
A MapReduce Solution for Associative Classification of

Big Data

Alessio Bechini, Francesco Marcelloni∗, Armando Segatori

Dipartimento di Ingegneria dell’Informazione

University of Pisa

56122, Pisa, Italy

Abstract

Associative classifiers have proven to be very effective in classification prob-

lems. Unfortunately, the algorithms used for learning these classifiers are

not able to satisfactorily manage big data because of time complexity and

memory constraints. To overcome such drawbacks, we propose a distributed

association rule-based classification scheme shaped according to the MapRe-

duce paradigm. The scheme mines classification association rules (CARs)

using a distributed version of the well-known FP-Growth algorithm. Once

CARs have been mined, a distributed pruning based on dataset coverage is

applied. The set of survived CARs are used to classify unlabeled patterns.

The memory usage and time complexity for each phase of the learning

process are discussed, and the scheme is evaluated on three real-world big

datasets on the Hadoop framework, characterizing its scalability and the

achievable speedup on small computer clusters. The proposed solution for

associative classifiers turns to be suitable to practically address big datasets

∗Corresponding Author: Tel: +39 050 2217678 Fax: +39 050 2217600
Email address: francesco.marcelloni@unipi.it (Francesco Marcelloni)

Preprint submitted to Information Sciences July 14, 2015

even with modest hardware support.

Keywords: Associative Classifiers; Big Data; Hadoop; MapReduce;

Parallel FP-Growth

1. Introduction

Classifiers based on association relationships, generally known as Asso-

ciative Classifiers (ACs), integrate two well-known data mining paradigms:

pattern classification and association rule mining [1]. Pattern classification

assigns a class label to an object described by a set of features using a specific

model, namely the classifier, previously built by exploiting a set of training

examples. Association rule mining is the task of discovering correlation or

other relationships among items in large databases [2]. Several different

works [3, 4, 5, 6, 7, 8] have shown that ACs achieve high classification perfor-

mances and are more accurate than traditional algorithms such as C4.5 [9].

Furthermore, since associative relationships reflect the close dependencies

among predictive variables, the extraction of highly confident rules produces

rule-based models more interpretable than models generated by using other

techniques [10, 11]. Thus, in the last years, ACs have been successfully ex-

ploited in a number of real world applications such as phishing detection

in websites [12], XML document classification [13], text analysis [14], and

disease classification [14, 15].

Generally, an AC operates in three phases. In the first phase, a set

of classification association rules (CARs) is mined from the training set.

Preliminarily, the attribute values (items in the association rule context)

characterized by an occurrence value beyond a given threshold, called frequent

2

items, are selected from the dataset. Then, CARs are mined from frequent

items. In the second phase, CARs are pruned according to support and

confidence thresholds, and redundancy. Finally, the selected CARs are used

to predict the class labels on input unlabeled patterns.

To mine CARs two algorithms are typically used: the Apriori algorithm

[2] and the frequent pattern growth [16], or simply FP-Growth algorithm.

The Apriori algorithm generates candidate itemsets by extending frequent

itemsets one item at a time, and then tests their frequency against the over-

all dataset. When no further successful frequent extensions can be mined,

the algorithm terminates. In many cases this “bottom up” approach leads

to a good performance gain, especially when the candidate generate-and-test

steps significantly reduce the size of candidate sets. However, the Apriori

algorithm repeatedly scans the overall dataset for evaluating whether can-

didate itemsets are frequent. This scanning process can be very expensive,

especially with very large datasets that cannot be stored in the main memory

[17].

FP-Growth mines the complete set of frequent itemsets without generat-

ing all the possible candidate itemsets, by scanning the overall dataset only

twice. First, it extracts the frequent items and sorts them by descending fre-

quencies. Then, the dataset consisting only of frequent items is compressed

into a frequent pattern tree, called FP-tree. Finally, FP-Growth recursively

mines patterns by dividing the compressed dataset into a set of projected

datasets, each associated with a frequent item or a pattern fragment. For

each pattern fragment, only its associated conditional dataset needs to be ex-

amined. The problem of mining frequent itemsets is converted into building

3

and searching trees recursively.

The different approaches proposed in the literature to generate ACs aim

to improve classification accuracy and often neglect to consider the time and

space requirements [11] needed for generating CARs. Nowadays, when deal-

ing with big data, that is, datasets whose size is beyond the ability of typical

database software tools to capture, store, manage and analyze, most of the

classification learning algorithms proposed in the literature are practically

inapplicable [18]. On the other hand, when the numbers of features and/or

data objects grow up, the number of fake correlations also increments [19].

A simple solution to deal with massive data is to select only a subset of

data objects so that the traditional data mining algorithms can be executed

in a reasonable time. However, downsampling techniques may delete useful

knowledge. Thus, approaches that consider the overall dataset are more de-

sirable. In the last years, different scalable and parallel implementations have

been proposed for association rule mining. Most of these implementations

have focused on the well-known FP-Growth algorithm. Since the FP-Growth

algorithm requires just two scans of the dataset, it is computationally more

efficient than the Apriori algorithm. Some works have proposed to parallelize

the FP-Growth algorithm exploiting multiple threads on a shared memory

environment [20, 21]. In [22], a distributed version, which takes both data

and computation across multiple machines into account, has been proposed.

Other works investigate different parallel implementations, addressing some

issues such as communication cost, data placement strategies, memory and

I/O utilization [23]. All these approaches are based on the MPI (Message

Passing Interface) programming model [24] and achieve good performance in

4

terms of scalability and speedup. However, these approaches are limited by

memory bottlenecks and communication overheads.

Recently, the MapReduce programming paradigm has become one of the

most popular models to deal with Big Data. Originally proposed by Google

in 2004 [25], the paradigm simplifies the parallelization of the computation

flow across large-scale clusters of machines. Further, MapReduce execution

environments, like e.g. Apache Hadoop [26], take care of failures and com-

munications among different cluster machines [25, 27]. Some recent works

have proposed several parallel MapReduce solutions of classical data min-

ing algorithms, such as k-means [28], SVM [29, 30, 31], KNN [32], frequent

pattern mining [18, 33, 34], boosting [35], nayve Bayes, neural network back-

propagation, and logistic regression, investigating performance in terms of

speedup [36]. To the best of our knowledge, however, no paper has discussed

the implementation of associative classifiers on MapReduce.

In this paper, we propose an association rule-based classification scheme

built upon the MapReduce framework. The proposed scheme mines CARs

using a distributed version of the FP-Growth algorithm. Once CARs have

been mined, a distributed pruning based on the dataset coverage threshold

proposed in [4] is applied. The set of survived rules are used to classify

unlabeled patterns. We discuss memory usage and time complexity for each

phase of the learning process.

We performed two different experiments. In the first experiment, we used

18 ordinary-sized benchmarks to show that our scheme achieves accuracies

comparable to other three well-known associative classifiers, namely CBA,

CBA2 and CPAR. In the second experiment, we adopted three real-world big

5

datasets with different numbers of instances (up to 11 millions) to analyze

scalability and speedup of each parallel job according to different units of

work and problem size.

The paper is organized as follows. Section 2 provides some preliminaries

on ACs and MapReduce. Section 3 describes the proposed approach and

includes the details of each single job that runs on the cluster of machines.

Section 4 presents the experimental setup and discusses the results in terms

of accuracy, speedup and scalability. Finally, in Section 5, we draw final

conclusions.

2. Background

2.1. Associative Classifiers

Pattern classification consists of assigning a class Cl from a predefined

set C = {C1, . . . , CL} of classes to an unlabeled pattern. We consider a

pattern as an F -dimensional vector of features. Let X = {X1, . . . , XF}

be the set of the F features and Uf , f = 1, . . . , F , be the universe of the

f th feature. Features can be both continuous and categorical. Continuous

features are discretized, that is, their universes are partitioned into con-

tiguous intervals before performing the association rule mining process. Let

Ps = {[as,1, as,2], (as,2, as,3], . . . , (as,Ts , as,Ts+1]} be a partition of Ts contiguous

intervals on the continuous feature Xs. Since each interval can be associated

with a label, continuous features can be managed as categorical features.

Let Vf = {vf,1, . . . , vf,Tf
} be the set of values associated with feature Xf ,

f = 1, . . . , F . In case of continuous features, each label vf,j, with j ∈ [1..Tf],

identifies the jth interval [af,j, af,j+1] of the partition of Xf .

6

Association rules are rules in the form Z → Y , where Z and Y are

sets of items. These rules describe relations among items in a dataset [17].

