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Abstract

Given a graph, we interpret its adjacency matrix as an information table. We study this
correspondence in two directions. Firstly, on the side of graphs by applying to it standard
techniques from granular computing. In this way, we are able to connect automorphisms
on graphs to the so-called indiscernibility relation and a particular hypergraph built from
the starting graph to core and reducts. On the other hand, new concepts are introduced
on graphs that have an interesting corresponding on information tables. In particular,
some new topological interpretations of the graph and the concept of extended core are
given.

Key words: Granular Computing, Information Tables, Rough Set Theory, Reduct
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1. Introduction

Granular computing (briefly GrC) deals with representing and processing information
in the form of some type of aggregates. These aggregates are generally called information
granules or simply granules and they arise in the process of data abstraction and knowl-
edge extraction from data. Generally speaking, information granules are collections of
entities arranged together due to their similarity, functional or physical adjacency, indis-
tinguishability, coherency, and so on. The scope of GrC covers various fields of study
related to knowledge representation and extraction. In 1979 the concept of information
granularity was introduced by Zadeh [52] and it was related to the research on fuzzy
sets. Then, the term granular computing was used again by Zadeh in 1997 [53] with
the following words: “a subset of computing with words is granular computing”. Since
1979, granular computing has become a very developed area of research in the scope of
both applied and theoretical information sciences [32, 34]. Today GrC has emerged as
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a standalone research area that intersects and finds application in several fields related
to knowledge management: interval analysis [22], machine learning [51], formal concept
analysis [46, 21], data mining [20, 25, 26, 43, 47], database theory [19, 35], rough set
theory [28, 29, 48], interactive computing [37, 38] and fuzzy set theory [33, 53].

In this paper we are mainly interested in the part of GrC related to information
tables and their management by rough-set theory tools. An information table, from now
on denoted as I, is simply a bi-dimensional table associating to any object (rows of the
table) a value (content of the table) for each attribute under investigation (columns).
If all values are 0 or 1, the information table is said Boolean. An information table is
obviously a very common structure in various fields of study, both of qualitative and
quantitative type. In his seminal works concerning rough set (RS) theory [27, 28],
Pawlak introduced several investigation tools in order to analyze a generic information
table and reduce its complexity. The fundamental concept that allows us to connect the
Pawlak theory to the GrC paradigm is the indiscernibility relation IA, where A is any
attribute subset. Very simply, two objects are A-indiscernible if they assume the same
value for all attributes a ∈ A. Now, since IA is an equivalence relation, we can partition
the object set in equivalence classes, i.e., in granules, and therefore we can interpret a
great part of Pawlak’s theory as a particular type of GrC, from now on GrC-RS (for a
detailed analysis concerning the links between GrC and rough sets see [50]).

There are at least four concepts in GrC-RS that deserve a special consideration: the
indiscernibility relation, the core, the reduct family and the discernibility matrix. The
core [28] can be intuitively described as the most important part of the attribute set that
characterizes an information table. A reduct [28] is a subset of attributes that provides
sufficient information to fully characterize the entire table. Finally, the discernibility
matrix [36] is a square matrix having in the place (i, j) the set of attributes on which the
objects ui and uj differ.

With the term granular computing on graphs and hypergraphs (abbreviated GrC-
GH), we mean all the studies that link graph and hypergraph theory with GrC. We
notice that GrC-GH is not a research sub-field of GrC-RS since one can study several
types of granularity outside of rough set theory [32, 34], and we will see in sub-section
1.3 that this has indeed been done. So, here we are interested in the intersection of
the two fields GrC-GH and GrC-RS. More in detail, we will interpret the adjacency
matrix of a (finite) simple undirected graph G as a Boolean information table I[G],
where the object set and the attribute set coincide. In this way, we can efficiently use
the theoretical framework developed in GrC-RS to find new properties concerning the
graph G. From this point of view, the advantage is twofold: both in direction from
GrC-RS towards discrete mathematics (briefly GrC-RS → DM) and also from discrete
mathematics towards GrC-RS (briefly DM→GrC-RS). We will now illustrate this double
advantage by providing more details about two results obtained in this paper.

1.1. An Example of GrC-RS → DM

In the Boolean information table I[G], for a fixed vertex subset A, the indiscernibility
relation IA is an equivalence relation between vertices of G that can be characterized
in geometric terms. Specifically, two vertices are IA-indiscernible if and only if they are
in a type of “symmetrical” position with respect to all the vertices of A. This means
that we can interpret A as if it were a “symmetry block” for the graph G (see Theorem
3.3). On the basis of this result it is natural to ask what do the core, the reducts and

2



the granular lattice for common families of graphs become. In this paper we treat the
complete graphs, the complete bipartite graphs, the Petersen graph and the paths on a
fixed number of vertices cases.

Let us consider for example the classical Petersen graph (briefly Pet):
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Figure 1: The Petersen graph

For its symmetry properties (the Petersen graph is both vertex-transitive and edge-
transitive) the core is empty (see Corollary 6.3). However the key point, a priori not
obvious, turns out to be that the reducts of the Petersen graph can be characterized by
a geometric point of view. In fact, we will provide a purely combinatorial and geometric
proof of the following classification result (a part of Theorem 6.6): a vertex subset A of
Pet is a reduct of the Boolean information table I[Pet] if and only if A has cardinality 5
and the subgraph of Pet generated by A is isomorphic to one of the following graphs:

(a) (b) (c) (d)

Figure 2: Reducts of the Petersen Graph

This result is indeed a specific non-trivial example that shows how we can find un-
expected links between the geometric structure of the graph and its interpretation as a
Boolean information table subject to granular investigation.

1.2. An Example of DM → GrC-RS

Here, we want to underline how an interpretation of a mathematical model (the graph)
through GrC-RS methods can lead to new and more sophisticated tools in the granular
computing field. We illustrate this aspect by introducing and discussing an original and
natural extension of the classical concept of core. When we interpret various families of
known graphs as information tables, also with quite different geometric structures, their
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core appears to be empty. Now, from an intuitive point of view, this contrasts with the
different geometric nature of the considered graphs: for example, why a bipartite graph
and a complete graph both have empty cores, although their geometric structures are
significantly different? In order to give a valid answer to this question, we introduce a
generalization of the core concept for any (not necessarily Boolean) information table I.
An element of the extended core is now a set of attributes named essential (see Definition
4.1). We also show how the extended core is strictly related to the discernibility matrix
(see Theorem 4.11).

Let us notice that the discernibility matrix of a simple graph G uniquely characterizes
G in terms of a “local dissymmetry” (see Theorem 4.7) . This fact provides a specific
geometric interpretation to any result concerning the simple graphs that can be obtained
by means of GrC-RS methods.

Remark 1.1. In this paper we do not treat an important part of GrC-RS applied to
the graph context. Specifically, we do not discuss rough lower and upper approximation
functions, rough membership function and attribute dependency. For a detailed treatment
concerning these notions in undirected graph theory we refer the reader to [8, 9, 11].

1.3. Related works

As anticipated, there already exist some works in GrC-GH, some of them also using
rough sets (but differently as we do here). J. Stell is, to the best of our knowledge, the
first to apply Granular Computing ideas to graphs. In [39] different kinds of granulation
from a spatial standpoint are proposed: a partition of the nodes, a partition of the edges
and of the nodes, a partition of the edges and a covering of the nodes. In some following
works, he investigated the granularity for graphs and hypergraphs from the mathematical
morphology and spatial information system perspectives [40, 41, 42].

The problem of defining granules on a graph is also discussed in [5], where a granule
is a subset of vertices. Two methods are given to define a granule: one is based on the
vertex degree of undirected graphs and the other on the distance among vertices of an
undirected weighted graph. The same authors, in [6] introduce another possible way to
define a granule as a set of edges instead of vertices.

The typical concept of level is used in [7] where hypergraphs are proposed as a model
for granular structures: each hyperedge corresponds to a granule and different levels of
granularity are represented by different hypergraphs; and in [2] where graph matching of
labelled graphs is done using the GrC concepts of granulation and levels of abstraction.

Specific links between graph theory and rough set theory have been investigated in
[4, 24, 45, 44, 9, 10]. In [4] rough sets are used to test bipartiteness of simple undirected
graphs. The representation of the graph is different from the one we are using here,
indeed the relation at the basis of the rough-set investigation is a preclusive relation (as
we also studied in [10]): two vertices are related iff they are connected.

In order to define lower an upper appproximations, a relation among edges (instead
of vertices as we do) of a graph is considered in [24]. For instance, two labelled edges
are equivalent if they have the same label. This approach is used to compute lower and
upper bounds for the clique number of a graph.

Moving to more generalized rough sets, in [44] bipartite graphs are used to study
covering-based rough sets: a representation of a covering through bipartite graph is
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given and then reducible elements of the covering are connected to 4-cycles of the graph.

We close this introductory section by briefly listing the contents of the paper. In
section 2, we fix the notation used in the sequel, and we recall some basic facts concerning
set partitions, rough sets and graphs. In this section, we also establish the first basic
results concerning the interpretation of simple graphs as information tables. In section 3
we establish the main links between indiscernibility relations and graph automorphisms.
Moreover we introduce some new topological concepts useful to interpret some properties
of the geometric granulation on simple graphs. In section 4, we introduce the above
discussed concept of extended core and we show that it is a useful extension of the
classical core since in many cases the usual notion of core is not enough generic to
differentiate among some distinct graph structures. We also establish two basic results
concerning the extended core: one related to the discernibility matrix (Theorem 4.11)
and another related to the reduct family (Theorem 4.20). In section 5, we apply the
theoretical results of Section 4 to three graph families: the complete graph, the complete
bipartite graph and the finite path on a fixed vertex number. Finally, in Section 6 we
study in great detail the Petersen graph and we provide a purely combinatorial and
geometric proof of the Theorem 6.6 on the structure of Petersen graph reducts and core.

2. Notations, Recalls and First Results

In this section, we firstly introduce the basic notions concerning the information
tables that we will use in the paper. Next we establish the first basic relationships with
graph theory. Table 1 summarizes our notation.

Symbol Meaning
P(X) the power set of a set X
|X| the cardinality of a finite set X(
X
k

)
the family of all the k-subsets of X (i.e. the subsets of X with
exactly k elements), with k a non-negative integer and X a
finite set such that |X| ≥ k

n̂ the set {1, . . . , n} with n a positive integer
v1, . . . , vn the vertices of a graph with a n-vertex set

(or u1, . . . , un)
In the n× n identity matrix
Jn the n× n matrix having 1 in all its entries

[x]R the equivalence class of x with respect to the equivalence re-
lation R

¬(xRy) x and y are not in relation with respect to the equivalence
relation R

A4B the symmetric difference between A and B, that is A4 B :=
(A ∪B) \ (A ∩B)

Table 1: Explanation of the Notation

Let us notice that in some specific cases (for example in the case of the Petersen
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graph), in order to simplify the notation, we often write simply 1, . . . , n instead of
v1, . . . , vn (or u1, . . . , un).

2.1. Information Tables

We start by recalling the notion of information table (see [28]) that plays a funda-
mental role in the scope of GrC-RS paradigm and in this paper.

Definition 2.1. An information table is a structure I = 〈U,Att, V al, F 〉, where U =
{u1, u2, . . . , um} is a nonempty finite set called universe set, Att = {a1, a2 . . . , an} is a
non empty finite set called the attribute set and F : U × Att → V al, called information
map, is a function from the direct product U ×Att into the value set V al. The elements
of U are called objects and the elements of Att are called attributes. In particular, if
V al = {0, 1} we say that I is a Boolean information table.

