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ABSTRACT

In this paper, we propose a novel approach based on deep learning for active classification of
electrocardiogram (ECG) signals. To this end, we learn a suitable feature representation from the raw
ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity
constraint. After this pretraining phase, we add a softmax regression layer on the top of the resulting
hidden representation layer yielding the so-called deep neural network (DNN). During the interaction
phase, we allow the expert at each iteration to label the most relevant and uncertain ECG beats in the test
record, which are then used for updating the network weights. As ranking criteria, the method relies on
the DNN posterior probabilities to associate confidence measures such as entropy and Breaking-Ties
(BT) to each ECG test beat in the record under analysis. In the experiments, we validate the method on
the well-known MIT-BIH arrhythmia database as well as two other databases called INCART, and
SVDB, respectively. Furthermore, we follow the recommendations of the Association for the
Advancement of Medical Instrumentation (AAMI) for class labeling and results presentation. The results
obtained show that the newly proposed approach provides significant accuracy improvements with less

expert interaction and faster online retraining compared to state-of-the-art methods.

Index Terms—ECG signal classification, feature learning, denoising autoencoder (DAE), deep neural

network (DNN), active learning (AL).



1. Introduction

The Electrocardiogram (ECG) signal is a noninvasive test widely used for reflecting the underlying
heart conditions. A careful inspection of its behavior is essential for detecting cardiac arrhythmias
particularly in long-term recordings (usually over a period of 24 hours). Therefore, the utilization of

computer-based methods represents an important solution that can benefit cardiologists in the diagnosis.

In the last decades, several pattern recognition methods were developed for arrhythmia detection and
classification [1-3,25,31,41]. Usually, these approaches are based on three main steps which are
preprocessing, feature extraction; and classification. First, the ECG signals are enhanced by eliminating
various kinds of noise and artifacts (i.e., baseline wanders, power line interference, and muscle
contraction) [49,53,57,58]. After this step, the ECG waveforms (i.e., PQRST) consisting mainly of P
wave, QRS complex and T wave are extracted by means of segmentation [8,44,48]. Then several
handcrafts features are calculated from these waveforms. In general, the available feature representation
methods include but are not limited to morphology [12,16], temporal information [13,33], wavelet
transform [59,60],High-order statistics (HOS) [33], Hermite basis function [35], and Hidden Markov
modeling (HMM) [11]. Then feature reduction techniques such as principal component analysis (PCA),
independent component analysis (ICA) and linear discriminant analysis (LDA) are usually applied to
reduce the dimensionality of the feature representation [40,60,61]. Finally, the obtained features are used
to learn the decision function of a classifier such as neural networks (NN) [32], probabilistic NN [56],
recurrent NN [15], support vector machines (SVMs) [1,25], least square SVM [17], path forest [38] and

Gaussian processes (GPs) [1,42].

Despite these great efforts, it has been shown recently [12,25,62] that automatic methods do not

perform well if the recommendations of the Association for the Advancement of Medical Instrumentation



(AAMI) for class labeling and results presentation are closely followed as a possible solution of
standardization. Specifically, the AAMI standard defines five classes of interest: normal (N), ventricular
(V), supraventricular (S), fusion of normal and ventricular (F) and unknown beats (Q). Regardless of the
class definition, this standard recommends essentially for performance evaluation to adopt inter-patient
scenario (i.e., training and test ECG beats are extracted from different patients), which is not usually
adopted in most of the works published in the literature. This requirement renders the automatic
classification task very challenging due to the strong shift between the distribution of training and test
subjects. Although, various handcrafted feature representations as well as many classifiers were
considered as mentioned previously, the results obtained by automatic methods remain up to now

unsatisfactory.

To overcome the above issues, semiautomatic methods allowing expert interaction were introduced
as an alternative promising solution [4,13,29,30,32]. Basically, these approaches start by training a global
classifier on a large dataset and another local-classifier on the first few minutes from the test record
labeled by an expert. Examples of handcrafted features adopted by these approaches are shown in Table
1. Then the outputs of both classifiers are fused using simple voting rules. One major drawback of these
approaches lies in the selection scheme which does not allow measuring the importance of these beats in
improving the classification accuracy. Indeed, it is not guaranteed that the selected first few minutes can

efficiently model the statistical distribution of the data.

This paper proposes a novel approach for the active classification of ECG signals based on deep
learning [7]. The idea of deep learning also known as feature learning (proposed for the first time by
Hinton [23]) is about learning a good feature representation automatically from the input data. Typical

deep learning architectures include deep belief networks (DBNSs) [24], stacked autoencoder (SAE) [54],



and convolutional neural networks (CNNs) [52]. Recently, compared to shallow architectures (i.e.,
handcrafted features fed as input to a kernel classifier) deep learning has shown outstanding results in
many applications such as image classification [21], object recognition [5], face recognition [27], and
medical image analysis [9]. In addition, deep learning has shown promising results for the analysis of
time series data such as video, stock marker prediction, music recognition, electronic nose data, and
speech recognition [14,22]. We refer the reader to [34] for a detailed review on these applications. For
the particular case of physiological data, Mirowski et al. [43] used convolutional networks for epileptic
seizure prediction from intracranial EEG signals. Langkvist et al [39] proposed an RBM-based method
for sleep stage classification from 4-channel polysomnography data. Wang and Shang [55] used DBN to
automatically extract features from raw unlabeled physiological data. For the automatic classification
ECG signals, one can find the solution proposed in [28] based on the combination DBN and SVM. In
particular, DBN was used for feature learning then the obtained features are fed to SVM for training and
classification.

