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Abstract

Multi-class classification problems appear in a broad variety of real-world problems, e.g., medicine, ge-

nomics, bioinformatics, or computer vision. In this context, decomposition strategies are useful to increase

the classification performance of classifiers. For this reason, in a previous work we proposed to improve

the performance of FARC-HD (Fuzzy Association Rule-based Classification model for High-Dimensional

problems) fuzzy classifier using One-vs-One (OVO) and One-vs-All (OVA) decomposition strategies. As a

result of an exhaustive experimental analysis, we concluded that even though the usage of decomposition

strategies was worth to be considered, further improvements could be achieved by introducing n-dimensional

overlap functions instead of the product t-norm in the Fuzzy Reasoning Method (FRM). In this way, we

can improve confidences for the subsequent processing performed in both OVO and OVA.

In this paper, we want to conduct a broader study of the influence of the usage of n-dimensional overlap

functions to model the conjunction in several Fuzzy Rule-Based Classification Systems (FRBCSs) in order to

enhance their performance in multi-class classification problems applying decomposition techniques. To do

so, we adapt the FRM of four well-known FRBCSs (CHI, SLAVE, FURIA, and FARC-HD itself). We will

show that the benefits of the usage of n-dimensional overlap functions strongly depend on both the learning

algorithm and the rule structure of each classifier, which explains why FARC-HD is the most suitable one

for the usage of these functions.
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1. Introduction

Fuzzy Rule-Based Classification Systems (FRBCSs) [34] are one of the most popular methods in pattern

recognition and machine learning. These systems feature a good performance while providing interpretable

models by using linguistic labels in the antecedents of their rules [34]. FRBCSs have been successfully applied

to a wide variety of domains, including bioinformatics [26], medical problems [46], or financial applications

[44], among others.

Within classification tasks, two types of problems can be identified depending on the number of classes

considered: binary (two classes) and multi-class (more than two classes) problems. In general, the classifier

learning is more difficult for multi-class problems. This is due to the increased complexity in the definition of

decision boundaries, caused by the higher overlapping among the different classes of the problem. Even so,

real-world problems need to consider multiple classes in many cases: for instance, arrhythmias classification

[40], fingerprints recognition [23], or microarrays analysis [6]. In this context, the application of decompo-

sition strategies [20, 39] is a straightforward manner for addressing multi-class problems, since they make

any classifier capable of addressing these types of problems. Based on divide-and-conquer paradigm, the

original multi-class problem is divided into easier-to-solve binary ones, which can be faced by independent

binary classifiers called base classifiers.

Among decomposition strategies [39], One-vs-One (OVO) and One-vs-All (OVA) are the most common

ones owing to their simplicity and accuracy. In the OVO scheme, the original problem is divided into as many

binary sub-problems as possible pairs of classes, whereas in OVA as many sub-problems as classes in the

original one are considered. When classifying a new instance, all base classifiers are queried and their outputs

are combined to make the final decision (aggregation phase) [20]. These decomposition techniques usually

obtain better results than addressing the problem directly, even when classifiers with inherent multi-class

support are used [19, 20, 22, 43].

Previous works have shown the effectiveness of decomposition strategies when working with FRBCSs

[15, 25, 30, 36]. Nevertheless, it should be borne in mind that, in these strategies, the final performance

strongly depends on the outputs provided by each base classifier, since a new aggregation phase is intro-

duced, which is not carried out when the problem is directly addressed. In our previous work [15], we

showed that the outputs provided by FARC-HD (Fuzzy Association Rule-based Classification model for

High-Dimensional problems) fuzzy classifier [2] were not suitable for decomposition schemes. This fact was

due to the usage of the product to model the conjunction, since the aggregation of small values ended in

outputs with low variation, quickly tending to zero. This effect was even more accentuated when the number

of arguments (antecedents of fuzzy rules) increased, and as a consequence, those rules with more antecedents

were penalized. However, these issues did not affect the baseline FARC-HD algorithm because output val-

ues were not used beyond the classification process. Otherwise, when using decomposition strategies, the
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previously mentioned facts became undesirable, since less knowledge was retained for the aggregation phase.

Moreover, robust aggregations for OVO, such as weighted voting, obtained poor results with FARC-HD. On

this account, the concept of n-dimensional overlap function was introduced in our previous work [15] with

the aim of modeling the conjunction in the fuzzy rules of FARC-HD. In this manner, the values returned

by base classifiers became more suitable for the aggregation phase, since they display a greater variation

and they are independent of the number of arguments. This resulted in a significant increase in the final

performance. Additionally, we proposed a new aggregation method for OVO (WinWV) with the aim of

solving the problems of weighted voting caused by the unsuitable confidences provided by FARC-HD.

As a result of our previous work, the need for analyzing the behavior of n-dimensional overlap functions

in different FRBCSs arises. More specifically, their behavior in the framework of multi-class problems

using decomposition strategies must be analyzed. For this reason, in this paper we adapt the methodology

presented in [15] to different FRBCSs. In order to obtain the broadest possible overview, we consider four

different types of FRBCSs: Chi [12], SLAVE [25], FURIA [30], and FARC-HD [2] itself. We have selected

these four classifiers as representative methods of FRBCSs since both their learning methods and their rule

structure are clearly different. All of them have been adapted to use n-dimensional overlap functions in

their Fuzzy Reasoning Method (FRM).

The main contributions of this work are the following:

• We analyze the performance of n-dimensional overlap functions in the four FRBCSs (CHI, SLAVE,

FURIA, and FARC-HD) and we study whether the behavior shown in FARC-HD is extensible to other

FRBCSs. In this manner, we aim to obtain a general overview of the behavior of these functions when

they are applied to model the conjunction. Additionally, two decomposition strategies (OVO and

OVA) are considered for each FRBCS.

• We study the impact of n-dimensional overlap functions on the rule bases generated in the four

classifiers. As we will show, the usage of these functions does not only affect the performance of the

model, but also its rule base. On this account, we analyze the average number of rules and antecedents

per rule for each overlap function.

• We evaluate the performance of WinWV aggregation method (proposed to solve the problems of

weighted voting with the confidences provided by FARC-HD) in the rest of FRBCSs. In order to do

so, a comparison between WinWV aggregation strategy and the original weighted voting is performed

considering the four FRBCSs.

In order to achieve well-founded conclusions, we carry out an empirical study considering twenty numeri-

cal datasets from the KEEL dataset repository [3] and we contrast the results obtained using non-parametric

statistical tests, as suggested in the specialized literature [24]. In this study, we will analyze the influence
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of the usage of n-dimensional overlap functions when tackling directly the multi-class problem with FARC-

HD, FURIA, CHI, and SLAVE baseline classifiers and when they are used as base classifiers for both OVO

and OVA decomposition strategies. In all these cases, we have applied five different n-dimensional overlap

functions and we have considered the usage of five aggregation strategies for OVO scheme.

The exhaustive analysis carried out shows that the benefit obtained is highly dependent on the learning

process of each classifier, as well as on the structure of the rules generated after that process. The results

obtained have allowed us to shed light on clarifying when it is appropriate to use n-dimensional overlap

functions in the FRM of FRBCSs. That is, we explain why FARC-HD performs much better with these

functions, whereas other FRBCSs present a rather different behavior.

The rest of this paper is organized as follows. Related works are reviewed in Section 2. In Section

3, we briefly describe the four FRBCSs considered in this work (FURIA, CHI, SLAVE, and FARC-HD)

and we show their rule structure, learning and inference processes. Section 4 describes OVO and OVA

decomposition strategies, along with the five aggregation strategies for OVO that we use in this paper. In

Section 5, we recall the concept of n-dimensional overlap function and we describe the adaptation made

to model the conjunction with these functions in each FRBCS considered. The experimental framework is

presented in Section 6, whereas the analysis of the results obtained is given in Section 7. Finally, Section 8

concludes this paper.

2. Related Works

Fuzzy techniques are useful to achieve a trade-off between interpretability and accuracy in classification

systems. In [1], authors developed a new approach to design fuzzy classifiers using k -means clustering

and a memetic algorithm to find the optimal values of fuzzy rules and membership functions. Chen et

al. [11] proposed a combination of a feature selection process applying modulator functions and a fuzzy rule

extraction mechanism based on fuzzy clustering. In [38], authors presented a method to extract fuzzy rules

from the sub-clusters produced by the output-interval clustering algorithm. Aliev et al. [4] extracted type-2

fuzzy rules applying fuzzy clustering and a Differential Evolution algorithm to optimize those rules. Finally,

Sanz et al. [45] provided a framework to improve the performance of FRBCSs using interval-valued fuzzy

sets.

Decomposition strategies can be considered as an ensemble method or a Multiple Classifier System

(MCS), whose main objective is to enhance the classification performance using multiple classifiers. However,

decomposition strategies focus on the usage of binary classifiers to address multi-class problems, whereas

in ensembles and MCSs multi-class classifiers are usually considered in order to face such problems. This

important difference has produced many different approaches for each type of method.

Ensemble techniques are traditionally based on creating diverse base classifiers that allow one to improve
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the performance as a result of the differences in their predictions, since they are complementary. Two of the

most popular ensemble methods are Bagging [8] and Boosting [17], which have also been applied using fuzzy

base classifiers [7, 35, 48]. In [7], authors proposed an extension of the classical Random Forests (a variant

of bagging) making use of fuzzy decision trees. Ishibuchi and Nojima [35] combined the FRBCSs obtained

in the Pareto front of a multi-objective optimization GA. In [48], authors developed a methodology to build

MCSs using FURIA as base classifier, addressing all the stages from its construction (bagging-based) to

the final combination process. These methods take advantage of the power of fuzzy systems to deal with

soft decision boundaries, obtaining highly accurate models, but they may need thousands of rules [48].