The notion of information table has a relevant role in GrC-RS since many data come
in tabular form and by virtue of a very natural equivalence relation that any attribute
subset induces on the universe set. More specifically, if A ⊆ Att, the A-indiscernibility
relation IA on the universe set U is defined as follows (see [28]): if u, u′ ∈ U then

uIAu
′ :⇐⇒ F (u, a) = F (u′, a),∀a ∈ A. (1)

If u ∈ U , we simply denote by [u]A (instead of [u]IA) the equivalence class of u with
respect to IA. We also set

πA(I) := {[u]A : u ∈ U}. (2)

and call it the A-indiscernibility partition of the information table I. In order to highlight
that πA(I) is a set partition of the universe set U , we also use the notation

πA(I) = C1| . . . |CN ,

where Ci ⊆ U are (all) the distinct equivalence classes [u]A. We will also refer to the sets
Ci as the A-granules of I.

2.2. Simple Graphs as Information Tables

For all general notions concerning undirected graphs we refer the reader to [13] and
[18]. We always denote by G = (V (G), E(G)) a finite simple (i.e., without loops and
multiple edges) undirected graph, with vertex set V (G) = {v1, . . . , vn} and edge set
E(G). If v, v′ ∈ V (G), we will write v ∼ v′ if {v, v′} ∈ E(G) and v � v′ otherwise. If
v ∈ V (G), we set NG(v) := {w ∈ V (G) : {v, w} ∈ E(G)}, which is usually called the
neighborhood of v in G. As is well known, a graph can be defined through its adjacency
matrix Adj(G): the n×n matrix (aij) such that aij := 1 if vi ∼ vj and aij := 0 otherwise.

In this paper we will study a graph G, and in particular its adjacency matrix, as if it
were an information table. More formally:

Definition 2.2. We call information table of the graph G the Boolean information table
I[G], where the universe set and the attribute set of I[G] are both {v1, . . . , vn}. The
information map of I[G] is defined as F (vi, vj) := 1 if vi ∼ vj and F (vi, vj) := 0
otherwise.
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From now on, we write πA(G) instead of πA(I[G]), or simply πA if G is clear from
the context.

Definition 2.3. We call πA(G) the A-indiscernibility partition of the graph G. We use
the term A-granule of G for any block of the indiscernibility partition πA(G).

2.3. Basics of Granular Computing on Simple Graphs

With the term GrC on Simple Graphs we mean the study of a new type of “geometry”
on the graph G having as its “points” exactly the A-granules of G, when A runs in the
vertex subsets of V (G). Since GrC-RS gives us several investigation tools in order to
study such a type of relations between the A-granules of G, we naturally apply it to this
new approach. The first elementary characterization of GrC on a generic simple graph
G is given by the following result.

Theorem 2.4. [8] Let A ⊆ V (G) and v, v′ ∈ V (G). The following conditions are
equivalent:
(i) vIAv

′.
(ii) For all z ∈ A it results that v ∼ z if and only if v′ ∼ z.
(iii) NG(v) ∩A = NG(v′) ∩A.

As a direct consequence of the previous theorem, we obtain the general form of an
A-granule for any simple graph G:

Corollary 2.5. If v ∈ V (G) and A ⊆ V (G), then [v]A = {v′ : NG(v)∩A = NG(v′)∩A}.

Proof. It follows directly from the equivalence between (i) and (iii) in Theorem 2.4.

The Theorem 2.4 also provides a sufficient condition for characterizing two vertices
of the graph with no common edges.

Corollary 2.6. If vIAv
′ and {v, v′} ∩A 6= ∅, then v � v′.

Proof. It follows directly by Theorem 2.4 because there are no loops into G.

The result proved in Theorem 2.4 allows us to establish a basic link between the
indiscernibility relation and its equivalent geometric characterization. In fact, once
fixed a vertex subset A of G, the geometric meaning of the conditions (ii) and (iii) of
Theorem 2.4 is that an A-indiscernibility block consists of vertices having all the same
incidence relation with respect to the vertices of A. According to Yao’s terminology
[49], it corresponds to a zooming-out operation on the vertex set V (G) in order to reduce
this set to only symmetric blocks with respect to A. Hence, from a geometric point of
view, the choice of a fixed vertex subset A can be thought of as the choice of a “symmetry
axis” in the graph G and the blocks of πA(G) as the “symmetric point subsets” with
respect to A.

In the next definition we formalize the intuitive ideas just discussed.

Definition 2.7. If πA(G) is the partition generated by a fixed vertex subset A of G, we
call any equivalence class B ∈ πA(G) a symmetry block of A. The triple (G,A, πA(G))
is called A-granular reference system of G or also granular reference system of G with
origin A.
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In Theorem 3.3 we will show that the terminology introduced in Definition 2.7 has a
precise formal meaning in terms of graph automorphisms. This is a further justification
to consider the A-granules of G as symmetry blocks with respect to the origin A. We
provide now an illustrative example of this idea on the Petersen graph.

Example 2.8. We consider the Petersen graph Pet of Figure 1. Let us fix the attribute
subset A = {1, 6} and examine the A-granular reference system (Pet,A, πA(Pet)). In
this case we have that πA = 189|25|347(10). This means that A has three symmetry
blocks : {1, 8, 9}, {2, 5, 6} and {3, 4, 7, 10}. We notice that the vertices in a block have
the same behavior with respect to the vertices 1 and 6. In fact, 1, 8 and 9 are the vertices
of Pet that meet 6 but not 1. The vertices 2, 5 and 6 meet 1 but not 6. The vertices 3,
4, 7 and 10 do not meet 1 nor 6. Finally, we note that there is no vertex that meets both
1 and 6. We can see better the symmetric position of the previous blocks with respect
to A if we color them with three different colors:

1

2

3 4

5

6
7

8 9

10

Figure 3: The blocks of the Petersen graph when A = {1, 6}.

In the next example, we discuss the meaning of the symmetry blocks of a simple
undirected graph derived from a real situation.

Example 2.9. Social network analysis is a research field which studies social struc-
tures through the use of networks or graphs. It characterizes networked structures in
terms of vertices (things within the network) and the edges (interactions between the
things in the network). A very used example (see for instance [14]) of such a net-
work concerns the marriage ties of noble families in Florence in the 15th century. The
vertices of the simple undirected graph G in Figure 4 (adapted from [14]) represent
the 16 elite Florentine families in the 15th century. Moreover, two vertices are con-
nected with an edge if the two corresponding families are linked by a marriage tie.
Then, if we take for example the vertex subset A = {9, 13, 16}, it is easy to verify
that πA(G)= 123(14)|4568(10)(11)(12)|7|9|(13)|(15)|(16). In this real case, each block
of πA(G) is a group of families having all a similar marriage relation with respect to
the families in A: Medici, Ridolfi, Tornabuoni. Therefore, the vertices 1, 2, 3, 14 are the
families having a marriage relation with some member of the Medici family and no other
marriage relation with members of the families Ridolfi or Tornabuoni. Analogously, the
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vertices 4, 5, 6, 8, 10, 11, 12 are the families that have not marriage ties with no member
of the families Medici, Ridolfi and Tornabuoni.

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15 16

1. Acciaiuoli 9. Medici
2. Albizzi 10. Pazzi
3. Barbadori 11. Peruzzi
4. Bischeri 12. Pucci
5. Castellani 13. Ridolfi
6. Ginori 14. Salviati
7. Guadagni 15. Strozzi
8. Lamberteschi 16. Tornabuoni

Figure 4: The elite families in Florence in the 15th century

2.4. Two Basic Cases: Complete and Bipartite Graphs

A particularly simple case to be treated is the complete graph.

Definition 2.10. The complete graph on n vertices, denoted by Kn, is the graph with
vertex set {v1, . . . , vn} and such that {vi, vj} is an edge, for any pair of indexes i 6= j.

We can easily determine the general form of any partition πA(Kn), for all n ≥ 1 and
all A ⊆ V (Kn).

Proposition 2.11. [8] Let n ≥ 1 and let A = {w1, . . . , wk} be a generic subset of
V (Kn) = {v1, . . . , vn}. Then

πA(Kn) = w1|w2| . . . |wk|Ac, (3)

where Ac is the complement set of A in V (Kn).
9



We recall now the definition of bipartite graph.

Definition 2.12. A graph B = (V (B), E(B)) is said bipartite if there exist two non-
empty subsets B1 and B2 of V (b) such that B1 ∩B2 = ∅, B1 ∪B2 = V (B) and E(B) ⊆
{{x, y} : x ∈ B1, y ∈ B2}. In this case the pair (B1, B2) is called a bipartition of
B and we write B = (B1|B2). It is said that B = (B1|B2) is a complete bipartite
graph if E(B) = {{x, y} : x ∈ B1, y ∈ B2}. If p and q are two positive integers and
B1 = {x1, . . . , xp}, B2 = {y1, . . . , yq}, we denote by Kp,q the complete bipartite graph
having bipartition (B1, B2).

Also for Kp,q we can easily describe its indiscernibility partitions.

Proposition 2.13. [8] Let p and q be two positive integers. Let Kp,q = (B1|B2), where
B1 = {x1, . . . , xp} and B2 = {y1, . . . , yq}. Then πA(Kp,q) = x1 . . . xp|y1 . . . yq for each
subset A ⊆ V (Kp,q) such that A 6= ∅.

2.5. Core and Reducts of Information Tables and Graphs

In GrC-RS there are two particularly studied investigation tools: the core and the
reducts of any fixed information table (see [28]). A reduct of an information table I is an
attribute subset of I that provides the same knowledge of the whole attribute set and
that is minimal with respect to this property. The core of I is the subset of all attributes
of I whose elimination causes a substantial change in the knowledge induced from I.

Definition 2.14. Let I = 〈U,Att, V al, F 〉 be a given information table. An attribute
c ∈ Att is said indispensable if πAtt(I) 6= πAtt\{c}(I). The subset of all indispensable
attributes of Att is called core of I and it is denoted by CORE(I). A subset C ⊆ Att is
said a reduct of I if:
(i) πAtt(I) = πC(I);
(ii) πAtt(I) 6= πC\{c}(I) for all c ∈ C.
We denote by RED(I) the family of all reducts of I.

Hence a reduct of I is an attribute subset that fully characterizes the knowledge in
I and, moreover, it is also minimal with respect to this property: no attribute can be
removed from this subset without causing a loss of knowledge. Core and reducts of I are
linked by the following well-known result.

Proposition 2.15. [28] CORE(I) :=
⋂
{C : C ∈ RED(I)}.

We now report these notions on a simple undirected graph G.

Definition 2.16. We call core of G the core of the information table I[G] and we de-
note it by CORE(G) instead of CORE(I[G]) . We call core number of G, denoted by
Cnum(G), the non negative integer |CORE(G)|. Moreover we call reduct of G any
reduct of the information table I[G] and we denote by RED(G) the reduct family of G.

Remark 2.17. (i) Several notations depend on a fixed information table I or a graph
G. From now on, when I or G are clear from the context, we will omit the symbol I or
G, respectively. For instance, we write simply πA instead of respectively πA(I) or πA(G).
(ii) As we did in Definition 2.16, we often specialize a general concept concerning an
information table to the information table associated to a graph I[G]. In all these cases
we use simply the letter G instead of I[G] and we implicitly intend that the focused concept
is automatically defined for the graph G, without further specifications.
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3. General Geometric and Topological Properties

We begin this section by showing that the A-indiscernibility relation in G is closely
related to the automorphism group of G. Then, a topological interpretation of the
granular reference system of G will be given.

3.1. Graph Automorphisms and Indiscernibility Relation

Firstly we recall the notion of automorphism of a graph.

Definition 3.1. Let G = (V (G), E(G)) be a graph (not necessarily a simple graph). An
automorphism φ of G is a bijective map φ : V (G)→ V (G) such that for all x, y ∈ V (G)
it results that

{x, y} ∈ E(G)⇐⇒ {φ(x), φ(y)} ∈ E(G).

The set of all the automorphisms of G is a group with respect to the composition of maps
and it is usually denoted by Aut(G).

