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Distributed H,, State Estimation for Stochastic
Delayed 2-D Systems with Randomly Varying
Nonlinearities over Saturated Sensor Networks
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Abstract

In this paper, the distributed, state estimation problem is investigated for the two-disi@mal (2-D) time-
delay systems. The target plant is characterized by therglered Fornasini-Marchesini 2-D equations where both
stochastic disturbances and randomly varying nonlinearfRVNSs) are considered. The sensor measurement outputs
are subject to saturation restrictions due to the physdizétidtions of the sensors. Based on the available measumteme
outputs from each individual sensor and its neighboringses) the main purpose of this paper is to design distributed
state estimators such that not only the states of the talget @re estimated but also the prescriliéd disturbance
attenuation performance is guaranteed. By defining an gk function and utilizing the stochastic analysis as
well as the inequality techniques, sufficient conditions established under which the augmented estimation error
system is globally asymptotically stable in the mean sqaaikthe prescribedl, performance index is satisfied.
Furthermore, the explicit expressions of the individualineators are also derived. Finally, numerical example is
exploited to demonstrate the effectiveness of the resubitsireed in this paper.

Index Terms

Two-dimensional (2-D) systems, distributed state esfonaf{., index, randomly varying nonlinearities (RVNSs),
sensor saturation.

. INTRODUCTION

The last decade has seen a rapid surge of research interbsthirthe theoretical development and practical
applications of sensor networks that are capable of diggib sensing, computing and communication. So far,
sensor networks have found countless successful applisith areas such as environment and habitat monitoring,
health care applications, traffic control, distributed otits, and industrial & manufacturing automation [7], [11]
[19]-[21]. In a sensor network, the spatially distributeshsor nodes collaboratively process a limited amount of
data for the purpose of sensing, tracking or detecting tfygetaThrough efficient coordination between the densely
deployed sensors, the overall sensor network is able totorpietect and estimate the real states of a physical
plant under certain possibly harsh environments such adadlite-filed surveillance [2], [34]. A distinguished
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feature of the signal processing over a sensor network oltaborative manner when the large amount of sensors
work together to achieve certain state estimation taski iBhcalled the distributed state estimation (or filtering)
problem where each individual sensor in a sensor networilljoestimates the system state by utilizing both its
own measurement and its neighboring sensors’ measuremerusding to the given topology [22], [23], [35].

The smooth operation of a sensor network relies heavily enciimmunications between the sensor nodes.
With the ever-increasing number of sensor nodes and sizeecensor field, the limited communication resources
would become a major concern. For example, most nodes ardatery-powered and most of the communication
is carried out through wireless channels of limited bandwids such, the resulting communication constraints
would unavoidably deteriorate the performance (e.g. fetrifiuted state estimation) of the sensor networks. Such
network-induced problems include, but are not limited @cket dropout, communication delays, sensor saturation
and nonlinear disturbances. Due to the random variatioheohetwork load and monitoring conditions, the network-
induced phenomena often occur in a probabilistic way [g],[EB], [46]. So far, the problems of randomly occurring
packet dropout and communication delays have gained mseareh interest, see [13] for a survey. Nevertheless,
the randomly varying nonlinearities and the sensor saturahave received relatively less research attentionigesp
their importance in practical engineering, and the relevasults have been scattered. For example, the distributed
average set-membership filtering problem has been inaetign [48] over sensor networks with sensor saturation,
where the estimation error is required to achieve the badindasensus. The random nature of the sensor saturations
has been examined in [12] for the distributed filtering peoblwhere the issue of successive packet dropouts has
also been addressed.

On another research forefront, due primarily to their tleioal significance and practical insights, the two-
dimensional (2-D) discrete systems have been stirring arrieg research interest in the past few decades [1],
[3], [25], [37], [38], [45]. As discussed in [39], 2-D systanimave been playing an increasingly important role in
mathematical modeling in many areas such as image proges&ismographic data processing, thermal processes
and water stream heating. A variety of 2-D state-space rsoldae been studied, among which the Fornasini-
Marchesini (FM) first and second models as well as the Roessedel have proven to be most popular. Up to now,
almost all fundamental behaviors of 2-D systems have beesiigated and a rich body of literature has appeared
that contributes largely to the better understanding of Relr systems are controlled. For example, some earlier
results can be found in [18], [30] for the stability analypi®blem, for 2-D systems has been investigated in [18],
[30], in [14], [15], [32], [40], [41] for the controller/fikr design problems and in [17] for the model approximation
problem. Recently, in [26], [27], the state estimation peob has been extensively tackled for 2-D systems subject
to network-induced phenomena including missing measumn&nsensor saturation, sensor delays and randomly
occurring nonlinearities.

In some sensor network applications such as geographitalptacessing, power transmission lines and elec-
tromagnetic wave propagation, the 2-D system plays anlacepble role when it comes to the modeling issue.
For example, in [47], the spatial-temporal, geographioal eanvironmental factors have been examined for wireless
sensor networks for utilizing the intermittent rechargimgportunities to support low-rate data services. In [49],
the 2-D system has been used for modeling the ad hoc netwattkdwo-dimensional lattices and the percolation
theory has been employed for the connectivity study. As stmir seemingly natural yet interrelated questions
arise as follows. 1) How do we deal with the distributed stegémation problem for the target plant modeled
by a 2-D system over a sensor network? 2) How do we examinempadt of the network-induced phenomena
(e.g., randomly varying nonlinearites and sensor satng}ion the estimation performance of the sensor networks?
3) What if the target plant is further subject to time-delaggogenous and stochastic disturbances? 4) Can we
attenuate the effect from exogenous disturbances on timeagistn accuracy through a prespecifiéd, performance
constraint? Unfortunately, a literature review has rex@dhat these four questions have remained unanswered till
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now due probably to the mathematical difficulties compbcaby the topology structure of the sensor networks,
the stochastic analysis as well as the estimation perfazmapecifications. It is, therefore, the main motivation of
the present research to deal with the aforementioned guesti

In this paper, we aim to deal with the distributéfl,, state estimation problem for a class of stochastic 2-D
systems with RVNs and time-varying delays. We are intecesiedesigning distributed state estimators and then
deriving sufficient criteria under which such kind of estiora do exist.The main contribution of this paper is
threefold: 1) distributed state estimators are designestlfirfor the general 2-D target plant such that the states of
the system are estimated in a distributed way, in other wardsh sensor estimates the states of the stochastic 2-D
system based on the measurement outputs not only from therstself but also from its neighboring sensors; 2)
an H, index is also introduced in the process of state estimatiofutther characterize the attenuation level of
the estimated output signals against the exogenous detigds; and 3) a comprehensive 2-D model is proposed
where the RVNs are introduced in the target plant and the@srsaturation case is also considered in the sensor
measurement equations, both of which make the system uodgideration more realistic.