Association rules have been widely employed in the market basket analysis.

Here, items identify products and the rules describe dependencies among

the different products bought by customers [2]. Such relations can be used

for decisions about marketing activities as promotional pricing or product

placements.

In the associative classification context, the single item is defined as the

couple If,j = (Xf , vf,j), where vf,j is one of the values that the variable Xf ,

f = 1, ..., F , can assume. A generic classification association rule CARm is

expressed as:

CARm : Antm → Clm (1)

where Antm is a conjunction of items, and Clm is the class label selected

for the rule within the set C = {C1, . . . , CL} of possible classes. For each

variable Xf , just one item is typically considered in Antm. Antecedent Antm

can be represented more friendly as

Antm : X1 is v1,jm,1 . . . AND . . . XF is vF,jm,F
(2)

where vf,jm,f
is the value used for variable Xf in rule CARm.

Let T = (x1, y1), (x2, y2), . . . , (xN , yN) be the training set, where, for each

object (xi, yi), xi,f , i = 1, . . . , N , is one of the discrete values that feature

Xf , f = 1, . . . , F , can assume and yi ∈ C. In case of continuous features, we

replace the real value with the corresponding categorical value, that is, the

value associated with the interval which the real value belongs to. We state

7

that xi matches a rule CARm if and only if, for each item If,j in Antm with

f = 1, . . . , F , the value xi,f of xi has the same value vf,jm,f
of item If,j for

the feature Xf in the rule.

In the association rule analysis, support and confidence are the most

common measures to determine the strength of an association rule. Support

of a classification association rule CARm, in short supp(Antm → Clm), is

the number of objects in the training set T matching antecedent Antm and

having Clm as class label. Usually, the support value is normalized with the

total number of objects. Support can be interpreted as the coverage of rule

CARm in T and estimates the number of instances correctly classified by

rule CARm.

Confidence of CARm, in short conf(Antm → Clm), is the ratio between

supp(Antm → Clm) and the number of objects in T matching antecedent

Antm. The value can be interpreted as the probability of correctly classifying

the class label Clm in the unlabeled pattern x̂ under the condition that x̂

matches Antm. Formally, support and confidence can be expressed for a

classification association rule CARm as follows:

supp(Antm → Clm) =
supp(Antm ∪ Clm)

N
(3)

conf(Antm → Clm) =
supp(Antm ∪ Clm)

supp(Antm)
(4)

where N is the number of objects in T , supp(Antm ∪ Clm) is the number

of objects in T matching pattern Antm and having Clm as class label and

supp(Antm) is the number of objects in T matching pattern Antm.

An AC is also characterized by its reasoning method, which uses the in-

formation from the rule base to determine the class label for a specific input

8

pattern. In our AC scheme, we use the weighted χ2 reasoning method as

described in Section 3.4.

2.2. MapReduce

In 2004, Google proposed the MapReduce programming framework [25].

The framework divides the work into a set of independent tasks and paral-

lelizes the computation flow across large-scale clusters of machines, taking

care of communications among them and possible failures, and efficiently

handling network bandwidth and disk usage. MapReduce is a programming

model based on functional programming, designed for processing large vol-

umes of data with parallel and distributed algorithms on a computer cluster.

It divides the computational flow into two main phases: Map and Reduce.

By simply designing Map and Reduce functions, developers are able to de-

velop parallel algorithms that can be executed across the cluster. The overall

computation is organized around 〈key, value〉 pairs: it takes a set of input

〈key, value〉 pairs and produces a set of output 〈key, value〉 pairs. Figure 1

shows the MapReduce flow.

When the MapReduce execution environment executes a user program, it

automatically partitions the dataset into a set of Z independent splits that

can be processed in parallel by different machines. While the number of map

tasks is determined by the number Z of the input splits, the number R of

reducers is defined by the user. Thus, there are Z map tasks and R reduce

tasks which have to be executed. Furthermore, the MapReduce framework

starts up many copies of the user program on the machine cluster. One copy

is denoted as master : the master schedules and handles tasks within the

cluster. The others are called workers. The master assigns a map task or a

9

reduce task to any idle worker. When a map task is assigned to a worker,

the worker reads the contents of the corresponding input split, parses the

〈key, value〉 pairs of the input data and passes the computational flow to

the user-defined Map function. The Map function takes a single 〈key, value〉

pair as input and produces a list of intermediate 〈key, value〉 pairs as output.

This process can be represented as:

map(key1, value1)→ list(key2, value2) (5)

Workers periodically store in the local disk the intermediate values produced

by map functions and partition these values into R regions. Each region

represents the intermediate subspace of the key space and is generated by a

partitioning function (for instance hash(key) mod R). Finally, these workers

return back results to the master that is responsible for notifying reduce

workers. When a reduce worker is notified, it reads remote intermediate data

from the local disks of map workers, and groups and sorts them according to

the intermediate key. Then, it iterates over the sorted intermediate data and,

for each unique key, passes the computational flow to the Reduce function

defined by the user. The Reduce function takes the key and the associated

value list as input and generates a new list of values as output. This process

can be summarized as:

map(key2, list(value2))→ list(value2) (6)

Finally, the output of the reduce function is appended to the output final

file.

In the last years, several open source projects have been developed to deal

with big data, thanks also to the contribution offered by companies such as

10

Figure 1: The overall MapReduce Flow (R=2).

11

Facebook, Yahoo! and Twitter. Some examples are: Spark [37], a fast and

general engine for large-scale data processing, Apache S4 [38], a platform

for processing continuous data streams, Storm [39], a software for streaming

data-intensive distributed applications similar to S4, Dremel [40] and Apache

Drill [41], scalable, interactive low latency ad hoc query systems for analysis

of read-only nested data.

The most popular open source execution environment for the MapReduce

paradigm is Apache Hadoop [26, 42]. It allows the execution of custom

applications that rapidly process big datasets stored in its distributed file

system, called Hadoop Distributed Filesystem (HDFS). On the top of Hadoop

several related projects such as Apache Pig [43], Apache Hive [44], Apache

HBase [45], Apache ZooKeeper [46] have been developed. As regards data

mining tools for big data there are many initiatives. Mahout [47, 48] is the

most popular open source machine learning library that runs on the top of

Hadoop. It implements a wide range of machine learning and data mining

algorithms for clustering, recommendation systems, classification problems

and frequent pattern mining. Other tools are MOA [49], Vowpal Wabbit [50]

and, for the Big Graph mining problem, PEGASUS [51] and GraphLab [52].

3. The MapReduce Associative Classifier

In Section 1 we have pointed out that the current implementations of

associative classifiers are not able to manage big data. In this section, we

describe our implementation of an associative classifier using the MapReduce

paradigm on the Hadoop framework. The classifier is an extension of the

well-known CMAR [4] algorithm in a distributed execution environment.

12

The MapReduce Associative Classifier (MRAC) consists of the following

three steps:

1. Discretization: a partition is defined on each continuous feature by

using the multi-interval discretization approach based on entropy pro-

posed by Fayyad and Irani in [53]; this step is performed before starting

the MapReduce execution.

2. CAR Mining : a MapReduce frequent pattern mining algorithm, which

is an extension of the well known FP-Growth algorithm described in

[18], is exploited to extract frequent CARs with support, confidence

and chi-squared higher than pre-fixed thresholds;

3. Pruning : rule pruning based on redundancy and training set coverage

is applied to generate the final rule base.

In the following, we discuss the three steps in detail.

3.1. Discretization

The discretization of continuous features is a critical aspect in AC gener-

ation, and so far several different heuristic algorithms have been proposed to

this aim [53, 54, 55, 56]. For MRAC we use the method proposed by Fayyad

and Irani in [53]. This supervised method has been already adopted for dis-

cretizing continuous features in CMAR and has proved to be very effective

[4]. The method selects the boundaries of each bin by exploiting the class

information entropy of candidate partitions.