In order to describe the A-indiscernibility in terms of induced subgraph automor-
phisms, we need to recall also the notion of induced subgraph of a graph.

Definition 3.2. Let G = (V (G), E(G)) be a simple graph and let X be a fixed subset
of V (G). We call generated subgraph by X in G, denoted by G[X], the simple graph
having X as vertex set and such that if x and y are two distinct vertices in X, then
{x, y} ∈ E(G[X]) if and only if {x, y} ∈ E(G).

Now, let A ⊆ V (G) be a fixed vertex subset of G and let v, v′ be two fixed vertices of
G. Let X := A ∪ {v, v′}. We define a map φAv,v′ : X → X as follows:
if x ∈ X we set

φAv,v′(x) :=

 x if x ∈ A \ {v, v′}
v′ if x = v
v if x = v′.

(4)

The next result shows that if v � v′ or A∩{v, v′} = ∅, then v and v′ are A-indiscernible
if and only if A is a type of “symmetry axis” with respect to v and v′. In other terms,
the next result provides a mathematically precise meaning to the terminology introduced
in Definition 2.7.

Theorem 3.3. Let G = (V (G), E(G)) be a simple graph, A ⊆ V (G) and v, v′ two
distinct vertices of G. We set X := A ∪ {v, v′}. Then, if v � v′ or A ∩ {v, v′} = ∅, we
have that

vIAv
′ ⇐⇒ φAv,v′ ∈ Aut(G[X]).

Proof. We set ψ := φAv,v′ . Firstly we assume that vIAv
′. In order to prove that ψ ∈

Aut(G[X]) we observe, by (4), that the map ψ is bijective. Therefore we only need to
show that for all x, y ∈ X it results that

x ∼ y ⇐⇒ ψ(x) ∼ ψ(y). (5)

Let x, y ∈ X. Let us note that if x, y ∈ A\{v, v′} by (4) we have ψ(x) = x and ψ(y) = y,
therefore (5) is satisfied. We can assume then that {x, y}∩{v, v′} 6= ∅. We distinguish two
cases. Firstly, let us suppose that x ∈ {v, v′} and y /∈ {v, v′} (the condition x /∈ {v, v′}
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and y ∈ {v, v′} is similar. In this case we can assume without loss of generality that
x = v. Since y ∈ X and y /∈ {v, v′}, it follows that y ∈ A. By (ii) of Theorem 2.4 we
obtain that

v ∼ y ⇐⇒ v′ ∼ y. (6)

On the other hand, since y 6= v and y 6= v′, by (4) we deduce that ψ(y) = y, and
this implies that (6) is equivalent to (5). The other case that we have to examine is
{x, y} = {v, v′}. We can assume without loss of generality that x = v and y = v′. By
(4) it follows that ψ(x) = y and ψ(y) = x, and due to the symmetry of the relation ∼
we obtain (5).
We suppose now that ψ ∈ Aut(G[x]) and we prove that for all z ∈ A it results

z ∼ v ⇐⇒ z ∼ v′. (7)

By (ii) of Theorem 2.4, the equation (7) is equivalent to show that vIAv
′. Let therefore

z ∈ A. Firstly we assume that z /∈ {v, v′}. By (4) we have then ψ(z) = z. From this last
identity and from the hypothesis ψ ∈ Aut(G[X]) we deduce that

v ∼ z ⇐⇒ ψ(v) ∼ ψ(z)⇐⇒ v′ ∼ z,

that is exactly (7). Now, if A ∩ {v, v′} = ∅, since z ∈ A, it can not be z ∈ {v, v′}.
Hence, if A ∩ {v, v′} = ∅ the proof is completed. We can suppose then that v � v′ and
z ∈ {v, v′}. Without loss of generality we can assume that z = v. Since G is a simple
graph, (z = v) � v, and by hypothesis (z = v) � v′, hence (7) is satisfied. This complete
the proof.

The result proved in Theorem 3.3 is important since it clearly shows that the in-
discernibility relation defined for a generic information table has a natural geometric
interpretation in G in terms of graph automorphisms.

The next result shows that the action of an automorphism of G on any indiscernibility
partition preserves its block partition structure.

Proposition 3.4. Let G be a simple graph and let (G,A, πA(G)) be the granular
reference system of G with origin A. If φ ∈ Aut(G) and πA(G) = B1| . . . |BN then
πφ(A)(G) = φ(B1)| . . . |φ(BN ).

Proof. Firstly let us note that {φ(B1), . . . , φ(BN )} is a partition of V (G) because the
map φ is bijective and since {B1, . . . , BN} is a partition of V (G). We set then π :=
φ(B1)| . . . |φ(BN ) and πφ(A)(G) = C1| . . . |CM . In order to obtain the thesis we must
prove that

φ(B1)| . . . |φ(BN ) = C1| . . . |CM . (8)

Since π and πφ(A)(G) are both partitions of V (G), it is clear that the proof of (8) is
equivalent to showing that

∀Cj ∃Bi : Cj = φ(Bi). (9)

Let therefore Cj be a generic block of πφ(A)(G) and let u be a fixed element of Cj . So
that we have Cj = [u]φ(A). Let w ∈ V (G) such that φ(w) = u. Since {B1, . . . , BN} is a
partition of V (G), there exists a block Bi such that w ∈ Bi. In order to obtain (9), we
will prove that

[u]φ(A) = φ(Bi). (10)
12



For all u′ ∈ V (G), by (ii) of Theorem 2.4 we have that

uIφ(A)u
′ ⇐⇒ ((∀z ∈ φ(A)) : u ∼ z ⇐⇒ u′ ∼ z). (11)

Since φ is an automorphism of G, the condition (11) is equivalent to the following:

uIφ(A)u
′ ⇐⇒ ((∀y ∈ A) : φ−1(u) ∼ y ⇐⇒ φ−1(u′) ∼ y). (12)

Therefore, again by (ii) of Theorem 2.4 we obtain:

uIφ(A)u
′ ⇐⇒ φ−1(u)IAφ

−1(u′). (13)

Now, let u′ ∈ [u]φ(A) and w′ ∈ V (G) such that φ(w′) = u′. Since uIφ(A)u
′, by (13) we

deduce that w = φ−1(u)IAφ
−1(u′) = w′. But w ∈ Bi and Bi is an indiscernibility block

of the equivalence relation IA, therefore we also deduce by (13) that w′ ∈ Bi. Hence
u′ = φ(w′) ∈ φ(Bi), and this shows that [u]φ(A) ⊆ φ(Bi).
On the other hand, let u′ ∈ φ(Bi). Then there exists w′ ∈ Bi such that φ(w′) = u′. Since
w,w′ ∈ Bi and Bi is an indiscernibility block of IA, we have that φ−1(u) = wIAφ

−1(u′) =
w′ and, by (13), this implies uIφ(A)u

′, i.e. u′ ∈ [u]φ(A). This shows that φ(Bi) ⊆ [u]φ(A).
Hence (10) is proved.

In the next result, we show that the automorphisms of G preserve its reducts.

Proposition 3.5. Let G be a simple undirected graph. If A ⊆ V (G) and φ is an auto-
morphism of G then

A ∈ RED(G)⇐⇒ φ(A) ∈ RED(G) (14)

Proof. Let A ∈ RED(G). By Proposition 3.4, if πA(G) = B1| . . . |BN , then πφ(A)(G) =
φ(B1)| . . . |φ(BN ). Let u, v ∈ V (G) such that uIφ(A)v. Then u, v ∈ φ(Bi) for some i ∈
{1, . . . , N}. This is equivalent to say that φ−1(u), φ−1(v) ∈ Bi for some i ∈ {1, . . . , N},
namely φ−1(u)IAφ

−1(v). Since A is a reduct ofG, we have φ−1(u)IAttφ
−1(v). Thus, since

Att = φ−1(Att), φ−1(u)Iφ−1(Att)φ
−1(v). Therefore for each a ∈ Att, φ−1(u) ‖ φ−1(a) if

and only if φ−1(v) ‖ φ−1(a). Finally, φ ∈ Aut(G) implies u ‖ a if and only if v ‖ a, so
uIAttv. This proves that πφ(A)(G) = πAtt(G).

Now let a ∈ A. Since A is a reduct πA\{a}(G) 6= πAtt(G). Thus there exist u, v ∈ Att
such that uIA\{a}v and ¬(uIAttv). By Proposition 3.4 we have φ(u)Iφ(A)\{φ(a)}φ(v),
but at the same time ¬(φ(u)IAttφ(v)). Thus πφ(A)\{φ(a)}(G) 6= πAtt(G) and so φ(A) ∈
RED(G).

The other implication holds too because φ−1 is also an automorphism.

3.2. Topological properties

Now, we show that the study of the granular reference system of G with a fixed origin
A is closely connected with some “topological type” properties of the vertex subset A.
In order to delineate such a type of “topology” we introduce the following terminology.

Definition 3.6. Let A be a vertex subset of G and let v ∈ V (G). We say then that:
(i) v is A-isolated if v ∈ A and NG(v) ⊆ V (G) \A;
(ii) v is A-inner if v ∈ A and NG(v) ⊆ A;
(iii) v is A-outer if v /∈ A and NG(v) ⊆ V (G) \A;
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(iv) v is A-delimiting if NG(v) ∩A 6= ∅ and NG(v) ∩ V (G) \A 6= ∅;
(v) v is A-surrounded if v /∈ A and NG(v) ⊆ A.
We denote respectively by Iso(A), Inn(A), Out(A), Del(A) and Sur(A) the subsets of
all A-isolated, A-inner, A-outer, A-delimiting and A-surrounded vertices of G. It is
clear that the family of all previous subsets is a set partition of V (G), that we denote by
τA(G) (or simply by τA if G is clear from the context). We call τA(G) the A-topological
partition of G.

Proposition 3.7. Let A ⊆ V (G) and Ac := V (G) \ A. Then Iso(A) = Sur(Ac),
Inn(A) = Out(Ac) and Del(A) = Del(Ac).

Proof. It follows directly by the previous definitions.

We have then the following result which relates τA(G) with πA(G).

Proposition 3.8. Let A ⊆ V (G). Then:
(i) If Iso(A) ∪ Out(A) 6= ∅ then the subset Iso(A) ∪ Out(A) is a block of the A-
indiscernibility partition πA(G).
(ii) If v, v′ ∈ Inn(A)∪Sur(A) then

vIAv
′ ⇐⇒ NG(v) = NG(v′).

Proof. (i) Let v, v′ ∈ Iso(A) ∪ Out(A). Then, for each z ∈ A, we have F (z, v) =
F (z, v′) = 0, so vIAv

′. Thus Iso(A) ∪ Out(A) contains a block of πA(G). Let now
u ∈ V (G) such that, for some v ∈ Iso(A)∪Out(A), uIAv. Then NG(u)∩A = ∅. In fact,
if (by absurd) there exists a vertex z in NG(u) ∩ A, then 1 = F (z, u) = F (z, v) = 0 and
this contradicts the assumption that uIAv. Then NG(u) ∩ A = ∅ and thus u is either a
A-isolated or a A-outer vertex.
(ii) Let v, v′ ∈ Inn(A)∪Sur(A). If NG(v) = NG(v′), then for each z ∈ A, F (z, v) =
F (z, v′) = 1 if z ∈ NG(v) and F (z, v) = F (z, v′) = 0 if z /∈ NG(v), so vIAv

′. Let us
suppose now NG(v) 6= NG(v′) and let z ∈ NG(v)4NG(v′). Since both NG(v) and NG(v′)
are contained in A, z ∈ A and F (z, v) 6= F (z, v′). This implies ¬(vIAv

′).

Corollary 3.9. Let A ⊆ V (G). Then:
(i) If Sur(A) ∪ Inn(A) 6= ∅ then the subset Sur(A) ∪ Inn(A) is a block of the Ac-
indiscernibility partition πAc(G).
(ii) If v, v′ ∈ Out(A)∪Iso(A) then

vIAcv′ ⇐⇒ NG(v) = NG(v′).

