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ABSTRACT 

In this paper, we propose a novel approach based on deep learning for active classification of 

electrocardiogram (ECG) signals. To this end, we learn a suitable feature representation from the raw 

ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity 

constraint. After this pretraining phase, we add a softmax regression layer on the top of the resulting 

hidden representation layer yielding the so-called deep neural network (DNN).  During the interaction 

phase, we allow the expert at each iteration to label the most relevant and uncertain ECG beats in the test 

record, which are then used for updating the network weights. As ranking criteria, the method relies on 

the DNN posterior probabilities to associate confidence measures such as entropy and Breaking-Ties 

(BT) to each ECG test beat in the record under analysis. In the experiments, we validate the method on 

the well-known MIT-BIH arrhythmia database as well as two other databases called INCART, and 

SVDB, respectively. Furthermore, we follow the recommendations of the Association for the 

Advancement of Medical Instrumentation (AAMI) for class labeling and results presentation. The results 

obtained show that the newly proposed approach provides significant accuracy improvements with less 

expert interaction and faster online retraining compared to state-of-the-art methods.  

Index Terms—ECG signal classification, feature learning, denoising autoencoder (DAE), deep neural 

network (DNN), active learning (AL). 
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1. Introduction 

The Electrocardiogram (ECG) signal is a noninvasive test widely used for reflecting the underlying 

heart conditions. A careful inspection of its behavior is essential for detecting cardiac arrhythmias 

particularly in long-term recordings (usually over a period of 24 hours). Therefore, the utilization of 

computer-based methods represents an important solution that can benefit cardiologists in the diagnosis.  

In the last decades, several pattern recognition methods were developed for arrhythmia detection and 

classification [1–3,25,31,41]. Usually, these approaches are based on three main steps which are 

preprocessing, feature extraction; and classification. First, the ECG signals are enhanced by eliminating 

various kinds of noise and artifacts (i.e., baseline wanders, power line interference, and muscle 

contraction) [49,53,57,58]. After this step, the ECG waveforms (i.e., PQRST) consisting mainly of P 

wave, QRS complex and T wave are extracted by means of segmentation [8,44,48]. Then several 

handcrafts features are calculated from these waveforms. In general, the available feature representation 

methods include but are not limited to morphology [12,16], temporal information [13,33], wavelet 

transform [59,60],High-order statistics (HOS) [33], Hermite basis function [35], and Hidden Markov 

modeling (HMM) [11]. Then feature reduction techniques such as principal component analysis (PCA), 

independent component analysis (ICA) and linear discriminant analysis (LDA) are usually applied to 

reduce the dimensionality of the feature representation [40,60,61]. Finally, the obtained features are used 

to learn the decision function of a classifier such as neural networks (NN) [32], probabilistic NN  [56], 

recurrent NN  [15], support vector machines (SVMs)  [1,25], least square SVM [17], path forest [38] and 

Gaussian processes (GPs)  [1,42]. 

Despite these great efforts, it has been shown recently [12,25,62] that automatic methods do not 

perform well if the recommendations of the Association for the Advancement of Medical Instrumentation 
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(AAMI) for class labeling and results presentation are closely followed as a possible solution of 

standardization. Specifically, the AAMI standard defines five classes of interest: normal (N), ventricular 

(V), supraventricular (S), fusion of normal and ventricular (F) and unknown beats (Q). Regardless of the 

class definition, this standard recommends essentially for performance evaluation to adopt inter-patient 

scenario (i.e., training and test ECG beats are extracted from different patients), which is not usually 

adopted in most of the works published in the literature. This requirement renders the automatic 

classification task very challenging due to the strong shift between the distribution of training and test 

subjects. Although, various handcrafted feature representations as well as many classifiers were 

considered as mentioned previously, the results obtained by automatic methods remain up to now 

unsatisfactory.  

To overcome the above issues, semiautomatic methods allowing expert interaction were introduced 

as an alternative promising solution [4,13,29,30,32]. Basically, these approaches start by training a global 

classifier on a large dataset and another local-classifier on the first few minutes from the test record 

labeled by an expert. Examples of handcrafted features adopted by these approaches are shown in Table 

1. Then the outputs of both classifiers are fused using simple voting rules. One major drawback of these 

approaches lies in the selection scheme which does not allow measuring the importance of these beats in 

improving the classification accuracy. Indeed, it is not guaranteed that the selected first few minutes can 

efficiently model the statistical distribution of the data.  

This paper proposes a novel approach for the active classification of ECG signals based on deep 

learning [7]. The idea of deep learning also known as feature learning (proposed for the first time by 

Hinton  [23]) is about learning a good feature representation automatically from the input data. Typical 

deep learning architectures include deep belief networks (DBNs) [24], stacked autoencoder (SAE) [54], 
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and convolutional neural networks (CNNs) [52]. Recently, compared to shallow architectures (i.e., 

handcrafted features fed as input to a kernel classifier) deep learning has shown outstanding results in 

many applications such as image classification  [21], object recognition [5], face recognition [27], and 

medical image analysis [9]. In addition, deep learning has shown promising results for the analysis of 

time series data such as video, stock marker prediction, music recognition, electronic nose data, and 

speech recognition [14,22]. We refer the reader to [34] for a detailed review on these applications. For 

the particular case of physiological data, Mirowski et al. [43] used convolutional networks for epileptic 

seizure prediction from intracranial EEG signals. Längkvist et al [39] proposed an RBM-based method 

for sleep stage classification from 4-channel polysomnography data. Wang and Shang [55] used DBN to 

automatically extract features from raw unlabeled physiological data. For the automatic classification 

ECG signals, one can find the solution proposed in [28] based on the combination DBN and SVM. In 

particular, DBN was used for feature learning then the obtained features are fed to SVM for training and 

classification.  

In our context, we use deep learning to achieve two main objectives: i) learn a suitable feature 

representation of the ECG signals in an automatic way unlike state-of-the-art methods which rely on 

handcrafted features; and ii) use active learning (AL) techniques to reduce expert effort in labeling data 

instances for inducing the classifier. Given the training data available at hand, we first learn an 

appropriate feature representation in an unsupervised way using a denoising autoencoder (DAE) with 

sparsity constraint. After this pretraining phase, we build an initial DNN tailored to the classification of 

AAMI classes by adding on the top of the resulting hidden representation layer a softmax regression 

layer. During the interaction phase, unlike the available methods, we do not allow the user to label the 

first few minutes but instead we use AL techniques.  
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The aim of AL is to rank the unlabelled set according to a criterion that allows us to select the most 

useful samples to improve the model, thus minimizing the number of training samples necessary to 

maintain discrimination capabilities as high as possible. When faced with large amounts of unlabeled 

data, such algorithms automatically identify the exemplar beats for manual annotation 

[10,18,19,26,37,46,47]. The most ambiguous samples are given to the expert for labeling and then they 

are used to retrain the classifier. It is expected that this process will increase the generalization ability of 

the classification system on the difficult samples for the next iterations. As ranking criteria, the method 

relies on the DNN posterior probabilities to associate confidence measures such as entropy  [19,26,46] 

and Breaking-Ties (BT) [10,37,47]. In the first criterion, we calculate for each ECG test beat the entropy 

value then the beats with the highest entropy values are selected for labeling. High values of entropy 

means that the ECG beats are classified with low confidence, and thus adding them to the training set 

can be useful to improve the classifier decision regions in the feature space. In the second criterion called 

BT, the difference between the two highest DNN posterior probabilities is indicative of the way a sample 

is handled by the classifier. When the two highest values are close, the classifier confidence is low. Thus, 

the beats having low difference between the two highest support values are selected for labeling.  

