator, this is equivalent to:
Ri(x, y) ≤ Ri+1(x, y), for all x ∈ X, for all y ∈ Y, for all i < n⇐⇒RF

αk
(x, y) =

Rn−k+1(x, y) = min
i≥h
{Ri(x, y)} = RhFα(x, y). �

This is a particular but very interesting case for some practical situations.
In our example, as the L-fuzzy contexts store the sales, then we are saying that
these sales are always increasing.

Next, we prove that if the objects and attributes are trends, then a relation-
ship exists between the L-fuzzy concepts obtained using the context relations
Ri, i ≤ n and the relation RiFα defined from instant i.

Proposition 8. For all x0 ∈ X and for all y0 ∈ Y, it is provided:

(i) Let (Ai{x0}, Bi{x0}) and (Ai{x0}, B
i
{x0}), for all i ≤ n, be the L-fuzzy con-

cepts associated with {x0} in the L-fuzzy contexts (L,X, Y,Ri) and (L,X, Y,RiFα),
respectively.
The attribute y ∈ Trend(x0) if and only if Bi{x0}(y) = Bi{x0}(y), for all i <
n.
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(ii) Let (Ai{y0}, Bi{y0}) and (Ai{y0}, B
i
{y0}), for all i ≤ n, be the L-fuzzy con-

cepts associated with {y0} in the L-fuzzy contexts (L,X, Y,Ri) and (L,X, Y,RiFα),
respectively.
The object x ∈ Trend(y0) if and only if Ai{y0}(x) = Ai{y0}(x), for all i <
n.

Proof:

(i) =⇒] If y ∈ Trend(x0), then for all i < n, Bi{x0}(y) ≤ Bi+1{x0}(y).
Moreover Bi{x0}(y) = Ri(x0, y), for all i ≤ n then, we can say that
Ri(x0, y) ≤ Ri+1(x0, y), for all i < n.
So, for all i ≤ n, Bi{x0}(y) = RiFα(x0, y) = min

k≥i
{Rk(x0, y)} = Ri(x0, y) =

Bi{x0}(y).

⇐=] If Bi{x0}(y) = Bi(y), for all i < n, as by definition Bi{x0}(y) =

RiFα(x0, y) and the L-fuzzy relations RiFα(x0, y) ≤ Ri+1
Fα

(x0, y), for all i ≤
n, we can prove that Bi{x0}(y) ≤ Bi+1{x0}(y), for all i < n. Therefore,
y ∈ Trend(x0).

(ii) The proof of this statement is similar to the previous one.

�
This result does not hold if the objects and attributes are not trends, there-

fore, the study of the L-fuzzy relations RiFα is very useful when we want to
study future tendencies with trend objects or attributes.

As the definition of Trend is very demanding, in some cases, it is interesting
to study Persistent objects and attributes in order to relax the demand level.

Definition 9. Given x0 ∈ X, y0 ∈ Y. Let (Ai{x0}, Bi{x0}) and (Ai{y0}, Bi{y0})
be the L-fuzzy concepts associated with the crisp singletons {x0} and {y0}, in
the L-fuzzy context sequence (L,X, Y,Ri) with i ≤ n :

(i) Persistent(x0) = {y ∈ Y /Bi{x0}(y) ≥ B1{x0}(y), for all i, 1 < i ≤ n} is the
set of attributes whose membership degrees in the fuzzy intensions of the
L-fuzzy concepts (Ai{x0}, Bi{x0}) are bigger than or equal to the values of
the L-fuzzy concept (A1{x0}, B1{x0}).

(ii) Persistent(y0) = {x ∈ X /Ai{y0}(x) ≥ A1{y0}(x), for all i, 1 < i ≤ n} is the
set of objects whose membership degrees in the fuzzy extensions of the L-
fuzzy concepts (Ai{y0}, Bi{y0}) are bigger than or equal to the values of the
L-fuzzy concept (A1{y0}, B1{y0}).

Fixed j ≤ n, an alternative definition of Persitent(xo) and Persistent(yo) can
be given as follows:

Persistentj(x0) = {y ∈ Y /Bi{x0}(y) ≥ Bj{x0}(y), for all i, j < i ≤ n}

Persistentj(y0) = {x ∈ X /Ai{y0}(x) ≥ Aj{y0}(x), for all i, j < i ≤ n}
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However, in the rest of the paper we will use Definition 9.

With this definition, results similar to those of Proposition 5 and 6 hold:

Proposition 9. Consider x ∈ X, y ∈ Y.
The following result is verified:

y ∈ Persistent(x)⇐⇒ x ∈ Persistent(y)

We can extend this definition to the case of more than one object or attribute:

Definition 10. For every Z, T 6= ∅, Z ⊆ X and T ⊆ Y :

(i) We define Persistent(Z) as:

Persistent(Z) = {y ∈ Y /Bi{x}(y) ≥ B1{x}(y), for all i < n, for all x ∈ Z}

(ii) And Persistent(T ) as:

Persistent(T ) = {x ∈ X /Ai{y}(x) ≥ A1{y}(x), for all i < n, for all y ∈ T}

Proposition 10. For all Z, T 6= ∅, Z ⊆ X and T ⊆ Y :

(i) If Persistent(Z) = T, then Z ⊆ Persistent(T )

(ii) If Persistent(T ) = Z, then T ⊆ Persistent(Z)

However, results similar to those in Propositions 7 and 8 are not necessarily
verified.