Proof. Both parts (i) and (ii) follow directly by Propositions 3.7 and 3.8.

When G = Kn is the complete graph, we have the following result.

Proposition 3.10. Let A ⊆ V (Kn), with n > 2. Then:
(i) If |A| = 1, then Del(A)= V (Kn) \A and Iso(A)= A.
(ii) If 2 ≤ |A| ≤ n− 2, then Del(A)= V (Kn).
(iii) If |A| = n− 1, then Del(A)= A and Sur(A)= V (Kn) \A.
(iv) Inn(Kn) = Out(∅) = V (Kn).
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Proof. (i) If A = {u}, with u ∈ V (Kn), then NKn(u) = V (Kn) \ A, so u ∈ Iso(A).
Let v ∈ V (Kn) \ A. In this case, for each v ∈ V (Kn), we have u ∈ NKn(v) and
NKn

(v) ∩ (V (Kn) \ {u}) 6= ∅. Thus v ∈ Del(A).
(ii) If 2 ≤ |A| ≤ n−2, then, for each v ∈ V (Kn), NKn

(v)∩A 6= ∅ and NKn
(v)∩ (V (Kn)\

A) 6= ∅. Thus Del(A) = V (Kn).
(iii) The thesis follows by part (i) and by Proposition 3.7.
(iv) It is trivial and it follows directly from the previous definitions.

Analogously, when G = Kp,q is the complete bipartite graph, we obtain:

Proposition 3.11. Let A ⊆ V (Kp,q), with bipartition (B1|B2). Then:
(i) if A = V (Kp,q) we have Inn(A)= V (Kp,q);
(ii) if B1 ⊆ A $ V (Kp,q) we have Inn(A) = B2∩A, Sur(A) = V (Kp,q)\A, Out(A) = ∅,

Del(A) =

 B1 if B1 $ A

∅ if B1 = A,

and

Iso(A) =

 ∅ if B1 $ A,

A if B1 = A.

Analogously if B2 ⊆ A.
(iii) If A 6= ∅, B1 * A and B2 * A we have that Del(A) = V (Kp,q).

Proof. (i) It holds for any graph G.
(ii) Let A ⊆ B1, with A 6= V (Kp,q). If v ∈ B2∩A, then NKp,q (v)∩A = B1 ⊆ A and thus
v ∈ Inn(A). On the other hand, if v ∈ B1 thenNKp,q

(v) = B2, thusNKp,q
(v)∩A = B2∩A

and NKp,q
(v) ∩ (V (Kp,q) \A) = V (Kp,q) \A. It follows that Inn(A) = B2 ∩A and

Iso(A) =

 ∅ if B1 $ A,

A if B1 = A.

Let v ∈ V (Kp,q) \ A. Then NKp,q
(v) = B1 ⊆ A, so Sur(A) = V (Kp,q) \ A, Out(A) = ∅

and

Del(A) =

 B1 if B1 $ A

∅ if B1 = A.

(iii) Let A 6= ∅ such that B1 * A and B2 * A. If v ∈ V (Kp,q), then NKp,q
(v) ∩ A 6= ∅

and NKp,q (v) ∩ V (Kp,q) \A 6= ∅. This completes the proof.

4. Extended Core and Discernibility Hypergraph of an Information Table

In this section we introduce an extended notion of core, which is useful in better
characterizing a graph than the standard core. Moreover, we relate this new notion
to the problem of finding all the reducts (of a generic information table) through the
minimal hypergraph transversal problem.
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In agreement with Remark 2.17, all the notions that we will introduce in this section
for a generic information table must be understood also valid for any simple graph G (in
this case we use only the letter G instead of the symbol I[G]).

4.1. The Extended Core

We generalize the concept of classical Pawlak core for a generic information table I.
This step is needed since in many situations the simple core of a graph is empty, see for
instance the cases of complete and bipartite complete graphs in Corollary 5.3.

Definition 4.1. We say that a subset C ⊆ Att is I-essential (or, simply, essential) if:

(i) πAtt\C(I) 6= πAtt(I);

(ii) for all D $ C we have that πAtt\D(I) = πAtt(I).

We denote by ESS(I) the family of all the I-essential subsets, and we call ESS(I) the
extended core of I. If k ∈ {1, . . . , n}, we set

ESSk(I) := {C ∈ ESS(I) : |C| = k} (15)

and we call essential numerical sequence of I the n-tuple

ens(I) := (|ESS1(I)|, . . . , |ESSn(I)|). (16)

Finally, we call essential dimension of I the positive integer

Edim(I) := min{k : |ESSk(I)| 6= 0}.

The following result shows that the subset family ESS(I) is effectively an extension
of the classical core of I.

Proposition 4.2. CORE(I) =
⋃
{C : C ∈ ESS1(I)}, therefore |CORE(I)| = |ESS1(I)|.

Proof. It follows immediately from the definitions of CORE(I) and ESS1(I).

In particular, for any simple graph G we have that Cnum(G) = |ESS1(G)|.

By virtue of Proposition 4.2 we can always identify CORE(I) with the singleton
family ESS1(I). Therefore it is natural to think of the classical Pawlak core as a type
of “first level core” for the information table I. This leads naturally to the following
definition.

Definition 4.3. With the previous notation, if 1 ≤ k ≤ n, we call k-th core of the
information table I the subset family ESSk(I).

The discernibility matrix of I [36] is an essential tool to determine core and reducts
of I.

Definition 4.4. Let I = 〈U,Att, V al, F 〉 an information table such that |U | = m and
U = {u1, . . . , um}. The discernibility matrix ∆[I] of I is the m×m matrix (dij), where

dij = {a ∈ Att : F (ui, a) 6= F (uj , a)} := ∆I(ui, uj). (17)
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Therefore the entry dij = ∆I(ui, uj) is the subset of all attributes a ∈ Att which
discern the object ui from the object uj . Let us note that ∆[I] is a symmetric matrix
such that ∆I(ui, ui) = ∅ for all i = 1, . . . ,m.

It is also convenient to introduce a numerical version of the discernibility matrix.

Definition 4.5. The numerical discernibility matrix ∆num[I] of I is the m×m matrix
(δij), where δij := |∆I(ui, uj)|.

In the next result we describe the discernibility matrix ∆[G] for an arbitrary simple
graph G in geometrical terms.

Proposition 4.6. If G is a simple undirected graph and ui, uj ∈ V (G), then

∆G(ui, uj) = NG(ui)4NG(uj). (18)

Proof. By (17) and by definition of indiscernibility relation we have that

∆G(ui, uj) = {v ∈ V (G) : ¬(uiI{v}uj)}. (19)

By (ii) of Theorem 2.4 and (19) we deduce that

∆G(ui, uj) = {v ∈ V (G) : ¬(ui ∼ v ⇐⇒ uj ∼ v)},

which, in terms of NG(ui) and NG(uj), is equivalent to

∆G(ui, uj) = {v ∈ V (G) : ¬(v ∈ NG(ui)⇐⇒ v ∈ NG(uj)}. (20)

By (20) we deduce then that

∆G(ui, uj) = {v ∈ V (G) : (v ∈ NG(ui)∧v /∈ NG(uj))∨(v ∈ NG(uj)∧v /∈ NG(ui))}. (21)

We observe now that (21) is exactly the thesis.

To provide a geometrical interpretation of the identity (18), we can observe that if
ui 6= uj then v ∈ ∆G(ui, uj) iff v is connected with exactly one vertex between ui and
uj ; this means that we can think v as a dissymmetry vertex for ui and uj . Therefore
it is natural also to call ∆G(ui, uj) the local dissymmetry axis of ui and uj and local
dissymmetry number of ui and uj the integer δij := |∆G(ui, uj)|. In the next result we
show that the local dissymmetry uniquely characterizes a finite simple graph having a
fixed vertex set V .

Theorem 4.7. Let G1 and G2 be two finite simple graphs such that V = V (G1) = V (G2).
Then

∆[G1] = ∆[G2] ⇐⇒ G1 = G2.

Proof. Suppose that ∆G1(vi, vj) = ∆G2(vi, vj) for every vi, vj , then FG1(v, w) = FG2(v, w)
for every pair of vertices v and w, because in G there are no loops. Then it follows im-
mediately that E(G1) = E(G2), hence G1 = G2.
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The result established in Theorem 4.7 tells us that the discernibility matrix of a
finite simple undirected graph G uniquely characterizes G, therefore it has the same
theoretical relevance of the adjacency matrix of G (when G is simple). Now, since the
discernibility matrix can be considered in GrC-RS as the fundamental tool to determine
core and reducts of an information system, all the possible investigations concerning the
simple graph G by means of GrC-RS tools must necessarily conduct to a well specific
characterization of G in terms of local dissymmetry.

In [36] it has been proved that for any information table I = 〈U,Att, V, F 〉, with
U = {u1, . . . , um}, the core of I coincides with the set of all single element entries of the
discernibility matrix of I, i.e.

CORE(I) = {a ∈ Att : ∃i, j : ∆I(ui, uj) = {a}}. (22)

If DISC(I) is the family of all the distinct non-empty entries ∆I(ui, uj) of the discerni-
bility matrix ∆[I], then (22) is obviously equivalent to say that for all a ∈ Att:

a ∈ CORE(I)⇐⇒ {a} ∈ DISC(I). (23)

Given this result, we obtain a completely geometric characterization of the core of a
graph.

Proposition 4.8. CORE(G) = {v ∈ V (G) : ∃x, y ∈ V (G) : NG(x)4NG(y) = {v}}.

Proof. The universe set and the attribute set of the information table I[G] are both (by
definition of I[G]) the vertex set V (G), hence, by (22), we have that

CORE(G) = {v ∈ V (G) : ∃x, y ∈ V (G) : ∆G(x, y) = {v}}. (24)

The thesis follows then directly from (18) and (24).

Corollary 4.9. If u1, . . . , um are the distinct vertices of G, then

Cnum(G) = 0⇐⇒ δij 6= 1 ∀i 6= j (25)

Proof. The thesis follows by (18) and Proposition 4.8 because Cnum(G) := |CORE(G)|
and δij := |∆G(ui, uj)| = |NG(ui)4NG(uj)|.

In order to describe all the elements of ESS(I), we introduce the discernibility poset.

Definition 4.10. We call discernibility poset of the information table I, the poset

D(I) := (DISC(I),⊆),

which is a sub-poset of the power set lattice (P(Att),⊆).

In the next result we establish a basic link between essential subsets and discernibility
subsets.

Theorem 4.11. ESS(I) coincides with the family of all the minimal elements in the
poset D(I).
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Proof. Let C ∈ ESS(I). Since πAtt\C(I) 6= πAtt(I), there exist (at least) two distinct
elements u, u′ ∈ U such that uIAtt\Cu

′ and ¬(uIAttu
′). Therefore, since F (u, a) =

F (u′, a) for all a ∈ Att \ C, by (17) we deduce that Att \ C ⊆ Att \ ∆I(u, u
′), i.e.