The rest of this paper is outlined as follows. In Sectionhg distributedH , state estimation problem addressed
is formulated and some preliminaries are introduced. Inti&edll, the global asymptotic stability in the mean
square is investigated for the augmented estimation eysies, and theH, performance constraint is analyzed.
Furthermore, explicit design schemes are given for themestir gain matrices. In Section 1V, the effectiveness
of the obtained results are demonstrated by an illustrativ@erical example. Finally, conclusions are drawn in
Section V.

Notation The notation used here is fairly standard except whererwotbe statedZ., is used to be the set
{0,1,2...}. R™ and R"*™ denote then-dimensional Euclidean space and the set ofralt m real matrices,
respectively. For integers andn with m < n, [m,n| represents the integers set,m +1,...,n} and |m, co)
means the integers séin,m + 1,m + 2,...}. I and0 stand for the identity matrix and the zero matrix with
appropriate dimensions, respectively. For mattix R"*", Sym(A) denotes the matrixA + AT7)/2 and ' in a
matrix is used to denote the term which is induced by symm@étrg notationX > 0 means that matriX' is real,
symmetric and positive definité,, stands for the vector iR™ with all elements beings and the Kronecker product
of matricesA and B is represented ad ® B. The shorthandliag(A;, A, ..., A,) means a block diagonal matrix
with diagonal blocks being the matrices;, Az, ..., A,, andcol(4;)", = col(A;, As,...,A,) represents the
column-wise concatenation of the matricés, Ao, ..., A,,. For a complete probability spa¢e,.7, Prob), E{a}
and E{«|3} denote, respectively, the mathematical expectation ofstbehastic variablex and the expectation
of a conditional ong with respect to the given probability measureob which has total mass. || - || refers
to the Euclidean vector norm and fer € Iy(Zy x Zy,R™), define [v|7 = Y52 > ne o E{[lv(k, h)|I*} —
3 o E{llv(k, 012} — 3305 o E{|lv(0,R)||*} which has also been used in [14]. Matrices without explicit
specification are assumed to have compatible dimensions.

Il. PROBLEM FORMULATION
Consider a discrete system along two directions descriggtddogeneral Fornasini-Marchesini state-space model
[16] with time-varying delays and stochastic disturbanckthe following form:
z(k+1,h+1) =A1z(k+1,h) + Asx(k,h+1) + Diz(k+ 1,h — o(h)) + Dox(k — 7(k),h + 1)
+ ok, h)B1 fi(x(k + 1,h),x(k,h + 1))
+ (1 — a(k,h))Bafo(x(k +1,h —o(h)),z(k — 7(k),h + 1))
+ Eywv(k+1,h) + Esv(k,h + 1) + h(x(k + 1,h), x(k,h + 1))w(k, h) 1)
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with output
Z(k7 h) = MOx(kah)7 (2)

wherek, h € Zy; x(k,h) € R" is the state vector of the target plant and, ) € R? is the output of the state
combination to be estimatedi;, D;, E;, B; (i = 1,2) and M, are system matrices with compatible dimensions;
the exogenous disturbance input-,-) € l2(Zy x Z+,RP). 7(k) and o(h) are time-varying positive integers
representing, respectively, the delays along the hor&atitection and the delays along the vertical direction,
which satisfy

r<7(k)<7, a<o(h)<T  VkheEZys 3)

wherer, 7, o anda are known positive integers being the lower and the uppenti®wof the time-varying delays.
w(k,h) is a standard random scalar signal on the probability sp@ce?, Prob) with

1, if (k,h) = (K,K)

0, otherwise.

E{w(k,h)} =0, E{w(k, h)w(k', 1)} = { @)

Let (Q,.7,{F }icz, . Prob) be a filtered probability space whefe”; },cz, is the family of subo-algebras of#
generated by{w(i, j) }i jez, . Specifically,.#; is the minimalo-algebra generated by (7, j) }o<itj<i—1, While %
is assumed to be some given stHalgebra of.# independent of#; for all [ > 0.

Moreover, i(-,-) : R x R" — R" is the noise intensity function which is assumed to satify following

condition
v

whereu, v € R™ and H is a known constant matrix with appropriate dimensions.
The nonlinear functiond;(-,-) : R" x R" — R" (i = 1,2) are subject to the conditiof;(0,0) = 0 and the
following sector-bounded condition [29]

(fi(u,v) = i@, &) — FOO) " (fulu,v) — filia, 5) — Fis) <0 (6)

with u, v, @ andd € R, ¢ = ((u —@)" (v —2)")" and F" = [Fi1 Fual, Fy” = [Fiz1 Fipa) € RV are
known constant matrices.
In (1), a(k, h) € R is a Bernoulli distributed white sequence which takes \alokeeitherl or 0 with

2

R (u, 0)h(u, v) < : (®)

Prob{a(k,h) =1} = a, Prob{a(k,h) =0} =1 —a, (7)

wherea € [0,1] is a known constant. Obviously, for &l » € Z_, the stochastic variable(k, k) has the variance
a(l — a). It is further assumed that in this papetk, h) and «(k’, h’) are mutually independent for all, h, &/,
N ez,.

Remark 1:In the discrete 2-D target plant equation (1), random végialik, ) is introduced to account for
the phenomena of nonlinearities varying in a random way éeduby, for instance, asynchronous multiplexed data
communication. The concept of RVNSs, accounting for the tyirgavitch between two nonlinear functions, has been
firstly proposed in [36] to investigate the synchronizatwoblem for the delayed complex networks, which might
reflect more realistic characteristics in complex netwofsch an idea was originated from [44] where stabilizing
control laws have been found for the linear systems with eanyg varying distributed delays. Thereafter, such
kind of characterizations has been extensively utilizetitémature for references. For example, the fault detectio
problem has been discussed in [10] for the discrete-timekMaan jump systems with incomplete knowledge
of transition probabilities, and the state estimation fgobhas been addressed in [6] for the discrete time-delay
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nonlinear complex networks with randomly occurring sensaturations and randomly varying sensor delays. It
should be noted that in all the references mentioned abbeesystems under consideration are all 1-D, when
referring to the 2-D systems, to the best of the authors’ kedge, this might be the first few attempts [26].

In this paper, suppose there akesensors locating spatially around the target plant an@let (¥, &) be the
directed graph formed by th® sensors, wher¢” = {1,2,..., N} denotes the set of labeled sensdfs; ¥ x ¥
is the set of edges and each edge is represented by an orderdd p), which means that there is information
transmission from sensgrto sensor. Associated with the grap#f is the nonnegative adjacency matdx= [l;;],
which characterizes the interconnection topology of thesees and is defined as followg; > 0 if (i,5) € &;
l;j = 0 otherwise. Sensoy is called one of the neighbors of sensoif (i,5) € &. For all € 7, denote
N ={j € 7|(i,j) € &}. Moreover, it is assumed that the graghdiscussed in this paper is self-connected, i.e.,
l;; =1 for all i € ¥/; and the dynamics of senséiis of the form

yz(k>h) :g(CZl'(k’,h))—FVVZV(k‘,h), i= 1727---7N (8)

wherey;(k, h) € R™ is the measured output vector from tith sensor on the target plart; and W; are known
constant real matrices with appropriate dimensions, thdimear saturated functiog(-) : R™ — R™ has the
following form
T

g(w) = | gr(u) () - gm(um) (©)
with v = (u1, ug, ..., un)T € R™and, forl = 1,2,...,m, g;(u;) = sign(u;) min{ |ug|, u max } Whereu; max is the
[th element of the saturation level vector,,.