In the experiments, we validate the method on the well-known MIT-BIH arrhythmia database as well 

as two other databases called INCART and SVDB, respectively. The results obtained show that the newly 

proposed approach provides significant accuracy improvements with less expert interaction compared to 

state-of-the-art methods.   

The rest of the paper is organized as follows. Detailed descriptions of the proposed approach are 

presented in Section II. Experimental results are reported in Sections III. Finally, conclusions and future 

directions are drawn in Section VI. 
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2. Description of the Proposed Approach 

Let us consider 𝒟 = {(𝐱𝑖, 𝑦𝑖)}𝑖=1
𝑛  a training set composed of n ECG beats, where 𝐱𝑖 ∈ ℜ𝐷 is the ECG 

beat vector of dimension 𝐷 and 𝑦𝑖 ∈ [1, 𝐾] is its corresponding class label.  Given this training set, we 

aim to classify an ECG record of a new patient unseen during the training phase and possibly obtained 

under different acquisition conditions using the learning paradigm shown in Figure 1. In next subsections, 

we provide a detail description of the proposed approach. 

 

2.1 Phase 1: Unsupervised Feature Learning using DAE   

In this phase, we first identify a suitable deep architecture model to learn the underlying structure of 

the training data {𝐱𝑖}𝑖=1
𝑛  available at hand. We use a denoising autoencoder (DAE) which is a 

symmetrical neural network mainly used for learning the features of a dataset in an unsupervised manner 

(see Figure 2-a)  [14]. To build robust feature representation, the DAE is trained to reconstruct the input 

𝐱𝑖 ∈ ℜ𝐷 from its noisy corrupted version 𝐱̃𝑖.  While DAE can be trained to perform dimensionally 

reduction like PCA; it is more useful to learn sparse representation by using a large number of hidden 

units. This means representing a high-dimensional original signal by using a few representative atoms 

on a low-dimensional manifold such as in sparse coding [51]. 

Typically the sparse DAE is made up of encoding and decoding parts, respectively. In the encoding 

part, the noisy input 𝐱̃𝑖 is mapped to the hidden representation 𝐡𝑖 ∈ ℜ𝐿 through the nonlinear activation 

function 𝑓 as follows:  

𝐡𝑖 = 𝑓(𝐖(𝑒). 𝐱 ̃𝑖 + 𝐛(𝑒) )                                                                    (1) 
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𝐖(𝑒) ∈ ℜ𝐿×𝐷 is the encoder weight matrix and 𝐛(𝑒) ∈ ℜ𝐿 is the encoding bias vector. A typical choice 

of the activation function is the sigmoid function i.e, 𝑓(𝑣) = 1/(1 + exp(−𝑣)). In the decoding phase, 

the hidden representation is mapped also through a nonlinear activation function to reconstruct the input 

vector 𝐱𝑖 as follows:  

      𝐫𝑖 = 𝑓(𝐖(𝑑). 𝐡𝑖 + 𝐛(𝑑) )                                                                          (2) 

𝐖(𝑑) ∈ ℜ𝐷×𝐿 is decoding weight matrix and  𝐛(𝑑) ∈ ℜ𝐷 is the decoding bias.  

To determine the parameter vector 𝛉𝐷𝐴𝐸 = {𝐖(𝑒), 𝐖(𝑑), 𝐛(𝑒), 𝐛(𝑑)} representing the complete DAE 

structure, we minimize the following cost function:  

ℒ1(𝛉𝐷𝐴𝐸) =
1

2𝑛
∑‖𝐱𝑖 − 𝐫𝑖‖

2 +
𝜆1

2
(‖𝐖(𝑒)‖

𝐹

2
+ ‖𝐖(𝑑)‖

𝐹

2
)     

𝑛

𝑗=1

 

+𝜆2 ∑ KL(𝜌‖𝜌̂𝑗)

𝐿

𝑗=1

                                                                                       (3) 

with  

KL(𝜌‖𝜌̂𝑗) = 𝜌𝑙𝑜𝑔
𝜌

𝜌̂𝑗
+ (1 − 𝜌)𝑙𝑜𝑔

1−𝜌

1−𝜌̂𝑗
                                                         (4) 

Where 𝜆1 and 𝜆2 are regularization parameters and ‖∙‖𝐹 is the Frobenius norm. The first term in (3) 

represents the reconstruction error over all 𝑛 training examples. The weight decay penalty term and the 

sparsity constraint are added in the cost function to avoid over-fitting; improve generalization ability and 

yield sparse representations. The sparsity constraint is introduced through the Kullback-Leibler 

divergence KL(∙) computed between two distributions with means 𝜌 and 𝜌̂𝑗. Here, 𝜌 refers as the target 
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activation function of the hidden units, and 𝜌̂𝑗 =
1

𝑛
∑ [𝐡𝑖]𝑗

𝑛
𝑖=1  is the average activation function of the 𝑗th 

hidden unit over all training examples. Typically, a nonredundant overcomplete representation will be 

learned as in sparse coding when  𝜌 is set to a small value.  

To optimize the cost function in (3), we first initialize the parameter vector 𝛉𝐷𝐴𝐸 to small values near 

zero then we use the second order optimization method called L-BFGS [36] which is a quasi-Newton 

method based on the BFGS [45] update procedure. To reduce the number of parameters, the weights 

learned for the coding layer are simply tied to the decoding layer i.e. 𝐖(𝑑)=𝐖(𝑒)𝑇
 during the optimization 

process.   

  It is worth noting that in order to build a deep learning architecture with 𝐻 hidden layers, 𝐻-DAEs 

are trained in greedy layer-wise unsupervised mode. The main idea is to learn a hierarchy of features one 

level at a time. Specifically, the learning process starts by training the first DAE in unsupervised way by 

optimizing (3) with the original input data to obtain the first hidden representation layer. Then the 

reconstruction layer of this DAE is removed and the obtained hidden layer is used as the input data for 

training the next DAE to generate higher-level representations, and so on. Finally, the learned feature 

representations can be fed as input to a linear classifier such as SVM. However, this solution requires 

retraining the SVM classifier on a large training set (augmented at each AL iteration with samples labeled 

by the expert) which is computationally expensive and not practical in our context. For such purpose, 

this work considers an alternative computationally efficient approach as shown in next phase.  