Let Tf,0 = [x1,f , ..., xN,f]T the projection of the training set T along vari-

able Xf and af,r a cut point for the same variable. Let Tf,1 and Tf,2 be

the subsets of points of the set Tf,0, which lie in the two intervals identified

13

by af,r. The class information entropy of the discretization induced by af,r,

denoted as E(Xf , af,r;Tf,0) is given by

E(Xf , af,r;Tf,0) =
|Tf,1|
|Tf,0|

· Ent(Tf,1) +
|Tf,2|
|Tf,0|

· Ent(Tf,2) (7)

where || denotes the cardinality and Ent() is the entropy calculated for a set

of points [53]. The cut point af,min, which minimizes the class information

entropy over all possible binary partitions of Tf,0, is selected. The method is

then applied recursively to both the intervals induced by af,min until the fol-

lowing stopping criterion based on the Minimal Description Length Principle

is achieved:

Gain(Xf , af,min;Tf,0) <
log2(|Tf,0| − 1)

|Tf,0|
+

∆(Xf , af,min;Tf,0)

|Tf,0|
(8)

where

Gain(Xf , af,min;Tf,0) = Ent(Tf,0)− E(Xf , af,min;Tf,0), (9)

∆(Xf , af,min;Tf,0) = log2(3
k0−2)−[k0 · Ent(Tf,0)− k1 · Ent(Tf,1)− k2 · Ent(Tf,2)]

(10)

and ki is the number of class labels represented in the set Tf,i.

The method outputs, for each feature, a set of cut points. Let Uf =

[xf,l, xf,u] be the universe of variable Xf . Let {af,1, . . . , af,Tf+1
}, with ∀r ∈

[1, . . . , Tf], af,r < af,r+1, be the set of cut points, where af,1 = xf,l and

af,Tf+1
= xf,u. Then, the method identifies the set {[af,1, af,2] , . . . ,

[
af,Tf

, af,Tf+1

]
}

of contiguous intervals, which partition the universe of variable Xf . If no cut

point has been found by the algorithm for feature Xf , then no interval is

generated for the feature: Xf is then discarded. We perform the discretiza-

tion algorithm on a percentage of randomly extracted objects from the entire

14

training set. In the experiments on big datasets, we used 10% of the overall

training set.

We associate each interval [af,r, af,r+1], r ∈ [1, . . . , Tf] with a categorical

value vf,r. Each categorical value represents an item.

3.2. CAR Mining

To mine the CARs from the training set, we adopt the well known FP-

Growth mining algorithm. Our MapReduce implementation is based on the

Parallel FP-Growth (PFP-Growth) proposed by Li et al. [18] for efficiently

parallelizing the frequent patterns mining without generating candidate item-

sets. The PFP-Growth algorithm breaks down a large-scale mining task into

independent, parallel tasks and uses three MapReduce phases to generate

frequent patterns. The dataset is divided into parts (shards) and each part

is stored on a different node. In the first phase, the algorithm counts the

support values of all items that appear in dataset. Each mapper inputs one

shard. In the second phase, each node builds a local and independent tree and

recursively mines the frequent patterns from it. Such a subdivision requires

the entire dataset to be projected onto different item-conditional datasets.

An item-conditional dataset T (If,j), also called item-projected dataset, is a

dataset restricted to the objects where the specific item If,j occurs. In each

object of the T (If,j), named item-projected object, the items with lower sup-

port than If,j are removed and the others are sorted according to the de-

scending order of their support. Since the FP-Tree building processes are

independent of each other, all the item-projected datasets can be distributed

over the nodes and processed independently.

In the last phase, the algorithm aggregates the results generated in the

15

previous phase and, for each item, selects only the K highest supported

patterns. As shown by empirical studies, the PFP-Growth algorithm achieves

a near-linear speedup [18].

We adapted the PFP-Growth algorithm to generate high-confidence and

frequent classification association rules. As shown in Figure 2, our algorithm

also uses three MapReduce phases: Parallel Counting, Parallel FP-Growth

and Candidate Rule Filtering.

The first MapReduce phase scans the dataset and counts the support

values of each item. Each mapper analyzes an HDFS block: the input key-

value pair is represented by 〈key, value = oi〉, where oi is an object of the

training set block. For each item vf,j ∈ oi, the mapper outputs a key-value

pair 〈key = vf,j, value = 1〉. The reducer is fed by a list of corresponding

values for each key (in this case a set of 1’s) that we call List(key) and out-

puts 〈key = vf,j, value = sum(List(key))〉. The pseudo-code of the Parallel

Counting phase is shown in Fig. 3. Space and time complexity are both

O(N/Q), where Q is the number of computing units (CUs). Note that the

Parallel Counting phase counts also the support of the class labels, that we

assume to be the last item of each object oi.

Only the items, called frequent items, whose support is larger than the

support thresholdminSup are retained and stored in a list, called flist, in sup-

port descending order. Since flist is generally small, this step can efficiently be

performed on a single machine (the time complexity is O(|flist| log(|flist|)),

where |flist| indicates the number of frequent items in the list. The other

items are pruned and therefore not considered anymore in the subsequent

phases.

16

Figure 2: The CAR Mining step of the MapReduce Associative Classifier.

17

1: procedure Mapper(key, value = oi)

2: for all item vf,j in oi do

3: Call Output(〈key = vf,j, value = 1〉);

4: end for

5: end procedure

6: procedure Reducer(key = vf,j, value = List(key))

7: sum← 0;

8: for all item 1 in List(key) do

9: sum← sum+ 1;

10: end for

11: Call Output(〈key = vf,j, sum〉);

12: end procedure

Figure 3: The MapReduce Parallel Counting Phase

18

The second MapReduce phase, Parallel FP-Growth, is the core of the

CAR Mining process and the relative pseudo-code is reported in Fig. 4. The

mapper generates item-projected objects so that reducers can generate con-

ditional FP-trees, which are independent of each other during the recursive

mining process. Like in the previous phase, each mapper is fed by an HDFS

block and the input key-value pair is 〈key, value = oi〉. For each oi, the

mapper gets the class label Cli and sorts the feature values according to

the flist. Let soi be the sorted object. Then, for each item soi,p ∈ soi, the

mapper outputs the key-value pair 〈key = id, value = {soi,1, . . . , soi,p, Cli}〉

where id is the index of the item soi,p in the flist and {soi,1, . . . , soi,p, Cli} is

the soi,p-projected object. Since each item is independent of the others, the

reducer processes a set of independent projected objects for each single item,

which represents the vf,j-projected training set, T (vf,j). The reducer inputs

a key-value pair 〈key = id, value = T (vf,j)〉, builds the local FP-tree and

recursively mines the classification association rules as described in [16]. Fi-

nally, it returns only the CARs whose support, confidence and χ2 values are

greater than the relative thresholds (line 18 in Fig. 4). In particular, reducers

output 〈key = null, value = CARm〉 pairs, where CARm is the m-th gener-

ated rule. Note that the number of pairs 〈key, list(values)〉 processed by each

reducer is determined by the default partition function hash(key) mod R.

Since in Parallel FP-Growth the intermediate key is the specific item index

in flist, more or less the same number of pairs 〈key, list(values)〉, i.e. of

conditional FP-Trees, is assigned to each reducer by the partition function.

However, such distribution does not necessarily guarantee a perfect load bal-

ancing among all the reducers, because the time spent in processing each

19

specific FP-Tree depends on the number and the length of its paths; more

precisely, the relative time complexity is exponential with respect to the

longest frequent path in the conditional pattern base [22, 57]. Thus, space

and time complexities of each reducer depend on the size and the execution

time of all the processed projected training sets, Ored(Sum(|T (vf,j)|)) and

Ored(Sum(FPGrowth(T (vf,j)))), respectively.

Figure 5 shows a simple example of the Parallel FP-Growth execution,

with four objects and minSupp = 2. Mappers sort frequent items according

to the flist and create item-projected objects for each item. Reducers build

the local conditional FP-Tree for the specific item and recursively mine the

candidate rule set. Each node on the FP-Tree represents an item and each

path represents an item-projected object. Since different paths share the

same prefix, the tree is a compressed view of the vj,i-projected dataset.