To facilitate the analysis of the problem discussed in tlaipgy, similar as the technique employed in [24], [42],

it is assumed that there exist two diagonal matrisgsS, € R™*™ such that) < S; < I < S, and the saturation
function g(-) in (9) is rewritten as

g9(u) = Sru+ g(u), (10)

where the nonlinear functiog(-) : R™ — R™ satisfies the sector condition [5§ (u)(G(u) — Su) < 0 with
S =5y —-5.
The initial boundary condition associated with the diser2{D target plant (1) is taken as

(p(k, h)’ (k’h) S L_?7OJ X LO,FLlJ
x(k,h) =< &k, h), (k,h) € 10,k2] x |—7,0] (11)
0 (k,h) € |-7,0] x |k1 +1,00) or |ke + 1,00) x |—7,0]

with ¢(0,0) = ¢(0,0), whererx; and x, are two finite positive integersy(k, k) and ¢(k,h) are vectors with
elements in%,.

The aim of theH ., state estimation problem addressed in this paper is to a&tithe states and the output
signals of the target plant (1). llluminated by the novelriisited ideas employed in [31], [34], here we construct
the distributed state estimator for sens@s follows:

i’z(k‘) +1, h + 1) :Aljz(k +1, h) + AQi'Z(k‘)» h + 1) + aBlfl(ill(k +1, h)ai'z(k> h + 1))
4 (1— @) Bafo(@i(k+1,h — o(h)), &(k — (k). h + 1))

+ Z lij K135 (yj(k 4+ 1,h) — 51C525(k + 1, h))
JEN;

+ > LK (y(k, b+ 1) = S1Cjd(k, h+ 1)) (12)
JEN;
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with
Zi(k,h) = M;z;(k, h), 1=1,2,...,N (13)

where z;(k,h) € R" is the estimate of the target plant staté,~) and z;(k,h) € R? is the estimate of the
output signalz(k, h) on sensori; Ki;j, Ko;j € R™*™ andM; € R?*" (i =1,2,...,N;j € N;) are the estimator
gain matrices to be designed. The initial boundary cormlifar estimator (12) is taken to be;(k,h) = 0 for
ke |-7,0] or h e |—7,0].

Remark 2: The states and the output signals of the target plant (1)sti@ated in a distributed way as shown in
(12). To be more specific, the sengagstimates the states of system (1) based on the measurameotsly from
the sensof itself but also from its neighboring sensgrs N; according to the given graph topology. Such kind of
original distributed ideas has been proposed in [31] toestihe data fusion problem where an average consensus
based distributed filter has been utilized to track the @eef N sensor measurements. More recently, by using
a stochastic sampled-data approach, the problem of distdbfiltering has been investigated in [34] for sensor
networks. It will be further demonstrated later in the exéngection that compared with the usual estimation
method, such kind of distributed ideas will make tHg, attenuation level™ be much smaller.

By settingi@(k,h) = (1 (k,h), %3 (k,h),..., 35 (k,h)T with ;(k,h) = z(k,h) — #;(k,h) (i = 1,2,...,N)
and resorting to the Kronecker product, the state estimagroor dynamics can be obtained from (1), (8), (10) and
(12) as follows:

E(k+1,h+1)=(Iy ® Ay — A (In @ S1)€)E(k + 1,h) + 1y ® Dyz(k + 1,h — o(h))
([N®A2—¢%/2[N®51?) k‘h—i—l +1N®D2w(k‘ 7(k),h +1)
+aly ® BiFy(k,h) + (1 — &) Iy ® BoFa(k,h) + (1y @ By — J4H# )k + 1,h)
+ (a(k, h) — @) (1y @ Bifi(k,h) — 1n @ Bafa(k,h)) + (1n @ Ey — S5 )k, h+ 1)
— Gk +1,h) — Gk, h+ 1)+ 1y @ h(x(k+ 1,h), z(k,h + 1))w(k, h), (14)
where% = diag(Cy,Cy, ..., Cn), W = col(Wi)Y |, G(k, h) = col(§(Ciz(k, )N 15 Fy(k, h) = col(fi;(k, h))N,
(I =1,2) with
fri(k,h) =fi(k,h) — fi(@:(k + 1,h), 3 (k, h + 1)),
fai(k, B) =fak, h) = fo(@i(k + 1,h — o(h)), &i(k — 7(k), b + 1)),
fi(k,h) =fi(z(k + 1,h),x(k, h + 1)), fa(k,h) = fa(x(k+1,h —o(h)),z(k — 7(k),h + 1));
J1 = (lijKiij)nxn and s = (1;; Koij ) Nx N € Whasem With W, ., being defined as
Wism = {U = [U;j] € RPN | 7 e R™™ ) Uy = 0 if § & N;} (15)
For simplicity, by denotingz(k, h) = col(;(k, k)X, with Z;(k, h) = 2(k,h) — 2;(k, h), the output estimation
error dynamics can be derived from (2) and (13) that
Z(k, h) = Mn(k, h), (16)
where M = [Iy © My — .4, ) with .7 = diag(My, My, ..., My) and.# = col(M;)N,, andn(k, h) =
(T (k,h), 2T (k,h))T is the augmented state estimation error satisfying
n(k+1,h+1) =Ain(k + 1,h) + Aan(k, h + 1) + Din(k + 1,h — o (h)) + Dan(k — 7(k), h + 1) + B1F (k, h)
+&v(k+1,h) + Eu(k,h+ 1) + (a(k, h) — a)BoF (k, h) + H(k, h)w(k, h), (17)
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whereD; = (1N+1 ® Dl)gl andDy = (1N+1 &® Dg)gl with &4 = [In, OanN];

A = diag(A1, Iy ® Ay — 1 (In ® 51)F), Ay = diag(Ag, In ® Ay — 5(In ® S1)6);

By — abBy (1—07)32 0 0 0 0 & — Eq )
! 0 0 aly®B1) (1—-a)Ixn®By) — —H |7 " | IneB -7 |
5 _ B "By 0000 B B _
"l iv®B —1xy®By, 0 0 0 0|’ Tl ive B W |

F(k,h) = col(fi(k,h), fa(k,h),Fi(k,h),Fo(k,h),G(k + 1,h),G(k,h + 1));
H(k,h) =141 @ W(Ln(k + 1, h), Lin(k, h + 1)).

To proceed, the following definition for the distributédl,, state estimation is introduced.