2.2  Phase 2: Supervised fine tuning  

 Once the greedy layer wise pretraining is completed, one can add on the top of the resulting hidden 

representation layers a logistic/softmax regression layer to perform binary/multiclass classification 
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yielding a DNN tailored to a task-specific supervised learning (see Figure 2.b). In our case, we append 

the softmax regression layer as we are dealing with a multiclass classification problem. Then we fine 

tune the entire DNN using backpropagation by minimizing the following cost function [7]:             

ℒ2(𝛉𝐷𝑁𝑁) = −
1

𝑛
∑ ∑ 1(𝑦𝑖 = 𝑘)𝑙𝑜𝑔 (

exp (ℎ𝛉𝑫𝑵𝑵
(𝐱𝑖))

∑ exp (ℎ𝛉𝑫𝑵𝑵
(𝐱𝑖))𝐾

𝑘=1

)                                   

𝐾

𝑘=1

𝑛

𝑖=1

 

       +
𝜆3

2𝑛
(‖𝐖𝑠𝑜𝑓𝑡𝑚𝑎𝑥‖

𝐹

2
+ ∑‖𝐖𝑙‖𝐹

2

𝐻

𝑙=1

)                                                   (5)             

where 1(∙) is an indicator function that takes 1 if the statement is true otherwise it takes 0. The first 

term refers to the cross entropy loss for the softmax layer, the second term is again the weight decay 

penalty, and ℎ𝛉𝑫𝑵𝑵
(𝐱𝑖) is the output of the DNN for an input  𝐱𝑖.  

The estimation of the vector of parameters 𝛉𝐷𝑁𝑁 = {𝐖1, … , 𝐖𝐻 , 𝐛𝟏 … 𝐛𝐻, 𝐖𝑠𝑜𝑓𝑡𝑚𝑎𝑥} of the DNN 

starts by initializing the weights 𝐖𝑠𝑜𝑓𝑡𝑚𝑎𝑥 of the softmax layer to small random values whereas the 

weights of the H hidden layers are initialized by the encoding weights obtained in the pretraining 

phase. Then the cost (5) is minimized with a min-batch gradient descent algorithm [50].  

 

2.3   Phase 3: DNN fine tuning with AL   

As mentioned in the introduction section, most of the works related to AAMI heart beat classification 

allow the expert to label the first few minutes of the record without taking into consideration the 

importance of these signals in boosting the classification accuracy. Here, we use an alternative solution 

based on AL by asking the expert to label the most relevant ECG test beats through an iterative process 

instead of labeling the first ECG beats. Basically, the idea of AL is to define appropriate criteria for 
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ranking the ECG beats according to their relevance to the classification task. Then these beats are added 

to an active set (initially empty) for fine tuning the DNN classifier.  

 

In order to select the most relevant beats, this work explores two different selection criteria based on 

entropy [19,26,46] and BT [10,37,47], respectively. In the first criterion, we calculate for each test beat 

the entropy score. Then the 𝑚𝐴𝐿 beats with the highest entropy values are selected for labeling. High 

values of entropy mean that the ECG beats are classified with low confidence, and thus adding them to 

the training set can be useful to improve the classifier decision regions in the feature space.  

The second criterion called BT, which is based on the posterior probabilities of associating a sample 

to a given class. In a multiclass setting, the difference between the two highest posterior probabilities is 

an indicative of the way a sample is handled by the classifier. When the two highest values are close, the 

classifier confidence is low. Thus, the 𝑚𝐴𝐿 beats having low difference between the two highest posterior 

values are selected for labeling.  

It is worth noting here that in order to avoid overfitting problems due to the inclusion of new uncertain 

beats in the active training set, we fuse the DNN outputs of the current and the previous iterations using 

the max rule. We found experimentally that this solution inspired from the concept of elitism in 

evolutionary computation leads in more stable behaviors as we are updating the network with few labeled 

beats. The following algorithm provides the main steps of the proposed approach called Active-DNN.  

Algorithm: Active-DNN 

Input: 

- Training set 𝒟 = {(𝐱𝑖, 𝑦𝑖)}𝑖=1
𝑛  

- Test record:  𝑅𝑒𝑐 = {𝐱𝑗}𝑗=1
𝑚  

- DNN parameters (𝜆1, 𝜆2, 𝜆3, 𝐿) 

- AL iterations: 𝐼𝑇𝐸𝑅 
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- Number of ECG beats to label at each iteration: 𝑚𝐴𝐿 

Output:  

- Classification result 

Step 1:  Compute the weights  𝛉𝐷𝐴𝐸 of DAE by optimizing the cost function (3)  

   using L-BFGS (Phase 1);        

Step 2:  Use 𝛉𝐷𝐴𝐸 to initialize DNN and compute 𝛉𝐷𝑁𝑁 by optimizing the cost function (5) using 

backpropagation (Phase 2);   

Step 3:  Classify the test record 𝑅𝑒𝑐 with the trained DNN; and let Post be the estimated posterior 

probabilities; 

Step 4:  Set the initial active training set to an empty set: 𝑇𝑟𝐴𝐿 = 𝜙 ; 

Step 5: 𝑓𝑜𝑟 𝐼𝑡𝑒𝑟 = 1: 𝐼𝑇𝐸𝑅  (Phase 3)   

Step 5.1: Compute the uncertainty (i.e., BT or entropy) associated with each test beat 

using the estimated Post; 

Step 5.2: Rank the signals of the test record 𝑅𝑒𝑐 based on their uncertainty; 

Step 5.3: Ask an expert to label the top ranked 𝑚𝐴𝐿 signals; 

Step 5.4: Augment the active training set with these new labeled signals:  

                𝑇𝑟𝐴𝐿 = [𝑇𝑟𝐴𝐿; 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑚𝐴𝐿
]; 

Step 5.5:  Updated the weights of DNN by fine tuning on 𝑇𝑟𝐴𝐿; 

Step 5.6: Classify the test record Rec with the updated DNN; and Let 𝑃𝑜𝑠𝑡𝑛𝑒𝑤 be the 

current estimated posterior probabilities;  

Step 5.7. Use max rule to update the DNN posterior probabilities:  

𝑃𝑜𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑑 = max(𝑃𝑜𝑠𝑡, 𝑃𝑜𝑠𝑡𝑛𝑒𝑤) ;  

Step 5.8. Set 𝑃𝑜𝑠𝑡 = 𝑃𝑜𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑑;  

Step 5.8. Set the labels of the test record 𝑅𝑒𝑐 based on the maximum of 𝑃𝑜𝑠𝑡;  

𝑒𝑛𝑑  

Step 6:   Final classification result. 

 

  



12 
 

3. Experimental Results 

3.1 Dataset Description  

In the experiments, we use three different ECG databases to evaluate the propose method as shown 

in Table 2. We recall that class Q (unclassified) is discarded since it is marginally represented in these 

three databases.  

3.1.1 MIT-BIH Arrhythmia Database (MIT-BIH): This database consists of 48 two-lead recordings of 

approximately half-hour long for each record and sampled at 360 Hz. This database contains annotation 

for both beat class information and timing information verified by independent expert. The first 20 

records (100-124) include representative beats to be included in the common training data. The remaining 

24 used records (200-234) contain junctional, ventricular and supraventricular arrhythmias. Similar to 

[12], the four recordings with paced beats are discarded.  