These models are essentially focused on the final accuracy of the system, and therefore their interpretability

is left aside. A clear example of this type of model is FURIA [30] (described in Section 3.4), which is

one of the most extended base classifiers in this framework. FURIA generates adjusted hyper-rectangles

for each rule instead of using the same linguistic labels for the entire rule base, and hence it cannot be

considered as interpretable as a classical FRBCS [34]. For this reason, in this paper we will only consider

decomposition-based ensembles, which may partially maintain the interpretability of the baseline models.

Decomposition strategies have become a commonly used approach to improve the performance of FR-

BCSs in multi-class classification problems [16, 30, 32, 47]. These strategies have been successfully applied

using different base classifiers, such as Fuzzy Ripper [31], FH-GBML [36] or SLAVE [25] (described in Sec-

tion 3.3). Moreover, Non-Dominance criterion (ND) [16] and Learning Valued Preference for Classification

(LVPC) [30, 32] aggregation strategies (described in Section 4) have been specifically proposed for these

fuzzy classifiers. In both of them, preference relations are considered to model the aggregation phase, where

the best alternative should be predicted. In order to do so, Hüllermeier and Brinker [32] modeled the conflict

and ignorance from the outputs of the Fuzzy Ripper algorithm [31]. From a different perspective, Fernandez

et al. [16] proposed the usage of ND criterion in FH-GBML and SLAVE classifiers, obtaining good results.

Finally, the Top-Down induction of Fuzzy Pattern Trees (PTTD) was presented in [47], where an OVA

approach was applied.

In the framework of decomposition techniques, in [15] we proposed n-dimensional overlap functions to

provide more suitable confidences when combining FARC-HD fuzzy classifier and decomposition strategies,

which resulted in an enhancement of the final performance of FARC-HD. Based on this work, our aim is to

extend this methodology to different FRBCSs and to study the behavior of these functions when they are

applied in different FRMs.

3. Fuzzy Rule-Based Classification Systems

In this section we first introduce the preliminary concepts related to FRBCSs (Section 3.1). Next, a

description of all the classifiers considered in this work is shown, along with their rule structure, learning
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algorithms and inference methods (Sections 3.2-3.5).

3.1. Preliminary concepts

In the literature, there are multiple techniques used to solve classification problems. Among them,

FRBCSs are one of the most popular approaches, since they provide an interpretable model by means of

the use of linguistic labels in their rules [34].

The two main components of FRBCSs are as follows.

1. Knowledge base: It is composed of both the rule base (RB) and the database, where the rules and the

membership functions used to model the linguistic labels are stored, respectively.

2. Fuzzy Reasoning Method (FRM): This is the mechanism used to classify examples using the information

stored in the knowledge base.

In order to generate the knowledge base, a fuzzy rule learning algorithm is applied using a training

set DT composed of P labeled examples xp = (xp1, . . . , xpn), p = {1, . . . , P}, where xpi is the value of the

i-th attribute (i = {1, 2, . . . , n}) of the p-th training example. Each example belongs to a class yp ∈ C =

{C1, C2, ..., Cm}, where m is the number of classes of the problem.

Since we consider multiple FRBCSs, in Table 1 we introduce the common notation to make them easier

to understand.

Table 1: Notation defined for all FRBCSs considered in this paper.

Term Description

n number of variables

DT training set

P number of examples in the training set

xp p-th training example

C set of classes

m number of classes

yp class of the p-th training example

Rj j-th rule

nj number of antecedents of the j-th rule

Cj class of the j-th rule

Li set of linguistic labels for the i-th variable

l number of linguistic labels in Li
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3.2. CHI algorithm

CHI algorithm [12] generates the rule base establishing an association between variables (antecedents)

and classes (consequents). The rule structure used by this algorithm is as follows.

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class = Cj with RWj (1)

where Rj is the label of the j-th rule, x = (x1, . . . , xn) is a n-dimensional pattern vector that represents

the example, Aji ∈ Li is a linguistic label modeled by a triangular membership function (being Li =

{Li1, . . . , Lil} the set of linguistic labels for the i-th antecedent, where l is the number of linguistic labels in

this set), Cj is the class label and RWj is the rule weight computed using the most common specification,

i.e., the fuzzy confidence value or certainty factor defined in [36]:

RWj = CFj =

∑
xp∈ClassCj

µAj
(xp)

P∑
p=1

µAj (xp)

(2)

being µAj (xp) the matching degree of the example xp with the antecedent part of the fuzzy rule Rj computed

as follows:

µAj
(xp) = T

(
µAj1

(xp1), . . . , µAjn
(xpn)

)
(3)

where µAji
(xpi) is the membership degree of the value xpi to the fuzzy set Aji of the rule Rj and T is a

t-norm.

In order to construct the rule base, CHI applies the following learning process:

1. Definition of the linguistic partitions. Fuzzy partitions are constructed with the same triangular shape

and equally distributed on the range of values.

2. Generation of a fuzzy rule for each example. A fuzzy rule is generated for each example xp as follows.

(a) The membership degree of each value xpi to all the different fuzzy sets of the i-th variable is

computed.

(b) For each variable, the linguistic label with the greatest membership degree is selected.

(c) A rule is generated for the example where the antecedent part is determined by the selected fuzzy

region, that is, the intersection of the selected linguistic labels, and the consequent is the class

label of the example (yp). Notice that in this algorithm no feature selection is performed in the

learning process, and hence all rules have exactly the same number of antecedents as variables in

the problem (n).

(d) The rule weight is computed using the certainty factor given in Eq. (2).

Note that after the learning process we can obtain duplicated rules with the same antecedent part and

different consequent part. In that case, only the one with the highest rule weight is kept.
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In order to classify a new example xp, in this paper we consider the usage of the additive combination

[14] FRM, which is composed of the following steps.

1. Matching degree. The strength of activation of the antecedent part for all rules in the rule base with

the example xp is computed (Eq. (3)).

2. Association degree. The association degree of the example xp with each rule in the rule base is

computed.

bj(xp) = µAj
(xp) ·RWj (4)

3. Confidence degree. The confidence degree for each class is computed. To obtain the confidence degree

of a class, the association degrees of the rules of that class, i.e., those whose consequent is the class we

are considering, are summed.

confc(xp) =
∑

Rj∈RB; Cj=c

bj(xp), c = 1, 2, . . . ,m (5)

4. Classification. The class that obtains the highest confidence degree is predicted.

Class = arg max
c=1,...,m

(confc(xp)) (6)

3.3. SLAVE

SLAVE (Structural Learning Algorithm in a Vague Environment) [25] is an inductive learning algorithm

that makes use of an iterative approach to learn fuzzy rules. In addition, it takes advantage of a Genetic

Algorithm (GA) to reduce the number of rules, keeping only the most relevant ones for each class. The rule

structure in SLAVE is as follows.

Rule Rj : If x1 is Aj1 and . . . and xnj is Ajnj then Class = Cj with RWj (7)

where Aji ⊆ Li is a subset of linguistic labels modeled by triangular membership functions and nj is the

number of antecedents of the rule. In this case, the rule weight is computed as:

RWj =
n+(Rj)

n(Rj)
(8)

being n+(Rj) the number of positive examples for the rule Rj and n(Rj) the number of covered examples

by the rule Rj (the definition of these concepts is described in detail in [25]). A short example is shown

below in order to clarify these types of rules.

Example 1. A rule such as

Rj : If x1 is {L11, L13, L14} and . . . and xnj is
{
Lnj2, Lnj4

}
then Class = Cj with RWj

is equivalent to

Rj : If (x1 is L11 or x1 is L13 or x1 is L14) and . . . and
(
xnj

is Lnj2 or xnj
is Lnj4

)
then Class = Cj with RWj
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As it can be observed, there are two main differences between CHI and SLAVE regarding the rule

structure. On the one side, in SLAVE the number of antecedents may vary depending on the rule (an

embedded feature selection process is carried out), whereas in CHI the number of antecedents in all rules

is the same (all variables are used). On the other hand, in the case of SLAVE, a single antecedent can be

composed of multiple linguistic labels, while in CHI each antecedent is a single linguistic label. In order to

compute the disjunction (OR operator) of linguistic labels, the membership degrees of the input value to all

of them are computed. Then, the maximum of these membership degrees is taken.

As in the case of CHI, the learning algorithm of SLAVE tries to obtain a rule base that represents

the relationship between antecedents and the class, keeping only those antecedents that are necessary to

properly represent the class for each rule. In order to do so, SLAVE applies an iterative method for each

class in C that works as follows.

1. Given a training set DT and a class C, the algorithm selects the best rule that represents the examples

belonging to C. A rule is considered to be the best if it:

• Covers the maximum number of examples of the class C.

• Covers the minimum number of examples of the rest of classes.

In order to find the best rule, SLAVE applies a Genetic Algorithm (GA) to simultaneously optimize

both previous criteria.

2. The examples covered by the selected rule are removed from DT .

3. The process is repeated until no useful rules can be extracted for the class C. This situation happens

when the optimization criteria cannot be fulfilled.