In our context, we use deep learning to achieve two main objectives: i) learn a suitable feature
representation of the ECG signals in an automatic way unlike state-of-the-art methods which rely on
handcrafted features; and ii) use active learning (AL) techniques to reduce expert effort in labeling data
instances for inducing the classifier. Given the training data available at hand, we first learn an
appropriate feature representation in an unsupervised way using a denoising autoencoder (DAE) with
sparsity constraint. After this pretraining phase, we build an initial DNN tailored to the classification of
AAMI classes by adding on the top of the resulting hidden representation layer a softmax regression
layer. During the interaction phase, unlike the available methods, we do not allow the user to label the

first few minutes but instead we use AL techniques.



The aim of AL is to rank the unlabelled set according to a criterion that allows us to select the most
useful samples to improve the model, thus minimizing the number of training samples necessary to
maintain discrimination capabilities as high as possible. When faced with large amounts of unlabeled
data, such algorithms automatically identify the exemplar beats for manual annotation
[10,18,19,26,37,46,47]. The most ambiguous samples are given to the expert for labeling and then they
are used to retrain the classifier. It is expected that this process will increase the generalization ability of
the classification system on the difficult samples for the next iterations. As ranking criteria, the method
relies on the DNN posterior probabilities to associate confidence measures such as entropy [19,26,46]
and Breaking-Ties (BT) [10,37,47]. In the first criterion, we calculate for each ECG test beat the entropy
value then the beats with the highest entropy values are selected for labeling. High values of entropy
means that the ECG beats are classified with low confidence, and thus adding them to the training set
can be useful to improve the classifier decision regions in the feature space. In the second criterion called
BT, the difference between the two highest DNN posterior probabilities is indicative of the way a sample
is handled by the classifier. When the two highest values are close, the classifier confidence is low. Thus,
the beats having low difference between the two highest support values are selected for labeling.

In the experiments, we validate the method on the well-known MIT-BIH arrhythmia database as well
as two other databases called INCART and SVDB, respectively. The results obtained show that the newly
proposed approach provides significant accuracy improvements with less expert interaction compared to
state-of-the-art methods.

The rest of the paper is organized as follows. Detailed descriptions of the proposed approach are
presented in Section Il. Experimental results are reported in Sections Il1. Finally, conclusions and future

directions are drawn in Section VI.



2. Description of the Proposed Approach

Let us consider D = {(x;,y;)}*, atraining set composed of n ECG beats, where x; € R is the ECG
beat vector of dimension D and y; € [1, K] is its corresponding class label. Given this training set, we
aim to classify an ECG record of a new patient unseen during the training phase and possibly obtained
under different acquisition conditions using the learning paradigm shown in Figure 1. In next subsections,

we provide a detail description of the proposed approach.

2.1 Phase 1: Unsupervised Feature Learning using DAE
In this phase, we first identify a suitable deep architecture model to learn the underlying structure of
the training data {x;}., available at hand. We use a denoising autoencoder (DAE) which is a
symmetrical neural network mainly used for learning the features of a dataset in an unsupervised manner
(see Figure 2-a) [14]. To build robust feature representation, the DAE is trained to reconstruct the input
x; € RP from its noisy corrupted version ;. While DAE can be trained to perform dimensionally
reduction like PCA; it is more useful to learn sparse representation by using a large number of hidden
units. This means representing a high-dimensional original signal by using a few representative atoms
on a low-dimensional manifold such as in sparse coding [51].
Typically the sparse DAE is made up of encoding and decoding parts, respectively. In the encoding
part, the noisy input X; is mapped to the hidden representation h; € R’ through the nonlinear activation

function f as follows:

h; = f(W®.%, +b©) (1)



W® e RLXD js the encoder weight matrix and b(® € R’ is the encoding bias vector. A typical choice
of the activation function is the sigmoid function i.e, f(v) = 1/(1 + exp(—v)). In the decoding phase,
the hidden representation is mapped also through a nonlinear activation function to reconstruct the input

vector x; as follows:
r;=f(W%. h; +b@) (2)
W@ e RP*L is decoding weight matrix and b(@ € RP is the decoding bias.

To determine the parameter vector 8,z = {W®, W@, b©, b@} representing the complete DAE

structure, we minimize the following cost function:

n
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Where A, and A, are regularization parameters and ||-|| is the Frobenius norm. The first term in (3)
represents the reconstruction error over all n training examples. The weight decay penalty term and the
sparsity constraint are added in the cost function to avoid over-fitting; improve generalization ability and
yield sparse representations. The sparsity constraint is introduced through the Kullback-Leibler

divergence KL(-) computed between two distributions with means p and ;. Here, p refers as the target



activation function of the hidden units, and p; = % i1[h;]; is the average activation function of the jth

hidden unit over all training examples. Typically, a nonredundant overcomplete representation will be

learned as in sparse coding when p is set to a small value.