3.1.2 St.-Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database  (INCART): 

This database consists of 75 recordings which are annotated and extracted from 32 Holter records. Each 

record contains 12 standard leads and was collected from several patients (17 men and 15 women, aged 

between 18 and 80) undergoing tests for coronary artery disease. The duration of each record is 30 

minutes and sampled at 257 Hz. The annotations were produced by an automatic algorithm, and then, 

corrected manually.  

3.1.3 MITBIH Supraventricular Arrhythmia Database (SVDB): This database consists of 78 two-lead 

recordings of approximately 30 minutes and sampled at 128 Hz. The beat type annotations of the 

recordings were first automatically performed, by the Marquette Electronics 8000 Holter scanner and 

later reviewed and corrected by a medical student. 
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3.2 Experiments setup and Performance evaluation  

Similar to [12,13], all ECG signals are first preprocessed using a 200-ms width median filter to 

remove P wave and QRS complex, then a 600-ms width median filter to remove T wave. The resulted 

signals are subtracted from the original signals to yield the baseline-corrected ECG signals. Then a 12-

order low-pass filter with a 35 Hz cut-off frequency is applied to remove power-line and high-frequency 

noise. Then we build the initial training set from all ECG beats of the following 22 records of MIT-BIH 

database DS1={101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 

209, 215, 220, 223, 230}[12]. The remaining records of this database, grouped in DS2={100, 103, 105, 

111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234} as well 

as all records of the other two databases are left for test as shown in Table 3.  

To learn a suitable feature representation of the data with DAE, we use the complete ECG waveform 

(i.e., ECG morphology) of lead I. In addition, since it is well known that the temporal information is 

important for discerning the class signatures, we add four other temporal features [12,13]. These temporal 

features are: 1) the Pre-RR feature which is the distance between a current R peak and its previous R 

peak; 2) the Post-RR feature representing the distance between the current R peak and the next R peak; 

3) the local RR interval computed by averaging all the RR intervals within a sliding window covering 

the past 10 seconds episode of the given heartbeat; and 4) the global average RR interval which is the 

average of RR intervals within a sliding window covering the past 5 minutes episode of the given 

heartbeat, which reflects the background rhythm information in the past 5 minutes episode.  

To extract the ECG waveform as well as the above four temporal features, we perform QRS detection 

and ECG wave boundary recognition tasks by means of the ecgpuwave software available on:            

http://www.physionet.org/physiotools/ecgpuwave/src/. Then we resample all segmented ECG signals to 
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the same periodic length equal to 50 uniformly distributed samples. The length of the initial feature vector 

fed as input to DAE including morphology and temporal features equals 54 for each beat.  

For performance evaluation, we present the results in terms of VEB (V class versus [N, S, and F]) 

and SVEB (S class versus [N, V, and F]). In particular, we use the standard measures: sensitivity(𝑆𝑒), 

positive predictive value (𝑃𝑝), specificity (𝑆𝑝), overall accuracy(𝑂𝐴)  [12,32,33].  

 

3.3 Generation of an initial DNN model (Pretraining and fine tuning using DS1 of MIT-BIH) 

First of all, we shall identify a suitable initial architecture of our DNN build on the basis of DAE 

and the softmax regression layer. We particularly, follow the practical recommendation of [6] of training 

deep architectures. To this end, we pre-train DAE on DS1 of MIT-BIH using the LB-FGS method then 

we use its results for initializing DNN and then fine tune the whole architecture with backpropagation. 

Specifically for pre-training DAE, we initialize θ𝐷𝐴𝐸 to small values in the range     [-0.005 0.005] 

randomly; we fix the target activation function of the hidden unit to 𝜌 = 0.05  [24]; and then use the 

default parameters of the function minFunc [64] for optimizing the cost function (3). For the 

backpropagation algorithm, we use a mini-batch gradient optimization method (i.e., learning rate is set 

to 1, momentum to 0.5, and batchsize to 100). Then we search for the remaining DNN  hyperparameters 

(𝜆1, 𝜆2, 𝜆3) using a 5-fold cross-validation in the range [0, 1]. We repeat this searching process, for 

different sizes of the hidden representation layer: 𝐿 = {10, 25, 50, 75, 100, 200, 300}. We note that the 

experiments are carried out on a desktop with the following characteristics (core i7, CPU 2.50 GHz, 

RAM 16 GB, and GPU Nvidia Geoforce GTX 850M).     

Figure 3 shows the training results obtained for each configuration on DS1. Here we clearly notice 

that using an overcomplete representation (similar to sparse coding) leads to better classification results 
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compared to dimensionality reduction. Recall that the dimension of the original feature is equal to 54. 

The scenario with 100 hidden nodes is a reasonable choice for our initial DNN model. In Figure 4, we 

show also the learned signatures for each AAMI class, which are sparse and discriminative. It is 

important to notice that with this deep architecture much of the computation burden is done in this phase 

only, while fine tuning the DNN weights during the AL process is computationally very efficient.  

In order to show the superiority of DNN compared to standard NN, we repeat the above training 

process but without the pre-training phase. That is we train the complete architecture using only 

backpropagation. The results shown in Figure 3 confirm clearly the superiority of DNN over standard 

NN. 

   

3.4 Results on MIT-BIH database  

For this database, we present the results by considering three different scenarios for building the test 

set as usually done in the works dealing with the AAMI norm: 1) using the 11 common testing records 

for VEB {i.e. 200 202 210 213 214 219 221 228 231 233 234} and 14 testing records for SVEB {i.e. 200 

202 210 212 213 214 219 221 222 228 231 232 233 234}; 2) using the 24 common testing records from 

200 up to 234; and 3) using All 48 records (i.e., DS1+DS2).  To highlight the benefit of the using BT 

and entropy selection criteria, we include also for comparison purposes the results obtained by random 

selection and by labeling the first 300 hundred samples from each record as done in the literature. In the 

rest of the paper, we call the corresponding deep learning schemes as DNN-BT, DNN-Entropy, DNN-

RS, and DNN-First300.   

Figures 5 and 6 show an example of the behavior of (𝑂𝐴, 𝑆𝑒, 𝑎𝑛𝑑 𝑃𝑝) for VEB and VEB, respectively 

versus the number of queries for the first scenario. We note that for each query the expert labels 10 ECG 
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beats from the test record and then these labels are added to the Active training set (initially set to empty) 

for updating the weights of DNN though backpropagation. As can be seen DNN-BT and DNN-Entropy 

provide clearly better results compared to DNN-RS and DNN-First300. For the this scenario (see Table 

4), the initial values of (𝑂𝐴, 𝑆𝑒, 𝑆𝑝 𝑎𝑛𝑑 𝑃𝑝) for SEVB are equal to (91.3%, 11.5 %, 95.8%, and 13.2%). 