4. Once all rules for a class have been extracted, the same process is repeated with the rest of classes.

In order to classify a new example xp, the inference works as follows:

1. Adaptation degree. The adaptation degree between the example and the antecedent part of each rule

(Uj(xp, Aj)) is computed. To do so, the measures of possibility of all Aji are aggregated by a t-norm

(in this case the product).

Uj(xp, Aj) = T
(
Poss(Aj1|xp1), Poss(Aj2|xp2), . . . , Poss(Ajn|xpnj

)
)

(9)

The possibility measure of a given antecedent (Poss(Aji|xpi)) is defined as the proportion of the

maximum membership degree of the considered linguistic labels for that antecedent with respect to

the maximum membership degree of all linguistic labels. The complete definition of this measure is

presented in [25].

2. Association degree. The association degree of the example xp with each rule in the rule base is

computed.

bj(xp) = Uj(xp, Aj) ·RWj (10)
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3. Classification. The class of the rule with the highest association degree (bj(xp)) is predicted. If there

are two or more rules with the same association degree, SLAVE applies the following criteria:

(a) The rule with the highest rule weight is the winner.

(b) If the rule weights are the same, the rule that covered the least number of examples is the winner

(in favor of specific rules).

(c) In case of a tie, the first learned rule is the winner.

3.4. FURIA

FURIA (Fuzzy Unordered Rule Induction Algorithm) [30] modifies and extends RIPPER rule induction

algorithm [13], learning fuzzy rules instead of conventional rules and unordered rule sets instead of rule lists.

The rule structure in FURIA is as follows.

Rule Rj : If x1 is AIj1 and . . . and xnj
is AIjnj

then Class = Cj with RWj (11)

whereAIji is a trapezoidal membership function corresponding to the variable i defined asAIji = (φs,Lji , φ
c,L
ji , φ

c,U
ji , φ

s,U
ji ),

being φc,Lji and φc,Uji the lower and upper bounds of the core and φs,Lji and φs,Uji the lower and upper bounds

of the support, respectively. With the aim of obtaining more flexible decision boundaries, FURIA applies a

certainty factor to each rule (similar to the rule weight of SLAVE and CHI), which is computed as:

RWj =

2

∣∣∣D(Cj)
T

∣∣∣
|DT |

+
∑

xp∈D
(Cj)

T

µAI
j
(xp)

2 +
∑

xp∈DT

µAI
j
(xp)

(12)

where DT represents the training set, D(Cj)
T are the examples of the class of the rule (Cj), and µAI

j
(xp) is the

coverage degree (equivalent to the matching degree of Eq. (3)) of the rule Rj for the example xp computed

as:

µAI
j
(xp) = T

(
µAI

j1
(xp1), µAI

j2
(xp2), . . . , µAI

jnj

(xpnj
)
)

(13)

being µAI
ji

(xpi) the membership degree of the i-th element and T a t-norm (in this case the product).

Looking at the rules used in FURIA, it can be observed that antecedents are not represented by triangular

membership functions as in CHI and SLAVE. Instead, FURIA uses fuzzy sets with trapezoidal membership

functions. We must stress that each membership function is specific to each antecedent, and thus it can be

different for each fuzzy rule.

In order to generate the rule base, FURIA applies a learning algorithm composed of the following stages:

1. Learn a rule set for each class using RIPPER algorithm. This stage is divided into the building and

optimization phases.
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2. Fuzzification of rules generated by RIPPER. In this stage the structure of the rules is maintained,

but the interval representing each antecedent is replaced by a trapezoidal membership function (Eq.

(11)). To do so, the original interval of an antecedent is considered as the core (φc,Lji , φc,Uji ) of the

trapezoidal membership function, and then the optimal support bounds are adjusted. In order to solve

this optimization problem, FURIA applies a greedy algorithm (in each rule) where a single antecedent

i is fuzzified in each iteration, measuring the quality of that fuzzification in terms of rule purity. For

this computation, only the relevant training data for rule j and antecedent i (Dji
T ) are considered:

DjiT =
{
x ∈ DT | µAI

jk
(xk) > 0 for all k = 1, . . . , nj and k 6= i

}
Once the relevant data have been selected, this set is further divided into two subsets:

• Positive instances (those belonging to the class of the rule), DjiT+

• Negative instances (rest of instances), DjiT−

Then, the rule purity is computed as follows:

purji =
pji

pji + nji
(14)

where

pji =
∑

x∈Dji

T+

µAI
j1

(xi)

nji =
∑

x∈Dji

T−

µAI
j1

(xi)

Note that after the fuzzification stage, each antecedent of each rule has its own trapezoidal membership

function, and thus linguistic labels are not shared by all rules as in the rest of classifiers considered in

this paper. Hence, FURIA makes use of fuzzy theory to improve the accuracy of the system, leaving its

interpretability aside.

When classifying a new example xp, FURIA applies the same FRM as CHI (Eq. (3)-(6)), but using

trapezoidal membership functions (µAI
ji

(xpi)) instead of triangular ones. In addition, if the example is

not covered by any rule, a rule generalization process (stretching) is carried out replacing all rules by their

minimal generalizations, which are obtained removing all the antecedents that are not satisfied by the query.

In case of a tie, the class with highest frequency is predicted.

3.5. FARC-HD

FARC-HD (Fuzzy Association Rule-based Classification model for High-Dimensional problems) [2] is

a fuzzy association rule-based classifier. Apriori algorithm is used to learn fuzzy rules before applying a
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subgroup discovery technique and an Evolutionary Algorithm is used to reduce the computational cost and

improve the accuracy and interpretability of the model.

This method uses the following rule structure:

Rule Rj : If x1 is Aj1 and . . . and xnj
is Ajnj

then Class = Cj with RWj (15)

where the rule weight is computed applying the certainty factor (Eq (2)). As we can observe, the rule

structure is the same as that of CHI (Eq. (1)). However, notice that in FARC-HD the number of antecedents

may vary depending on the rules due to the way the latter are learned.

The learning algorithm of FARC-HD is composed of the three following stages:

1. Fuzzy association rule extraction for classification: In order to generate the rule base, a search tree

is constructed for each class. To this end, frequent itemsets (sets of linguistic labels) are computed

considering the support and confidence. Once the frequent itemsets are obtained, the fuzzy rules are

extracted. The number of linguistic terms in the antecedents is limited by the maximum depth of the

tree.

2. Candidate rule pre-screening : The most interesting fuzzy rules are pre-selected from the rule base

obtained in the previous stage. To do so, a pattern weighting scheme is applied, where the weights of

the examples are based on the coverage of the fuzzy rules.

3. Genetic rule selection and lateral tuning : An evolutionary algorithm is used both to tune the lateral

position of the membership functions and to select the most accurate rules from the rule base generated

in the previous steps.

In order to classify a new example, FARC-HD also applies the same FRM as CHI (Eq. (3)-(6)).

4. Decomposition strategies

Decomposition strategies [39] divide the original multi-class problem into simpler binary problems that

are faced by independent binary classifiers, which are called base classifiers. These strategies are not only

useful when working with classifiers that are only capable of discriminating between two classes, but also

with those having an inherent multi-class support. Even in the latter case, the results are usually enhanced

when decomposition strategies are applied [19, 20, 22, 43]. In this paper, we consider two of the most

popular decomposition strategies in the literature: One-Versus-One (OVO) and One-Versus-All (OVA) [20]

strategies.

4.1. One-Versus-One (OVO)

OVO strategy divides a m class problem into m(m − 1)/2 binary sub-problems (all the possible com-

binations between pairs of classes). Each binary problem is faced by an independent base classifier which
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distinguishes a pair of classes {Ci, Cj}. When classifying a new example, all base classifiers are queried

and their outputs are collected. For each classifier, a pair of confidence degrees rij , rji ∈ [0, 1] in favor of

classes Ci and Cj , respectively, are obtained. The outputs obtained from all base classifiers are stored in a

score-matrix R:

R =


− r12 · · · r1m

r21 − · · · r2m

...
...

rm1 rm2 · · · −

 (16)

Since each binary sub-problem is addressed by an independent base classifier, the score-matrix needs to

be normalized in order to have all confidence degrees within the same range of values. This normalization

is important when using classifiers that do not return confidences in [0,1], which could be interpreted as

probabilities (which is the case of the FRBCSs tested in this paper). The normalization of the score-matrix

(R̂) is performed as follows.

r̂ij =


rij

rij + rji
if rij 6= 0 or rji 6= 0

0.5 if rij = rji = 0
(17)

Finally, the outputs of base classifiers stored in the score-matrix are aggregated and the class is predicted.

This aggregation phase is a key factor for the classification success [20]. Next, we briefly describe the five

well-known OVO aggregation methods that we consider in this paper.

• Voting strategy (VOTE) [18]. Each base classifier gives a vote for its predicted class. The class having

the largest number of votes is given as output:

Class = arg max
i=1,...,m

∑
1≤j 6=i≤m

sij (18)

where sij is 1 if r̂ij > r̂ji and 0 otherwise.

• Weighted Voting (WV) [33]. Each base classifier votes for both classes based on the confidence degree

provided for each one. The class obtaining the highest value is given as output:

Class = arg max
i=1,...,m

∑
1≤j 6=i≤m

r̂ij (19)

• WinWV [15]. This aggregation method was proposed in our previous work [15] in order to solve the

problems of WV with the confidences provided by FARC-HD. To do so, this method only considers

the confidence of the predicted class, whereas that of the non-predicted class is not taken into account.