Definition 1: For all: = 1,2,..., N, the system in (12)-(13) is said to be a distributdd, state estimator on
sensor; for the target plant (1)-(2) with output measurements (&8hé& following two statements hold:

(1) for every initial boundary condition in (11), system (14)gibally asymptotically stable in the mean square
in the case ofv(k,h) = 0, i.e., the trivial solution of (14) is stable in the mean sguéin the sense of
Lyapunov) andimg 0o E{||Z(k, h)||} = 0;

(2) for the given scalary > 0, under zero-initial condition, i.e¢(k,h) = ¢(k,h) = 0, the output estimation
error system (16) satisfies thé,, performance constraint, i.€|z(|7 < +*[|v[|7 .

The objective of this paper is to find the matricaS;; and M; (i = 1,2,...,N;j € N;;1 = 1,2) of the
distributed state estimator in (12)-(13) for the stockagtD target plant in (1)-(2) withV sensor measurement
outputs (8) such that the state estimation error systemiglg)obally asymptotically stable in the mean square
and theH ., performance constraint is satisfied for the output estonagirror system (16).

I1l. M AIN RESULTS

In this section, we deal with the distributddl,, state estimation problem formulated in the previous sadto
the discrete 2-D system (1)-(2) witN sensor measurement outputs (8).
For brevity, introduce the notations

T = [ L Opx(nt2(men)N) ] ) T2 = { Onxn In Opxo(nem)N ] ;
Ts = [ Onnx2n  InN OpNx(ni2m)N } ) Ta= [ Onnx@iNyn  InN OnNxomn ] )
Ts = [ Omnx2n(14N) ImN  OmNxmN ] ; T = [ OmNx @nt@ntm)N)  ImN ] :

From the representation of functiofi(k, i) defined in (17), it is easy to see that the following equaitield:

fl(k> h) = ﬂf(k> h)v f2(k7 h) = Ef(kv h)a Fl(k7 h) = Ef(kv h)7

First, the distributedd ., state estimation problem is analyzed, and the followingtien provides a key role in
the derivation of our main results.

Theorem 1:Let the scalary > 0 and the estimation gain matricés;; andM; (i =1,2,...,N;j € N;;1=1,2)
be given. For alk = 1,2,..., N, the system in (12)-(13) is a distributdd,., state estimator on sensoifor the
target plant (1)-(2) with output measurements (8) if thexistematrices?;, > 0 and Q; > 0, positive diagonal
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matricesy,;, £, andd = diag(6o, 61, . ..,0n), positive scalars(()l) (I = 1,2) such that the following matrix inequality
holds:
v 0 T
E=| x =%y ET(PI+Py) | <0 (19)
* * —(P1+ P2)

where€ = [&1, &),

Uy 0 Uy 0 AT
* \1’22 \Ifgg 0 ﬁT
= , I'= PL+P
* x  Wag 0 B? (P 2)
* * * (P1+P2)—5®In 0

with A = [A;, A], D = [Dy, Dal,

Uy =diag((@ — o+ 1)Q) — Py + MTM, (T — 7+ 1)Qs — Po + MTM) — (I © L2V (1, © %)
_ 5((]1)([2 ® 21 Sym((F, i )) F( ))(Ig ®24)+ i&(b ® LNH H(L ® £),
=0
Wyy = — diag(Q1, Qs) — e (I ® L1)Sym((FP)TFY (L © £1) — (I, © L)% (I, © %),
Uy :ﬁ(b © LD)(FEY + BT+ (o 2527V + %5,
Was =§(12 o LN FD + BV T + (o L)% Th,

Wy =a(1l — a)BL (Py + Pa2)Bsy — 60 V1l — 60 DI, T.hE @ 1,)Ts
—TL(E @ L)Ta — T (61 @ In)Ts — T (82 @ L) Te;
Ly =[0nnsxns Inn], S =col(LTET (6, @ 9T, LIET (02 @ S)Tg), € = col(Ch)Y;

U G ey ] B ke I b nal
& @ Dt * £1 ® Sym(F{j5Fi22)
2 - €2 ® ﬁlifl ] ’ u? = & ® Sym(Fyj;; Fony) & @ w
& @ Hutl * £ @ Sym(Fyjy Faz)

Proof: The notation of functior{(k, h) given in (17) and the constraint condition (5) on the noigernisity
function i(-, -) guarantee the validity of the following inequality:

N
HT (ke h)(0' @ L)H(k,h) <Y 0:€7 (k. h) (I @ LTV HT H(Iy ® £) (k, h), (20)
i=0
where¢; (k, h) = col(n(k + 1,h),n(k,h + 1)) and the matrix?; is defined in (17).
From the definition of functiorz(k, h) defined in (14) and the treatment for functigft) shown in (10), one
knows that for any positive diagonal matix= diag(d1, d2,...,dn), the following inequality holds:

N
G (k, h)(8 x In)G(k, h) = 6;3" (Ci(k, h)§(Cia(k, b))
i=1

T(Cia(k, h))SCia(k, h) = GT (k, h) (5 x S)Cx(k, h), (21)

||Mz
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which ensures the validity of the two inequalities givendvel

FI(k, )T (01 L) ToF (k,h) < FF (kT (1 x )€ Lin(k + 1,h),
FU (ke WYTE (82 % L) TeF (ko h) < FL(k, )T (6a x S)€Lin(k, b+ 1);
where the last two relationships in (18) have been utilized the matrice$; andd, are the solution for matrix
inequality (19). In a compact form, the above two inequaditcan be unified into the following one
FL (e h) (T (51 @ L) Ts + Tk (82 @ L) To) F (K, 1)
< FL(k, h) (T (51 © S)E Lim(k + 1,1) + T¢ (62 @ 8)E Lin(k, h + 1))
= &1 (k, W) SF(k, ). (22)
Let N(kvh) =: {77(]?4‘17}1),77(]‘5‘1'1,]1—1)7 cee 777(]?4‘17}1—5)777(]{7,]1‘1'1)777(]{7—17h+1)>- o 777(k‘_?7h+1)}

and consider the following energy-like function
3

V(k,h) =: Vi(k,h) + Va(k,h) =Y (Vii(k, h) + Vai(k, b)) (23)
i=1
with
h—1
Vir(k, k) =n" (k, h)Pin(k, h), Vig(k,h) = > 0" (k) Qun(k, i),
i=h—ao(h)
Vag(k, 1) Z Zn (, 5)Qun(k, ); Vau(k, k) = 0" (k, h)Pan(k, ),
i=h—c+1 j=i
k—1 -7 —
Vao(k,h) = > 0" (5, h)Qan(j, ), Vas(k,h) Z Zn (i,h) Qan(i, h);
j=k—7(k) j=k—T+1 i=j

wherek, h € Z, and positive definite matriceB; and Q; (I = 1,2) are the solution to the matrix inequality (19).
First, we investigate the stochastic asymptotic stabdige (i.e.p(k,h) = 0 for k,h € Z,). Define the index
J as follows:

7 ::E{(V(k; 4L h+1) = Vi(k+1,h) — Va(k, h + 1)) R (k, h)}
3
=E{ > (AVi(k h) + AVa(k, B)IRGE )} (24)

s=1
with AVig(k,h) = Vis(k+1,h + 1) — Vis(k + 1,h) and AVig(k,h) = Vog(k 4+ 1,h + 1) — Vag(k,h + 1). Then
calculating (24) along the trajectories of the augmentateststimation system (17), one has

E{AVi1(k, h)[R(k, h)} = E{ (0" (k + 1, h + 1Pug(k + 1, b+ 1) — " (k + 1, h)Pin(k + 1, b)) R (k, h)}, (25)

E{AViz(k, h)[R(k, h)} gE{ (0" (k+1,h)Qin(k + 1,h) — 0" (k + 1,h — o(h))Qin(k + 1,h — o(h))
h—o

Y T L)@+ 1,0) N(k, ) |

i=h+1—c(h+1)
SE{( T(k +1,h)Qun(k +1,h) =" (k+ 1,h — a(h)Qun(k + 1,h — o (h))

+ Z Tk + 1,4)Qun(k + 1,1)) [N(k, h)} (26)

i=h+1—07
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h
E{AVia(k NG} =BEL (D0 3= D0 S (e 1,5)Qunlk + 1, )Rk 2 }
| T 2 2
:E{( & — o) (k+1,h)Qin(k + 1, h)
h

— Y ATk L)@k + L) Rk} 27)

j=h—g+1
where condition (3) has been utilized to obtain inequal@g)( Similarly, we have that

E{AVai (k W)INCE, 1)} = E{ (0 (k + 1,0+ 1)Pan(k + 1, + 1) = 0" (b, b+ 1)Pan(k, b+ D) Rk B |, (28)
E{AVay(k, h)|R(k, h)} <E{( T(k: h+1)Qan(k,h + 1) — 0" (k — 7(k), h+ 1)Qan(k — 7(k), h + 1)

+ Z T (. h +1)Qan(is b+ 1)) IR(k, )}, (29)
j=k+1-7

E{AVas (k. )Nk, )} =E{ (7 = D" (k, b + 1) Qo (k. b+ 1)
k—1

— S 9T h+ 1)Qenis b+ 1)) R(R, h)}. (30)

i=k+1-7
Substituting equalities/inequalities from (25)-(30)ar(24), one obtains

I <E{ [T (b + LA+ 1)(Py + Pk + L+ 1) + 57 (k + L)(@ = + 1)@y — Pk + 1,h)
' (kA D)((F =2 +1)Qz — Pk, h+ 1) — " (k + 1,h — o (h)) Qun(k + 1, h — a(h))
= (= k), b+ 1) Qan(k — (k). b+ )] IN(k, ) }. (31)
Furthermore, it follows from (17) that
n(k+1,h 4+ 1) = A&y (k, h) + D&k, h) + BiF(k, h) + (a(k, h) — &)BoF(k, h) + H(k, h)w(k, h),  (32)
where&y(k, h) = col(n(k + 1,h — a(h)),n(k — 7(k), h + 1)) and matricesd and D are defined in (19), which
immediately infers that
E{nT(k 1,k + 1)(Py+ Po)nlk +1,h + 1)R(k, h)}
= E{ [e] (b, W) AT (P + Po) A (k, ) + ] (k, YD (Py + Po)Dea(k, h) + F7 (k, )BT (P1 + P2)Bi.F (k, h)
+ 267 (ke h) AT (Py + Pa) (Déa(k, h) + By F (k. b)) + 265 (k, B)DT (Py + P2)B1F (k. )
+a(l —a)F (k, h)B] (P1 + P2)BaF (k, h) + H' (k, h)(P1 + P2)H(k, h)] N(E, h)}, (33)
where conditions (4) and (7) have been utilized when dagitire above equality.

On the other hand, it follows from condition (6) that for anyemn scalarg(()l) >0 andsgl) >0(:=1,2,...,N),
the following inequalities hold:

e FT (k, W) T T F (k, >—eo T (k,h) (12 © ZD)(FY + By TLF (k1)
Vel (b, h)(I © L) sym((F)TFD) (L wl)sl(k h) <0, (34)
et FE(k, ) fui(k, h) — ( ’( ol(@i(k + 1, h), @i (k, h + D)) T (FL) + Fs)T ik, h)
+ e col (i (k + 1, k), & (k, b + 1)) T Sym((FE)TEM Yeol (& (k + 1, h), & (k, h + 1)) < 0, (35)
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where functionfy;(k,h) is defined in (14) and the first relationship in (18) has beelized. Rewrite the N
inequalities expressed in (35) into a compact form and oriairab
FT (k, h)() ® I,)F1 (k, h) — 2(col(Z(k + 1, h), 3(k, h + 1)) 2%,V Fy (k, h)
+ (col(@(k + 1,h), #(k, b+ 1)))T % col(#(k + 1, ), #(k, h + 1)) < 0 (36)
or in an equivalent form
FT (ke )T, (51 @ L) T3 F (k, h) — 26T (ke h) (I, @ L)V T3 F (k. h)

+ &l (k) (I © L)% (I © Zo)éa(k h) < 0 (37)
where functionF, (k, h) and matrix.#» are defined, respectively, in (14) and (18),= diag(sgl),egl), e ,55\1,)) is
the solution of matrix inequality (19), and the third reteaship in (18) has been utilized to derive (37).

Similarly, we have
(2) =T T _ 2T Ty 17(2) N1
o F (k,h)Ty ToF (kh) —e5 & (k h) (L @ Z7 ) (Fy™ + Fy™)" TaF(k, h)
+ €8 (k. ) (12 @ ZT)Sym((FP)T F{) (1 © )2k, ) < 0 (38)

and

FT ke, T (89 @ L) TaF (k, b) — 26L (k, h) (I, © L5 2P ToF (k. 1)
+ & (k,h) (I © LU (I © L)éa(k, h) <0, (39)

where&; is the solution of matrix inequality (19), and the second &mel forth relationships in (18) have been
utilized, respectively, to derive (38) and (39).