After adding 50 beats per record, DNN-BT yields accuracies above 90% that is (93.1, 92.7%, 99.6% and 

99.3%), while, DNN-Entropy takes 10 iterations to provide similar results. On the other side, DNN-

First300 exhibits the worst behavior as it provides an (𝑂𝐴, 𝑆𝑒, 𝑆𝑝 𝑎𝑛𝑑 𝑃𝑝) equal to (74.3%, 89.3%, 

99.5% and 98.2%) after 30 iterations. For VEB, the initial values (𝑂𝐴, 𝑆𝑒, 𝑆𝑝 𝑎𝑛𝑑 𝑃𝑝) are equal to 

(96.7%, 84.7%, 98.3 and 87.1%). After 5 iterations, DNN-BT and DNN-Entropy reach accuracies of 

(98.6%, 92.4%, 99.29%, and 95.5%) and (98.9%, 91.2%, 99.8%, and 99.2%), respectively. Here again, 

DNN-First300 exhibits a less competing behavior compared to the other three learning modes. It is worth 

to note that the same observations can be easily recognized from Table 5 and 6 related to the second and 

third scenarios.  

We recall that the above results are obtained by applying the elitism trick to the previous and current 

posterior probabilities generated by DNN. As seen clearly in Figure 7 and 8 this trick allows filtering out 

unstable behaviors caused by adding the most ambiguous beats to the active training set. From the above 

results one can draw the following conclusions: i) the selection of ECG beats for labeling has direct 

impact on the classification accuracy; ii) the BT and entropy selection modes allow obtaining stable and 

better results compared to simple selection schemes based on random selection or labeling the first 300 

beats as usually done in the literature; iii) The results shown in Tables 3, 4 and 5 for all three scenarios, 

respectively confirm clearly the  superiority of  the proposed approach compared to state-of-the-art 

methods.   
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3.5   Results on INCART Database  

To assess further the generalization ability of the proposed approach, we repeat the above 

experiments on INCART database. Recall that the results reported here are obtained using the initial 

DNN model trained on DS1 of MIT-BIH. Figure 9 and 10 show the behavior of  (𝑂𝐴, 𝑆𝑒, 𝑆𝑝 𝑎𝑛𝑑 𝑃𝑝)  

versus the number of queries for this dataset. Table 7 shows that the initial values of (𝑂𝐴, 𝑆𝑒, 𝑆𝑝 𝑎𝑛𝑑 𝑃𝑝) 

were low before starting the AL process as they are equal to (92.40%, 15.85%, 93.26%, and 2.54%) for 

SVEB and (82.99%, 75.11%, 83.99%, and 37.63%) for VEB. After adding 300 samples per record, 

DNN-BT reaches accuracies of (99.86%, 92.59%, 99.95% and 92.80%) for SVEB and (99.40%, 97.23%, 

99.67, and 97.49%) for VEB, followed by DNN-Entropy which yields (99.85%, 90.86%, 99.95%, and 

95.34%) for SVEB and (99.36%, 96.88%, 99.67%, and 97.51%)  for VEB. Here again, we notice that 

DNN-First300 exhibits the worst behavior.  

3.6   Results on SVDB Database  

Figures 11 and 12 show the results of (𝑂𝐴, 𝑆𝑒, 𝑆𝑝 𝑎𝑛𝑑 𝑃𝑝) for SVEB and VEB, respectively. As 

can be seen, DNN-BT exhibits clearly a stable behavior compared to the other learning modes. Before 

starting the interaction process, the (𝑂𝐴, 𝑆𝑒, 𝑆𝑝, 𝑎𝑛𝑑 𝑃𝑝) are equal to (90.61%, 8.80%, 96.32%, and 

14.31%) and (66.27%, 65.19%, 66.32%, and 9.31%) for SVEB and VEB respectively. After adding 300 

samples per record, DNN-BT yields (98.11%, 79.04%, 99.44%, and 90.75%) for SVEB and (98.71%, 

92.73, 99.02%, and 83.42%) for VEB. The worst result is again achieved by DNN-300. In Table 8, we 

summarize the main results obtained using the four learning schemes. 
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3.7 Results obtained by DNN-BT with multiple hidden layers  

To asses further the capability of the proposed method, we repeat the above experiments but with a 

configuration of multiple hidden layers. In particular, we consider scenarios characterized by H=2, 3, 

and 4 hidden layers. We use (100, 50) and (100, 50, 100) and (100,50,100,50) nodes for each 

configuration that is alternating between a sparse and dense representations. Here we recall that we tried 

several values for the hidden nodes but the best performances were obtained for the above values. Figures 

13 up to 18 shows the results obtained for the three databases. As can be seen, the configuration of one 

and two hidden layers are both competing in terms of classification accuracy. The detailed results of 

DNN-BT with two hidden layers are shown in Table 9. By contrast, increasing the number of hidden 

layers leads to less accurate results. Such behavior suggests that updating the network with few training 

samples as done in our context (AL setting) seems to be not suitable for complex architectures.   

4. CONCLUSIONS 

In this paper, we have proposed a novel approach based on deep learning for active classification of 

ECG signals. Compared to state-of-the art methods based on shallow architectures this approach has 

several desirable proprieties: i) it learns automatically an appropriate sparse feature representation from 

the raw ECG using DAE; ii) it relies on AL criteria for selecting the most valuable ECG beats for 

inducing the DNN classifier. The experimental results obtained on three different ECG databases showed 

that the proposed method is robust and computationally efficient during the iterative labelling process 

and clearly outperforms state-of-the-art methods. For future developments, we plan to increase the 

classification accuracy and reduce the expert interaction in many ways. For example: i) the exploration 
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of other deep architectures based on RBM and CNN;  and ii) the definition and the combination of new 

AL criteria allowing the extraction of more relevant ECG beats for labeling.  
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FIGURE CAPTIONS 

 

Figure 1.  Flowchart of the proposed method. 

Figure 2.   DNN architecture: (a) pretraining using DAE, and (b) supervised fine tuining. 

Figure 3.  Classification accuracies obtained on DS1 using: (a) standard NN; and (b) DNN. 

Figure 4.  Features learnd by DNN for each AAMI class.  

Figure 5.  VEB Classification results obtained on DS1+DS2 of MIT-BIH: (a) OA; (b) Pp, and (c) Se. 

Figure 6.  SVEB Classification results obtained on DS1+DS2 of MIT-BIH: (a) OA; (b) Pp, and (c) Se. 

Figure 7.  Effect of the max rule on the stability of DNN during the interaction phase: (VEB results for 

DS1+DS2 obtained without/with max rule): (a) OA; (b) Pp, and (c) Se. 

Figure 8.  Effect of the max rule on the stability of DNN during the interaction phase: (SVEB results for 

DS1+DS2 obtained without/with max rule): (a) OA; (b) Pp, and (c) Se. 

Figure 9.  VEB Classification results obtained on INCART databse: (a) OA; (b) Pp, and (c) Se. 

Figure 10.  SVEB Classification results obtained on INCART database: (a) OA; (b) Pp, and (c) Se. 

Figure 11.  VEB Classification results obtained on SVDB database: (a) OA; (b) Pp, and (c) Se. 