To optimize the cost function in (3), we first initialize the parameter vector 0 45 to small values near
zero then we use the second order optimization method called L-BFGS [36] which is a quasi-Newton

method based on the BFGS [45] update procedure. To reduce the number of parameters, the weights

learned for the coding layer are simply tied to the decoding layer i.e. W®=W®" during the optimization

process.

It is worth noting that in order to build a deep learning architecture with H hidden layers, H-DAEs
are trained in greedy layer-wise unsupervised mode. The main idea is to learn a hierarchy of features one
level at a time. Specifically, the learning process starts by training the first DAE in unsupervised way by
optimizing (3) with the original input data to obtain the first hidden representation layer. Then the
reconstruction layer of this DAE is removed and the obtained hidden layer is used as the input data for
training the next DAE to generate higher-level representations, and so on. Finally, the learned feature
representations can be fed as input to a linear classifier such as SVM. However, this solution requires
retraining the SVM classifier on a large training set (augmented at each AL iteration with samples labeled
by the expert) which is computationally expensive and not practical in our context. For such purpose,

this work considers an alternative computationally efficient approach as shown in next phase.

2.2 Phase 2: Supervised fine tuning
Once the greedy layer wise pretraining is completed, one can add on the top of the resulting hidden

representation layers a logistic/softmax regression layer to perform binary/multiclass classification



yielding a DNN tailored to a task-specific supervised learning (see Figure 2.b). In our case, we append
the softmax regression layer as we are dealing with a multiclass classification problem. Then we fine

tune the entire DNN using backpropagation by minimizing the following cost function [7]:

n K
1 exp | hopyy (Xi)
L,(Opyy) = _Ezz 1(y; = k)log x ( - )
i=1k=1 Zk=1 eXp (heDNN (Xl))
/1 H
2
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where 1(+) is an indicator function that takes 1 if the statement is true otherwise it takes 0. The first
term refers to the cross entropy loss for the softmax layer, the second term is again the weight decay

penalty, and hg,,, , (X;) is the output of the DNN for an input x;.

The estimation of the vector of parameters 0,y = {Wl, e, Wy, by ... bH,WSOftmax} of the DNN
starts by initializing the weights W, ¢1mq, Of the softmax layer to small random values whereas the

weights of the H hidden layers are initialized by the encoding weights obtained in the pretraining

phase. Then the cost (5) is minimized with a min-batch gradient descent algorithm [50].

2.3 Phase 3: DNN fine tuning with AL

As mentioned in the introduction section, most of the works related to AAMI heart beat classification
allow the expert to label the first few minutes of the record without taking into consideration the
importance of these signals in boosting the classification accuracy. Here, we use an alternative solution
based on AL by asking the expert to label the most relevant ECG test beats through an iterative process

instead of labeling the first ECG beats. Basically, the idea of AL is to define appropriate criteria for



ranking the ECG beats according to their relevance to the classification task. Then these beats are added

to an active set (initially empty) for fine tuning the DNN classifier.

In order to select the most relevant beats, this work explores two different selection criteria based on
entropy [19,26,46] and BT [10,37,47], respectively. In the first criterion, we calculate for each test beat
the entropy score. Then the my; beats with the highest entropy values are selected for labeling. High
values of entropy mean that the ECG beats are classified with low confidence, and thus adding them to
the training set can be useful to improve the classifier decision regions in the feature space.

The second criterion called BT, which is based on the posterior probabilities of associating a sample
to a given class. In a multiclass setting, the difference between the two highest posterior probabilities is
an indicative of the way a sample is handled by the classifier. When the two highest values are close, the
classifier confidence is low. Thus, the m,; beats having low difference between the two highest posterior

values are selected for labeling.

It is worth noting here that in order to avoid overfitting problems due to the inclusion of new uncertain
beats in the active training set, we fuse the DNN outputs of the current and the previous iterations using
the max rule. We found experimentally that this solution inspired from the concept of elitism in
evolutionary computation leads in more stable behaviors as we are updating the network with few labeled

beats. The following algorithm provides the main steps of the proposed approach called Active-DNN.

Algorithm: Active-DNN
Input:

- Training setD = {(x;, yi)}ie1
- Testrecord: Rec = {x;}jL,

- DNN parameters (1,45, 43, L)
- Al iterations: ITER
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- Number of ECG beats to label at each iteration: my;
Output:

- Classification result
Step 1: Compute the weights 0,4 of DAE by optimizing the cost function (3)
using L-BFGS (Phase 1);

Step 2: Use 0,45 to initialize DNN and compute 05,y by optimizing the cost function (5) using
backpropagation (Phase 2);

Step 3: Classify the test record Rec with the trained DNN; and let Post be the estimated posterior
probabilities;

Step 4: Set the initial active training set to an empty set: Try;, = ¢ ;

Step 5: for Iter = 1: ITER (Phase 3)

Step 5.1: Compute the uncertainty (i.e., BT or entropy) associated with each test beat
using the estimated Post;

Step 5.2: Rank the signals of the test record Rec based on their uncertainty;

Step 5.3: Ask an expert to label the top ranked my,; signals;

Step 5.4: Augment the active training set with these new labeled signals:
Tra, = [Tryy; Selected,y, ,, 1;

Step 5.5: Updated the weights of DNN by fine tuning on T'ry;;

Step 5.6: Classify the test record Rec with the updated DNN; and Let Postnew be the
current estimated posterior probabilities;

Step 5.7. Use max rule to update the DNN posterior probabilities:
PostUpdated = max(Post, Postnew) ;

Step 5.8. Set Post = PostUpdated,;

Step 5.8. Set the labels of the test record Rec based on the maximum of Post;

end
Step 6: Final classification result.