C ⊇ ∆I(u, u
′). We prove now that also the reverse inclusion is true. Let us assume, by

contradiction, that there exists an attribute c ∈ C such that c /∈ ∆I(u, u
′), so that by (17)

we have F (u, c) = F (u′, c). Let D := C \ {c}. From the conditions F (u, a) = F (u′, a)
for all a ∈ Att \ C and F (u, c) = F (u′, c) we deduce that F (u, a) = F (u′a) for all
a ∈ Att \ C ∪ {c} = Att \ D, that is equivalent to uIAtt\Du

′. Then, since ¬(uIAttu
′)

we obtain that πAtt\D(I) 6= πAtt(I), and this is in contrast with (ii) of Definition
4.1. Then we also have C ⊆ ∆I(u, u

′), therefore C = ∆I(u, u
′). This shows that

C ∈ DISC(I). We must prove now that C is minimal in DISC(I) with respect to
the inclusion. Let us assume (by contradiction) that there exists some D ∈ DISC(I)
such that D $ C. By definition of DISC(I) we have that D = ∆I(v, w), for some
v, w ∈ U with u 6= w. Then Att \ D = {a ∈ Att : F (u, a) = F (v, a)}, and this is
equivalent to say that vIAtt\Dw. On the other hand, since D 6= ∅ we can choose an
element a0 ∈ D, and this implies that F (v, a0) 6= F (w, a0) because D = ∆I(v, w). This
shows that ¬(vIAttw). Then from the conditions vIAtt\Dw and ¬(vIAttw) we deduce that
πAtt\D(I) 6= πAtt(I), that is in contrast with the hypotheses that C is an essential subset
for I and D $ C. This proves that C is minimal. Hence each element C ∈ ESS(I)
is a minimal element of the poset D(I). In order to complete the proof it remains to
show that each minimal element of the poset D(I) is an essential subset. Let therefore
C ∈ DISC(I) which is also minimal with respect to the inclusion. We must prove that
C ∈ ESS(I). By definition of DISC(I), there are two distinct elements u, u′ ∈ U such
that C = ∆I(u, u

′) = {a ∈ Att : F (u, a) 6= F (u′, a)}. Since C 6= ∅ (by definition of
DISC(I)), we choose a fixed element c ∈ C, so that F (u, c) 6= F (u′, c) (by definition of
∆I(u, u

′)), therefore ¬(uIAttu
′). Moreover, if a ∈ Att \ C then F (u, a) = F (u′, a), thus

uIAtt\Cu
′. Then we obtain πAtt\C(I) 6= πAtt(I), and this proves (i) of Definition 4.1. Let

now D $ C and let us assume by contradiction that πAtt\D(I) 6= πAtt(I). So that there
exist (at least) two distinct elements v, w ∈ U such that vIAtt\Dw and ¬(vIAttw). Since
vIAtt\Dw we have F (v, a) = F (w, a) for all a ∈ Att\D, therefore Att\D ⊆ Att\∆I(v, w),
that is equivalent to ∆I(v, w) ⊆ D. Let us note that ∆I(v, w) 6= ∅ because ¬(vIAttw).
We obtain then ∅ 6= ∆I(v, w) ⊆ D $ C, and this is in contrast with the hypothesis that
C is an element of DISC(I) which is minimal with respect to the inclusion. Hence it
must be πAtt\D(I) = πAtt(I) for any D $ C, that is exactly (ii) of Definition 4.1.

Let us note that the equation (22) and the proposition 4.8 are now a direct conse-
quence of the previous theorem.

Corollary 4.12. CORE(I) = {a ∈ Att : {a} ∈ DISC(I)}.

Proof. As a consequence of Proposition 4.2 we can identify CORE(I) with ESS1(I).
Moreover, by Theorem 4.11 we know that the elements of ESS1(I) are the minimal
subsets of DISC(I) having one only element, which are exactly all the singletons of
DISC(I).

Example 4.13. Let us consider the following information table I:
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a1 a2 a3 a4
u1 0 1 2 0
u2 1 2 0 2
u3 1 0 1 0
u4 2 1 0 1
u5 1 1 0 2

The discernibility matrix ∆[I] is then the following:

u1 u2 u3 u4 u5
u1 ∅ a1, a2, a3, a4 a1, a2, a3 a1, a3, a4 a1, a3, a4
u2 * ∅ a2, a3, a4 a1, a2, a4 a2
u3 * * ∅ a1, a2, a3, a4 a2, a3, a4
u4 * * * ∅ a1, a4
u5 * * * * ∅

Therefore the distinct elements are

DISC(I) = {{a1, a2, a3, a4}; {a1, a2, a3}; {a1, a2, a4}; {a1, a3, a4}; {a2, a3, a4}; {a1, a4}; {a2}}

and the Hasse diagram of the discernibility poset D(I) is the following:

{a1, a2, a3, a4}

{a1, a2, a3} {a2, a3, a4} {a1, a2, a4} {a1, a2, a4}

{a2} {a1, a4}

Finally we have that
ESS(I) = {{a2}, {a1, a4}}

and
RED(I) = {{a1, a2}, {a2, a4}},

therefore
CORE(I) = {a2}.

4.2. Reducts, Core and Hypergraphs

Firstly, we recall the basic notion of hypergraphs (see [1]).

Definition 4.14. A hypergraph is a pair H = (X,F), where X = {x1, . . . , xn} is an
arbitrary finite set, called vertex set of H, and F = {Y1, . . . , Ym} is a non-empty family
of subsets Y1, . . . , Ym of X. The elements x1, . . . , xn are called vertices of H and the
subsets Y1, . . . , Ym of X are called hyperedges of H. A hypergraph on X is a hypergraph
having X as vertex set.

In the next definition we interpret a hypergraph in terms of information tables.
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Definition 4.15. Let H be a hypergraph on a set X = {x1, . . . , xn}, with hyperedges
Y1, . . . , Ym. We associate to H an information table Γ(H) where the attribute set of
Γ(H) is X and the universe set of Γ(H) is {Y1, . . . , Ym}. The value set is {0, 1} and the
information map FH is defined naturally as

FH(Yi, xj) :=

{
1 if xj ∈ Yi
0 otherwise.

Several hypergraphs can be defined taking into account the discernibility matrix, the
extended core and the reduct family. In the next definition we explicitly introduce the
hypergraphs which we will use in this paper.

Definition 4.16. Given an information table I, we define

• the essential hypergraph of I, the hypergraph E(I) := (Att, ESS(I));

• the reduct hypergraph of I, the hypergraph R(I) := (Att,RED(I));

• the discernibility hypergraph of I, the hypergraph D(I) := (Att,DISC(I));

• k-th discernibility hypergraph of I, the hypergraph Dk(I) := (Att,DISCk(I)).

Moreover, by analogy with (15) and (16), we also introduce the following terminol-
ogy:

• if DISCk(I) := {C ∈ DISC(I) : |C| = k}, we call discernibility numerical sequence
of I the n-tuple dns(I) := (|DISC1(I)|, . . . , |DISCn(I)|).

• if REDk(I) := {C ∈ RED(I) : |C| = k}, we call reduct numerical sequence of I

the n-tuple rns(I) := (|RED1(I)|, . . . , |REDn(I)|). We call k-reduct of I a generic
element of REDk(I).

Remark 4.17. Let us remark that, it is possible to find non-isomorphic graphs hav-
ing the same numerical discernibility matrix and the same discernibility hypergraph.
For example, if we consider the graph F4 having vertex set {v1, v2, v3, v4} and edge set
{{v1, v2}, {v3, v4}}, it is easy to verify that ∆num(F4) = ∆num(K4) and D(F4) = D(K4),
although F4 and K4 are not isomorphic graphs. This leads to the interesting open problem
of classifying all finite simple graphs by means of their numerical discernibility matrix
and their discernibility hypergraph.

We recall now the notion of transversal of a hypergraph (see [1]).

Definition 4.18. Let H be a given hypergraph. A subset Y ⊆ V (H) is said a transversal
of H if Y ∩ A 6= ∅ for each non-empty hyperedge A ∈ E(H). A transversal A of H is
said minimal if no proper subset of A is a transversal of H. We denote by Tr(H) the
family of all the minimal transversals of H. The hypergraph Htr := (V (H), T r(H)) is
usually called transversal hypergraph of H.

In literature the hypergraph transversal problem for H is the problem of generating all
the elements of Tr(H). We adapt the previous terminology in the case of the information
tables in the following way:
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Definition 4.19. We call transversal discernibility hypergraph of I the hypergraph
D(I)

tr
= (Att, Tr(D(I))).

The next result tells us that the reducts of I are exactly the minimal transversals of
the discernibility hypergraph D(I).

Theorem 4.20. Let I be a given information table and A ⊆ Att. Then:
(i) πA(I) = πAtt(I) if and only if A is a transversal of D(I).
(ii) A is a reduct of I if and only if A is a minimal transversal of D(I).
(iii) The hypergraphs R(I) and D(I)

tr
are identical.

Proof. (i) Let us note that the equality πA(I) = πAtt(I) is obviously equivalent to the
identity IA = IAtt. Therefore, we firstly assume that IA = IAtt; we must show that A is a
transversal of D(I). Let then D ∈ DISC(I). By definition of DISC(I) it results that D
is not empty and that there exist two distinct objects u, u′ ∈ U such that D = {a ∈ Att :
F (u, a) 6= F (u′, a)}. Since D contains at least one element, we deduce that ¬(uIAttu

′),
and this also imply ¬(uIAu

′) from the hypothesis IA = IAtt. Hence, by definition of
IA, we find an element a′ ∈ A such that F (u, a′) 6= F (u′, a′), i.e. a′ ∈ A ∩ D. This
shows that A∩D 6= ∅, therefore A is a transversal of D(I). We suppose now that A is a
transversal of D(I) and let u, u′ be two any distinct objects in U . If uIAttu

′ it is obvious
that we also have uIAu

′. We can assume therefore that ¬(uIAttu
′). By definition of IAtt

and by (17) it follows then that the attribute subsetD := ∆I(u, u
′) is not empty, so that

D ∈ DISC(I). Since A is a transversal of D(I) we have that A∩D 6= ∅. Let a′ ∈ A∩D.
Then we obtain an attribute a′ ∈ A such that F (u, a′) 6= F (u′, a′), and this implies that
¬(uIAu

′). Hence IA = IAtt.
(ii) Let A be a reduct of I. By definition of reduct we have then πA(I) = πAtt(I), and
by (i) this implies that A is a is a transversal of D(I). Now, if c ∈ A, again by definition
of reduct we have that πA\{c}(I) 6= πAtt(I), therefore by (i) it follows that A \ {c} is not
a transversal of D(I). Hence A is a minimal transversal of D(I). On the other hand, let
A be a minimal transversal of D(I), then by (i) it follows that πA(I) = πAtt(I). Now, if
c ∈ A, the subset A \ {c} is not a transversal of D(I) by virtue of the minimality of A,
therefore, again by (i) we obtain πA\{c}(I) 6= πAtt(I). Hence A is a reduct of I.

(iii) It follows at once by (ii) and by definition of the hypergraphs R(I) and D(I)
tr

.

Let us remark that the minimal transversal problem is widely studied and it has
several applications in artificial intelligence [15, 16]. Therefore, the above result has a
double importance from the application standpoint: it connects the reduct problem to
other well-known problems and it gives the possibility of using algorithms developed
for hypergraphs to find reducts. In particular, in a forthcoming paper, we will discuss
how particular cases of the minimal transversal problem apply to reducts, proving the
complexity of the reduct problem to be incremental polynomial time [12].

5. Granular Computing on Three Basic Graph Families

In this section we apply the theoretical results of Section 4 on some basic graph
families. The first two cases that we study are the complete graph Kn on n vertices and
the complete bipartite graph Kp,q. Next we examine the case of the undirected path
Pn on n vertices.
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Proposition 5.1. Let G = Kn be the complete graph with vertex set V (G) = {v1, . . . , vn}.
Then:

(i) the discernibility matrix of G is ∆G(vi, vj) = {vi, vj} for all i 6= j;

(ii) the discernibility hypergraph of G is D(G) = (n̂,
(
n̂
2

)
), therefore dns(G) = (0,

(
n
2

)
, 0, . . . , 0);

(iii) the reduct hypergraph of G is R(G) = (n̂,
(
n̂
n−1
)
), therefore rns(G) = (0, 0, . . . , 0, n, 0);

(iv) the essential hypergraph of G is E(G) = (n̂,
(
n̂
2

)
), therefore ens(G) = (0,

(
n
2

)
, 0, . . . , 0)

and Edim(G) = 2;

(v) the numerical discernibility matrix of G is ∆num[G] = 2Adj(G).