Now, letting {(k,h) = col(&1(k, h),&a(k, h), F(k,h), H(k,h)), substituting (33) into (31) and combining with
inequalities (20), (22), (34), (37), (38) and (39), we have

7 < E{g(k, h)ZE(k, B)|R (K, h)} (40)

where= = U + L(Py + P2)~'I'T and matrix U is almost the same as matrik in (19) with only ¥{; being
substituted by

U1y =diag((F — g +1)Q1 = Pr, (T — 7+ 1)Qs — P2) — (I @ LU (I © %)
N
— e (o @ 2 Sym((F) FV) (1 @ 1) + - 01 @ LD HT H(L © 4)).
=0
The well-known Schur Complement Lemma [4] guarantees tlidityaof = < 0 from the inequality condition
(19), which further leads toZ < 0. After taking mathematical operation again, one gets

E{V(k+1,h+ 1)} <E{Vi(k+1,h) + Va(k h+1)}. (41)

In the following, we show that the trivial solution of (14) tiv(k, h) = 0 is stable in the mean square (the method
used here has been firstly introduced in [28]). For any givealase > 0, by resorting to the boundary initial
condition (11), there exists one scafae (0, ¢) which is small enough such that

E{V(k,h)} < € 42

e > E{V(kh)}<e (42)
(k,h)EN (1)

whenever|p(k, h)|| < ¢ for (k,h) € |[—7,0] x |0,x1] and||¢(k, h)|| < d for (k,h) € |0,k2]| x |—7,0] in (11),

where the constant positive integdt > max{x1, ko} + max{7,5} and the index seN (r) =: {(k,h)| k+ h =
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r; k,h € Z}. Moreover, for anyr > N, from the inequality (41), it can be shown that the followimgquality
holds:

S E{V(kR) §E{Vl(r,0) + (Vi(r—1,1) + Va(r— 1,1)) + ...
(k,h)EN (r+1)
+ (VL7 = 1)+ Va(1,r = 1) + Va(0,7) }
=E{ (Vi(r,0) + Va(r,0)) + (Vi(r = 1,1) + Va(r — 1,1) +.
+ (Vi(1,r — 1) + Va(l,7 — 1)) + (VA(0, ) + Va(0,7) }
= > E{V(kNh)}, (43)
(k,h)eN (1)
which meansz(kvh)eN(r) E{V(k,h)} is non-increasing with respect towhenr > N. It should be noted that
when deriving (43), the initial conditiong(k,h) = 0 for (k,h) € |—7,0] x |k1 + 1,00) and ¢(k,h) = 0 for
(k,h) € |ke + 1,00) x |—7,0] in (11) have been utilized. (42) together with (43) guarartteat
Amin(P1 + Po)E{|Z(k, h)[1*} < Amin(P1 + P2)E{[n(k, 1)|*} < E{V (k,h)} < €
holds for any(k, h) € Z4 x Z., i.e, system (14) is stable in the mean square.

To draw the conclusion that system (14) witkk, 1) = 0 is globally asymptotically stable in the mean square,

we still need to shovimy 1, E{||Z(k, h)||} = 0. The conclusiorE < 0 in (40) infers that there exists a constant
1 > 0 such that

E{(V(k+1,h + 1) = Vi(k + 1,h) — Va(k, h + 1))|R(k, h)} < —puB{||n(k, b + 1)||*[R(k, h)}.

Taking mathematical expectation on both sides of the aboeguality and summing up both sides of it withh
varying from0 to N, where integetN is large enough, it is not difficult to obtain

ZZE{\|nkh+1)\|}< (ZE{Vl (k+1,0) = Vi(k + 1, N + 1)}

k=0 h=0
N
+ZE{V2(0,h+1)—‘/’2(N+1,h+1)}>
h= O
(ZE{Vl k+10}—|—ZE{V20h+1)})<oo (44)
k=0 h=0

where the last step holds because of the bounded initialitomd11). From the necessary condition for the
convergent positive series, it can be concluded from (44} th

im Bk B} = 0.

Second, we investigate thé., performance for the output estimation error system (16) $suming the zero-
initial boundary condition. To obtain th& ., estimation information, define the index as follows:

3
I =E{[D(AVAy(k, h) + AVay(k, 1)) + 2 (k, h)Z(, B) = 22 (k, )R, )] R (k1) |, (45)
s=1
wherez(k,h) = T (k +1,h), Z¥(k,h+ 1)) andv(k,h) = (v*'(k + 1,h), vT(k,h+1))T.
The augmented state estimation error system (17) can béteswas
n(k +1,h + 1) = A& (k, h) + Dés(k, h) + B F(k, h) + EF(k, h)
+ (a(k,h) — a)BaF (k, h) + H(k, h)w(k, h),
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where matrix€ is defined in (19), and hence it can be derived that
i’

E{ (k+1,h+ 1)(P1 + Pa)n(k + 1, h + 1)|R(k, h}

{[gl (k, h) AT (Py + Po) A1 (k, h) + &1 (k, h)DT (Py + Pa)Déa(k, h) + FT (k, ) B (P1 + Po)B1F (k, h)
7k, )ET (Py + P)ET(k, h) + 26 (k, ) AT (Py + Po) (Déa(k, h) + BrF (k. ) +
+ 252 ( ’ )ﬁ

+ EV(k, h))
(P1 + P2) (BiF(k, h) + ET(k, b)) + 2F (k, h)BT (P1 + P2)Ev(k, h)
T

+a(l —a)FT (k,h)BY (P 4 Po)BoF(k, h) + HT (k, h)(Py + Po)H(k, h ] IN(k } (46)
Moreover, it follows from the output estimation error systél6) that
2T (k, h)Z(k, h) = ] (k, h)diag(MT M, MT M)& (k, )

). (47)
Substituting (46) into (31) and combining with inequakti€20), (22), (34), (37), (38) and (39), we have
< E{&lk. NEE(k, NGk, )}

P2)))". Agai

(48)

whereé(k, h) = col(&(k, h), 7(k, h)) andZ = diag(¥, —y2I2,) +col(T', ET (Py +Pa))(P1 +Pa) " (col(I, ET (P1 +
Again from the Schur Complement Lemma [4], it is known thaitrix = < 0 if and only if the inequality

condition (19) holds. That is, under the condition (19)sitassured that for all(k,h) # 0
E{V(k+1,h+ 1)X(k,h)} <E{[(V1(k+ 1,h) + Va(k,h+ 1))

(IZ(k + 1, )1 + [|Z(k, h + 1))
+72 ([ (k + LB + [l (k, o+ D )]IR(k, 7))
Taking mathematical expectation on both sides of the ahoeguality, the following inequalities can be obtained
E{V (k+1,0)} =E{Vi(k+1,0) 4 Va(k + 1,0)},

E{V (k,1)} <E{(Vi(k,0) + Va(k — 1, 1)) — (||Z(k, 0)||* + [|Z(k — 1, 1)[*) + ([ (k, 0)]* + [[/(
E{V(k—1,2)} <E{(Vi(k —1,1) + Va(k — 2,2)) —

k=11)%)},
(12(k = L)1 + [I2(k - 2,2)I*)
+72 (Il (k = LD + vk - 2,2)[1*)},

E{V(2,k — 1)} <E{(Vi(2,k — 2) + Va(1,k — 1))

122,k = 2)|> + [12(1, k = 1)|1*)
+2 (v (2, k =212 + v (1L, k= 1D))*)}
E{V(L,k)} <E{(Vi(Lk — 1) + Va(0,k)) -
E{V(0,k + 1)} =E{Vi(0,k + 1) + Va(0,k + 1)}

(121, k = D)II* + 1200, &)II*) + (v (L, & = DIP + (0, k) %)}

Adding up both sides of the above+ 2 inequalities withk varying from0 to Ny € Z, and considering the
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zero-initial boundary condition, we get the inequality eyivbelow:

Z{ZE{H 5017}~ SE(IEk 0)7) — B0, BI% )

k=0 7=0
k+1
<§:{§:Eﬂ’ — 30} = E:Eﬂfk+1—yjﬂ}
k=0 35=0
+72§:(§:Eﬂl —JJ\I}——E{H(hONP}—%EHW«L@Hﬁ)
k=0 j5=0
’ Ni+1
=E{V(0,0)} = > E{V(Ni +1—7j)}
7=0
AEAL 1 1
+72§:(§:E%H -—ijﬂp}—-§E{W4KONV}—-§E{W4QkNV})
k=0 ;=0

<Y (S EIle 3.1 - BRI} - LEiuo0.0).

k=0 j=0
By letting N7 — oo, we have

E:}:Eﬂlkle}——EjEN (k, 0)]%) }——EZEW (0, h)]1%)

h=0 k=0
< {3 Y Btk )] }——ZE{H £ 0)?) }——ZE{II 0.1},
h=0 k=0
ie.,
12117, < A2IIvII7,,
which completes the proof of Theorem 1. -

To derive the explicit design scheme for the distribufég state estimation problem, we still need to introduce
the following lemma whose proof is straightforward and &iere omitted here.

Lemma 1: [33] Let P = diag(Pi1, P2, ..., Pyn) With P;; € R™*™ (; =1,2,..., N) being invertible matrices.
If X =PU for U € R™N>*™N then we havd] € W, xm < X € Whxm.

We are now ready to deal with the distributéfl, estimation design problem in the following theorem.

Theorem 2:Consider the target plant (1)-(2) with output measurem@@)jtand lety > 0 be a prescribed constant
scalar. For alk = 1,2,..., N, the system in (12)-(13) is a distributédl,, state estimator on sensoif there exist
matricesP; > 0 andQ; > 0 (j = 0,1,...,N), positive diagonal matrice&}, g andd = diag(fo, 01,...,0N),
matricesM; € R?>*" (i € [1,N]), &) € anm and positive scalars0 (I =1,2) such that the following matrix
inequality holds:

U0 r Py
—~2I P
e * "l <o (49)
* * —(P1+P2) O

* * * -1
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whereP; = diag(Py, &) with &2, = diag(Pj1, Ppo, ..., Pn) (1 =1,2), U is almost the same as matrix in (19)
with only ¥q; being substituted by
Uy =diag((6 —c+1)Q1 — P, (T -7+ 1)Qs — Py) — (L ® szWé(l)(Iz ® %)
N

— e (o 2D)sym(FY E (Lo 4) + Y 6o 20 HTH(L © £),
=0

®14 = col(MT,0,0,0) with M = diag(M, M), T = col(IT,T'T,TT,0) with

0 T[99 0 194

~ I (Pio+ Py)A1 0 (Pio+ P)A2 O ]
Lo =(P1+P2) | (In+1®@D1)% (Ing1 ® D2) 4 } ,

Iy = [ &(Pio + Po)B1 (1 —a)(Pio + Pao) By 00 0 0
L 0 0 Iao3 TD'zpy —X1 —Xy |
o3 = E{ (Po+ Po) (In ® E))" (21 + ) - “///:T?GT
| B3 (Pio+ Po) (In© Eo)' (P + Po) = #7TXS |

where

Tioe =(P1 + P2)(IN @ A1) — Xi(In ® 81)C, Tiag = (P + Po)(In @ Az) — Xo(Iy @ S1)E;
fggg :d(ﬁl + e@g)(IN & Bl), f324 = (1 — d)(e@1 + ,@2)([]\7 ® Bg).

Moreover, the state estimation gain matrices can be desigadollows:
f%/l = ('@l + L@2)_1‘/Yl7 [ = 172 (50)

and the output estimation gain matricks (i = 1,2,..., N) can be obtained directly as the solution of (49).
Proof: By using the Schur Complement Lemma [4] to inequality (499 aoticing the equalities in (50), it

will be concluded that condition (19) holds under the va&jicdif inequality (49). Hence, it follows from Theorem
1 that the result presented in this theorem is also tenable. [ |

Remark 3:1In this paper, the distributed/,, state estimation problem is studied for a class of stoah&sh
systems with RVNs and time-varying delays. The main novigty in that 1) the proposed 2-D system is general
enough to model the phenomena of RVNs, sensor saturatichdirae-delays; 2) a new energy-like quadratic
function is employed to analyze the system stability andoperance; and 3) intensive stochastic analysis is
conducted to enforce thH,, performance for the addressed state estimation problesholild be pointed out that
the main results established in Theorem 2 contain all therimétion about the system parameters, the occurring
probabilities of RVNSs, the sensor saturation level as welth®e bounds of the time-varying delays.

Remark 4:Note that, for the standard LMI system, the algorithm has lgrfmonial-time complexity. That is, the
numberA\ (e) of flops needed to compute araccurate solution is bounded 6y MAN3log(V/¢)), where M is
the total row size of the LMI systeml is the total number of scalar decision variabl®sis a data-dependent
scaling factor, and is relative accuracy set for algorithm. Obviously, the camagional complexity of the LMI-
based algorithms depends polynomially on the network simkthe variable dimensions. In order to reduce the
computation burden, a possible way is to obtain the estingdaos in a node-by-node way. Fortunately, research
on LMI optimization is a very active area in the applied matlécs, optimization and the operations research
community, and substantial speed-ups can be expected iutire.

Remark 5:1t can be seen from the main results that the feasibility efdaveloped algorithm for estimator design
would decrease with the increase of the occurring proligsiiof randomly varying nonlinearities, the increase of
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Fig. 1. Evolution of the first element of stai€k, h). Fig. 2. Evolution of the second element of statg, h).

the sensor saturation level, and the increase of the bouintleednterval-like time-varying delays. On the other
hand, if the connectivity of the sensor network is improviag sparseness issue will be eased and the feasibility
of the proposed estimator design procedure will be enhanced

IV. ILLUSTRATIVE EXAMPLE

Consider a discrete 2-D delayed system with stochastiarthahces modeled by (1) with the following param-

eters:
12 . . —0. .04 2 .
A = 0 0.08 Ay 0.05 —0.06 B - 0.0 0 By 0 0.5 7
0.1 -0.12 0.04 0.09 0.08 0.05 0.1 -0.2
1 .02 . —0.02 A . . A4
Dy = 0.16 0.0 Dy 0.07 —0.0 B = 0 0.6 By = 03 0 '
—-0.14 0.04 0.06 0.04 —-0.6 0.8 0.05 —-0.4