11



3. Experimental Results

3.1  Dataset Description
In the experiments, we use three different ECG databases to evaluate the propose method as shown
in Table 2. We recall that class Q (unclassified) is discarded since it is marginally represented in these

three databases.

3.1.1 MIT-BIH Arrhythmia Database (MIT-BIH): This database consists of 48 two-lead recordings of

approximately half-hour long for each record and sampled at 360 Hz. This database contains annotation

for both beat class information and timing information verified by independent expert. The first 20

records (100-124) include representative beats to be included in the common training data. The remaining

24 used records (200-234) contain junctional, ventricular and supraventricular arrhythmias. Similar to

[12], the four recordings with paced beats are discarded.

3.1.2 St.-Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database (INCART):
This database consists of 75 recordings which are annotated and extracted from 32 Holter records. Each
record contains 12 standard leads and was collected from several patients (17 men and 15 women, aged
between 18 and 80) undergoing tests for coronary artery disease. The duration of each record is 30
minutes and sampled at 257 Hz. The annotations were produced by an automatic algorithm, and then,
corrected manually.

3.1.3 MITBIH Supraventricular Arrhythmia Database (SVDB): This database consists of 78 two-lead
recordings of approximately 30 minutes and sampled at 128 Hz. The beat type annotations of the
recordings were first automatically performed, by the Marquette Electronics 8000 Holter scanner and

later reviewed and corrected by a medical student.
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3.2 Experiments setup and Performance evaluation

Similar to [12,13], all ECG signals are first preprocessed using a 200-ms width median filter to
remove P wave and QRS complex, then a 600-ms width median filter to remove T wave. The resulted
signals are subtracted from the original signals to yield the baseline-corrected ECG signals. Then a 12-
order low-pass filter with a 35 Hz cut-off frequency is applied to remove power-line and high-frequency
noise. Then we build the initial training set from all ECG beats of the following 22 records of MIT-BIH
database DS1={101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208,
209, 215, 220, 223, 230}[12]. The remaining records of this database, grouped in DS2={100, 103, 105,
111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234} as well

as all records of the other two databases are left for test as shown in Table 3.

To learn a suitable feature representation of the data with DAE, we use the complete ECG waveform
(i.e., ECG morphology) of lead I. In addition, since it is well known that the temporal information is
important for discerning the class signatures, we add four other temporal features [12,13]. These temporal
features are: 1) the Pre-RR feature which is the distance between a current R peak and its previous R
peak; 2) the Post-RR feature representing the distance between the current R peak and the next R peak;
3) the local RR interval computed by averaging all the RR intervals within a sliding window covering
the past 10 seconds episode of the given heartbeat; and 4) the global average RR interval which is the
average of RR intervals within a sliding window covering the past 5 minutes episode of the given

heartbeat, which reflects the background rhythm information in the past 5 minutes episode.

To extract the ECG waveform as well as the above four temporal features, we perform QRS detection
and ECG wave boundary recognition tasks by means of the ecgpuwave software available on:

http://www.physionet.org/physiotools/ecgpuwave/src/. Then we resample all segmented ECG signals to
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the same periodic length equal to 50 uniformly distributed samples. The length of the initial feature vector

fed as input to DAE including morphology and temporal features equals 54 for each beat.

For performance evaluation, we present the results in terms of VEB (V class versus [N, S, and F])
and SVEB (S class versus [N, V, and F]). In particular, we use the standard measures: sensitivity(Se),

positive predictive value (Pp), specificity (Sp), overall accuracy(0A) [12,32,33].

3.3 Generation of an initial DNN model (Pretraining and fine tuning using DS1 of MIT-BIH)

First of all, we shall identify a suitable initial architecture of our DNN build on the basis of DAE
and the softmax regression layer. We particularly, follow the practical recommendation of [6] of training
deep architectures. To this end, we pre-train DAE on DS1 of MIT-BIH using the LB-FGS method then
we use its results for initializing DNN and then fine tune the whole architecture with backpropagation.
Specifically for pre-training DAE, we initialize 6,45 to small values in the range  [-0.005 0.005]
randomly; we fix the target activation function of the hidden unit to p = 0.05 [24]; and then use the
default parameters of the function minFunc [64] for optimizing the cost function (3). For the
backpropagation algorithm, we use a mini-batch gradient optimization method (i.e., learning rate is set
to 1, momentum to 0.5, and batchsize to 100). Then we search for the remaining DNN hyperparameters
(441, 4,2, 43) using a 5-fold cross-validation in the range [0, 1]. We repeat this searching process, for
different sizes of the hidden representation layer: L = {10, 25,50, 75,100, 200, 300}. We note that the
experiments are carried out on a desktop with the following characteristics (core i7, CPU 2.50 GHz,
RAM 16 GB, and GPU Nvidia Geoforce GTX 850M).