5.2. Trend and Persistent Formal contexts

The Trend and Persistent definitions set up pairs of objects and attributes
that can be used for a more complete analysis of the evolution of the L-fuzzy
sequence (L,X, Y,Ri), i ∈ {1, . . . , n}.

Following this idea and Definition 7, the study of tendencies of the L-fuzzy
context sequence can be completed with the construction of binary Trend ma-
trices.

Definition 11. The Trend matrix TM ⊆ X × Y is defined as:

TM(x, y) =

{
1 if y ∈ Trend(x)(equiv. x ∈ Trend(y))

0 in other case

By Proposition 5, to obtain the Trend matrix it is only necessary the calcu-
lation of Trend(x), for all x ∈ X or similarly Trend(y), for all y ∈ Y.
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Example 3. In our example, the Trend matrix is:

TM y1 y2 y3
x1 0 0 0
x2 0 1 0
x3 1 0 1

We can consider now the formal context (X,Y, TM) and obtain its formal
concepts to have a general idea of the trends between the objects X and the
attributes Y.

Definition 12. Consider the formal context (X,Y, TM) with X the set of ob-
jects, Y the set of attributes and TM ⊆ X×Y. The formal concepts of (X,Y, TM)
are called Trend formal concepts.

Example 4. In our case, the Trend formal concepts of the L-fuzzy context se-
quence are:

({x1}, ∅), ({x2}, {y2}), ({x3}, {y1, y3}), (∅, {y1, y2, y3})

We can say that the main trends are that sport item {x2} is sold in estab-
lishment {y2} and sport item {x3} in {y1} and {y3}.

Remark 9. If we consider the mappings Trend1 : 2X −→ 2Y and Trend2 :
2Y −→ 2X , that are decreasing, by Proposition 6 they form a Galois connection
and then the Trend formal concept lattice is straightforwardly obtained.

It is also possible to conduct a different study using Persistent definition,
following Definition 9:

Definition 13. The matrix PM ⊆ X × Y such that

PM(x, y) =

{
1 if y ∈ Persistent(x)(x ∈ Persistent(y))

0 in other case

is called Persistent Matrix.

Example 5. In our example, the Persistent Matrix is:

PM y1 y2 y3
x1 0 0 0
x2 1 1 0
x3 1 0 1

We can now consider (X,Y, PM) and calculate their formal concepts to
obtain information about the tendencies between the objects of X and the at-
tributes of Y.
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Definition 14. Consider the formal context (X,Y, PM). The formal concepts
of (X,Y, PM) are called Persistent formal concepts.

Example 6. In our case, the Persistent formal concepts of the L-fuzzy context
sequence are:
({x1}, ∅), ({x2}, {y1, y2}), ({x3}, {y1, y3}), ({x2, x3}, {y1}), (∅, {y1, y2, y3})

The differences with the Trend formal concepts are that the tendency is that
{x2} is also sold in {y1} and that a new formal concept ({x2, x3}, {y1}) appears.

Remark 10. Also in this case, the mappings Persistent1 : 2X −→ 2Y and
Persistent2 : 2Y −→ 2X form a Galois connection and the Persistent formal
concept lattice is straightforwardly obtained.

Moreover, as the definition of Persistent is less demanding than the one of
Trend, we can easily prove the following:

Proposition 11. If TM and PM are the Trend and Persistent matrices ob-
tained from an L-fuzzy context sequence, then TM ⊆ PM holds.

If we denote by L(X,Y, TM) and L(X,Y, PM) the concept lattices of the
formal contexts (X,Y, TM) and (X,Y, PM), respectively, then [23]:

Proposition 12. If (A,B) ∈ L(X,Y, TM) then there exists (C,D) ∈ L(X,Y, PM)
such that A ⊆ C and B ⊆ D.

6. Conclusions and future work

In this work, we have used n-ary OWA operators to study the evolution in
time of L-fuzzy context sequences considering different departure instants h and
by means of the L-fuzzy concepts. After that, we have studied tendencies that
we find when we consider all the sequence using Trend and Persistent matrices.
The study of these matrices gives us a general summary of the evolution of the
relationship between the objects and the attributes using formal concepts.

In the future, we want to use these trends to analyze contexts with absent
values. Furthermore, we will study the particular case X = Y that allows the
study of preference L-fuzzy contexts. Moreover, our intention is to extend Trend
and Persistent definitions to the fuzzy field defining tendency and persistence
degrees.

Finally, these L-fuzzy contexts that evolve in time can be generalized if we
study L-fuzzy contexts where the observations are red given in terms of other
L-fuzzy contexts.
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