Therefore, WinWV aggregation strategy works as follows:

Class = arg max
i=1,...,m

∑
1≤j 6=i≤m

sij (20)

where sij is r̂ij if r̂ij > r̂ji and 0 otherwise.
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• Non-Dominance Criteria (ND) [16]. The score-matrix is considered as a fuzzy preference relation.

Then the non-dominance degree is computed, being the winning class the one with the highest value:

Class = arg max
i=1,...,m

{
1− max

j=1,...,m
r′ji

}
(21)

where R′ is the strict score-matrix (after normalization).

• Learning valued preference for classification (LVPC) [31, 32]. LVPC strategy considers the score-

matrix as a fuzzy preference relation, as ND does. Based on fuzzy preference modeling, the original

relation is decomposed into three new relations with different meanings: strict preference, conflict, and

ignorance. Finally a decision rule based on a voting strategy is proposed to obtain the output class:

Class = arg max
i=1,...,m

∑
1≤j 6=i≤m

Pij +
1

2
Cij +

Ni
Ni +Nj

Iij (22)

being Ni the number of training examples belonging to class i, Cij the degree of conflict (the degree

to which both classes are supported), Iij the degree of ignorance (the degree to which none of the

classes are supported), and Pij and Pji the strict preference for i and j, respectively. These variables

are computed as follows:

Cij = min {r̂ij , r̂ji}, Pij = r̂ij − Cij , Pji = r̂ji − Cij , Iij = 1−max {r̂ij , r̂ji}

It should be mentioned that, from the division of the multi-class problem in OVO, an inherent prob-

lematic issue arises: the non-competent classifiers [21]. This is due to the fact that each base classifier

learns the model only using the examples belonging to the two classes that it discriminates, and thus the

examples belonging to the rest of classes are ignored. Consequently, the remainder classes are unknown for

this classifier and its outputs will be irrelevant to classify examples of those classes even though they are

aggregated, since the non-competence cannot be established a priori. Even if this circumstance should be

taken into account when applying OVO strategy, this problematic lies outside the scope of this paper and

shall be considered in future works.

4.2. One-Versus-All (OVA)

OVA decomposition divides a m class problem into m binary sub-problems, which are faced by indepen-

dent binary classifiers. Each base classifier distinguishes one of the classes from the remaining ones, learning

the model using all examples of the training set. To this end, the examples of the class to be distinguished

are considered as positives, whereas the rest are labeled as negatives. When classifying a new example, all

base classifiers are queried and a confidence degree r̂i ∈ [0, 1] in favor of the class Ci is returned by each

classifier. The outputs of all base classifiers are stored in the score-vector R:

R = (r1, . . . , ri, . . . , rm) (23)
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However, as in OVO, the range of the values returned by each classifier depends on each sub-problem.

These differences among the ranges can lead us to misclassify an example, since the comparison among the

confidences may not be fair. Therefore, the score-vector R needs to be normalized in such a way that all

classifiers return values in the same range. To this aim, we normalize the score-vector with respect to the

confidences obtained by each classifier for the negative class (stored in another score-vector R). Once both

vectors are obtained, the normalization of the score-vector (R̂) is performed as follows.

r̂i =
ri

ri + ri
(24)

Finally, in OVA the values of the score-vector are usually aggregated using the maximum, and thus the

class with the highest confidence will be predicted. Another aggregation method for OVA is the so-called

dynamically ordered OVA [29]. Nevertheless, in this work we only focus on the maximum because usually

no statistical differences are found and the maximum is simpler.

5. Modeling the conjunction in FRBCSs with n-dimensional overlap functions: extending the

FRMs

In our previous work [15], we showed that the confidences returned by FARC-HD are unsuitable for

their subsequent processing in decomposition strategies. This was caused by the usage of the product in

the FRM of FARC-HD. In order to solve this problem, we proposed to replace the product t-norm by n-

dimensional overlap functions to model the conjunction in the FRM of FARC-HD. In this paper, we extend

this methodology to four different FRBCSs by adapting their FRMs. In this manner, we aim to obtain a

broader view of how n-dimensional overlap functions behave when they are used to model the conjunction

in different FRBCSs.

In the rest of this section, we first recall the concept of n-dimensional overlap function introduced in our

previous work [15] and we show the five different functions considered in this paper (Section 5.1). Next,

we describe how these functions are included in the different FRBCSs in order to model the conjunction in

their fuzzy rules (Section 5.2).

5.1. n-dimensional overlap functions

The original concept of overlap function [9] was introduced in image processing with the purpose of

classifying those pixels whose belonging to the object or to the background was not clear. Examples of

the application of these functions to image processing problems can be found in [37, 42]. Furthermore,

these functions were also applied to model the indifference in preference relations [10]. Due to the fact

that overlap functions allow one to recover many of the characteristics of t-norms without imposing the

associativity property, their application range has turned out to be much broader. Taking advantage of
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these properties, an extension of overlap functions was proposed in our previous work [15] in order to adapt

the inference process of FARC-HD to decomposition strategies by modeling the conjunction with these

functions. With this aim, we extended the original concept of two dimensional overlap function to any finite

dimension n (recovering the original definition when n = 2).

Let us recall the definition of the original two dimensional case:

Definition 1. [9] A function O : [0, 1] × [0, 1] → [0, 1] is an overlap function if satisfies the following

conditions :

1. O(x, y) = O(y, x) for all x, y ∈ [0, 1].

2. O(x, y) = 0 if and only if x · y = 0.

3. O(x, y) = 1 if and only if x · y = 1.

4. O is increasing.

5. O is continuous.

Based on the previous definition, the following extension was proposed:

Definition 2. [15] A n-dimensional function O : [0, 1]n → [0, 1] with n ≥ 2 is a n-dimensional overlap

function if the following properties hold:

1. O is symmetric.

2. O(x1, . . . , xn) = 0 if and only if
n∏
i=1

xi = 0.

3. O(x1, . . . , xn) = 1 if and only if
n∏
i=1

xi = 1.

4. O is increasing.

5. O is continuous.

Furthermore, a construction method for n-dimensional overlap functions using rational expressions was

presented:

Theorem 1. [15] The mapping On : [0, 1]n → [0, 1] is a n-dimensional overlap function if and only if there

exist f, g : [0, 1]n → [0, 1] with

On(x1, . . . , xn) =
f(x1, . . . , xn)

f(x1, . . . , xn) + g(x1, . . . , xn)

where

1. f and g are symmetric.

2. f is non-decreasing and g is non-increasing.

3. f(x1, . . . , xn) = 0 if and only if
n∏
i=1

xi = 0.
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4. g(x1, . . . , xn) = 0 if and only if
n∏
i=1

xi = 1.

5. f and g are continuous.

In this paper we have considered five different n-dimensional overlap functions:

• Product (PROD): The returned value is the product of the input values. The original behavior of

all FRBCSs considered in this paper are recovered.

O(x1, . . . , xn) =

n∏
i=1

xi (25)

• Minimum (MIN): Returns the minimum of the input values. This is a t-norm as well, but unlike the

product, the returned value does not decrease when the number of arguments increases. The minimum

is commonly used in FRBCSs.

O(x1 . . . , xn) = min(x1, . . . , xn) (26)

• Harmonic mean (HM): The returned value is the harmonic mean of the input values if all of them

are different from zero and 0 otherwise.

O(x1, x2, . . . , xn) =


n

1
x1

+ . . .+ 1
xn

if xi 6= 0, for all i = 1, . . . , n

0 otherwise.

(27)

• Geometric mean (GM): Returns the geometric mean of the input values.

O(x1, x2, . . . , xn) = n

√√√√ n∏
i=1

xi (28)

• Sine (SIN): This overlap function returns higher values than means. It is interesting to study the

behavior of these types of functions for modeling the conjunction.

O(x1, . . . , xn) = sin

(
π

2

(
n∏
i=1

xi

)α)
(29)

where α ≤ 1

2n
. In the experiments carried out in Section 7, we take α =

1

2n
.

According to the values returned, we can establish an order among overlap functions. An overlap function

is considered greater than other one if, for every possible input data, the values returned by the first function

are higher than those returned by the second one. Among the considered overlap functions, the smallest

one is the product t-norm, which returns values with a lower variation than the remaining functions when

aggregating small values and whose output decreases as the number of arguments increases. Then, we have
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the minimum, a t-norm whose behavior is not affected by the number of arguments. Next, the harmonic and

geometric means are considered (in this order) as representatives of means that return higher values than

t-norms [5]. Finally, the largest function is the SIN, which returns higher values than means. The different

behaviors among the considered overlap functions give us a general overview in the experiments carried out

in Section 7.

In [15], we showed that those overlap functions satisfying the idempotency property provide better

results, that is,

O(x, . . . , x) = x. (30)

The reason is that the behavior of idempotent overlap functions is not affected by the number of antecedents.

As we can observe, this property is satisfied by the minimum t-norm (Eq. (26)) and the harmonic (Eq. (27))

and geometric (Eq. (28)) means.

Fig. (1a) and (1b) show the previously mentioned differences in the behavior of the different overlap

functions (we consider the two dimensional case, n = 2, to easily visualize their behavior). In Fig. (1a),

we can observe the values returned by each overlap function when aggregating a value with 1, whereas Fig.

(1b) depicts the returned values when aggregating a value with itself. Taking a look at Fig. (1a) and (1b),

we can observe that the proposed n-dimensional overlap functions provide values with a higher variation

than the product when aggregating small values. Nevertheless, both figures reveal a huge difference between

the SIN and the rest of overlap functions, since the value returned by the SIN is greater than the input

arguments when aggregating a value with itself (Fig. (1b)). We will experimentally show that this behavior

may not be desirable in this framework, as it may produce a loss of discrimination power in the FRBCS.