Figure 3 shows the training results obtained for each configuration on DS1. Here we clearly notice

that using an overcomplete representation (similar to sparse coding) leads to better classification results
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compared to dimensionality reduction. Recall that the dimension of the original feature is equal to 54.
The scenario with 100 hidden nodes is a reasonable choice for our initial DNN model. In Figure 4, we
show also the learned signatures for each AAMI class, which are sparse and discriminative. It is
important to notice that with this deep architecture much of the computation burden is done in this phase
only, while fine tuning the DNN weights during the AL process is computationally very efficient.

In order to show the superiority of DNN compared to standard NN, we repeat the above training
process but without the pre-training phase. That is we train the complete architecture using only
backpropagation. The results shown in Figure 3 confirm clearly the superiority of DNN over standard

NN.

3.4 Results on MIT-BIH database

For this database, we present the results by considering three different scenarios for building the test
set as usually done in the works dealing with the AAMI norm: 1) using the 11 common testing records
for VEB {i.e. 200 202 210 213 214 219 221 228 231 233 234} and 14 testing records for SVEB {i.e. 200
202 210 212 213 214 219 221 222 228 231 232 233 234}; 2) using the 24 common testing records from
200 up to 234; and 3) using All 48 records (i.e., DS1+DS2). To highlight the benefit of the using BT
and entropy selection criteria, we include also for comparison purposes the results obtained by random
selection and by labeling the first 300 hundred samples from each record as done in the literature. In the
rest of the paper, we call the corresponding deep learning schemes as DNN-BT, DNN-Entropy, DNN-

RS, and DNN-First300.

Figures 5 and 6 show an example of the behavior of (04, Se, and Pp) for VEB and VEB, respectively

versus the number of queries for the first scenario. We note that for each query the expert labels 10 ECG
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beats from the test record and then these labels are added to the Active training set (initially set to empty)
for updating the weights of DNN though backpropagation. As can be seen DNN-BT and DNN-Entropy
provide clearly better results compared to DNN-RS and DNN-First300. For the this scenario (see Table
4), the initial values of (0OA, Se, Sp and Pp) for SEVB are equal to (91.3%, 11.5 %, 95.8%, and 13.2%).
After adding 50 beats per record, DNN-BT yields accuracies above 90% that is (93.1, 92.7%, 99.6% and
99.3%), while, DNN-Entropy takes 10 iterations to provide similar results. On the other side, DNN-
First300 exhibits the worst behavior as it provides an (0A, Se, Sp and Pp) equal to (74.3%, 89.3%,
99.5% and 98.2%) after 30 iterations. For VEB, the initial values (0OA, Se, Sp and Pp) are equal to
(96.7%, 84.7%, 98.3 and 87.1%). After 5 iterations, DNN-BT and DNN-Entropy reach accuracies of
(98.6%, 92.4%, 99.29%, and 95.5%) and (98.9%, 91.2%, 99.8%, and 99.2%), respectively. Here again,
DNN-First300 exhibits a less competing behavior compared to the other three learning modes. It is worth
to note that the same observations can be easily recognized from Table 5 and 6 related to the second and

third scenarios.

We recall that the above results are obtained by applying the elitism trick to the previous and current
posterior probabilities generated by DNN. As seen clearly in Figure 7 and 8 this trick allows filtering out
unstable behaviors caused by adding the most ambiguous beats to the active training set. From the above
results one can draw the following conclusions: i) the selection of ECG beats for labeling has direct
impact on the classification accuracy; ii) the BT and entropy selection modes allow obtaining stable and
better results compared to simple selection schemes based on random selection or labeling the first 300
beats as usually done in the literature; iii) The results shown in Tables 3, 4 and 5 for all three scenarios,
respectively confirm clearly the superiority of the proposed approach compared to state-of-the-art

methods.
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3.5 Results on INCART Database

To assess further the generalization ability of the proposed approach, we repeat the above
experiments on INCART database. Recall that the results reported here are obtained using the initial
DNN model trained on DS1 of MIT-BIH. Figure 9 and 10 show the behavior of (0A4, Se, Sp and Pp)
versus the number of queries for this dataset. Table 7 shows that the initial values of (0A4, Se, Sp and Pp)
were low before starting the AL process as they are equal to (92.40%, 15.85%, 93.26%, and 2.54%) for
SVEB and (82.99%, 75.11%, 83.99%, and 37.63%) for VEB. After adding 300 samples per record,
DNN-BT reaches accuracies of (99.86%, 92.59%, 99.95% and 92.80%) for SVEB and (99.40%, 97.23%,
99.67, and 97.49%) for VEB, followed by DNN-Entropy which yields (99.85%, 90.86%, 99.95%, and
95.34%) for SVEB and (99.36%, 96.88%, 99.67%, and 97.51%) for VEB. Here again, we notice that

DNN-First300 exhibits the worst behavior.