Figure 12.  SVEB Classification results obtained on SVDB database: (a) OA; (b) Pp, and (c) Se. 

Figure 13.  VEB classification results obtained by DNN-BT with multiple hidden layers on DS1+DS2 of 

MIT-BIH: (a) OA; (b) Pp, and (c) Se. 

Figure 14.  SVEB classification results obtained by DNN-BT with multiple hidden layers on DS1+DS2 of 

MIT-BIH: (a) OA; (b) Pp, and (c) Se. 

Figure 15.  VEB classification results obtained by DNN-BT with multiple hidden layers on SVDB database: 

(a) OA; (b) Pp, and (c) Se. 

Figure 16.  SVEB classification results obtained by DNN-BT with multiple hidden layers on SVDB database: 

(a) OA; (b) Pp, and (c) Se. 
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Figure 17.  VEB classification results obtained by DNN-BT with multiple hidden layers on INCART 

database: (a) OA; (b) Pp, and (c) Se. 

Figure 18.  SVEB classification results obtained by DNN-BT with multiple hidden layers on INCART 

database: (a) OA; (b) Pp, and (c) Se. 

 

 

TABLE CAPTIONS 

Table. 1.   Handcrafted features adopted by state-of-the-art methods. 

Table. 2.  ECG databases used in the experiments. 

Table  3.  Number of training and testing ECG beats used in the experiments. 

 Table 4.  Classification results in terms terms of VEB (11 common records) and SVEB (14 common 

records) of MIT-BIH. 

Table  5.   Classification results in terms terms of VEB and SVEB using 24 testing records of MIT-

BIH. 

Table  6.   Classification results in terms terms of VEB and SVEB using 44 testing records (DS1+DS2) 

of MIT-BIH. 

Table  7.  Classification results obtained on INCART database. 

Table  8.  Classification results obtained on SVDB database. 

Table  9.  Classification results obtained by DNN-BT with two hidden layers 
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Figure 1.  Flowchart of the proposed method. 
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Figure 2.  DNN architecture: (a) pretraining using DAE, and (b) supervised fine tuining. 

 

 

 

(a)                                                                    (b) 

Figure 3. Classification accuracies obtained on DS1 using: (a) standard NN; and (b) DNN. 

 

 

 

Figure 4. Features learnd by DNN for each AAMI class.   
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                         (a)                                                       (b)                                                        (c) 

Figure 5. VEB Classification results obtained on DS1+DS2 of MIT-BIH: (a) OA; (b) Pp, and (c) Se. 

 

 

 

 

                         (a)                                                           (b)                                                        (c) 

Figure 6. SVEB Classification results obtained on DS1+DS2 of MIT-BIH: (a) OA; (b) Pp, and (c) Se. 
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                (a)                                                       (b)                                                        (c) 

Figure 7. Effect of the max rule on the stability of DNN during the interaction phase: (VEB results for 

DS1+DS2 obtained without/with max rule): (a) OA; (b) Pp, and (c) Se. 

 
 

 

 

 
 

(a)                                                  (b)                                                     (c) 

Figure 8. Effect of the max rule on the stability of DNN during the interaction phase: (SVEB results for 

DS1+DS2 obtained without/with max rule): (a) OA; (b) Pp, and (c) Se. 
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                          (a)                                                       (b)                                                        (c) 

Figure 9. VEB Classification results obtained on INCART databse: (a) OA; (b) Pp, and (c) Se. 

 

 
 

 
                       

                            (a)                                                       (b)                                                        (c) 

Figure 10. SVEB Classification results obtained on INCART database: (a) OA; (b) Pp, and (c) Se. 
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                         (a)                                                       (b)                                                        (c) 

Figure 31. VEB Classification results obtained on SVDB database: (a) OA; (b) Pp, and (c) Se. 

 

 

 

 

 

 
  

                         (a)                                                       (b)                                                        (c) 

Figure 14. SVEB Classification results obtained on SVDB database: (a) OA; (b) Pp, and (c) Se 
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              (a)                                                                  (b)                                                            (c) 

Figure 13. VEB classification results obtained by DNN-BT with multiple hidden layers on DS1+DS2 of 

MIT-BIH: (a) OA; (b) Pp, and (c) Se. 

 

 

 

              (a)                                                                  (b)                                                            (c) 

Figure 14. SVEB classification results obtained by DNN-BT with multiple hidden layers on DS1+DS2 of 

MIT-BIH: (a) OA; (b) Pp, and (c) Se. 
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              (a)                                                                  (b)                                                            (c) 

Figure 15. VEB classification results obtained by DNN-BT with multiple hidden layers on SVDB database: 

(a) OA; (b) Pp, and (c) Se. 

 

 

  

              (a)                                                                  (b)                                                            (c) 

Figure 16. SVEB classification results obtained by DNN-BT with multiple hidden layers on SVDB database: 

(a) OA; (b) Pp, and (c) Se. 
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              (a)                                                                  (b)                                                            (c) 

Figure 17. VEB classification results obtained by DNN-BT with multiple hidden layers on INCART 

database: (a) OA; (b) Pp, and (c) Se. 

 

 

 

              (a)                                                                  (b)                                                            (c) 

Figure 18. SVEB classification results obtained by DNN-BT with multiple hidden layers on INCART 

database: (a) OA; (b) Pp, and (c) Se. 
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Table. 1 Handcrafted features adopted by state-of-the-art methods. 

 

Method Features 

Chazal et al. [13]  

Ince et al. [30]  

 

- ECG morphology (10 samples) between QRS onset and QRS offset, ECG 

morphology (9 samples) between QRS onset and QRS offset.  

- Pre-RR interval, Post-RR interval, average RR interval, local average RR 

interval, QRS duration, and T-wave duration. 

Hu et al. [29]  - Width and height of QRS complex, RR interval, QRS complex area. 

Chazal et al. [12]  

- ECG morphology (10 samples) between QRS onset and QRS offset. 

- ECG morphology (9 samples) between QRS onset and QRS offset.  

- Normalized ECG morphology (10 samples) between QRS onset and QRS 

offset. 

- Normalized ECG morphology (9 samples) between QRS onset and QRS 

offset. 

- ECG morphology (10 samples) between FP-50ms to FP+100ms.  

- ECG morphology (9 samples) between FP-50ms to FP+100ms. 

- Normalized ECG morphology (10 samples) between FP-50ms to FP+100ms.  

- Normalized ECG morphology (9 samples) between FP-50ms to FP+100ms. 

- Pre-RR interval, Post-RR interval, average RR interval, local average RR 

interval, QRS duration, and T-wave duration.  

Jiang et al. [32]  - Hermite basis function (HBF).  

Naif et al. [1] - Wavelets, HOS, Temporal features, and S-Transform 
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Table. 2 ECG databases used in the experiments. 