However, we have included this function aiming at obtaining a general overview of n-dimensional overlap

functions and showing their behavior based on results.

5.2. Applying n-dimensional overlap functions in FRBCSs

One of the objectives of this work is to extend the usage of n-dimensional overlap functions introduced

in [15] to other FRBCSs aiming at improving the performance when decomposition strategies are used. In

this manner, we apply these functions to model the conjunction in fuzzy rules. As shown in the previous

subsection, the aggregation of small values when using the product t-norm produces values with a low

variation that tend quickly to 0. Moreover, when we consider FRBCSs where the number of antecedents

can vary depending on the rule, this effect is even more accentuated in those rules with a higher number

of antecedents. These factors have a different influence in baseline FRBCSs, as output values are not

used beyond the classification. However, this is an undesirable circumstance when using decomposition

strategies, since the knowledge acquired in the base classifiers is partially lost, producing a negative impact

on the aggregation phase of these strategies.
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Figure 1: Values returned by the different overlap functions.

In order to minimize the loss of knowledge and to obtain more suitable confidences when using decompo-

sition strategies and FRBCSs, we propose to use n-dimensional overlap functions to model the conjunction

in fuzzy rules. In this manner, the greater variation of the outputs of these functions and the fact that

they are independent of the number of input arguments make confidences more suitable for the aggregation

phase.

With the aim of studying the performance of n-dimensional overlap functions in multiple types of FRBCSs

and obtaining the broadest possible overview, we have considered four different FRBCSs. The following is

a detailed description of the application of overlap functions in each classifier.

5.2.1. Introducing n-dimensional overlap functions in the FRM of CHI

In this classifier, overlap functions replace the t-norm used in the matching and association degrees

computation (Eq. (3) and (4), respectively), in the same way as it was done in [15] :

• Matching degree:

µAj
(xp) = O

(
µAj1

(xp1), . . . , µAjn
(xpn)

)
(31)

• Association degree:

bj(xp) = O
(
µAj (xp), RWj

)
(32)

As we described in Section 3.2, CHI algorithm does not perform any feature selection process and thus, all

rules have exactly the same number of antecedents. Moreover, during the learning stage a rule is generated

for each single instance in the training set, so the number of rules is the same when we use any overlap

function. Therefore, we can observe that the usage of overlap functions does not have any major effect in
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the learning process, since neither the matching degree nor the association degree are considered for the

generation of rules, except for rule weights computation (Eq. (2)).

5.2.2. Introducing n-dimensional overlap functions in the FRM of SLAVE

The computation of the association and adaptation degrees (Eq. (9) and (10)) is carried out by an

overlap function, instead of the product:

• Adaptation degree:

Uj(xp, Aj) = O
(
Poss(Aj1|xp1), Poss(Aj2|xp2), . . . , Poss(Ajn|xpnj

)
)

(33)

• Association degree:

bj(xp) = O (Uj(xp, Aj), RWj) (34)

This algorithm (Section 3.3) carries out a feature selection process that is embedded into the learning

stage, and therefore the number of antecedents may vary depending on the rule. In this case, the usage

of overlap functions affects the learning process, and hence the number of antecedents and rules generated

when using different overlap functions varies. The reason is that SLAVE makes use of the association and

adaptation degrees during the feature and rule selection processes. Consequently, overlap functions are not

only involved in the inference process but also have a direct influence on the rule base generated in the

learning phase.

5.2.3. Introducing n-dimensional overlap functions in the FRM of FURIA

Overlap functions are applied in the same manner as in CHI (Eq. (31) and (32)), i.e., in the matching

and association degrees (Eq. (3) and (4)). However, in this case the values to be aggregated are those

returned by the different trapezoidal membership functions, instead of triangular ones.

FURIA (Section 3.4) learns all rules using RIPPER algorithm before fuzzifying them. This means that

neither the number of antecedents nor the number of rules generated in the learning process depend on the

overlap function used. Indeed, FURIA applies fuzzy sets theory after learning all rules in order to replace

the interval of each antecedent by a trapezoidal membership function, but this fuzzification is performed

only considering the purity of the rule (Eq. (14)), which is not computed using any t-norm. Thus, we can

observe that overlap functions are not involved in the learning process of FURIA, except for the computation

of rule weights (as in CHI).

5.2.4. Introducing n-dimensional overlap functions in the FRM of FARC-HD

The adaptation carried out in FARC-HD is the same as that performed in CHI (Eq. (31) and (32)). As

in SLAVE, overlap functions are involved in all stages of the learning process of FARC-HD, since it makes
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use of both the matching and association degrees to extract the fuzzy rules and to perform the feature and

rule selection processes. As we described in Section 3.5, this algorithm performs a lateral tuning of linguistic

labels in order to improve the classification accuracy. Since the prediction is made using the matching

and association degrees (Eq. (3)-(6)), the usage of overlap functions also affects the previously mentioned

lateral tuning. This adjustment of membership functions helps FARC-HD to increase the benefits of overlap

functions.

6. Experimental framework

This section is aimed at presenting the experimental framework setup used to carry out the experiments

in Section 7, which is the same as that considered in [15]. First, we show the features of the datasets selected

for the experimental study (Section 6.1). Next, the parameter setup considered for each method is described

(Section 6.2). Finally, we introduce the performance measures and the statistical tests that are necessary

to assess whether significant differences exist among the results obtained (Section 6.3).

6.1. Datasets

In order to test the performance of the different methods, we have considered twenty datasets selected

from the KEEL dataset repository [3]. In Table 2, we find a summary of the features of all datasets, indicating

for each one the number of examples (#Ex.), number of attributes (#Atts.), number of numerical (#Num.)

and nominal (#Nom.) attributes, and the number of classes (#Class.).

All the experiments have been carried out using a 5-fold stratified cross-validation model, i.e., we randomly

split the dataset into five partitions of data, each one containing 20% of the examples, and we employed

a combination of four of them (80%) to train the system and the remaining one to test it. Additionally,

in each partition we consider three different seeds for the execution of the methods. Therefore, the result

for each dataset is computed as the average of the five partitions using the three seeds in each one. In

order to correct the dataset shift, that is, when the training data and the test data do not follow the same

distribution, we will use a recently published partitioning procedure called Distribution Optimally Balanced

Cross Validation [41], instead of the commonly used cross-validation.

6.2. Methods setup

Table 3 shows the configuration and parameters that we have considered for each FRBCS. The source

code of all baseline classifiers was obtained from KEEL software [3]. The selected values are common for all

problems, and they were selected according to the recommendation of the authors of each algorithm. Even

though the tuning of parameters for each method on each particular problem could lead to better results,

we preferred to maintain a baseline performance on each method as the basis for comparison, since we are

not comparing algorithms among them.
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Table 2: Summary of the features of the datasets used in the experimental study.

Id. Dataset #Ex. #Atts. #Num. #Nom. #Class.

aut autos 159 25 15 10 6

bal balance 625 4 4 0 3

cle cleveland 297 13 13 0 5

con contraceptive 1473 9 6 3 3

eco ecoli 336 7 7 0 8

gla glass 214 9 9 0 7

hay hayes-roth 132 4 4 0 3

iri iris 150 4 4 0 3

new newthyroid 215 5 5 0 3

pag pageblocks 548 10 10 0 5

pen penbased 1100 16 16 0 10

sat satimage 643 36 36 0 7

seg segment 2310 19 19 0 7

shu shuttle 2175 9 9 0 5

tae tae 151 5 3 2 3

thy thyroid 720 21 21 0 3

veh vehicle 846 18 18 0 4

vow vowel 990 13 13 0 11

win wine 178 13 13 0 3

yea yeast 1484 8 8 0 10

Table 3: Setup of the methods parameters.

Algorithm Parameters

CHI Num. of linguistic labels per variable: 3

Rule weight: Certainty factor

SLAVE Num. of linguistic labels per variable: 5

Number of individuals: 100

Mutation probability: 0.01

Max. iterations without change: 500

FURIA Num. of optimizations: 2

Num. of folds: 3

FARC-HD Num. of linguistic labels per variable: 5

Minimum Support: 0.05

Minimum Confidence: 0.8

Maximum depth: 3

Parameter k: 2

Evaluations: 20000

Number of individuals: 50

α parameter: 0.02

Bits per gen: 30

Rule weight: Certainty factor
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6.3. Performance measures and statistical tests

In this paper we have used the most common metric to test the performance of different methods, that

is, the accuracy rate, which measures the percentage of correctly classified examples related to the total

number of examples. However, we cannot extract well justified conclusions based only on the accuracy.

For this reason, we apply some non-parametric tests [24] with the aim of providing statistical support to

our results. Specifically, we use the Wilcoxon signed-ranks test [49] to perform pairwise comparisons, the

Aligned Friedman test [27] to detect statistical differences among a group of methods, and the Holm post-hoc

test [28] to find the algorithms that reject the null hypothesis of equivalence against the selected control

method. A complete description of these tests can be found on the website: http://sci2s.ugr.es/sicidm/.

In addition to the previously mentioned performance measures, we also want to study the impact of

overlap functions on the rule base. With this aim, we compute the average number of rules and antecedents

per rule for each overlap function in both OVO and OVA models and in all baseline FRBCSs considered in

this work. In the case of decomposition strategies, the average of all base classifiers is computed.