Proof. We identify the set V (G) = {v1, . . . , vn} with the n-element set n̂.
(i) By definition of Kn, for all vi ∈ n̂ we have that NG(vi) = n̂ \ {vi}. Therefore, for all
distinct vi, vj ∈ V (G) it results by (18) that ∆G(vi, vj) = NG(vi)4NG(vj) = {vi, vj}.
(ii) It follows immediately by (i) and by definition of the discernibility hypergraph D(G).
(iii) It follows by (ii) and by Theorem 4.20, because it is immediate to note that the
transversal hypergraph of (n̂,

(
n̂
2

)
) is exactly (n̂,

(
n̂
2

)
).

(iv) It follows by (ii) and by Theorem 4.11, because the hypergraph of all the minimal
elements of the discernibility poset (

(
n̂
2

)
,⊆) is again (n̂,

(
n̂
2

)
).

(v) From (i) we have δij = 2 if i 6= j and δii = 0. On the other hand, by definition of
Kn and by definition of adjacency matrix, we also have Adj(Kn) = (aij), where aij = 1
if i 6= j and aii = 0. Hence (v) follows.

Also for the complete bipartite graph Kp,q we can easily obtain the following results.

Proposition 5.2. Let G = Kp,q = (B1|B2), where B1 = {x1, . . . , xp} and B2 =
{y1, . . . , yq}. Let n = p+ q. Then:

(i) the discernibility matrix of G is ∆G(xi, xi′) = ∆G(yj , yj′) = ∅ and ∆G(xi, yj) =
V (G) for all i, i′ ∈ {1, . . . , p}, j, j′ ∈ {1, . . . , q};

(ii) the discernibility hypergraph of G is D(G) = (n̂, {n̂}), therefore dns(G) = (0, 0, . . . , 0, 1);

(iii) the reduct hypergraph of G is R(G) = (n̂,
(
n̂
1

)
), therefore rns(G) = (n, 0, . . . , 0, 0);

(iv) the essential hypergraph of G is E(G) = (n̂, {n̂}), therefore ens(G) = (0, 0, . . . , 0, 1)
and Edim(G) = n;

(v) the numerical discernibility matrix of G is ∆num[G] = (p+ q)Adj(Kp,q).

Proof. As in the previous proposition we identify V (G) = {x1, . . . , xp, y1, . . . , yq} with
the n-element set n̂.
(i) When G = Kp,q we have NG(xi) = B2 for i = 1, . . . , p and NG(yj) = B1 for j =
1, . . . , q. Hence NG(xi)4NG(xi′) = ∅ for all i, i′ ∈ {1, . . . , p} and NG(yj)4NG(yj′) = ∅
for all j, j′ ∈ {1, . . . , q}. On the other hand, it also results that NG(xi) 4 NG(yj) =
B1 ∪B2 = V (G) for all i = 1, . . . , p and j = 1, . . . , q. The thesis follows then by (18).
(ii) It follows immediately by (i) and by definition of the discernibility hypergraph D(G).
(iii) It follows by (ii) and by Theorem 4.20, because it is immediate to note that the
transversal hypergraph of (n̂, {n̂}) is exactly (n̂,

(
n̂
1

)
).

(iv) It follows by (ii) and by Theorem 4.11, because the discernibility poset of G is the
singleton ({n̂},⊆).
(v) The result follows at once by (i), due to the block form of the adjacency matrix of
Kpq and by definition of numerical discernibility matrix.
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As a simple corollary of the above propositions we get that both the complete and
bipartite complete graphs have empty core.

Corollary 5.3. CORE(Kn) = CORE(Kp,q) = ∅.
Proof. For any simple graph G, the core of G can be identified with ESS1(G), moreover
ESS1(Kn) = ESS1(Kp,q) = ∅ by the previous two propositions.

Moreover, we can easily provide a large class of graphs having all empty core. To this
aim we recall the following definition.

Definition 5.4. Let G = (V (G), E(G)) be a simple undirected graph. G is said vertex-
transitive if Aut(G) acts transitively on the set of vertices V (G), i.e. for all v, v′ ∈ V (G)
there exists φ ∈ Aut(G) such that φ(v) = v′.

We have then the following general result.

Proposition 5.5. Let G be a simple undirected vertex-transitive graph. Then CORE(G) =
∅.
Proof. Since Aut(G) acts transitively on G, we have that |NG(x)| = |NG(y)| for all
x, y ∈ V (G). Thus |∆G(x, y)| = |NG(x) 4 NG(y)| is even, for each choice of x, y in
V (G). The thesis follows then by Proposition 4.8.

The results obtained so far seem to suggest that graphs with a strong regularity
structure have always core number zero. However, we show now a case that contradicts
this apparent impression.

Definition 5.6. If n is a positive integer we denote by Pn the graph having n vertices
v1, . . . , vn and such that E(Pn) = {{vi, vi+1} : i = 1, . . . , n − 1}. In literature Pn is
sometimes called path on n vertices.

Example 5.7. It is immediate to determine all the partitions πA(Pn) and to verify that
CORE(Pn) = ∅ when 1 ≤ n ≤ 3. We consider then the path P4. If one examine the
information table of P4 it is easy to verify that π{1,2,3,4} = 1|2|3|4, π{2,3,4} = 1|3|24,
π{1,3,4} = π{1,2,4} = 1|2|3|4 and π{1,2,3} = 13|2|4. Therefore, the vertices 1 and 4 are
indispensable and 2, 3 are not indispensable. Hence CORE(P4) = {1, 4}. Analogously,
it is easy to verify that CORE(P5) = {2, 4}, CORE(P6) = {3, 4}, CORE(P7) = {4}
and CORE(P8) = {4, 5}.

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

Figure 5: Core of the n-Path Graph with n = 4, 5, 6, 7, 8.
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The particular cases discussed in the previous example provide a sequence of cores
having a counterintuitive type of symmetry in the core sequences of the paths, therefore
in the sequel of this section we examine the general case of the path Pn, for all n ≥ 1.

Proposition 5.8. Let n ≥ 4 and G = Pn. Then:

∆G(v1, vj) =


{v1, v2, v3} if j = 2
{v4} if j = 3
{v2, vj−1, vj+1} if 4 ≤ j ≤ n− 1
{v2, vn−1} if j = n

(26)

and

∆G(v1, vj) =


{vi−1, vi, vi+1, vi+2} if j = i+ 1
{vi−1, vi+3} if j = i+ 2
{vi−1, vi+1, vj−1, vj+1} if i+ 2 < j ≤ n− 1
{vi−1, vi+1, vn−1} if j = n, i 6= n− 2
{vn−3} if j = n, i = n− 2

(27)

when 2 ≤ i < j ≤ n.

Proof. It is a direct consequence of Equation (18), since

NG(vi) =

 {v2} if i = 1
{v4} if 2 ≤ i ≤ n− 1
{vn−1} if i = n.

In order to give a compact description of the numerical discernibility matrix of Pn in
the general case, we introduce some new type of matrices.

Definition 5.9. Let n be a positive integer. The matrix Qn is the matrix Qn = (qij),
where:

qij :=

{
1 if either i = 1 or j = 1
0 otherwise.

Let now k be a positive integer such that 0 ≤ k ≤ n − 1. The matrix Diag(n, k) is the

matrix Diag(n, k) = (x
(n,k)
ij ), where:

x
(n,k)
ij :=

{
1 if |i− j| = k
0 otherwise .

We obtain then the following result.

Proposition 5.10. Let n ≥ 4. Then:
(i) ∆num[Pn] = 4(Jn − In)−Qn − 2Diag(n, 2)−Diag(n, n− 1).
(ii) CORE(Pn) = {v4, vn−3}.
(iii) Cnum(Pn) = 2 for all n ≥ 4.
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Proof. (i) By (26) and (27) we obtain ∆num[Pn] = (δij), where

δ1j =

 3 if j = 2 or 4 ≤ j ≤ n− 1
2 if j = n
1 if j = 3

and

δij =


4 if j = i+ 1 or i+ 2 < j ≤ n− 1
3 if j = n, i 6= n− 2
2 if j = i+ 2
1 if j = n, i = n− 2

when 2 ≤ i < j ≤ n. It is easy to check that the previous values of δij are equal to the
correspondent entries of the matrix 4(Jn − In)−Qn − 2Diag(n, 2)−Diag(n, n− 1).
The parts (ii) and (iii) follow directly by the previous part (i) and by (24).

Corollary 5.11. If n ≥ 1 then ESS1(Pn) = {{v4}, {vn−3}}. Hence Edim(Pn) = 1.

Proof. The result follows directly by (ii) of Proposition 5.10 by virtue of Proposition
4.2.

Example 5.12. Below we represent the discernibility matrix of P8:

1 2 3 4 5 6 7 8
1 ∅ 1, 2, 3 4 2, 3, 5 2, 4, 6 2, 5, 7 2, 6, 8 2, 7
2 ∗ ∅ 1, 2, 3, 4 1, 5 1, 3, 4, 6 1, 3, 5, 7 1, 3, 6, 8 1, 3, 7
3 ∗ ∗ ∅ 2, 3, 4, 5 2, 6 2, 4, 5, 7 2, 4, 6, 8 2, 4, 7
4 ∗ ∗ ∗ ∅ 3, 5, 4, 6 3, 7 3, 5, 6, 8 3, 5, 7
5 ∗ ∗ ∗ ∗ ∅ 4, 5, 6, 7 4, 8 4, 6, 7
6 ∗ ∗ ∗ ∗ ∗ ∅ 5, 6, 7, 8 5
7 ∗ ∗ ∗ ∗ ∗ ∗ ∅ 6, 7, 8
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∅

Hence the numerical discernibility matrix of P8 is the following 8-order symmetric matrix:

0 3 1 3 3 3 3 2
3 0 4 2 4 4 4 3
1 4 0 4 2 4 4 3
3 2 4 0 4 2 4 3
3 4 2 4 0 4 2 3
3 4 4 2 4 0 4 1
3 4 4 4 2 4 0 3
2 3 3 3 3 1 3 0


6. Granular Computing on the Petersen Graph

In this section, we apply all the general notions developed in the previous sections
on a specific case of study: the Petersen graph, abbreviated Pet. It is well known that
the Petersen graph is both vertex-transitive and edge-transitive.
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Remark 6.1. Let us note that in the Petersen graph do not occur cycles of lenght 3 and
4.

Proposition 6.2. Let G = Pet. Then

δij =: |∆G(vi, vj)| =

 6 if vi ∼ vj ,

4 otherwise.

Proof. It results that NG(v1) = {v2, v5, v6}, NG(v2) = {v1, v3, v7}, NG(v3) = {v2, v4, v8},
NG(v4) = {v3, v5, v9}, NG(v5) = {v1, v4, v10}, NG(v6) = {v1, v8, v9}, NG(v7) = {v2, v9, v10},
NG(v8) = {v3, v6, v10}, NG(v9) = {v4, v6, v7}, NG(v10) = {v5, v7, v8}. We can see there-
fore that NG(v1)∩NG(vi) = ∅ for i = 2, 5, 6, that are exactly the vertices adjacent to v1,
and NG(v1) ∩ NG(vi) is a singleton for the vertices vi which are not adjacent to v1. A
similar situation occurs if we examine the vertex v6 in place of v1. By virtue of the sym-
metric form of the Petersen graph, the vertices v2, v3, v4, v5 will have the same behavior
of v1, whereas the vertices v7, v8, v9, v10 will have the same behavior of v6. Hence, for
all vi, vj ∈ V (G) we deduce that either vi ∼ vj and the vertex subset ∆G(vi, vj) contains
six vertices or otherwise it contains four vertices. Therefore the thesis follows.

Corollary 6.3. (i) Cnum(Pet) = 0.
(ii) ∆num[Pet] = 4(J10 − I10) + 2Adj(Pet).