 

 

Database # Records # Leads Sample rate 

MIT-BIH 
48 records, Each record is 30 

minutes in length 
2 leads 360 Hz 

INCART 
75 records. Each record is 30 

minutes. 
12 leads 257 Hz 

SVDB 
78 records. Each record is 30 

minutes in length 
2 leads 128 Hz 

 

 

 

 

 

 

Table 3. Number of training and testing ECG beats used in the experiments. 

 

 Database N S V F #REC 

Training 
MIT-BIH 

(DS1) 
45777 973 3769 414 22 

Test 

MIT-BIH 

(DS2) 
44011 2049 3216 388 22 

INCART 153545 1958 2000 219 75 

SVDB 145436 10733 8281 23 70 
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Table 4. Classification results in terms terms of VEB (11 common records) and SVEB 

(14 common records) of MIT-BIH. 

Method Labeled 
SVEB VEB 

Se Pp Sp OA Se Pp Sp OA 

Chazal et al.[13]  500 87.7 47 N/A 95.9 94.3 96.2 N/A 99.4 

Hu et al.[29]  300 N/A N/A N/A N/A 78.9 75.8 96.8 94.8 

Ince et al. [30] 300 81.8 63.4 98.5 96.1 90.3 92.2 98.8 97.9 

Jaing et al. [32] 300 74.9 78.8 98.8 97.5 94.3 95.8 99.4 98.8 

Deep-300 

 

0 11.5 13.2 95.8 91.3 84.7 87.1 98.3 96.7 

50 71.6 65.5 97.9 96.5 85.9 89.5 98.6 97.1 

100 73.3 75.8 98.7 97.4 91.5 90.3 98.6 97.8 

200 73.5 86.9 99.4 98.0 93.5 96.2 99.4 98.8 

300 74.3 89.3 99.5 98.2 95.4 96.2 99.4 99.0 

Deep-Rand 

 

0 11.5 13.2 95.8 91.3 84.7 87.1 98.3 96.7 

50 70.8 75.2 98.7 97.2 92.4 92.4 98.8 98.2 

100 82.7 85.6 99.2 98.4 92.0 94.2 99.1 98.4 

200 87.6 89.4 99.4 98.8 93.8 96.6 99.4 98.9 

300 89.2 91.1 99.5 99.0 93.0 98.0 99.7 99.0 

Deep-Entropy 

 

0 11.5 13.2 95.8 91.3 84.7 87.1 98.3 96.7 

50 86.3 91.7 99.6 98.9 96.3 98.3 99.6 99.4 

100 91.9 94.5 99.7 99.3 98.0 99.0 99.7 99.7 

200 93.8 98.4 99.9 99.6 97.8 99.5 99.8 99.7 

300 95.1 99.1 100.0 99.7 97.5 99.5 99.8 99.7 

Deep-BT 

 

0 11.5 13.2 95.8 91.3 84.7 87.1 98.3 96.7 

50 90.5 96.2 99.8 99.3 97.4 99.0 99.8 99.6 

100 93.8 98.8 99.9 99.6 98.5 99.4 99.9 99.8 

200 95.6 99.8 100.0 99.8 98.5 99.8 100.0 99.8 

300 98.1 99.7 100.0 99.9 99.4 99.8 100.0 99.8 
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Table 5.  Classification results in terms terms of VEB and SVEB using 24 testing records 

of MIT-BIH.   

Method Labeled 
SVEB VEB 

Se Pp Sp OA Se Pp Sp OA 

Jaing et al. [32] 300 50.6 67.9 98.8 96.6 86.6 93.3 99.3 98.1 

Ince et al. [30] 300 62.1 56.7 98.5 96.1 83.4 87.4 98.1 97.6 

 0 37.8 40.5 97.5 94.9 90.1 87.1 98.6 97.8 

Deep-300 

 

50 78.4 74.1 98.8 97.9 91.0 92.8 99.2 98.5 

100 79.7 81.8 99.2 98.4 93.9 93.4 99.2 98.8 

200 79.9 89.6 99.6 98.7 95.5 96.3 99.5 99.2 

300 79.7 92.1 99.7 98.8 95.4 96.7 99.6 99.2 

Deep-Rand 

0 37.8 40.5 97.5 94.9 90.1 87.1 98.6 97.8 

50 78.4 74.1 98.8 97.9 91.0 92.8 99.2 98.5 

100 79.7 81.8 99.2 98.4 93.9 93.4 99.2 98.8 

200 79.9 89.6 99.6 98.7 95.5 96.3 99.5 99.2 

300 79.7 92.1 99.7 98.8 95.4 96.7 99.6 99.2 

Deep-Entropy 

 

0 37.8 40.5 97.5 94.9 90.1 87.1 98.6 97.8 

50 87.3 88.0 99.5 98.9 94.5 96.2 99.5 99.1 

100 91.5 90.7 99.6 99.2 95.7 98.4 99.7 99.4 

200 92.1 93.5 99.7 99.4 97.2 98.9 99.8 99.6 

300 92.4 93.1 99.7 99.4 97.2 98.8 99.8 99.6 

Deep-BT 

0 37.8 40.5 97.5 94.9 90.1 87.1 98.6 97.8 

50 91.7 93.9 99.7 99.4 97.3 98.8 99.8 99.6 

100 94.4 97.5 99.9 99.7 98.5 99.2 99.8 99.8 

200 96.1 98.4 99.9 99.8 98.8 99.6 99.9 99.8 

300 96.7 99.3 100.0 99.8 98.8 99.7 99.9 99.9 
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Table 6.  Classification results in terms terms of VEB and SVEB using 44 testing records 

(DS1+DS2) of MIT-BIH.   

Method  Labeled 
SVEB VEB 

Se Pp Sp OA Se Pp Sp OA 

Ince et al. [30] 300 63.2 53.7 99 97.4 84.6 87.4 98.7 98.3 

 0 41.0 42.9 98.5 96.9 91.0 79.5 98.2 97.7 

Deep-300 

 

50 78.8 74.2 99.2 98.7 91.9 93.6 99.5 99.0 

100 80.0 81.8 99.5 99.0 94.2 94.0 99.5 99.2 

200 80.0 90.3 99.8 99.2 95.7 96.6 99.7 99.5 

300 80.1 92.0 99.8 99.3 96.3 96.6 99.7 99.5 

Deep-Rand 

 

0 41.0 42.9 98.5 96.9 91.0 79.5 98.2 97.7 

50 85.8 85.8 99.6 99.2 93.5 98.3 99.8 99.4 

100 89.4 90.8 99.7 99.5 95.8 98.4 99.8 99.6 

200 89.1 91.5 99.8 99.5 96.6 98.6 99.8 99.7 

300 90.6 94.9 99.9 99.6 97.7 98.7 99.8 99.8 

Deep-Entropy 

 

0 41.0 42.9 98.5 96.9 91.0 79.5 98.2 97.7 

50 90.0 94.5 99.9 99.6 98.2 98.8 99.9 99.8 

100 93.2 97.0 99.9 99.7 98.9 99.5 99.9 99.9 

200 94.8 98.3 100.0 99.8 99.2 99.6 99.9 99.9 

300 95.9 98.9 100.0 99.9 99.3 99.7 99.9 99.9 

Deep-BT 

 

0 41.0 42.9 98.5 96.9 91.0 79.5 98.2 97.7 

50 93.7 96.3 99.9 99.7 98.3 99.5 99.9 99.9 

100 95.3 97.6 99.9 99.8 98.9 99.7 100.0 99.9 

200 97.8 99.0 100.0 99.9 99.7 99.9 100.0 99.9 

300 99.0 99.6 100.0 99.9 99.8 99.9 99.9 100.0 
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Table 7. Classification results obtained on INCART database.  