7. Experimental study

In this section, we study the results obtained by each method carrying out an analysis composed of four

stages:

1. We test the performance of the different n-dimensional overlap functions when applying OVO and

OVA models in all the FRBCSs considered in this paper (Section 7.1).

2. We study the impact of n-dimensional overlap functions on the rule base (Section 7.2).

3. We check whether the problems of WV with the confidences of FARC-HD are also present in the rest

of FRBCSs considered in this paper comparing the original WV against WinWV (Section 7.3).

4. We discuss the results obtained in all previous points as a whole and we explain the reasons for the

different behaviors in comparison with that obtained in FARC-HD (Section 7.4).

7.1. Analysis of the performance of n-dimensional overlap functions

Table 4 shows the average accuracy rate obtained in testing by the different FRBCSs (CHI, SLAVE,

FURIA, and FARC-HD). As we can observe, we present the results obtained by each baseline FRBCS

along with OVA scheme and with the five aggregation strategies of OVO model (ND, VOTE, LVPC, WV,

WinWV). We show the performance of the five overlap functions (PROD, MIN, HM, GM, SIN) for each

method, where the result of the best overlap function is highlighted in bold-face. These results are obtained

by computing the average accuracy rate of each method in all datasets. The result of each dataset is

computed as the average accuracy rate of the five partitions over the three different seeds.
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Table 4: Average accuracy rate obtained in testing by each method.

CHI SLAVE FURIA FARC-HD

PROD MIN HM GM SIN PROD MIN HM GM SIN PROD MIN HM GM SIN PROD MIN HM GM SIN

Baseline 75.07 71.20 67.41 66.92 65.74 76.71 74.37 74.31 74.54 73.08 80.56 80.55 80.46 80.49 80.12 80.37 80.17 80.11 79.89 79.98

OV A 73.76 67.39 64.20 63.36 61.93 69.91 69.13 68.97 68.47 64.85 80.39 80.38 80.40 80.36 80.41 79.92 80.27 80.48 80.13 79.97

OVOND 77.10 74.86 72.65 71.94 70.55 77.41 77.03 76.68 76.39 76.55 81.97 81.98 81.92 81.90 81.67 81.45 81.88 82.18 82.13 81.46

OVOV OTE 77.90 75.55 73.72 73.05 71.98 77.73 77.34 77.17 76.72 77.06 82.37 82.39 82.37 82.34 82.12 81.52 82.03 82.26 82.25 81.71

OVOLV PC 77.93 74.74 72.86 72.30 70.88 71.72 70.97 69.44 69.04 70.66 82.52 82.52 82.36 82.29 82.11 79.77 79.61 79.29 79.06 78.80

OVOWV 78.11 75.31 73.42 72.75 71.17 72.23 71.63 69.73 69.33 71.79 82.61 82.58 82.45 82.38 82.20 80.19 80.16 80.24 80.05 78.96

OVOWinWV 78.19 75.53 73.75 73.10 71.94 76.07 75.73 75.34 74.97 76.06 82.44 82.45 82.42 82.39 82.11 81.50 81.86 81.93 81.89 81.39

Additionally, in order to detect significant differences among the results of each overlap function in a

given FRBCS, we carry out the Aligned Friedman test and the Holm post-hoc test, whose results are shown

in Tables 5-8. The results of these tests are grouped in columns according to the method used to perform

the comparison and in rows according to the overlap function considered. The first column corresponds to

the baseline FRBCS execution applying each overlap function, whereas the second one shows the different

overlap functions over OVA model. The rest of columns correspond to all OVO aggregation strategies

considered in this paper (ND, VOTE, LVPC, WV and WinWV). The value of each cell corresponds to

the rank obtained with the Aligned Friedman test when comparing the different overlap functions for each

method (that is, an Aligned Friedman test is carried out for each group of methods in a column). The

value shown in brackets indicates the adjusted p-value obtained by the Holm post-hoc test using as control

method the one obtaining the lowest rank in the same column, which is shown in bold-face. The adjusted

p-value is underlined when there are statistical differences (α = 0.1 considering the ratio between datasets

and algorithms).

Next, we explain the behavior of n-dimensional overlap functions in each baseline FRBCS, as well as

when decomposition strategies are applied on them. We start describing the results obtained with FARC-

HD, since n-dimensional overlap functions were first introduced in this FRBCS and we want to analyze the

existing differences between the results obtained in this method with those in the remaining ones.

• FARC-HD

– Baseline: as we can observe in Table 4, the five overlap functions considered in this paper obtain

a similar performance. This is confirmed by the Aligned Friedman test shown in Table 5, since

there are no statistical differences among them when executing the baseline FARC-HD algorithm.

This means that FARC-HD is able to maintain the necessary classification accuracy when using

overlap functions. The reason is that these functions are involved in all stages of the learning

process (Section 5.2.4) and the generated rules are general enough to retain the discrimination
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capability.

– OVO and OVA models: leaving the SIN aside, Tables 4 and 5 show that the greater the overlap

function is, the better the results obtained are (although the GM is greater than the HM, both

of them have a similar behavior). The problem with the SIN is that the value returned can be

greater than all input values, which may not be a desirable behavior for an inference system

because part of the discrimination capability is lost. Therefore, we observe that the best overlap

functions in almost all cases are those returning the highest values preserving the idempotency

property (HM and GM). Although the geometric and harmonic means return similar values, the

latter one tends to obtain better results but without statistical differences. FARC-HD is able to

take advantage of the confidences provided by these functions, since the classification accuracy is

maintained when using overlap functions in the baseline model. Nevertheless, when LVPC and

WV aggregations are used, the behavior of overlap functions changes due to the factors that will

be described in Section 7.3. For this reason, a new aggregation strategy (WinWV) was presented

in [15], which solved the problems of LVPC and WV with the confidences given by FARC-HD.

This new aggregation method along with the problems of LVPC and WV when using FARC-HD

are described in Section 7.3.

Table 5: Aligned Friedman and Holm tests to compare the different overlaps in FARC-HD, OVA and OVO.

FARC-HD OVA OVOND OVOVOTE OVOLVPC OVOWV OVOWinWV

PROD 43.80 57.90 (0.128) 55.23 (0.327) 56.53 (0.269) 37.90 42.38 54.40 (0.747)

MIN 48.63 (0.967) 51.72 (0.282) 49.03 (0.708) 49.77 (0.672) 41.22 (0.717) 42.95 (1.000) 46.42 (1.000)

HM 50.22 (0.967) 38.23 40.52 40.95 54.05 (0.157) 43.90 (1.000) 43.83

GM 56.25 (0.699) 48.95 (0.282) 45.65 (0.708) 43.65 (0.768) 56.67 (0.122) 49.13 (1.000) 47.95 (1.000)

SIN 53.60 (0.856) 55.70 (0.170) 62.08 (0.075) 61.60 (0.097) 62.65 (0.028) 74.15 (0.002) 59.90 (0.319)

• SLAVE

– Baseline: looking at the accuracy rate (Table 4), we can observe that the product performs

much better than the remaining overlap functions. This situation is confirmed in the statistical

tests (Table 6), where there are significant differences in favor of the usage of the product when

executing the baseline SLAVE. This classifier uses a different rule structure from that used in

FARC-HD, which requires the greater discrimination capability provided by the product. There

are some important differences between the rule structure of SLAVE and FARC-HD:

1. The rules generated in SLAVE are more specific (with more antecedents) than in FARC-HD.

2. As shown in Section 3.5, FARC-HD performs a lateral tuning in order to adjust the mem-

bership functions of fuzzy sets. As we stated, this adjustment is performed applying overlap
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functions (Section 5.2.4), and hence the classifier accuracy optimization is carried out con-

sidering the overlap functions, increasing the benefits with respect to SLAVE.

3. The values of the antecedents in SLAVE are subsets of linguistic labels instead of single

linguistic labels as in FARC-HD. For this reason, SLAVE needs to model the disjunction in

fuzzy rules, which can cause a different effect when using overlap functions.

– OVO model : Table 4 shows that the accuracy obtained by all overlap functions when OVO

model is considered is similar, although a decreasing trend can be observed as the overlap function

increases. Looking at the statistical analysis in Table 6, we can observe that, even though accuracy

rates are similar, there are statistical differences in favor of the product. However, it should be

stressed that ranking differences between the product and the remaining overlap functions are

reduced. This means that OVO takes advantage of the confidences returned by overlap functions,

since the usage of these functions allows the performance of their respective base classifier to be

raised in such a way that they obtain more similar results to that of the product. Therefore,

the ratio of improvement of overlap functions in this model is greater than that of the product.

The problem is that in this case the base classifiers do not provide enough classification accuracy

(as it was shown in the baseline SLAVE) to obtain an improvement in OVO model when using

overlap functions as in the case of FARC-HD.

– OVA model : as we can observe in Tables 4 and 6, contrary to the rest of the FRCBSs considered in

this paper, the performance of this strategy is worse than that of the baseline SLAVE. This is due

to the class imbalance problem that appears in this strategy and the inability of SLAVE to deal

with this situation. Therefore, the behavior of overlap functions in this case is not representative

in our framework.

Table 6: Aligned Friedman and Holm tests to compare the different overlaps in SLAVE, OVA and OVO.