The last MapReduce phase, Candidate Rule Filtering, selects only the

K most significant non-redundant rules for each class label Cl. A CARm is

more significant than another CARs if and only if:

1. conf(CARm) > conf(CARs)

2. conf(CARm) = conf(CARs) AND supp(CARm) > supp(CARs);

3. conf(CARm) = conf(CARs) AND supp(CARm) = supp(CARs) AND

RL(CARm) < RL(CARs).

where conf(.), supp(.) and RL(.) are the confidence, the support and the

rule length, respectively. A rule CARm : Antm → Clm is more general than

a rule CARs : Ants → Cls , if and only if, Ants ⊆ Antm. A rule CARm is

not inserted into the K most significant non-redundant rules if there exists

a rule CARs that is more significant and more general than CARm. This

20

1: procedure Mapper(key, value = oi)

2: flist ← LoadFrequentItemList();

3: oi[]← Split(oi); . Array of Items

4: Cli ← RemoveLastItem();

5: soi[]← Sort(oi[], flist); . Array of Items Sorted according to flist

6: for p = |soi[]| − 1 to 0 do

7: id← getIndexFList(soi[p]);

8: Call Output(〈key = id, value = {soi[1] . . . soi[p], Cli}〉);

9: end for

10: end procedure

11: procedure Reducer(key = id, value = T (vj,i))

12: FPTree← newFPTree();

13: for all soi in T (vj,i) do

14: FPTree← insert(soi);

15: end for

16: CARlist ← FPGrowth(FPTree);

17: for all CARm in CARlist do

18: if isV alid(CARm) then . Check support, confidence and χ2

19: Call Output(〈key = null, value = CARm〉);

20: end if

21: end for

22: end procedure

Figure 4: The MapReduce Parallel FP-Growth Phase

21

Figure 5: A simple example of the Parallel FP-Growth execution.

22

allows us to discard redundant rules and cover a greater number of objects

in the training set. Each mapper is fed with the key-value pair in the form

of 〈key = null, value = CARm〉 and outputs a pair 〈key = Clm , value =

CARm〉 where Clm is the CARm class label. Each reducer processes all

rules with the same class label, List(CARCl
), and selects only the K most

significant non-redundant rules. For each of these K rules the reducer outputs

a key-value pair 〈key = null, value = CARm〉. Fig. 6 shows the pseudo-code

of the Candidate Rule Filtering phase. We highlight that, at line 8, if the

current rule CARm can be inserted into the K most significant non-redundant

rules, the method checkRedundant checks and removes all rules that become

redundant when new CARm is added. Space complexity is O(K) and time

complexity is O(Max(|CARCl
|) · log(K)/Q), where Q is the number of CUs.

3.3. Rule Pruning

Rule pruning aims to discard less relevant rules to speed up the classifi-

cation process. Pruning has to be applied carefully, avoiding to drop useful

knowledge along with discarded rules. Among the approaches proposed for

rule pruning it is worth recalling lazy pruning [6], database coverage [3], and

pessimistic error estimation [1].

In MRAC three different types of pruning ase used. In the first type, a

rule CARm is pruned if its support, confidence and χ2 are not greater than

minSupp, minConf and minχ2 thresholds, respectively. This type of pruning

is performed at the end of the Parallel FP-Growth phase, when the rule is

mined. Since the support value is stored along the FP-tree, the computation

of support, confidence and χ2 can be performed on the fly.

In the second type of pruning, we remove redundant rules. First, the

23

1: procedure Mapper(key, value = CARm)

2: Clm ← getClassLabelRule(CARm);

3: Call Output(〈key = Clm , value = CARm〉);

4: end procedure

5: procedure Reducer(key = Cl, value = List(CARCl
))

6: HP ← createMaxHeap(K); . K defines the HP size

7: for all CARm in List(CARCl
) do

8: if checkRedundant(CARm, HP) then

9: if |HP | < K then

10: HP ← insert(CARm);

11: else

12: if rank(HP [0]) < rank(CARm) then

13: HP ← deleteTopElement();

14: HP ← insert(CARm);

15: end if

16: end if

17: end if

18: end for

19: for all CARm in HP do

20: Call output(〈key = null, value = CARm〉);

21: end for

22: end procedure

Figure 6: The MapReduce Candidate Rule Filtering Phase

24

candidate rules are sorted according to their ranking position as described

in Section 3.2 and only the K most significant non-redundant rules for each

class label are selected. Experimentally we found that this second step can

reduce significantly the number of CARs in the CARlist, without significantly

affecting the classification accuracy. This type of pruning is performed in the

reduce phase of the Candidate Rule Filtering job.

In the third type of pruning, shown in Fig. 7, the training set coverage

is exploited: the retained rules are only those that are activated by at least

one data object in the training set. Each data object in the training set is

associated with a counter initialized to 0. For each object, a scan over the

sorted CARlist is performed to find all the rules that match the object. If

CARm classifies correctly at least one data object, then CARm is inserted

into the rule base. Further, the counters associated with the objects, which

activate CARm, are incremented by 1. Whenever the counter of an object

becomes larger than the coverage threshold δ, the data object is removed from

the training set and no longer considered for subsequent rules. Since rules are

sorted in descending significance, it is very likely that these subsequent rules

would have a very limited relevance for the object. The procedure ends when

no more objects are in the training set or all the rules have been analyzed.

Fig. 8 shows the MapReduce pseudo-code of the third type of pruning.

Each mapper instance loads and ranks into memory the filtered rule set,

CARlist, mined in the previous step. Further, since each mapper is fed with

an HDFS block, the key-value input pair is 〈key = null, value = oi〉. For

each object oi, the mapper sets the counter to 0 and scans the CARlist.

If CARm matches oi, then the counter is incremented by 1. Further, if

25

Figure 7: The Pruning step of the MapReduce Associative Classifier.

CARm also classifies correctly object oi, the mapper outputs to the re-

ducer the index indexCARm of CARm in the CARlist and null as, respec-

tively, key and value, that is, 〈key = indexCARm , value = null〉. When

the counter overcomes the coverage threshold δ, oi is not processed anymore

and the next object is taken into account. The reducer instance retrieves

the correct rule from the CARlist and outputs it. The key-value input

pair is 〈key = indexCARm , value = null〉 and the key-value output pair is

〈key = null, value = CARm〉. Space complexity is O(N/Q) and time com-

plexity in the worst case is O(N · |CARlist|/Q), where |CARlist| ≤ L ·K and

Q is the number of CUs.

3.4. Classification

The pruned set of rules represents the rule base used to classify an un-

labeled pattern x̂. All rules that match the unlabeled pattern are taken

26

1: procedure Mapper(key, value = oi)

2: CARlist ← loadAndRankFilteredRuleSet();

3: δ ← loadCoverageThreshold();

4: count← 0;

5: for all CARm in CARlist do

6: if CARm matches oi then

7: count← count+ 1;

8: if CARm correctly classifies oi then

9: indexCARm ← getIndex(CARm, CARlist);

10: Call Output(〈key = indexCARm , value = null〉);

11: end if

12: end if

13: if count > δ then

14: break;

15: end if

16: end for

17: end procedure

18: procedure Reducer(key = indexCARm , value = null)

19: CARlist ← loadAndRankFilteredRuleSet();

20: CARm ← getRule(indexCARm , CARlist);

21: Call Output(〈key = null, value = CARm〉);

22: end procedure

Figure 8: The MapReduce Training Set Coverage Pruning Job

27

into account: they can predict either the same class label or different class

labels. In the first case, MRAC simply assigns the class label to the unla-

beled pattern. In the second case, the algorithm splits the rules into different

groups according to the class label and compares the strength strCl
of each

group. The strength is computed by adopting the weighted chi-squared [4]

as reasoning method :

strCl
=

∑
CARm∈RB(Cl)

χ2
mχ

2
m

maxχ2
m

(11)

where RB(Cl) contains all the rules in the rule base with the same class

label Cl, which match the unlabeled pattern, and χ2
m and maxχ2

m are the

chi-square and its upper bound for the rule CARm, respectively. The maxχ2
m

for a generic rule CARm : Antm → Clm is calculated as follows:

maxχ2
m = (minsupp(Antm, supp(Clm))− supp(Antm) · supp(Clm)

N
)2 ·N · e

(12)

where supp(Antm) is the support of the antecedent of rule CARm, supp(Clm)

is the support of the class label Clm , N is the number of objects in the training

set and e is computed as:

e =
1

supp(Antm) · supp(Clm)
+

1

supp(Antm) · (N − supp(Clm))
+

+
1

(N − supp(Antm) · supp(Clm)
+

1

(N − supp(Antm)) · (N − supp(Clm))

(13)

MRAC assigns the unlabeled pattern to the class label associated with

28

the top-strength group. In case no rule matches the pattern, the method

classifies x̂ with the class label with the highest support.

4. Experimental Study

Specific experimental tests have been devised to characterize the behavior

of the proposed algorithm, focusing on the following crucial aspects: i) as-

sessment of the classification accuracy, ii) horizontal scalability analysis with

a typical complete dataset, and iii) study on the ability to efficiently accom-

modate an increasing dataset size.

In our tests we made use of 21 classification datasets widely known in

the literature, extracted from the UCI repository1, which are characterized

by different numbers of input variables (from 4 to 60) and input/output

instances (from 150 to 11000000). Among them, 18 ordinary-sized datasets

are reported in Table 1. The last three benchmarks, referring to big data,

are shown in Table 2: they are suitable for our proposed algorithm, but not

for classical classifiers.