The time-varying delays in both directions arék) = 3 + 3|sin(47)| and o (h) = 2 + 5| cos(47)|, respectively,
with bounds asF = 6, 7 = 3,7 = 7 andg = 2. Foru = (ug,u)”, v = (v1,v2)" € R2, the nonlinearities
fi(u,v) = (0.2u; + tanh(0.04u;) + 0.2v1 — tanh(0.1v;),0.2uz — tanh(0.1ug) + 0.2v2 + tanh(0.04v2))? and

fa(u,v) = (0.2u; — tanh(0.1uy) + 0.2v1 + tanh(0.04v ), 0.1ug + tanh(0.05uz) + 0.2vg + tanh(0.04v3))” which

obviously satisfy the conditions in (6) with

S0 _ |02 0 01 0 S0 _ [ 024 0 02 0
! 0 01 0 02/’ 2 0 02 0 024 ]
s _ |01 0 02 0 s _ |02 0 024 0 |
! 0 01 0 02| 2 0 015 0 024

It is assumed that the nonlinearities are randomly varyiitly the probabilitya = 0.68. The noise intensity function
h(u,v) = (0.24 tanh u; + 0.2 tanh vy, —0.15sin uz + 0.1 cosvz)? which is subject to the constraint (5) with

g 024 0 02 O 7
0 015 0 0.1

and the matrix), for deriving the output signad(k, h) in equation (2) is taken to b@®.105 — 0.068].
The initial boundary condition associated with system §lfaken to bex(k, k) = (0.1tan(k+ h),0.7sin(kh))”
for (k,h) € |—6,0] x (0,13}, z(k,h) = (0.8tanh(k — h),0.2cos(k + h))T for (k,h) € (0,14] x |-7,0| and



SECOND REVISION 17

z(k,h) = (0,0)T otherwise. Moreover, the exogenous disturbance implith) = (6sin((k+7)(h+8)),2cos(k +
r)T for (k,h) € |0,24] x |0,23] andv(k,h) = (0,0)” otherwise. The corresponding dynamical evolutions of
the statex(k, h) are shown in Figs. 1-2.

The sensor network considered here is represented by aatirgaphy = (7, &, £) formed by6 sensors, where
the set of edges” = {(1,1),(1,2),(2,2),(2,3),(2,5),(3,3),(3,4),(3,6), (4,4),(4,5), (5,1)(5,5),(6,1),(6,6)}
and the adjacency elements associated with the edges ofréph @rel;; = 1. The matrices in the output
measurement equation (8) are assumed to be

0.3 0.1 1 1 02 15 0.65 |
03 0 o 015 0 o 01 0 o 0.15 0.65 ;
0.1 05 0.3 0.2 0.5 0.15 0 —02

—0.1 0.17 0.14 0.7 0.3 0.1 0.19 —-0.22 |
032[ ], W3=[ ]; 042[ ]7 W4=[ ;

Ch =

0.04 0.5 0.07 -0.3 0.5 0.09 0 —0.19
—0.15 0.1 0.2 0.03 025 0 0.15 0 |
Cs = , Wy = ;o s = , We= :
0 0.25 0.14 0.8 0 0.1 0.66 0.18

The matricesS; and S, employed for dealing with the nonlinear saturated functign with saturation level
vector uy,.x = (6,8)7 are taken to be5; = diag(0.28,0.32) and S, = diag(1.14,1.09), which easily means that
S = diag(0.86,0.77).

With the parameters given above, it is aimed to design ailoliséd state estimator in the form of (12)-(13) for
the stochastic 2-D target plant in (1)-(2) withsensor measurement outputs (8). By utilizing the Matlablbi@mq
it is found that, for the giverf{,, performance index > 2.684, a solution can always be obtained for the matrix
inequality (49) in Theorem 2, which means that the minimunthefindex for characterizing thH ., performance
is v* = 2.684. For example, the solution corresponding to the case 6f2.684 is obtained as follows (here only
part of the solution is given for space consideratiméy = 0.4240, 582) = 1.2463, 6y = 1.1367 and

My = | 0.0746 0.0174 ] My = [ 0.0725 0.0184 } Mg = [ 0.0752 —0.0088 } :

[ 07265 0.1308 b _ | 03028 —0.0304
071 01308 0.3952 | 07 200394 02607 |

Moreover, the state estimation gain matrices can be eifplidgeésigned as follows according to (50) (for the same
reason of space consideration, only part of the block sutticea are given):

oo _ | 02456 —0.0282 [ 012290 00583 [ —0.0760  0.0626
METl 04363 —04501 |7 % 7 | —0.2466 —0.0256 | ' T | —0.3339 —0.2271 |’
—0.0518 —0.2134 04249  0.2376 ~0.8504 —0.0804
Kooz = ) 245 = , 251 =
~0.0331  0.3227 ~0.1825 —0.0270 —0.0619  0.2170

It follows immediately from Theorem 2 that for all= 1,2,...,6, the system in (12)-(13) is a distributed.,
state estimator on sensofor the target plant (1)-(2) with output measurements (8).

With the estimator gain matrices given above, to illusttat effectiveness of the designed estimators with more
visuality, Figs. 3-4 show the dynamical evolutions of thatstestimation errog; (k, h) for sensor 1, Fig. 5 and
Fig. 6 present the dynamical evolutions of the output edtomaerrors for sensor 3 and sensor 5 respectively, which
further demonstrate the validity of the results obtaine&éttion Il (for space saving purpose, we only list four
figures here).

Furthermore, it can be shown that the occurring probabilitpf the RVNs does affect the feasibility of the
proposed results. In this example, the effective interoatiie feasibility of the matrix inequality (49) {6.6799, 1].

If we utilize the usual estimation method other than therithisted idea employed here, i.e., each sensor estimates the
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Z1p(k, h)

k=0,1,...

Fig. 3. Evolution of the estimation errar; from sensor 1. Fig. 4. Evolution of the estimation errar > from sensor 1.

Zs (k‘. h)

Z3 (k‘ h)

sl ’/z/\/, i | | \

-1l 30

30

k=0,1,...

Fig. 5. Evolution of the output estimation errég(k, h) from Fig. 6. Evolution of the output estimation errég(k, h) from
sensor 3. sensor 5.

states of the target plant by only its own measured outpwtanibe shown that the minimum index for characterizing
the state estimatio®/, performance isy** = 2.763, which further infers that the distributed estimation soke
makes thell,, attenuation level smaller.

V. CONCLUSIONS

In this paper, we have addressed the distributed state estimation problem for the stochastic 2-D systems
with time-varying delays. RVNs have been introduced in trget plant to reflect the nonlinear disturbances which
appear in a probabilistic way and are changeable randomigrins of their types and intensity. Due to the fact
that there is no centralized processor which can capablel&cting all the measurements from the sensors, this
paper has designed the distributed state estimators wisiitmage the states of the target plant in a distributed
way. More specifically, each individual sensor estimatesstates of the target plant based on not only its own but
also its neighboring sensors’ measurements accordingrtairceopology. By using the Kronecker product and the
inequality technique, an energy-like function has beerodiced to derive some sufficient criteria under which the
estimation error system is globally asymptotically stahl¢he mean square and tli€,, performance constraint is
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also guaranteed. Explicit representation of the estimagi@ains has been given in terms of the solution of certain
matrix inequality. Furthermore, the effectiveness of theppsed design scheme has been checked by a numerical
example.
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