SLAVE OVA OVOND OVOVOTE OVOLVPC OVOWV OVOWinWV

PROD 21.47 37.02 33.63 32.40 30.95 30.55 40.42

MIN 52.52 (0.001) 42.23 (1.000) 44.08 (0.255) 46.85 (0.115) 44.35 (0.144) 41.70 (0.224) 44.20 (0.681)

HM 56.63 (0.000) 41.05 (1.000) 53.90 (0.054) 51.10 (0.083) 61.27 (0.003) 66.10 (0.000) 53.48 (0.465)

GM 52.08 (0.001) 53.90 (0.198) 64.23 (0.003) 65.30 (0.001) 66.65 (0.000) 68.65 (0.000) 63.80 (0.043)

SIN 69.80 (0.000) 78.30 (0.000) 56.67 (0.036) 56.85 (0.023) 49.27 (0.092) 45.50 (0.206) 50.60 (0.535)
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• CHI

– CHI : taking a look at Table 4, we observe that the greater the overlap function is, the worse the

results obtained are. This situation is confirmed by the Aligned Friedman and Holm post-hoc

tests (Table 7), where we find significant differences in favor of the product. The reason for this

behavior in comparison with FARC-HD is that the rules generated by CHI are much more specific

than those of FARC-HD, since the number of antecedents is always equal to the number of features

and they are learned considering all classes at the same time (whereas FARC-HD generates the

rules class by class). Consequently, CHI algorithm needs more discrimination capability than

FARC-HD due to the fact that the generated fuzzy rules are closer among themselves. Therefore,

the usage of the product t-norm produces a greater discrimination power and leads to obtaining

better results, whereas overlap functions highly affect the decision boundaries.

– OVO and OVA models: Table 4 shows that, contrary to FARC-HD, the usage of overlap functions

in the baseline CHI algorithm implies a loss of accuracy. Although in SLAVE this problem appears

as well, the loss of accuracy in CHI is too great to obtain benefits from the confidences provided

by overlap functions, as it is confirmed in the Aligned Friedman tests shown in Table 7. As a

consequence, the behavior of these functions in OVO and OVA is the same as that observed in

the baseline CHI.

Table 7: Aligned Friedman and Holm tests to compare the different overlaps in CHI, OVA and OVO.

CHI OVA OVOND OVOVOTE OVOLVPC OVOWV OVOWinWV

PROD 20.18 20.07 22.60 21.43 19.70 21.60 22.30

MIN 28.00 (0.394) 35.92 (0.084) 33.02 (0.256) 33.65 (0.183) 35.45 (0.086) 32.63 (0.229) 34.50 (0.184)

HM 64.85 (0.000) 59.65 (0.000) 60.72 (0.000) 59.93 (0.000) 59.55 (0.000) 58.60 (0.000) 59.50 (0.000)

GM 67.38 (0.000) 65.57 (0.000) 63.55 (0.000) 65.45 (0.000) 63.68 (0.000) 64.03 (0.000) 64.58 (0.000)

SIN 72.10 (0.000) 71.27 (0.000) 72.60 (0.000) 72.05 (0.000) 74.13 (0.000) 75.65 (0.000) 71.63 (0.000)
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• FURIA

– Baseline: Tables 4 and 8 show that the behavior of all the overlap functions is similar in FURIA,

and hence this algorithm is able to maintain the classification accuracy when using these functions

(except for the SIN). In this case, overlap functions are not involved in any of the learning stages

of FURIA. This is because rules are generated by RIPPER algorithm and t-norms are not used

in the subsequent fuzzification process. Thus, the rules generated when using different overlap

functions will be the same. Furthermore, FURIA uses highly adjusted trapezoidal membership

functions (whose adjustment is not performed using t-norms) which provide high membership

degrees, and hence the differences among the values returned by different overlap functions when

aggregating large values are lower (Fig. 1a and 1b).

– OVO and OVA models: as we can observe in Tables 4 and 8, both OVO and OVA models provide

a similar performance when using different overlap functions. Even though FURIA maintains the

classification accuracy when using overlap functions, the confidences provided by overlap functions

are very similar due to the highly adjusted trapezoidal membership functions. The exception to

this situation is when using the SIN overlap function due to the same reasons as those explained

in the case of FARC-HD. In the same manner, LVPC and WV aggregation methods present

different behaviors, which will be described in Section 7.3.

Table 8: Aligned Friedman and Holm tests to compare the different overlaps in FURIA, OVA and OVO.

FURIA OVA OVOND OVOVOTE OVOLVPC OVOWV OVOWinWV

PROD 40.17 51.00 (1.000) 42.65 (0.871) 43.75 (1.000) 38.25 34.65 45.60 (1.000)

MIN 43.10 (0.750) 51.75 (1.000) 40.90 42.77 38.75 (0.956) 37.02 (0.796) 41.60

HM 50.90 (0.727) 50.00 (1.000) 48.05 (0.871) 44.50 (1.000) 52.53 (0.239) 50.78 (0.158) 45.22 (1.000)

GM 48.97 (0.727) 54.73 (1.000) 53.80 (0.479) 50.52 (1.000) 57.35 (0.112) 57.25 (0.041) 50.25 (1.000)

SIN 69.35 (0.006) 45.03 67.10 (0.018) 70.95 (0.008) 65.62 (0.011) 72.80 (0.000) 69.83 (0.008)

Summarizing, we can observe that the benefits of overlap functions are dependent on the learning process

and the rule structure of each classifier. Therefore, the classifiers that are able to take advantage of overlap

functions may be those which include these functions in their learning algorithms and have rules general

enough to preserve the discrimination capability, maintaining the necessary classification accuracy. As we

have shown, even though the confidences provided by overlap functions are more suitable for the aggregation

performed in decomposition strategies, when the base classifiers do not provide enough classification accuracy

these strategies do not obtain an improvement when using overlap functions.

Regarding decomposition strategies, Table 4 show their effectiveness when using FRBCSs, improving

their performance in most of cases. However, the performance of OVA model can be affected by the increase
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in the imbalance ratio produced by the division performed in this strategy [20], as it occurs in SLAVE. We

should keep in mind that in OVA each base classifier has to distinguish one of the classes from all others,

and hence the proportion of instances of that class with respect to the rest of classes will be probably much

smaller, particularly in datasets with a high number of classes (even if the original dataset is balanced).

7.2. Impact of n-dimensional overlap functions on the rule base

This subsection is aimed at showing the impact of n-dimensional overlap functions on the rule base.

Table 9 presents the average number of rules and antecedents per rule for each baseline FRBCS and for

OVA and OVO models (using as base classifier the same FRBCS). These averages are computed in the same

manner as in Table 4, that is, by computing the average of each method in all datasets. The result of each

dataset is computed as the average of the five partitions over the three different seeds.

Table 9: Average number of rules and antecedents.

avg. rules avg. antecedents

PROD MIN HM GM SIN PROD MIN HM GM SIN

CHI Baseline 170.43 170.43 170.43 170.43 170.43 12.40 12.40 12.40 12.40 12.40

OVA 155.49 155.49 155.49 155.49 155.49 12.40 12.40 12.40 12.40 12.40

OVO 86.94 86.94 86.94 86.94 86.94 12.40 12.40 12.40 12.40 12.40

SLAVE Baseline 18.47 17.15 16.37 16.75 17.38 4.33 3.64 6.71 6.75 7.32

OVA 3.78 3.61 3.45 3.40 3.56 2.36 2.11 3.45 3.38 3.85

OVO 4.14 4.05 3.95 3.94 4.06 2.51 2.22 3.74 3.84 4.47

FURIA Baseline 16.54 16.54 16.54 16.54 16.54 2.76 2.76 2.76 2.76 2.76

OVA 7.95 7.95 7.95 7.95 7.95 2.05 2.05 2.05 2.05 2.05

OVO 4.50 4.50 4.50 4.50 4.50 1.58 1.58 1.58 1.58 1.58

FARC-HD Baseline 32.67 35.70 40.15 41.11 46.30 2.34 2.38 2.44 2.44 2.47

OVA 13.03 14.26 16.09 16.64 18.35 1.76 1.79 1.84 1.84 1.86

OVO 8.55 9.72 11.28 11.72 12.58 1.61 1.63 1.66 1.66 1.69

Next, we analyze the effect of n-dimensional overlap functions on the rule base of each FRBCS:

• FARC-HD: Table 9 shows that the usage of a greater overlap function implies a growing trend in the

number of rules. A higher number of rules is needed in order to maintain or improve the discrimination

capability, since the aggregation of the membership degrees returns larger values. On the other side,

the number of antecedents is similar in all overlap functions, even though there is an upward trend

when using greater overlap functions.

• SLAVE: As we can observe in Table 9 and contrary to FARC-HD, when we use greater overlap

functions the number of rules decreases, whereas the number of antecedents increases. This behavior
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can be produced by two factors:

1. Due to the fact that SLAVE uses disjunctions in their rules, the usage of a greater overlap function

may imply an increase in the number of linguistic labels in the antecedents, instead of implying

an increase in the number of rules as in FARC-HD.

2. Since the rules generated in SLAVE are more specific than those generated in FARC-HD, the

discrimination capability can be partially lost when using greater overlap functions, requiring the

usage of more antecedents in the rules in order to maintain the necessary discrimination power.

• CHI: Since this algorithm does not perform any feature selection process, all rules will have exactly

the same number of antecedents (equal to the number of features of the problem), and thus the usage

of overlap functions does not alter the number of antecedents of the rules, as it can be observed in

Table 9. Furthermore, CHI algorithm generates a new rule for each example, and consequently overlap

functions do not have any effect in the number of rules generated. Another consequence of generating

a new rule for each example is that the number of rules is notably greater than in the rest of methods.

It should be noted, however, that the number of rules is usually considerably lower than the number

of examples, since multiple rules are removed due to conflicts.