All the experiments have been run using Apache Hadoop 1.0.4 as the

reference MapReduce implementation. The chosen testbed corresponds to a

typical low-end system suitable for supporting the target classifying service:

a small cluster with one master machine and three slave nodes, connected by

a Gigabit Ethernet (1 Gbps). All the nodes run Ubuntu 12.04. Regarding the

placement of the Hadoop components, the master hosts the NameNode and

JobTracker processes, while each slave runs a DataNode and a TaskTracker.

1Available at https://archive.ics.uci.edu/ml/datasets.html

29

Table 1: Ordinary-sized datasets used in the experiments.

Dataset # Instances # Variables # Classes

Australian (AUS) 690 14 2

Breast (BRE) 277 9 2

Cleveland (CLE) 297 13 5

Ecoli (ECO) 336 7 8

German (GER) 1000 20 2

Glass (GLA) 214 9 7

Heart (HEA) 270 13 2

Iris (IRI) 150 4 3

Led7digit (LED) 500 7 10

New-thyroid (NEW) 215 5 3

Page-blocks (PAG) 5472 10 5

Pima (PIM) 768 8 2

Ring (RING) 7400 20 2

Sonar (SON) 208 60 2

Twonorm (TWO) 7400 20 2

Wine (WIN) 178 13 3

Wisconsin (WIS) 683 9 2

Zoo (ZOO) 101 16 7

Table 2: Large-sized datasets used in big data experiments.

Dataset # Instances # Variables # Classes

HIGGS (HIG) 11000000 28 2

KDDCup DOS vs Normal (KDD) 4856151 41 2

Susy (SUS) 5000000 18 2

30

The NameNode is devoted to handling the HDFS, keeping track of its block

replicas (64 MB by default), and to coordinating all the DataNode processes

as well. The master node has a 4-core CPU (Intel Core i5 CPU 750 x 2.67

GHz), 4 GB of RAM and a 500GB Hard Drive. Each slave node has a 4-core

CPU with Hyperthreading (Intel Core i7-2600K CPU x 3.40 GHz), 16GB of

RAM and 1 TB Hard Drive.

4.1. Assessing accuracy

To properly assess the accuracy delivered by MRAC, a comparison with

other associative classifiers is needed. Thus, MRAC has been compared

to the sequential implementation of three different well-known associative

classification models, namely CBA [3], CBA2 [58], and CPAR [5].

TheClassification-Based Association (CBA) algorithm mines the rules

by using Apriori method; subsequently, it sorts and chooses a set of high

precedence rules to cover the entire training dataset. The CBA2 algorithm

improves CBA in tuning the minimum support thresholds across different

classes [58]. On the contrary, Classification based on predictive association

rules (CPAR) generates association rules directly from training data using

a greedy algorithm based on the FOIL method [59]. Specifically, multiple

literals with similar gains are selected, and multiple rules are accordingly

generated at each step. Moreover, it uses only the best D rules to perform

the classification task.

In our experiments, we used the implementations of CBA, CBA2 and

CPAR available in the KEEL package [60], and the datasets from Table 1 as

benchmarks. It is worth mentioning that, to the best of our knowledge, no

implementation of ordinary associative classifiers exists that is able to handle

31

very large amounts of data like those listed in Table 2, which will be used

instead for other purposes.

Table 3 summarizes the algorithm parameters used in the experiments:

They have been chosen according to the guidelines provided by the authors in

the related papers [3, 5, 58]. Further, for each dataset and for each algorithm,

we performed a five-fold cross-validation by using the same folds for all the

datasets. The discretization of the continuous features has been performed by

the entropy-based method proposed by Fayyad and Irani [53] and discussed

in Section 3.1.

Table 3: Values of the parameters for each algorithm used in the experiments.

Method Parameters

MRAC MinSupp = 0.01,MinConf = 0.5, δ = 4,minχ2 = 20%, K = 15000

CBA MinSupp = 0.01,MinConf = 0.5,MaxCandidateRules = 80000

CBA2 MinSupp = 0.01,MinConf = 0.5,MaxCandidateRules = 80000

CPAR δ = 0.05,min gain = 0.7, α = 0.66, D = 5

Table 4 shows, for each dataset and for each algorithm, the average values

of the accuracy, both on the training (AccTr) and test sets (AccTs) associated

with the ACs generated by the four algorithms. The highest accuracy values

for each dataset are shown in bold.

By inspecting Table 4 we can see that, in most of the datasets, MRAC

is more accurate than the other ACs. Moreover, MRAC achieves the best

average accuracy on the test sets. Another significant observation is that both

CBA and CBA2 are more prone to overtraining than CPAR and MRAC.

In order to verify if there exist statistical differences among the values

32

Table 4: Average accuracy achieved by MRAC, CBA, CBA2 and CPAR

MRAC CBA CBA2 CPAR

Dataset AccTr AccTs AccTr AccTs AccTr AccTs AccTr AccTs

AUS 90.45 86.81 88.62 84.20 88.76 83.91 87.55 84.06

BRE 89.81 71.85 94.66 64.05 97.79 69.40 82.55 75.14

CLE 54.47 53.88 64.38 56.91 69.99 55.25 62.14 54.90

ECO 82.81 76.84 87.33 77.99 89.19 77.10 82.64 76.22

GER 88.71 74.20 94.03 73.90 96.70 75.10 87.31 73.80

GLA 79.69 69.34 82.29 70.81 83.12 71.27 77.16 68.86

HEA 89.88 84.07 93.42 83.70 93.91 82.59 89.75 84.07

IRI 96.00 93.33 96.67 93.33 96.67 93.33 96.44 96.00

LED 76.00 72.60 77.27 72.20 78.58 71.60 75.98 70.00

NEW 96.38 93.10 98.19 93.55 98.19 93.55 96.74 92.14

PAG 94.47 94.21 94.80 94.44 98.14 95.91 97.38 96.10

PIM 78.65 74.74 79.62 72.65 79.92 72.52 79.11 74.49

RIN 96.78 91.08 96.29 95.53 97.03 95.16 99.14 92.30

SON 98.24 79.79 97.01 78.79 97.01 78.79 95.51 81.71

TWO 98.13 95.43 97.42 92.38 97.24 92.12 98.99 90.03

WIN 99.94 94.35 99.94 92.06 99.94 92.06 99.75 94.35

WIS 97.76 96.80 98.71 96.22 99.09 96.65 98.16 96.50

ZOO 100.00 95.17 100.00 98.17 100.00 98.17 99.44 94.33

Mean 89.34 83.20 91.15 82.83 92.29 83.03 89.21 83.06

33

of accuracy on the test set associated with the classifiers generated by the

different algorithms, we have performed a statistical analysis. As suggested

in [61], we apply non-parametric statistical tests combining all the datasets:

for each approach we generate a distribution consisting of the mean values

of accuracy calculated on the test set. Then, we apply the Friedman test

in order to compute a ranking among the distributions [62], and the Iman

and Davenport test [63] to evaluate whether there exist statistically relevant

differences among the distributions. If there exists a statistical difference,

we apply a post-hoc procedure, namely the Holm test [64]. This test allows

detecting effective statistical differences between the control approach, i.e.

the one with the lowest Friedman rank, and the remaining approaches.

Table 5 shows the results of the non-parametric statistical tests: for each

algorithm, we show the Friedman rank and the Iman and Davenport p-value.

If the p-value is lower than the level of significance α (in the experiments

α = 0.05), we can reject the null hypothesis and affirm that there exist

statistical differences between the multiple distributions associated with each

approach. Otherwise, no statistical difference exists among the distributions

and therefore the associative classifiers are statistically equivalent.

Table 5: Results of the non-parametric statistical tests on the accuracy calculated on the

test set

Algorithm Friedman rank Iman and Davenport p-value Hypothesis

MRAC 2.2778

CBA 2.4444 0.778942075401 Not Rejected

CBA2 2.5556

CPAR 2.7222

34

We can observe that no post-hoc procedure has to be applied, because no

statistical difference among the four algorithms has been detected. Thus, we

can conclude that MRAC achieves accuracies comparable to some classical

associative classifiers proposed in the literature.

For the sake of completeness, the accuracy achieved by MRAC on the

very large datasets in Table 2 has been measured. Also in this case, we

performed a five-fold cross-validation for each dataset. Table 6 shows the

average accuracy values, both on the training (AccTr) and test sets (AccTs).