3.6 Results on SVDB Database

Figures 11 and 12 show the results of (0A4, Se, Sp and Pp) for SVEB and VEB, respectively. As
can be seen, DNN-BT exhibits clearly a stable behavior compared to the other learning modes. Before
starting the interaction process, the (0A4, Se, Sp, and Pp) are equal to (90.61%, 8.80%, 96.32%, and
14.31%) and (66.27%, 65.19%, 66.32%, and 9.31%) for SVEB and VEB respectively. After adding 300
samples per record, DNN-BT yields (98.11%, 79.04%, 99.44%, and 90.75%) for SVEB and (98.71%,
92.73, 99.02%, and 83.42%) for VEB. The worst result is again achieved by DNN-300. In Table 8, we

summarize the main results obtained using the four learning schemes.
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3.7 Results obtained by DNN-BT with multiple hidden layers

To asses further the capability of the proposed method, we repeat the above experiments but with a
configuration of multiple hidden layers. In particular, we consider scenarios characterized by H=2, 3,
and 4 hidden layers. We use (100, 50) and (100, 50, 100) and (100,50,100,50) nodes for each
configuration that is alternating between a sparse and dense representations. Here we recall that we tried
several values for the hidden nodes but the best performances were obtained for the above values. Figures
13 up to 18 shows the results obtained for the three databases. As can be seen, the configuration of one
and two hidden layers are both competing in terms of classification accuracy. The detailed results of
DNN-BT with two hidden layers are shown in Table 9. By contrast, increasing the number of hidden
layers leads to less accurate results. Such behavior suggests that updating the network with few training

samples as done in our context (AL setting) seems to be not suitable for complex architectures.

4. CONCLUSIONS

In this paper, we have proposed a novel approach based on deep learning for active classification of
ECG signals. Compared to state-of-the art methods based on shallow architectures this approach has
several desirable proprieties: i) it learns automatically an appropriate sparse feature representation from
the raw ECG using DAE; ii) it relies on AL criteria for selecting the most valuable ECG beats for
inducing the DNN classifier. The experimental results obtained on three different ECG databases showed
that the proposed method is robust and computationally efficient during the iterative labelling process
and clearly outperforms state-of-the-art methods. For future developments, we plan to increase the

classification accuracy and reduce the expert interaction in many ways. For example: i) the exploration

18



of other deep architectures based on RBM and CNN; and ii) the definition and the combination of new

AL criteria allowing the extraction of more relevant ECG beats for labeling.
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Table. 1 Handcrafted features adopted by state-of-the-art methods.

Method

Features

Chazal et al. [13]
Ince et al. [30]

- ECG morphology (10 samples) between QRS onset and QRS offset, ECG
morphology (9 samples) between QRS onset and QRS offset.

- Pre-RR interval, Post-RR interval, average RR interval, local average RR
interval, QRS duration, and T-wave duration.

Hu et al. [29]

- Width and height of QRS complex, RR interval, QRS complex area.

Chazal et al. [12]

- ECG morphology (10 samples) between QRS onset and QRS offset.

- ECG morphology (9 samples) between QRS onset and QRS offset.

- Normalized ECG morphology (10 samples) between QRS onset and QRS
offset.

- Normalized ECG morphology (9 samples) between QRS onset and QRS
offset.

- ECG morphology (10 samples) between FP-50ms to FP+100ms.

- ECG morphology (9 samples) between FP-50ms to FP+100ms.

- Normalized ECG morphology (10 samples) between FP-50ms to FP+100ms.

- Normalized ECG morphology (9 samples) between FP-50ms to FP+100ms.

- Pre-RR interval, Post-RR interval, average RR interval, local average RR
interval, QRS duration, and T-wave duration.

Jiang et al. [32]

- Hermite basis function (HBF).

Naif et al. [1]

- Wavelets, HOS, Temporal features, and S-Transform
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Table. 2 ECG databases used in the experiments.

Database # Records # Leads Sample rate
MIT-BIH 48 recor_ds, Eaph record is 30 2 leads 360 Hz
minutes in length
INCART 75 records. Each record is 30 12 leads 257 Hz
minutes.
SVDB 78 records. Each record is 30 2 leads 128 Hz

minutes in length

Table 3. Number of training and testing ECG beats used in the experiments.

Database N S V F #REC
Training M(gé?)'H 45777 973 3769 414 22
M(gég)'H 44011 2049 3216 388 22
Test INCART 153545 1958 2000 219 75
SVDB 145436 10733 8281 23 70
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Table 4. Classification results in terms terms of VEB (11 common records) and SVEB
(14 common records) of MIT-BIH.