Method  Labeled 
SVEB VEB 

Se Pp Sp OA Se Pp Sp OA 

 0 15.58 2.54 93.26 92.40 75.11 37.63 83.98 82.99 

Deep-300 

 

50 37.13 18.64 98.17 97.49 72.74 64.25 94.78 92.29 

100 49.74 33.28 98.88 98.33 75.61 70.38 95.89 93.60 

200 54.34 42.90 99.19 98.69 77.02 75.74 96.80 94.57 

300 65.37 53.47 99.36 98.98 78.68 80.51 97.53 95.40 

Deep-Rand 

 

0 15.58 2.54 93.26 92.40 75.11 37.63 83.98 82.99 

50 66.45 55.96 99.41 99.04 81.89 81.98 97.66 95.89 

100 70.17 67.58 99.62 99.29 87.32 86.69 98.25 97.03 

200 79.88 78.87 99.76 99.54 90.64 89.80 98.65 97.76 

300 82.64 83.14 99.81 99.62 92.02 93.01 99.08 98.30 

Deep-Entropy 

 

0 15.58 2.54 93.26 92.40 75.11 37.63 83.98 82.99 

50 56.08 70.84 99.74 99.25 78.20 84.99 98.21 95.95 

100 80.13 88.05 99.88 99.66 88.86 91.88 98.97 97.84 

200 89.12 93.62 99.93 99.81 95.03 96.34 99.52 99.02 

300 90.86 95.34 99.95 99.85 96.88 97.51 99.67 99.36 

Deep-BT 

0 15.58 2.54 93.26 92.40 75.11 37.63 83.98 82.99 

50 64.61 89.15 99.91 99.52 88.43 91.04 98.86 97.69 

100 83.91 96.25 99.96 99.78 94.59 97.18 99.62 99.07 

200 91.22 98.78 99.99 99.89 97.66 99.37 99.91 99.66 

300 92.85 99.34 99.99 99.91 98.78 99.77 99.96 99.83 
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          Table 8. Classification results obtained on SVDB database.  

Method  Labeled 
SVEB VEB 

Se Pp Sp OA Se Pp Sp OA 

 0 8.80 14.31 96.32 90.61 65.19 9.31 66.32 66.27 

Deep-300 

 

50 22.07 43.52 98.00 93.05 61.18 21.65 88.26 86.90 

100 29.46 42.22 97.18 92.77 64.57 24.31 89.34 88.09 

200 38.99 52.62 97.55 93.73 68.64 27.80 90.55 89.45 

300 45.77 56.03 97.49 94.12 74.15 35.54 92.87 91.93 

Deep-Rand 

 

0 8.80 14.31 96.32 90.61 65.19 9.31 66.32 66.27 

50 40.33 56.00 97.79 94.04 61.76 24.46 89.89 88.47 

100 50.26 64.34 98.06 94.94 66.59 29.38 91.51 90.26 

200 59.75 72.53 98.42 95.90 75.57 36.40 93.00 92.12 

300 66.77 74.67 98.42 96.35 78.14 41.92 94.26 93.45 

Deep-Entropy 

 

0 8.80 14.31 96.32 90.61 65.19 9.31 66.32 66.27 

50 33.79 55.90 98.14 93.94 66.28 39.67 94.65 93.23 

100 51.83 63.87 97.95 94.94 76.92 64.08 97.71 96.67 

200 72.22 79.33 98.69 96.96 86.51 82.23 99.01 98.38 

300 78.28 92.38 99.55 98.16 90.81 86.85 99.27 98.84 

Deep-BT 

0 8.80 14.31 96.32 90.61 65.19 9.31 66.32 66.27 

50 59.78 82.58 99.12 96.55 86.27 81.03 98.93 98.29 

100 74.43 89.83 99.41 97.78 91.41 90.19 99.47 99.07 

200 83.15 92.28 99.51 98.45 95.01 94.48 99.71 99.47 

300 86.39 94.30 99.64 98.77 96.03 95.68 99.77 99.58 
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           Table 9. Classification results obtained by DNN-BT with two hidden layers  

DATBASE Labeled 
SVEB VEB 

Se Pp Sp OA Se Pp Sp OA 

 0 29.39 33.72 96.78 93.21 96.28 77.96 96.97 97.02 

MIT-BIH 

(14 and 11 Common 

records) 

50 92.69 94.59 99.70 99.33 97.36 99.25 99.82 99.68 

100 95.54 96.56 99.81 99.58 98.39 99.54 99.86 99.80 

200 97.04 98.31 99.91 99.76 99.13 99.84 99.90 99.90 

300 98.6 99.39 99.94 99.84 99.43 99.96 99.95 99.93 

MIT-BIH 

(24 records) 

0 50.02 54.44 98.10 96.01 96.32 77.26 96.85 96.92 

50 94.28 96.33 99.84 99.60 98.08 98.94 99.84 99.71 

100 96.13 97.49 99.89 99.72 98.01 99.24 99.87 99.74 

200 97.37 98.28 99.92 99.81 99.49 99.58 99.85 99.91 

300 98.53 99.80 99.95 99.88 99.56 99.91 99.92 99.95 

MIT-BIH 

(DS1+DS2) 

0 52.11 56.45 98.86 97.57 90.10 79.56 98.25 97.70 

50 92.52 97.31 99.93 99.72 98.17 98.96 99.86 99.80 

100 95.54 97.83 99.94 99.82 98.66 99.50 99.91 99.87 

200 97.91 98.64 99.96 99.88 99.10 99.51 99.93 99.90 

300 99.30 99.48 99.99 99.91 99.41 99.83 99.94 99.95 

INCART 

0 5.21 5.04 98.89 97.85 59.20 57.05 94.23 90.28 

50 77.17 95.39 99.96 99.70 91.35 94.45 99.29 98.40 

100 89.33 96.84 99.97 99.85 95.48 96.99 99.60 99.15 

200 94.13 98.66 99.99 99.92 98.34 98.72 99.82 99.67 

300 95.81 99.47 99.99 99.95 99.01 99.49 99.93 99.83 

SVDB 

 

0 1.10 6.37 98.87 92.47 55.80 15.38 83.73 82.32 

50 65.24 86.35 99.28 97.05 84.48 70.57 98.13 97.44 

100 75.92 90.07 99.41 97.87 90.91 87.06 99.28 98.86 

200 83.19 92.04 99.50 98.43 94.83 90.66 99.48 99.25 

300 85.93 94.97 99.68 98.78 95.81 92.06 99.56 99.37 

 

 

 

 