We do not show the results achieved by CBA, CBA2 and CPAR because the

available implementations of these algorithms cannot manage these datasets.

We observe that the values obtained on the training and test sets are very

similar. This result is a consequence of the size of the dataset and the data

distribution. Indeed, since the datasets are very large, the training sets

selected in the fold cross-validation result to be a very representative sample

of the overall dataset.

Table 6: Average accuracy achieved by MRAC on large datasets.

MRAC

Dataset AccTr AccTs

HIG 62.961 62.956

KDD 99.618 99.617

SUS 74.574 74.574

Mean 79.051 79.049

Summing up, the results obtained by MRAC are statistically equivalent to

those achieved by algorithms of the same type, with comparable (or slightly

35

better) accuracy. On the other hand, its main advantage over the other

algorithms is the capability to process huge amounts of data in a reasonable

time even on a small-sized cluster of ordinary multicore machines. The next

sections are devoted to a precise empirical characterization of this aspect.

4.2. Horizontal scalability analysis

In this section, we investigate on the MRAC behavior in employing addi-

tional computing units. To this aim, we measure the values assumed by the

speedup σ, taken as the main metrics, commonly used in parallel computing.

For the sake of clarity, we report the figures obtained with tests on the Susy

dataset; similar results can be recorded with the other datasets.

According to the speedup definition, the efficiency of a program using

multiple CUs is calculated comparing the execution time of the parallel im-

plementation against the corresponding sequential, “basic” version. In our

application setting, because of the large size of the involved datasets, it is not

practically sensible to regard the sequential version of the overall algorithm

as the basic one (it would take an unreasonable amount of time), so we can

refer to a run over Q∗ identical CUs, Q∗ > 1. Hence, we adopt the following

slightly different definition for the speedup on n identical CUs:

σQ∗(n) =
Q∗ · τ(Q∗)

τ(n)
(14)

where τ(n) is the program runtime using n CUs, and Q∗ is the number of

CUs used to run the reference execution, which lets us estimate a fictitious,

ideal single-core runtime as Q∗ · τ(Q∗). Of course, σQ∗(n) makes sense only

for n ≥ Q∗. In our case, τ(Q∗) accounts also for the basic overhead due to

the Hadoop platform.

36

For n > Q∗ the speedup is expected to be sub-linear because of the

increasing overhead from the Hadoop procedures, because of the behavior of

the algorithm (considering also the granularity of the necessary sequential

parts) and, in case of multicore physical nodes, because of contention on

resources shared among cores within the same CPU.

In our tests, we assumed Q∗ = 6 to have 2 working cores for each slave

available in the cluster and thus accounting in σ6 also for the basic overhead

due to thread interference.

Considering the structure of our algorithm, we set the number of reducers

equal to the number of cores and we distribute them uniformly among the

slaves.

Horizontal scalability has been studied by varying the number of switched-

on cores per node. To avoid unbalanced loads, we recorded the execution

times experienced with the same number of running cores per node. In

practice, we considered 6, 9, and 12 cores distributed on the three slave

nodes.

It is worth noticing that the HyperThreading technology was available

on our testbed CPUs, which thus might run two distinct processes per core.

The performance gain due to HypertThreading highly depends on the target

application, and in server benchmarks it reaches 30% [65]. In our case,

specific tests showed that HyperThreading yields really limited performance

improvements. For this reason we disabled the HyperThreading Technology

and used only the available physical CUs in all our experiments.

Table 7 and Figure 9 show the speedup according to the whole dataset.

With the default Hadoop settings, the number Z of mappers is auto-

37

Table 7: Speedup for the Susy dataset.

Cores Time (s) Speedup σ6(Q)/Q (Utilization)

6 5007 6 1.00

9 3666 8.19 0.91

12 3078 9.76 0.81

 3000

 3500

 4000

 4500

 5000

 5500

 4 6 8 10 12 14

R
u

n
ti

m
e
 (

se
c
)

Number of Cores (Q)â��

(a) Runtime

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)

Number of Cores (Q)â��

(b) Speedup

Figure 9: Performance of MRAC on the overall Susy dataset

38

matically determined by the HDFS block size. E.g., for the Susy dataset

Hadoop instantiates 36 mappers. Furthermore, indicating by Q the number

of available cores, if Z ≤ Q then all the mappers are run simultaneously, and

the global runtime practically corresponds to the longest of the mappers’

runtimes. Otherwise (Z > Q), Hadoop starts from executing Q mappers in

parallel, queuing the rest (Z − Q). As soon as one of the running mappers

completes, Hadoop schedules a new mapper from the queue.

In the ideal case of the same execution time for all the mappers, the map

phase for each MapReduce stage would require dZ
Q
e iterations. With the

Susy dataset, this corresponds to 6, 4 and 3 iterations on 6, 9 and 12 cores,

respectively. This observation can be used to get a very rough estimation

of the runtime expected with a certain number of cores, once the runtime

with another given number of cores has been recorded. Such an estimation

cannot be accurate because all the mappers do not have exactly the same

execution time (they may even be assigned different input sizes) and because

of the influence of the different reducing phases. For instance (see Table 7),

we expect that runtime decreases from 5007 seconds with 6 cores to about

5007 × 4 ÷ 6 = 3338 and 5007 × 3 ÷ 6 = 2503 seconds with 9 and 12 cores,

respectively. As it can be noticed, such values do not excessively differ from

the recorded ones. Of course, the actual runtimes are necessarily higher due

to the incurred overheads.

The actual speedup σ6 in our experiments does not excessively diverge

from the ideal value, i.e. the number of CUs2: σ6(9)/9 = 0.91 and σ6(12)/12 =

2The value σ1/Q is the standard utilization index; in our case, as σi(n) ≤ σj(n) ∀n ≥ j,

the utilization index σ6/Q may be slightly greater than standard utilization.

39

0.81. Within the limitations due to the different experimental settings, this

result is in line with [18] where the utilization is 0.768.

A better understanding of the presented overall figures requires a break-

down of the contributions from the different parts of the algorithm. To this

aim, in Table 8 and Figure 10 we report the speedup σ6 of the most sig-

nificant MapReduce phases: Parallel FP-Growth and Parallel Training Set

Coverage Pruning. The contribution of the other two, i.e. Parallel Counting

and Candidate Rule Filtering, is negligible (about 2.63% and 1,09% of the

overall execution time, respectively).

Table 8: Runtime and speedup of each MRAC phase in the Susy dataset.

Parallel
FP-Growth

Training Set
Coverage Pruning

Cores Time (s) Speedup σ6 σ6(Q)/Q Time (s) Speedup σ6 σ6(Q)/Q

6 1568 6 1.00 2984 6 1.00

9 1257 7.48 0.83 2059 8.70 0.97

12 1160 8.11 0.67 1614 11.09 0.92

The two charts in Figure 10 clearly show that the two phases behaves

differently with respect to scalability.

The speedup of Parallel FP-Growth (Figure 10a) rapidly degrades, mostly

because of the computational weight of the reducing activity. In fact, the

average runtime of each mapper is quite short (about 40 seconds), and the

global execution time is dominated by the mining of CARs from the con-

ditional FP-Trees: such an activity is carried out in the reducing phase.

With the Hadoop default settings, all the conditional FP-Trees are evenly

distributed among the reducers.

40

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)

Number of Cores (Q)â��

(a)
Parallel FP-Growth

speedup.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
p

ee
d

u
p

 (
σ 6

)

Number of Cores (Q)â��

(b)
Training Set Coverage Pruning

speedup.

Figure 10: Speedup of the two main MRAC phases

In our tests, Susy has 146 frequent items, thus each reducer processes 24,

16 and 12 FP-Trees in the 6, 9 and 12 cores cases, respectively. In Parallel FP-

Growth, adding more cores helps us improve the FP-Growth parallelization,

decreasing the number of conditional FP-Trees processed by each reducer.

Conversely, the Training Set Coverage Pruning is driven by the map

phase, with very satisfactory utilization values. In this case, the average

runtime of each mapper is around 7 minutes. The global execution time can

be shrunk by reducing the number of iterations, i.e. by exploiting additional

CUs, as witnessed by the results in Table 8.

4.3. Tackling the dataset size

From a practical point of view, it is crucial to understand how the pro-

posed algorithm behaves as the input dataset size grows up. To test this

aspect, we extracted differently sized datasets out of Susy. For each given

size, three different experiments have been executed on three distinct subsets

of Susy, with records randomly sampled out of the complete dataset. We in-

41

dicate a subset with x% of the records in Susy by the notation Susyx; thus,

the complete dataset is Susy100.