SVEB VEB
Method Labeled

Se Pp Sp OA Se Pp Sp OA

Chazal etal.[13] | 500 877 47 NIA 959 | 943 92 NA 994

Hu et al.[29] 300 NJA  NA NA NA | 789 758 968 948

Ince et al. [30] 300 81.8 634 985 961 | 903 922 988  97.9

Jaing et al. [37] 300 749 788 988 975 | 943 958 994 9838

0 115 132 958 913 | 847 871 983 967

50 716 655 979 965 | 859 895 986  97.1

Deep-300 100 733 758 987 974 | 915 903 986  97.8

200 735 869 994 980 | 935 962 994 988

300 743 893 995 982 | 954 962 994  99.0

0 115 132 958 913 | 847 871 983 967

50 708 752 987 972 | 924 924 988 982

Deep-Rand 100 827 856 992 984 | 920 942 991 984

200 876 894 994 988 | 938 966 994 989

300 89.2 911 995 990 | 930 980 997  99.0

0 115 132 958 913 | 847 871 983 967

50 863 917 996 989 | 963 983 996  99.4

Deep-Entropy 100 919 945 997 993 | 980 990 997 997

200 938 984 999 996 | 978 995 998  99.7

300 951 991 1000 997 | 975 995 998 997

0 115 132 958 913 | 847 871 983 967

50 905 962 998 993 | 974 990 998 996

Deep-BT 100 938 988 999 996 | 985 994 999  99.8

200 956 998 1000 998 | 985 998 1000  99.8

300 981 997 1000 999 | 994 998 1000  99.8
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Table 5. Classification results in terms terms of VEB and SVEB using 24 testing records
of MIT-BIH.

Method Labeled SVEB VEB
Se Pp Sp OA Se Pp Sp OA
Jaing et al. [32] 300 50.6 67.9 98.8 96.6 86.6 93.3 99.3 98.1
Ince et al. [30] 300 62.1 56.7 98.5 96.1 83.4 87.4 98.1 97.6
0 37.8 40.5 97.5 94.9 90.1 87.1 98.6 97.8
50 78.4 74.1 98.8 97.9 91.0 92.8 99.2 98.5
Deep-300 100 79.7 81.8 99.2 98.4 93.9 93.4 99.2 98.8
200 79.9 89.6 99.6 98.7 95.5 96.3 99.5 99.2
300 79.7 921 99.7 98.8 95.4 96.7 99.6 99.2
0 37.8 40.5 975 94.9 90.1 87.1 98.6 97.8
50 78.4 74.1 98.8 97.9 91.0 92.8 99.2 98.5
Deep-Rand 100 79.7 81.8 99.2 98.4 93.9 93.4 99.2 98.8
200 79.9 89.6 99.6 98.7 955 96.3 995 99.2
300 79.7 92.1 99.7 98.8 95.4 96.7 99.6 99.2
0 37.8 40.5 97.5 94.9 90.1 87.1 98.6 97.8
Deep-Entropy 50 87.3 88.0 99.5 98.9 945 96.2 995 99.1
100 915 90.7 99.6 99.2 95.7 98.4 99.7 99.4
200 921 93.5 99.7 99.4 97.2 98.9 99.8 99.6
300 924 93.1 99.7 99.4 97.2 98.8 99.8 99.6
0 37.8 40.5 975 94.9 90.1 87.1 98.6 97.8
50 91.7 93.9 99.7 99.4 97.3 98.8 99.8 99.6
Deep-BT 100 94.4 97.5 99.9 99.7 98.5 99.2 99.8 99.8
200 96.1 98.4 99.9 99.8 98.8 99.6 99.9 99.8
300 96.7 99.3 100.0 99.8 98.8 99.7 99.9 99.9
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Table 6. Classification results in terms terms of VEB and SVEB using 44 testing records
(DS1+DS2) of MIT-BIH.

SVEB VEB
Method Labeled

Se Pp Sp OA Se Pp Sp OA

Ince etal. [30] | 300 632 537 99 974 | 846 874 987 _ 983
0 410 429 985 969 | 910 795 92 977

50 788 742 992 987 | 919 936 995  99.0

Deep-300 100 800 818 995 990 | 942 940 995 992
200 800 903 998 992 | 957 966 997 995

300 801 920 998 993 | 963 966 997 995

0 410 429 985 969 | 910 795 92 977

50 858 858 996 992 | 935 983 998 994

Deep-Rand 100 804 908 997 995 | 958 984 998 996
200 801 915 998 995 | 966 986 998 997

300 906 949 999 996 | 977 987 998  99.8

0 410 429 985 969 | 910 795 92 977

50 900 945 999 996 | 982 988  99.9 9938

Deep-Entropy 100 932 970 999 997 | 989 995 999  99.9
200 948 983 1000 998 | 992 996 999  99.9

300 959 989 1000 999 | 993 997 999  99.9

0 410 429 985 969 | 910 795 982 977

50 937 963 999 997 | 983 995 999  99.9

Deep-BT 100 953 976 999 998 | 989 997 1000  99.9
200 978 990 1000 99.9 | 997 999 1000  99.9

300 990 996 1000 999 | 998 999 999  100.0
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Table 7. Classification results obtained on INCART database.