• FURIA: As in CHI, overlap functions are not involved in the learning process of FURIA, and hence

the rules generated are the same for all overlap functions, as it can be observed in Table 9.

With respect to the comparison between baseline and decomposition strategies, Table 9 clearly shows that

the rule base becomes simpler when decomposition strategies are applied. This is because these strategies

divide the original problem into easier-to-solve binary sub-problems, needing a lower number of rules and

antecedents to solve each sub-problem. In the same manner, the rule base of the classifiers in OVO will be

simpler than in OVA, since OVO scheme considers only the examples of two classes while OVA takes into

account all examples in the training set. However, when OVA is applied with SLAVE, we observe that there

are less rules and antecedents than in OVO. This is caused by the inability of this algorithm to deal with

the increase in the imbalance ratio produced by the division performed in OVA (as mentioned in Section

7.1).

7.3. WinWV

As we showed in [15] and Section 7.1, WV and LVPC are severely affected by the poor quality of the

confidences of the non-predicted classes provided by FARC-HD, which is accentuated in LVPC due to the

difficulty in modeling the conflict and ignorance terms. We focused on solving the problems of WV with

the confidence of the non-predicted class due to the fact that if the conflict and ignorance terms were not
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considered in LVPC, the original WV would be recovered [15]. In order to solve this problem, WinWV was

proposed (described in Section 4.1).

In this section, we check whether this situation is also present in the remaining FRBCSs. To do so, we

carry out a number of pair-wise comparisons using the Wilcoxon signed-ranks test to confront the proposed

aggregation method and the original WV, considering all FRBCSs used in this paper (CHI, SLAVE, FURIA,

and FARC-HD) and the five different overlap functions. Table 10 shows the results of these comparisons,

where R+ and R- indicate the ranks obtained by WinWV and WV, respectively.

As we can observe, WinWV aggregation strategy statistically outperforms the original WV method

with all overlap functions in the case of SLAVE and FARC-HD. On the contrary, when considering CHI

and FURIA algorithms there are no statistical differences between both aggregation methods in almost all

cases. The reason is that in these two algorithms the confidence of the non-predicted class does not equally

affect the aggregation in WV, since they are likely to be equal to 0. In the case of FURIA, this is due to

the highly adjusted trapezoidal membership functions, whereas in CHI the reason is the high number of

antecedents in its rules. The exception appears when overlap functions that are also t-norms are applied on

FURIA, where WV performs better than WinWV. The confidences of the non-predicted class provided by

FURIA are usually large when they are higher than 0 due to the highly adjusted trapezoidal membership

functions. As a consequence, the usage of overlap functions makes the confidences of the non-predicted class

to be increased much more quickly than those of the predicted one, and hence both confidences become

more similar. Consequently, this algorithm loses discrimination capability and obtains worse results with

WinWV.

7.4. Discussion

After analyzing the performance of n-dimensional overlap functions and their impact on the rule base, we

have shown that the results obtained depend on each FRBCS. Additionally, the experimental study shows

that the problems of WV with the confidences of FARC-HD are not present in all FRBCSs. For this reason,

in this section we summarize and discuss all the previously mentioned points:

• Performance of n-dimensional overlap functions

Even though the confidences provided by n-dimensional overlap functions are more suitable for the

aggregation phase, decomposition strategies are not able to take advantage of these confidences if the

base classifiers do not maintain the necessary classification accuracy when using these types of func-

tions. This fact implies that the benefits obtained from the usage of n-dimensional overlap functions

are strongly dependent on the learning algorithm and the rule structure of each FRBCS.

In the case of FARC-HD, the baseline algorithm is able to maintain enough classification accuracy

allowing decomposition strategies to take advantage of the confidences provided by overlap functions.
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Table 10: Wilcoxon test to compare WinWV and WV.

FRCBS WinWV vs. WV R+ R- p-value Hypothesis

PROD 203.00 7.00 0.000 Rejected for WinWV at 95%

MIN 189.00 21.00 0.002 Rejected for WinWV at 95%

FARC-HD HM 195.50 14.50 0.001 Rejected for WinWV at 95%

GM 196.50 13.50 0.001 Rejected for WinWV at 95%

SIN 204.50 5.50 0.000 Rejected for WinWV at 95%

PROD 197.50 12.50 0.001 Rejected for WinWV at 95%

MIN 208.00 2.00 0.000 Rejected for WinWV at 95%

SLAVE HM 204.50 5.50 0.000 Rejected for WinWV at 95%

GM 196.00 14.00 0.001 Rejected for WinWV at 95%

SIN 203.50 6.50 0.000 Rejected for WinWV at 95%

PROD 107.00 103.00 0.981 Not rejected

MIN 92.50 117.50 0.776 Not rejected

CHI HM 106.00 104.00 0.959 Not rejected

GM 109.50 100.50 0.910 Not rejected

SIN 164.00 46.00 0.044 Rejected for WinWV at 95%

PROD 50.00 160.00 0.044 Rejected for WV at 95%

MIN 67.00 143.00 0.179 Not rejected

FURIA HM 97.00 113.00 0.836 Not rejected

GM 123.50 86.50 0.532 Not rejected

SIN 87.00 123.00 0.469 Not rejected
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In SLAVE, despite the fact that baseline classifiers do not provide enough accuracy to obtain an im-

provement with respect to the product, the confidences obtained from overlap functions allow one to

reduce these differences. On the other side, the baseline CHI algorithm dramatically loses discrimi-

nation capability when using overlap functions, and hence decomposition techniques are not able to

exploit these functions. Finally, FURIA provides a similar performance with all overlap functions,

since the confidences returned by this algorithm are too high to obtain an improvement from these

functions.

• Effect of n-dimensional overlap functions on the rule base

The usage of n-dimensional overlap functions not only affects the model performance, but also the rule

bases. In the case of FURIA and CHI the size of the rule base is exactly the same with all overlap

functions, since they are not involved in the rules generation process. However, in those algorithms

where overlap functions are involved in the learning process (FARC-HD and SLAVE), the rule base is

different depending on the overlap function used. In FARC-HD, the usage of a greater overlap function

implies an increase in the number of rules, whereas the number of antecedents remains similar with

all of them. Regarding SLAVE, greater overlap functions produce less rules but with greater number

of antecedents.

In all cases, the rule base of each classifier becomes simpler when decomposition strategies are used.

Likewise, the rule bases in OVO are simpler than in OVA. The exception is the case of OVA with

SLAVE, where the rule base is even simpler than in OVO due to the class imbalance produced by

OVA scheme (described in Section 7.1).

• WinWV

In the case of FARC-HD and SLAVE, WinWV performs much better than WV. However, the results

obtained by WinWV and WV are similar when considering CHI and FURIA. The reason is that the

confidences of the non-predicted class provided by these two algorithms are likely to be equal to 0.

All in all, we have shown that overlap functions improve the confidences of classifiers for the subsequent

aggregation phase, but this improvement is only translated into a significant enhancement of the final

performance if the baseline classifier is able to maintain the accuracy. In the rest of cases, the differences

with respect to the product are reduced when decomposition strategies are used, which shows the benefits

of overlap functions. However, a deeper analysis must be carried out in these cases in order to maintain the

discrimination capability of the baseline classifiers while improving the confidences so that final accuracy

could be boosted. At the same time, the rule base varies from one overlap function to another when these

functions are involved in the learning process. Finally, in some FRBCSs the confidences obtained for the
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non-predicted class negatively affect the prediction in decomposition strategies, in which case WinWV is

beneficial.

8. Conclusions

This work was motivated by the improvement found in FARC-HD when applying n-dimensional overlap

functions and decomposition strategies. In this paper, we have carried out an exhaustive study that has

allowed us to understand the influence of n-dimensional overlap functions in different FRBCSs.

In order to do so, we have studied whether the methodology presented in [15] improves the performance

of four different FRBCSs (CHI, SLAVE, FURIA, and FARC-HD). As we have shown, the performance of

overlap functions strongly depends on the learning process and rule structure of each classifier. Contrary

to FARC-HD, CHI and SLAVE algorithms are not able to maintain the necessary discrimination capability

when using overlap functions. Consequently, even though the confidences returned by overlap functions are

more suitable for decomposition strategies, no improvement can be obtained from them. On the other side,

FURIA is capable of preserving the classification accuracy when applying overlap functions, but the usage

of highly adjusted trapezoidal membership functions implies that the membership degrees to be aggregated

are likely to be 0 or close to 1. This produces small differences among the values returned by the different

overlap functions, and hence they present similar behaviors in FURIA. In addition to the performance of

overlap functions, we have analyzed their effect on the rule base of each FRBCS.

To sum up, after analyzing the behavior of overlap functions in four different FRBCSs, we can conclude

that the performance of decomposition strategies will be significantly enhanced in those classifiers that

involve the usage of overlap functions in their learning processes, maintaining the necessary discrimination

capability and providing enough classification accuracy in the base classifiers.

There are several aspects that remain to be addressed in future works. Among them, the issue of non-

competent classifiers [21] must be considered when working with OVO scheme. Furthermore, a more in

depth study of the effect of decomposition strategies on the interpretability of FRBCSs should be carried

out. Finally, the comparison and combination between decomposition-based techniques and preprocessing-

based fuzzy ensembles, such as bagging [48], could also be studied. In this latter case, we would make use

of fuzzy techniques with the unique aim of enhancing the classification performance, which is a completely

different perspective than the one considered in this work.
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