Table 9 and Figure 11 show the average runtime for building the rule

base, according to different problem sizes and number of cores.

Table 9: Average runtime of MRAC on Susy dataset, varying dataset size and number of

available cores.

Dataset Number of Cores

Size (%) Objects Mappers 6 9 12

10 (Susy10) 500,000 4 751 733 745

25 (Susy25) 1,250,000 9 1309 862 855

50 (Susy50) 2,500,000 18 2239 1677 1513

75 (Susy75) 3,750,000 27 3481 2591 2404

100 (Susy100) 5,000,000 36 5007 3666 3078

As shown for Susy10 and Susy25, whenever the number of available cores

Q is sufficient to run all the mappers in parallel, adding more cores does not

trivially yield any benefit. When the number of mappers exceeds the number

of cores, Hadoop queues up the extra mappers to be subsequently scheduled

when cores become available again. Thus, as long as the number of mappers’

iterations is the same, no significant gain is expected by adding new cores.

For instance, for Susy50 passing from 9 to 12 cores is of little practical use,

since the number of parallel mapper iterations (namely, two) does not change.

In this case, runtime improves only of 150 seconds. On the other hand, the

runtime difference passing from 6 to 9 cores is more significant (about 600

42

 1000

 2000

 3000

 4000

 5000

0*10
0

1*10
6

2*10
6

3*10
6

4*10
6

5*10
6

R
u

n
ti

m
e

(s
ec

)

Dataset Size (Number of objects)

6 cores
9 cores

12 cores

Figure 11: Average Runtime of MRAC on Susy dataset.

43

seconds), because a reduction of the number of parallel mapper iterations

occurs (from 3 to 2). Similar considerations can be made for Susy75 and

Susy100. Note that in the last case, passing from 6 to 9 cores determines a

reduction of iterations from 6 to 4, while adding yet other three cores the

iterations just go down to 3, i.e. yielding half the previous gain.

Experiments show that as the dataset size grows up, the execution time

can be effectively reduced by adding a proper number of additional cores, at

least whenever dealing with sizes typical of current big data benchmarks. In

particular, performance improvements are mainly related to the reduction in

the number of parallel mapper iterations spent by the algorithm to scan the

overall dataset.

5. Conclusions

In this paper we have presented MRAC, a MapReduce associative clas-

sifier based on frequent pattern mining. MRAC first extracts the frequent

items. Then, it generates the top-K significant classification association rules

from them by exploiting a parallel version of the well-known FP-Growth al-

gorithm. Finally, it prunes noisy and redundant rules by applying a parallel

dataset coverage technique. We have shown that MRAC achieves accura-

cies comparable with the ones obtained by other associative classifiers on

some datasets commonly used as benchmark. Furthermore, MRAC is able

to process millions of data for learning the classification association rules.

On the other hand, the MapReduce framework provides a robust and trans-

parent environment to parallelize the computation flow across large-scale

clusters of machines, taking care of communications between them and pos-

44

sible failures. Experimental results performed on three big datasets show

that MRAC achieves speedup and scalability close to the ideal achievable

targets. We would like to highlight that these results are obtained by us-

ing personal computers connected by a Gigabit Ethernet and not specific

dedicated hardware.

As future work, we aim to experiment MRAC on a larger number of big

datasets, investigating scalability, speedup and load balance on each MapRe-

duce stage by employing a larger cluster of machines.

References

[1] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools

and Techniques, 3rd Edition, Morgan Kaufmann Series in Data Man-

agement Sys, Morgan Kaufmann, 2011.

[2] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between

sets of items in large databases, SIGMOD Record 22 (2) (1993) 207–216.

doi:10.1145/170036.170072.

[3] B. Liu, W. Hsu, Y. Ma, Integrating classification and association rule

mining, in: Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining, 1998, pp. 80–86.

[4] W. Li, J. Han, J. Pei, CMAR: accurate and efficient classification

based on multiple class-association rules, in: Proceedings of IEEE

International Conference on Data Mining 2001, 2001, pp. 369–376.

doi:10.1109/ICDM.2001.989541.

45

[5] X. Yin, J. Han, CPAR: Classification based on predictive association

rules, in: Proceedings of the third SIAM international conference on

data mining, 2003, pp. 331–335. doi:10.1137/1.9781611972733.40.

[6] E. Baralis, P. Garza, A lazy approach to pruning classification rules, in:

Proceedings of 2002 IEEE International Conference on Data Mining,

2002, pp. 35–42. doi:10.1109/ICDM.2002.1183883.

[7] N. Abdelhamid, A. Ayesh, F. Thabtah, S. Ahmadi, W. Hadi, MAC: A

multiclass associative classification algorithm, Journal of Information &

Knowledge Management 11 (02). doi:10.1142/S0219649212500116.

[8] A. Veloso, W. Meira Jr., M. J. Zaki, Lazy associative classification,

in: Proceedings of the Sixth International Conference on Data Mining,

ICDM ’06, IEEE Computer Society, Washington, DC, USA, 2006, pp.

645–654. doi:10.1109/ICDM.2006.96.

[9] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1993.

[10] Y. Sun, Y. Wang, A. K. Wong, Boosting an associative classifier, Knowl-

edge and Data Engineering, IEEE Transactions on 18 (7) (2006) 988–

992. doi:10.1109/TKDE.2006.105.

[11] L. T. Nguyen, B. Vo, T.-P. Hong, H. C. Thanh, CAR-miner: An effi-

cient algorithm for mining class-association rules, Expert Systems with

Applications 40 (6) (2013) 2305–2311. doi:10.1016/j.eswa.2012.10.035.

[12] M. I. A. Ajlouni, W. Hadi, J. Alwedyan, Detecting phishing websites

46

using associative classification, European Journal of Business and Man-

agement 5 (15) (2013) 36–40.

[13] G. Costa, R. Ortale, E. Ritacco, X-Class: Associative classification of

XML documents by structure, ACM Transactions on Information Sys-

tems 31 (1) (2013) 3:1–3:40. doi:10.1145/2414782.2414785.

[14] Y. Yoon, G. G. Lee, Two scalable algorithms for associative text classifi-

cation, Information Processing and Management 49 (2) (2013) 484–496.

doi:10.1016/j.ipm.2012.09.003.

[15] S. Dua, H. Singh, H. Thompson, Associative classification of mammo-

grams using weighted rules, Expert Systems with Applications 36 (5)

(2009) 9250–9259. doi:10.1016/j.eswa.2008.12.050.

[16] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without can-

didate generation: A frequent-pattern tree approach, Data Min. Knowl.

Discov. 8 (1) (2004) 53–87. doi:10.1023/B:DAMI.0000005258.31418.83.

[17] J. P. J. Han, M. Kamber, Data Mining: Concepts and Techniques, 3rd

Edition, Data Management Systems, Morgan Kaufmann, 2012.

[18] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Y. Chang, PFP: Parallel FP-

Growth for query recommendation, in: Proceedings of the 2008 ACM

Conference on Recommender Systems, RecSys ’08, ACM, New York,

NY, USA, 2008, pp. 107–114. doi:10.1145/1454008.1454027.

[19] W. Fan, A. Bifet, Mining big data: Current status, and fore-

cast to the future, SIGKDD Explor. Newsl. 14 (2) (2013) 1–5.

doi:10.1145/2481244.2481246.

47

[20] L. Liu, E. Li, Y. Zhang, Z. Tang, Optimization of frequent itemset min-

ing on multiple-core processor, in: Proceedings of the 33rd International

Conference on Very Large Data Bases, VLDB ’07, VLDB Endowment,

2007, pp. 1275–1285.

[21] O. Zaiane, M. El-Hajj, P. Lu, Fast parallel association rule mining

without candidacy generation, in: Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on, 2001, pp. 665–668.

doi:10.1109/ICDM.2001.989600.

[22] I. Pramudiono, M. Kitsuregawa, Parallel FP-Growth on PC cluster, in:

Advances in Knowledge Discovery and Data Mining, Vol. 2637 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg, 2003, pp. 467–

473. doi:10.1007/3-540-36175-8 47.

[23] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc, J. Saltz, Toward

terabyte pattern mining: An architecture-conscious solution, in: Pro-

ceedings of the 12th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’07, ACM, New York, NY,

USA, 2007, pp. 2–12. doi:10.1145/1229428.1229432.