SVEB VEB
Method Labeled

Se Pp Sp OA Se Pp Sp OA

0 1558 254 9326 9240 | 7511 37.63 8398 82.99

50 3713 1864 9817 9749 | 7274 6425 9478 92.29

Deep-300 100 4974 3328 9888 9833 | 7561 7038 9589 93.60
200 5434 4290 9919 9869 | 7702 7574 96.80 9457

300 6537 5347 9936 9898 | 7868 8051 9753 9540

0 1558 254 9326 9240 | 7511 37.63 8398 82.99

50 66.45 5596 9941 99.04 | 81.89 8198 97.66 95.89

Deep-Rand 100 7017 6758 9962 9929 | 87.32 8669 9825 97.03
200 79.88 7887 99.76 9954 | 90.64 89.80 9865 97.76

300 8264 8314 9981 99.62 | 9202 9301 99.08 98.30

0 1558 254 9326 9240 | 7511 37.63 8398 82.99

50 56.08 7084 99.74 9925 | 7820 8499 9821 9595

Deep-Entropy 100 8013 8805 99.88 99.66 | 88.86 91.88 9897 97.84

200 89.12 9362 9993 9981 | 9503 9634 9952 99.02

300 90.86 9534 9995 99.85 | 96.88 97.51 99.67 99.36

0 1558 254 9326 9240 | 7511 37.63 8398 82.99

50 6461 8915 9991 9952 | 8843 91.04 98.86 97.69

Deep-BT 100 8391 9625 99.96 99.78 | 9459 97.18 9962 99.07

200 9122 9878 99.99 99.89 | 97.66 99.37 9991  99.66

300 9285 9934 9999 99.91 | 9878 99.77 99.96 99.83
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Table 8. Classification results obtained on SVDB database.

SVEB VEB
Method Labeled
Se Pp Sp OA Se Pp Sp OA
0 880 1431 9632 9061 65.19 931 6632 66.27
50 2207 4352 98.00 93.05 61.18  21.65 8826 86.90
Deep-300 100 2946 4222 9718 9277 6457 2431 89.34 88.09
200 38.99 5262 9755 9373 68.64  27.80 90.55 89.45
300 4577 56.03 9749 9412 74.15 3554 9287 91.93
0 8.80 1431 9632  90.61 65.19 931 66.32 66.27
Deep-Rand 50 4033 56.00 97.79  94.04 61.76 2446 89.89 8847
100 50.26 6434 98.06  94.94 66.59  29.38 9151 90.26
200 59.75 7253 9842 9590 7557 3640 9300 92.12
300 66.77 7467 9842 96.35 7814 4192 9426 9345
0 880 1431 9632 9061 65.19 9.31 6632 66.27
50 33.79 5590 9814  93.94 66.28  39.67 9465 93.23
Deep-Entropy 100 | 5183 6387 9795 9494 | 7692 6408 9771 96.67
200 7222 7933  98.69  96.96 86,51 8223 99.01 98.38
300 78.28 9238 9955  98.16 90.81  86.85 99.27 98.84
0 8.80 1431 9632  90.61 65.19 931 66.32 66.27
50 59.78 8258  99.12  96.55 86.27  81.03 9893 98.29
Deep-BT 100 7443 8983 9941  97.78 9141  90.19 99.47  99.07
200 8315 9228 9951  98.45 9501  94.48 99.71 99.47
300 86.39 9430 99.64 98.77 96.03 9568 99.77 99.58
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Table 9. Classification results obtained by DNN-BT with two hidden layers

SVEB VEB
DATBASE Labeled
Se Pp Sp OA Se Pp Sp OA
0 2939 3372 9678 9321 | 9628 7796 9697 97.02
50 9269 9459 9970 99.33 | 97.36 9925 99.82 99.68
» ané\"l'lT'CE;'n':mon 100 9554 9656 99.81 9958 | 98.39 9954 99.86 99.80
‘ records) 200 97.04 9831 99.91 99.76 | 99.13 99.84 99.90 99.90
300 986 9939 9994 99.84 | 99.43 99.96 99.95 99.93
0 50.02 5444 9810 9601 | 9632 7726 96.85 96.92
50 9428 9633 99.84 99.60 | 98.08 9894 99.84 99.71
(2':1":;3'(1':) 100 | 9613 9749 9989 9972 | 9801 9924 99.87 99.74
200 97.37 9828 99.92 99.81 | 99.49 9958 99.85 99.91
300 9853 99.80 99.95 99.88 | 9956 9991 99.92 99.95
0 5211 5645 98.86 97.57 | 90.10 7956 98.25 97.70
o 50 9252 9731 99.93 99.72 | 9817 9896 99.86 99.80
(DSL+DS2) 100 9554 97.83 99.94 99.82 | 9866 9950 9991 99.87
200 9791 9864 99.96 99.88 | 99.10 9951 99.93 99.90
300 99.30 9948 99.99 99.91 | 99.41 99.83 99.94 99.95
0 521 504 9889 97.85 | 5920 57.05 9423 90.28
50 7717 9539 99.96 99.70 | 91.35 9445 9929 98.40
INCART 100 89.33 9684 99.97 99.85 | 9548 9699 99.60 99.15
200 9413 9866 99.99 9992 | 9834 9872 99.82 99.67
300 9581 9947 99.99 99.95 | 99.01 99.49 99.93 99.83
0 110 637 9887 9247 | 5580 1538 8373 82.32
50 6524 8635 9928 97.05 | 84.48 7057 98.13 97.44
SVDB 100 7592 9007 9941 97.87 | 90.91 87.06 9928 98.86
200 8319 9204 9950 9843 | 9483 90.66 9948 99.25
300 8593 9497 9968 98.78 | 9581 9206 9956 99.37
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