Proof. (i) The thesis follows by (25) and Proposition 6.2.
(ii) It follows by Proposition 6.2 and by the definition of the adjacency matrix.

Proposition 6.4. Let G = Pet and let vi, vj ∈ V (G) such that vi ∼ vj. Then:

∆G(vi, vj) = V (G) \∆G(xi, yi) = V (G) \∆G(xj , yj),

where {xi, yi} = NG(vi) \ {vj} and {xj , yj} = NG(vj) \ {vi}.

Proof. By Remark 6.1 we have that xi � yi and xj � yj .
Let us prove the first equality, the other follows similarly. Thus, by Proposition 6.2

|∆G(vi, vj)| = 6 and |∆G(xi, yi)| = |∆G(xj , yj)| = 4. So it is sufficient to prove one of
the two inclusions.

We haveNG(vi) = {vj , xi, yi} andNG(vj) = {vi, xj , yj}, so ∆G(vi, vj) = {vi, vj , xi, yi, xj , yj}.
Let u ∈ ∆G(vi, vj) and let us show that u /∈ ∆G(xi, yi). If u = vi, then u ∈

NG(xi)∩NG(yi), so u /∈ NG(xi)4NG(yi) = ∆G(xi, yi). If u = vj , then, by Remark 6.1,
u /∈ NG(xi) and u /∈ NG(yi), so u /∈ ∆G(xi, yi). Now, by Remark 6.1 we deduce that
{xi, yi, xj , yj}∩NG(xi) = {xi, yi, xj , yj}∩NG(yi) = ∅ and thus u /∈ ∆G(xi, yi), therefore
the thesis follows.

Corollary 6.5. Let G = Pet and B ⊆ V (G). Then B ∈ DISC6(G) if and only if
V (G) \B ∈ DISC4(G).

Proof. By Proposition 6.2, B ∈ DISC6(G) if and only if B = ∆G(vi, vj), where vi, vj ∈
V (G) and vi ∼ vj . By Proposition 6.4 this is equivalent to say that V (G) \ B ∈
DISC4(G).
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For its symmetry properties the core of the Petersen graph is empty. The key and a
priori not obvious point is the characterization of the reducts of the Petersen graph from
a geometric point of view as follows.

Theorem 6.6. Let G = Pet. A subset A ⊆ V (G) is a reduct of G if and only if |A| = 5
and G[A] is isomorphic to one of the following graphs:

C5
P2, 2, 1 P4, 1

P5

Moreover B ⊆ V (G) is an essential subset of G if and only if |B| = 4 or |B| = 6 and
G[B] is isomorphic to one of the following graphs:

P2, 2 H

Before proving Theorem 6.6, we will establish several preliminary results:

1. Firstly we will characterize geometrically the hyperedges inDISC4(G) (Proposition
6.7).

2. Then we will find the geometric properties of the subsets of V (G) which are not
transversals of the hypergraph D4(G) = (V (G), DISC4(G)) (Proposition 6.8).

3. Next we will prove that any transversal of the discernibility hypergraph D(G) has
cardinality greater than or equal to 5 (Proposition 6.9).

4. Finally we will prove the Theorem 6.6.

Proposition 6.7. Let G = Pet and B ⊆ V (G). Then B ∈ DISC4(G) if and only if
G[B] is isomorphic to the following graph:

Proof. Let B be the set of all 4-subsets B of V (G) such that G[B] is isomorphic to the
previous pattern. Let us compute the cardinality b of B. The elements in B containing
the vertices 1, 2 are {1, 2, 4, 9} and {1, 2, 8, 10}. Since Pet is edge-transitive, each pair of
adjacent vertices in Pet occurs twice in some of the elements in B. So we obtain

b = 2|E(G)|1
2

= |E(G)| = 15.

Then, by the previous proposition, b = |B| = |DISC4(G)|.
Let us prove now that B ⊆ DISC4(G). Let B = {v1, v2, u1, u2} ∈ B such that

v1 ∼ v2 and u1 ∼ u2. Since v1 � u1 and v2 � u2, there exist x1, x2 ∈ V (G) such that
v1 ∼ x1, u1 ∼ x1, v2 ∼ x2 and u2 ∼ x2. By Remark 6.1, x1 � x2, so there exists a vertex
y ∈ V (G) such that x1 ∼ y and x2 ∼ y. It follows that ∆G(x1, x2) = NG(x1)4NG(x2) =
{v1, u1, y} 4 {v2, u2, y} = B. In picture:
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x1

y1

x2

v1

v2

u1

u2

Proposition 6.8. Let G = Pet. A set of vertices C ⊆ V (G) is not a transversal of the
hypergraph D4(G) if and only if there exists a 6-subset D of V (G) such that C ⊆ D and
G[D] is isomorphic to a subgraph of the following graph H:

Proof. Let us show first that if B = {u1, u2, v1, v2} ∈ B (B defined as in the previous
proposition), where u1 ∼ u2 and v1 ∼ v2, then G[V (G) \ B] is isomorphic to the graph
in the statement.

As before, there exist three vertices x1, x2, y1 ∈ V (G)\B such thatG[B∪{x1, x2, y1}]
is the following graph:

x1

y1

x2

v1

v2

u1

u2

Since |NG(v)| = 3 for all v ∈ V (G), there exist vertices (not necessarely distinct)
w1, w2, z1, z2, y2 ∈ V (G) such that u1 ∼ w1, u2 ∼ w2, v1 ∼ z1, v2 ∼ z2, and y1 � y2.
By Remark 6.1, y2 /∈ {w1, w2, z1, z2}, w1 6= w2, w1 6= z1, w2 6= z2 and z1 6= z2.

Since |V (G)| = 10, we obtain w1 = z2 and w2 = z1. So the Petersen graph can be
represented as in the following figure.

x1

y1

x2

v1

v2

u1

u2

z1

z2

y2
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Then G[V (G) \B] is isomorphic to H because V (G) \B = {x1, x2, y1, y2, z1, z2}.
Let C ⊆ V (G).

By Proposition 6.7, C is not a transversal of the hypergraph (V (G), DISC4(G)) if
and only if there exists B ∈ B such that C ∩ B = ∅. This shows that if C is not a
transversal of the hypergraph D4(G) then C ⊆ D := V (G) \ B and G[D] is isomorphic
to the graph in the statement.

Let us assume now that C ⊆ D = {x1, x2, y1, y2, z1, z2} ⊆ V (G) such that G[D] is:

x1

y1

x2

z1

y2

z2

In this case D = ∆G(y1, y2) and so, by Corollary 6.5, V (G) \ D ∈ DISC4(G). This
proves the proposition.

Proposition 6.9. Let G = Pet. If B ⊆ V (G) is a transversal of the hypergraph D4(G),
then either B ∈ DISC4(G) or |B| ≥ 5.

Proof. Let B ⊆ V (G) such that |B| = 4 and B /∈ DISC4(G). By Remark 6.1, G[B] is a
graph on 4 vertices with no cycles. Thus, by Proposition 6.7, it is isomorphic to one of
the following graphs:

P4 T P3, 1 P2, 1, 1 P1, 1, 1, 1

We prove now that, in all the previous cases, there exist two vertices x, y in V (G) \ B
such that G[B ∪ {x, y}] is isomorphic to H. As a consequence, by Proposition 6.8 we
deduce that B is not a trasnversal of D4(G).

CASE (I) Let B = {v1, v2, v3, v4} ⊆ V (G) such that G[B] is the following graph:

v1

v2 v3

v4

Since |NG(v)| = 3, for any vertex v ∈ V (G), let x and y be the unique vertices in
NG(v2) \ B and NG(v3) \ B respectively. Since there are no cycles of lenght 3 in the
Petersen graph, both x and y are not adjacent to any other vertex in B. Thus G[B ∪
{x, y}] is

v1

v2 v3

v4

x y

which is clearly isomorphic to H.

CASE (II) Let B = {v1, v2, v3, v4} ∈ V (G) such that G[B] is the following graph:
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v1 v2 v3

v4

Since |NG(v)| = 3, for any vertex v ∈ V (G), let x and y be the vertices in NG(v4)\B. By
Remark 6.1 again, x and y are not adjacent to any other vertex in B. Thus G[B∪{x, y}]
is

v1 v2 v3

v4x y

which is isomorphic to H.

CASE (III) Let B = {v1, v2, v3, v4} ∈ V (G) such that G[B] is the following graph:

v1 v2 v3

v4

Since v2 is not adjacent to v4, there exist a vertex x ∈ V (G) \B such that x is adjacent
to both vertices v2 and v4. Let y ∈ NG(x)\B the other vertex in V (G) adjacent to x. By
Remark 6.1 again, x and y are not adjacent to any other vertex in B. Thus G[B∪{x, y}]
is

v1 v2 v3

v4 x y

which is isomorphic to H.

CASE (IV) Let B = {v1, v2, v3, v4} ∈ V (G) such that G[B] is the following graph:

v1

v2 v3

v4

Since v1 and v2 are not adjacent to both vertices v3 and v4, there exist vertices u1, u2, u3, u4
in V (G) such that u1 ∈ NG(v1)∩NG(v4), u2 ∈ NG(v1)∩NG(v3), u3 ∈ NG(v2)∩NG(v4)
and u4 ∈ NG(v2) ∩ NG(v3). By Remark 6.1, each of the vertices in {u1, u2} is not in
{u3, u4}. Let us suppose that the vertices u1, u2, u3, u4 are all distinct. In figure:

v1

v2 v3

v4
u1

u2

u3

u4

Since u1 is not adjacent to u4, there exists a vertex w1 such that u1w1, u4w1 ∈ E(G).
Similarly there exists a vertex w2 ∈ V (G) adjacent to both u2 and u3. Since each vertex
of the Petersen graph has degree 3, we have w1 6= w2. Moreover w1 and w2 are not in
{v1, v2, v3, v4, u1, u2, u3, u4} because in that case, there would exist a cycle with length
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less than 5 in G. Thus V (G) = {v1, v2, v3, v4, u1, u2, u3, u4, w1, w2}. The extended
graph becomes:

v1

v2 v3

v4
u1

u2

u3

u4

w2 w1

Let us consider the vertex v3. Since its degree is equal to 3, it must exist a vertex in
V (G) \ {u, u3} that is adjacent to v3. But this is impossible still by Remark 6.1. Thus
u1 = u2 or u3 = u4. If u1 = u2 (u3 = u4), then, by setting x := u1 = u2 (x := u3 = u4)
and y equal to the third vertex in NG(v1) (NG(v2)) different from x and v2 (x and v1),
then G[B ∪ {x, y}] is the following graph:

v1

v2 v3

v4
x

y 

v1

v2 v3

v4

x

y


which is isomorphic to H.

CASE (V) Let B = {v1, v2, v3, v4} ∈ V (G) such that G[B] is the following graph:

v1

v2 v3

v4

In this case there exist vertices x1, x2, y1, y2, z1, z2 ∈ V (G) such that the corresponding
extended graph is the following:

v1

v2 v3

v4
x1

x2

y1 y2

z1 z2

They are all distinct because, if x1 = x2, y1 = y2 or z1 = z2, then some vertices would
have degree 4, and this does not occur in the Petersen graph. If another equality between
two of them holds, then there would exist a vertex w in {x1, x2, y1, y2, z1, z2} such that
NG(w) ⊂ {v1, v2, v3, v4}. In this case the six vertices different from w adjacent to one
of the three vertices in NG(w) are all different and thus in such a case it would be an
edge between two of the vertex in {v1, v2, v3, v4}. Then, since |NG(v)| = 3 for each v ∈
V (G), by Remark 6.1 we deduce that the unique possibility is x1x2, y1y2, z1z2 ∈ E(G).
Graphically:
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v1

v2 v3

v4
x1

x2

y1 y2

z1 z2

Then the three 6-subsets of V (G), C1 = B ∪ {x1, x2}, C2 = B ∪ {y1, y2} and C3 =
B∪{z1, z2} contain B and the subgraphs of G induced by C1, C2 and C3 are isomorphic
to H.