[24] S. O. M. Snir, MPI-The Complete Reference: The MPI Core, MIT Press,

1998.

[25] J. Dean, S. Ghemawat, MapReduce: Simplified data process-

ing on large clusters, Commun. ACM 51 (1) (2008) 107–113.

doi:10.1145/1327452.1327492.

[26] Apache hadoop, http://hadoop.apache.org (Accessed: December 2014).

48

[27] J. Dean, S. Ghemawat, MapReduce: A flexible data processing tool,

Commun. ACM 53 (1) (2010) 72–77. doi:10.1145/1629175.1629198.

[28] W. Zhao, H. Ma, Q. He, Parallel K-Means clustering based on MapRe-

duce, in: Cloud Computing, Vol. 5931 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 2009, pp. 674–679. doi:10.1007/978-

3-642-10665-1 71.

[29] N. K. Alham, M. Li, Y. Liu, S. Hammoud, A MapReduce-based dis-

tributed SVM algorithm for automatic image annotation, Computers

& Mathematics with Applications 62 (7) (2011) 2801–2811, comput-

ers & Mathematics in Natural Computation and Knowledge Discovery.

doi:10.1016/j.camwa.2011.07.046.

[30] G. Caruana, M. Li, M. Qi, A MapReduce based parallel SVM for

large scale spam filtering, in: Fuzzy Systems and Knowledge Discov-

ery (FSKD), 2011 Eighth International Conference on, Vol. 4, 2011, pp.

2659–2662. doi:10.1109/FSKD.2011.6020074.

[31] Q. He, C. Du, Q. Wang, F. Zhuang, Z. Shi, A parallel incremental

extreme SVM classifier, Neurocomputing 74 (16) (2011) 2532–2540, ad-

vances in Extreme Learning Machine: Theory and Applications Biologi-

cal Inspired Systems. Computational and Ambient Intelligence Selected

papers of the 10th International Work-Conference on Artificial Neural

Networks (IWANN2009). doi:10.1016/j.neucom.2010.11.036.

[32] C. Zhang, F. Li, J. Jestes, Efficient parallel kNN joins for large data

in MapReduce, in: Proceedings of the 15th International Conference

49

on Extending Database Technology, EDBT ’12, ACM, New York, NY,

USA, 2012, pp. 38–49. doi:10.1145/2247596.2247602.

[33] L. Li, M. Zhang, The strategy of mining association rule based on

cloud computing, in: Business Computing and Global Informatiza-

tion (BCGIN), 2011 International Conference on, 2011, pp. 475–478.

doi:10.1109/BCGIn.2011.125.

[34] M.-Y. Lin, P.-Y. Lee, S.-C. Hsueh, Apriori-based frequent itemset min-

ing algorithms on MapReduce, in: Proceedings of the 6th International

Conference on Ubiquitous Information Management and Communica-

tion, ICUIMC ’12, ACM, New York, NY, USA, 2012, pp. 76:1–76:8.

doi:10.1145/2184751.2184842.

[35] I. Palit, C. K. Reddy, Scalable and parallel boosting with MapReduce,

Knowledge and Data Engineering, IEEE Transactions on 24 (10) (2012)

1904–1916. doi:10.1109/TKDE.2011.208.

[36] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y.

Ng, K. Olukotun, Map-Reduce for machine learning on multicore, in:

B. Schölkopf, J. C. Platt, T. Hoffmanan (Eds.), Advances in Neural

Information Processing Systems 19, Proceedings of the Twentieth An-

nual Conference on Neural Information Processing Systems Vancouver,

British Columbia, Canada, December 4-7, 2006, MIT Press, 2006, pp.

281–288.

[37] Apache spark, https://spark.apache.org (Accessed: December 2014).

50

[38] L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: Dis-

tributed stream computing platform, in: Data Mining Workshops

(ICDMW), 2010 IEEE International Conference on, 2010, pp. 170–177.

doi:10.1109/ICDMW.2010.172.

[39] Apache storm, https://storm.apache.org (Accessed: December 2014).

[40] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,

T. Vassilakis, Dremel: Interactive analysis of web-scale datasets, Proc.

VLDB Endow. 3 (1-2) (2010) 330–339. doi:10.14778/1920841.1920886.

[41] Apache drill, http://drill.apache.org (Accessed: December 2014).

[42] T. White, Hadoop: The Definitive Guide, 3rd Edition, O’Reilly Media,

Inc, 2012.

[43] Apache pig, http://pig.apache.org (Accessed: December 2014).

[44] Apache hive, https://hive.apache.org (Accessed: December 2014).

[45] Apache hbase, http://hbase.apache.org (Accessed: December 2014).

[46] Apache zookeeper, http://zookeeper.apache.org (Accessed: December

2014).

[47] Apache mahout, http://mahout.apache.org (Accessed: December 2014).

[48] T. D. Sean Owen, Robin Anil, E. Friedman, Mahout in Action, Manning

Publications Co., 2011.

[49] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive online

analysis, J. Mach. Learn. Res. 11 (2010) 1601–1604.

51

[50] Vowpal wabbit, http://hunch.net/ vw/ (Accessed: December 2014).

[51] U. Kang, D. Chau, C. Faloutsos, Pegasus: Mining billion-scale

graphs in the cloud, in: Acoustics, Speech and Signal Processing

(ICASSP), 2012 IEEE International Conference on, 2012, pp. 5341–

5344. doi:10.1109/ICASSP.2012.6289127.

[52] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. M. Heller-

stein, GraphLab: A new framework for parallel machine learning, CoRR

abs/1006.4990.

[53] U. M. Fayyad, K. B. Irani, Multi-interval discretization of continuous-

valued attributes for classification learning, in: Proceedings of IJCAI,

1993, pp. 1022–1029.

[54] E. J. Clarke, B. A. Barton, Entropy and MDL discretization of con-

tinuous variables for bayesian belief networks, International Journal of

Intelligent Systems 15 (1) (2000) 61–92.

[55] J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised dis-

cretization of continuous features, in: Proceedings of the Twelfth In-

ternational Conference on Machine Learning, Morgan Kaufmann, 1995,

pp. 194–202.

[56] S. Kotsiantis, D. Kanellopoulos, Discretization techniques: A recent

survey, GESTS International Transactions on Computer Science and

Engineering 32 (1) (2006) 47–58.

[57] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, S. Feng, Balanced parallel

FP-Growth with MapReduce, in: Proc. of 2010 IEEE Youth Conference

52

on Information Computing and Telecommunications (YC-ICT), 2010,

pp. 243–246. doi:10.1109/YCICT.2010.5713090.

[58] B. Liu, Y. Ma, C.-K. Wong, Classification using association rules: Weak-

nesses and enhancements, in: R. Grossman, C. Kamath, P. Kegelmeyer,

V. Kumar, R. Namburu (Eds.), Data Mining for Scientific and Engi-

neering Applications, Vol. 2 of Massive Computing, Springer US, 2001,

pp. 591–605. doi:10.1007/978-1-4615-1733-7 30.

[59] J. R. Quinlan, R. M. Cameron-jones, Foil: A midterm report, in: In

Proceedings of the European Conference on Machine Learning, Springer-

Verlag, 1993, pp. 3–20.

[60] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. Jesus, S. Ventura, J. Garrell,

J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, F. Herrera,

KEEL: a software tool to assess evolutionary algorithms for data mining

problems, Soft Computing 13 (3) (2009) 307–318. doi:10.1007/s00500-

008-0323-y.

[61] J. Derrac, S. Garćıa, D. Molina, F. Herrera, A practical tutorial on the

use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms, Swarm and Evolution-

ary Computation 1 (1) (2011) 3–18. doi:10.1016/j.swevo.2011.02.002.

[62] M. Friedman, The use of ranks to avoid the assumption of normality

implicit in the analysis of variance, Journal of the American Statistical

Association 32 (200) (1937) 675–701.

53

[63] R. L. Iman, J. M. Davenport, Approximations of the critical region of the

fbietkan statistic, Communications in Statistics - Theory and Methods

9 (6) (1980) 571–595. doi:10.1080/03610928008827904.

[64] S. Holm, A simple sequentially rejective multiple test procedure, Scan-

dinavian Journal of Statistics 6 (2) (1979) 65–70.

[65] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, A. J. Miller,

M. Upton, Hyper-Threading technology architecture and microarchitec-

ture, Intel Technology Journal 6 (1) (2002) 4–15.

54