Corollary 6.10. Let G = Pet and let A ⊆ V (G). A is a transversal of the discernibility
hypergraph D(G) if and only if A is a transversal of D4(G) and A /∈ DISC4(G). In
particular each reduct of G has cardinality greater than or equal to 5.

Proof. Let A ⊆ V (G) be a transversal of D(G). Since DISC4(G) ⊆ DISC(G), the
subset A is a transversal of D4(G). Then, if A ∈ DISC4(G), by Corollary 6.5 we
obtain V (G) \A ∈ DISC(G), that is in contrast with the assumption on A.

Let now A ⊆ V (G) be a transversal of D4(G) and we assume that A /∈ DISC4(G).
Then, by Proposition 6.9 |A| ≥ 5. Let D ∈ DISC(G). By Proposition 6.2 we have
|D| = 4 or |D| = 6. If |D| = 4, then D ∈ DISC4(G) and thus D ∩ A 6= ∅. If |D| = 6,
since |A| ≥ 5 and |V (G)| = 10, we obtain D ∩A 6= ∅. So A is a transversal of D(G).

The last assertion follows directly from the definition of reduct.

We are ready now to prove Theorem 6.6.
Proof of Theorem 6.6. Firstly, let us note that, if B1 and B2 are different subsets

of V (G) such that the corresponding induced subgraphs are isomorphic to H (see 6.8),
then |B1 ∩B2| ≤ 4. To start, we will prove that if A ⊆ V (G) has five vertices and G[A]
is not isomorphic to any of the graphs listed in the statement, then G[A] it is isomorphic
to one of the following two graphs:

Y P3, 1, 1

To this aim let us count the number of 5-subsets A of V (G) such that the induced
subgraph G[A] is isomorphic to one of the graphs C5, P2, 2, 1, P4, 1, P5, Y or P3, 1, 1. Let
v ∈ V (G) be a fixed vertex.

Case G[A] ≡ C5. The 5-subsets of V (G) containing v must contain exactly two
vertices w1, w2 ∈ NG(v). For each choice of such vertices, there exist two edges in G
joining a vertex in NG(w1) \ v with a vertex in NG(w2) \ v. Thus there exist two subsets
of V (G) containing v, w1, w2 whose induced subgraph is a cycle of lenght 5 and so six
of these subsets contain v. It follows that the sought number is equal to

nc =
6|V (G)|

5
= 12.

Case G[A] ≡ P2, 2, 1. It is straightforward to see that G[V (G) \ ({v} ∪ NG(v))] is
a cycle of length 6. So there exist three subsets of V (G) whose corresponding induced

33



graph is isomorphic to that in (b) and where the isolated vertex is v. It follows that 305
is the total number of 5-subsets of V (G) whose induced subgraph is isomorphic to P2, 2, 1.

Case G[A] ≡ P4, 1. As we proved before, G[V (G) \ ({v} ∪NG(v))] is a cycle of length
6. Such a cycle contain six different path graphs of length 4. Thus there are six subsets
of V (G) whose corresponding induced graph is isomorphic to that in (c) and where the
isolated vertex is v and finally the sought number is 60.

Case G[A] ≡ P5. The number of 5-subsets of V (G) whose induced subgraph is iso-
morphic to the graph in (d) and having v as the “central” vertex is equal to 6. To prove
this, let us note that such a subset must contain exactly two vertices w1, w2 ∈ NG(v)
and two more vertices u1, u2, not each other adjacent, one in NG(w1)\{v} and the other
in NG(w2) \ {v}. It is easy to see that there are three possible choices for w1, w2 and
then two choices for u1, u2. Since G is vertex-transitive, there are six subsets A of V (G)
whose induced subgraph is isomorphic to P5 having v in the central position. Thus the
sought number is equal to 60.

Case G[A] ≡ Y . The number of 5-subsets of V (G) whose induced subgraph is isomor-
phic to the graph in (e) and having v as the vertex of degree 3 is equal to 6. In fact such a
subset must contain v, NG(v) and one of the other vertex which is clearly adjacent to one
vertex inNG(v). SinceG is vertex-transitive, the sought number is equal to 6|V (G)| = 60.

Case G[A] ≡ P3, 1, 1. Let us count the number of 5-subsets of V (G) containing v
whose induced subgraph is isomorphic to the graph in A and having v as the vertex of
degree 2. Let w1, w2 be the two vertices in A which are adjacent to v and let u the other
vertex in NG(v). A must contain the two vertices in NG(u) different from v because the
other vertices are adjacent to w1 or w2 and this contradicts our assumption. So there
is one such subset for each choice of w1, w2 ∈ NG(v). Thus there are three subsets A
of V (G) whose vertex with degree 2 is v and by symmetry of the Petersen graph there
are thirty 5-subsets of V (G) whose induced subgraph is isomorphic to the graph in P3, 1, 1.

The sum of all these numbers is exactly 252, that is equal to
(
10
5

)
. So the assert holds.

If A is a subset of G such that G[A] is isomorphic to a graph among C5, P2, 2, 1, P4, 1

and P5, then there is no vertex subset B of G such that A ⊆ B and G[B] ≡ H. Hence
A is a transversal of D4(G) and thus, by Proposition 6.8, it is a transversal of D(G).

Let now A ⊆ V (G) be such that G[A] ≡ C5 and let v ∈ A having degree 2 in G[A].
Let w the third vertex in NG(v) which is not in A. Then G[A∪{u}] is clearly isomorphic
to H. Thus A is not a transversal of D4(G) and so it can not be a reduct of G. Similarly,
if G[A] is isomorphic to P2, 2, 1 and v is the vertex in A having degree 2, then A \ {v}
is isomorphic to the empty graph on four vertices and therefore, as in the proof of
Proposition 6.9 (CASE (V)), the vertex w ∈ V (G) adjacent to the isolated vertices in A
is adjacent to v too, hence G[A∪ {u}] is isomorphic to H. By Proposition 6.8, A is not
a reduct of G.

Now, if B ⊆ V (G) is a transversal of D4(G) such that |B| ≥ 6, we prove that
B contains a 5-subset of V (G) whose induced subgraph is one among C5, P2, 2, 1, P4, 1

and P5. It is trivially sufficient to prove this fact for the vertex subsets B having six
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elements such that G[B] is not isomorphic to H. Let B = {v1, v2, v3, v4, v5, v6} such a
subset and let A = {v1, v2, v3, v4, v5}. Let us suppose G[A] ≡ Y . In figure:

v1 v2 v3

v4

v5

v6

The vertex v6 is not adjacent to the vertices v2, v3 because, in the first case G[B] would
be isomorphic to H, in the second case the vertex v3 would have degree at least 4. Thus
G[{v1, v2, v3, v4, v6}] is isomorphic to one of the following graphs:

or or

Thus B is not a reduct.
Let B = {v1, v2, v3, v4, v5, v6} and A = {v1, v2, v3, v4, v5} as before such that

G[A] ≡ P3, 1, 1. In figure:

v1

v2

v3

v4

v5

v6

If v6 was not adjacent to any of the vertices in {v1, v2, v4, v5}, then G[{v1, v2, v4, v5, v6}]
would be the empty graph on 5 vertices, and this is not possible as we proved before. So
v6 is adjacent to at least one of the vertices in {v1, v2, v4, v5}.

If v6 is adjacent to v4 (or v5), then G[{v1, v3, v4, v5, v6}] (or G[{v2, v3, v4, v5, v6}])
is isomorphic, as before, to one of the following graphs:

or or

Let us suppose that v6 is not adjacent to both v4 and v5. Then, if v6 is adjacent to
v1, the subgraph G[{v1, v3, v4, v5, v6}] is isomorphic to the following graph:

and thus also G[{v2, v3, v4, v5, v6}] is isomorphic to the same graph. This is impossible
because in that case the above subgraph of G would be isomorphic to H, contradicting
the assumption. Similarly v3 can not be adjacent to v2. Thus B is not a reduct.

For the second part of the statement of Theorem 6.6, we note that if A ∈ DISC4(G)
then G[A] is isomorphic to Y , by virtue of Proposition 6.7. Moreover, by Propositions 6.4
and 6.8, if D ∈ DISC6(G) then G[D] is isomorphic to P3, 1, 1. In fact, if D ∈ DISC6(G),
by Proposition 6.4 we deduce that V (G) \D ∈ DISC4(G). Thus D is not a transversal
of the hypergraph D4(G) and, by Proposition 6.8, G[D] is isomorphic to P3, 1, 1. On
the other hand, let D ∈ DISC6(G). Since no 4-subset A of D is such that G[A] ≡ Y ,
then D is minimal with respect to the inclusion relation. Thus any hyperedge of the
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discernibility hypergraph is an essential subset of the Petersen graph. This concludes the
proof of Theorem 6.6.

�

Corollary 6.11. Let G = Pet. Then:
(i) |RED(G)| = 162 and rns(G) = (0, 0, 0, 0, 162, 0, 0, 0, 0, 0).
(ii) |ESS4(G)| = |ESS6(G)| = 15 and ens(G) = (0, 0, 0, 15, 0, 15, 0, 0, 0, 0), therefore
Edim(G) = 4.
(iii) ESS(G) = DISC(G), therefore dns(Pet) = (0, 0, 0, 15, 0, 15, 0, 0, 0, 0).

Proof. (i) By Theorem 6.6 all the reducts of the Petersen graph have cardinality 5. In
the proof of the same Theorem we counted such subsets. They are in total 162. So (i)
holds.
(ii)-(iii) By Theorem 6.6 it follows that all subsets appearing in the discernibility matrix
∆[G] are also minimal elements of the poset D(G). Let us note now that all the 6-
subsets that appear in the places of ∆[G] are mutually different between them. In fact,
if B is such a subset, by Theorem 6.6, G[B] is isomorphic to H and it is easy to see
that B = ∆G(x, y), where x, y ∈ B are the vertices having degree 3 in G[B]. Thus
there are exactly 15 of these subsets. By Proposition 6.4, a subset A ∈ DISC4(G) is the
complement in V (G) of a subset B ∈ DISC6(G). Thus |DISC4(G)| = 15 and the thesis
follows.

Example 6.12. Let G = Pet. Referring to Figure 1 in the introductory section,
we can use the classification result obtained in Theorem 6.6 to easily determine when
a vertex subset W of G is a reduct. For example, if we take A = {1, 5, 6, 8, 10} then
A is a reduct of G because the subgraph G[A] generated by A has the form (a) in the
statement of Theorem 6.6. Analogously, the vertex subsets {1, 3, 6, 7, 9}, {2, 3, 4, 5, 6},
{1, 2, 3, 4, 6} are all reducts of G because their generated subgraphs are respectively of
the type (b), (c), (d) in the statement of Theorem 6.6. On the other hand, the vertex
subset A = {6, 7, 8, 9, 10} is not a reduct of G because the generated subgraph G[A] is
the inner star of G, and therefore it is not isomorphic to any graphs among the types
(a), (b), (c), (d) in the statement of Theorem 6.6.

7. Conclusions

By interpreting the adjacency matrix of a graph as an information table, we were able
to connect graph theory with granular computing. The interest of this link is twofold:
using granular techniques on graphs and vice versa, ideas that arise in graph theory
can be used in granular computing and in the specific case of this paper on data tables
managed through rough set theory. By the results and the prospectives opened here, we
hope to have shown to the reader that the study of graph theory by means of GrC-RS
methods can be an interesting field of study and that both areas can benefit from each
other.

For the future, several directions are worth to be explored: apply the ideas of the
paper to other classes of graphs; use other techniques from granular computing to analyze
graphs and hypergraphs; analyze the meaning of the new introduced concepts in case
of a generic table, in particular the extended core in order to exploit it in data mining
applications.
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