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Abstract

In regression problems, the use of TSK fuzzy systems is widely extended due to the precision of the obtained models.
Moreover, the use of simple linear TSK models is a good choice in many real problems due to the easy understanding
of the relationship between the output and input variables. In this paper we present FRULER, a new genetic fuzzy
system for automatically learning accurate and simple linguistic TSK fuzzy rule bases for regression problems. In
order to reduce the complexity of the learned models while keeping a high accuracy, the algorithm consists of three
stages: instance selection, multi-granularity fuzzy discretization of the input variables, and the evolutionary learning
of the rule base that uses the Elastic Net regularization to obtain the consequents of the rules. Each stage was validated
using 28 real-world datasets and FRULER was compared with three state of the art genetic fuzzy systems. Experi-
mental results show that FRULER achieves the most accurate and simple models compared even with approximative
approaches.
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1. Introduction

Predictive modelling aims to build models that use the values of the input variables to predict the expected output.
These models usually have two complementary requirements: accuracy and interpretability [15]. On one hand, accu-
racy indicates the ability of the model to predict values close to the real ones. On the other hand, interpretability refers
to the capability of the model to be understood by a human being [4]. Building models by means of fuzzy rule-based
systems combines the interpretability and expressiveness of the rules with the ability of fuzzy logic for representing
uncertainty. Interpretability for fuzzy systems involves two main issues [4]:

• Readability: it is related with the simplicity of the fuzzy system structure, i.e., the number of variables, linguistic
terms per variable, fuzzy rules, premises per rule, etc. It represents the quantitative or objective part of the
interpretability of the model.

• Comprehensibility: it is determined by the general semantics of the fuzzy system and the fuzzy inference
mechanism. It is associated with the fuzzy partitioning of the variables and its meaning for the user, thus
representing the qualitative or subjective part of the interpretability.

The most important aspect of a fuzzy system in terms of interpretability is the definition of the fuzzy partition
for each variable, also called the data base definition. Two different approaches can be used to define the data base:
(i) linguistic, in which all rules share the same fuzzy partition for each variable; (ii) and approximative, which uses
a different definition of the fuzzy labels for each rule in the rule base. The former implies more interpretability
through a higher simplicity and comprehensibility, while the latter usually obtains more accurate solutions. However,
approximative approaches can lead to complex partitions of the input space that can make difficult to understand
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how the input is associated with the response. Moreover, linguistic partitions, where the summation of the degree of
fulfillment for all fuzzy sets is equal to 1 for each value inside a domain, are recognized as the most interpretable
fuzzy partitions because they satisfy all semantic constraints (distinguishability, coverage, normality, convexity, etc.)
[4].

In the case of regression problems, two different alternatives for fuzzy modelling were used in the literature de-
pending on what the main objective pursued was. Mamdani fuzzy systems, where both antecedent and consequent are
represented by fuzzy sets, were primarily used to obtain interpretable models. Furthermore, precise fuzzy modelling
was mainly developed using Takagi-Sugeno-Kang (TSK) fuzzy knowledge systems [34, 33], where the antecedents
are still represented by fuzzy sets, while the consequent is a weighted combination of the input variables. Although
Mamdani systems are well-known for its semantic interpretability, the linear model in TSK rules is also a good choice
since it is straightforward to understand the relationship between the output and input variables. This is of particular
interest in many fields, such as robotics [30, 27, 24], medical imaging [28], industrial estimation [25] and optimization
of processes [36].

One of the most widely used learning algorithms for automatic building of fuzzy rule bases are Genetic Fuzzy
Systems (GFSs) [7], i.e., the combination of evolutionary algorithms and fuzzy logic. Evolutionary algorithms are
appropriate for learning fuzzy rules due to their flexibility —that allows them to codify any part of the fuzzy rule
base system—, and due to their capability to manage the balance between accuracy and simplicity of the model in
an effective way. In particular, recent developments using multi-objective evolutionary fuzzy systems can be found
in [2, 12, 31, 5], where both Mamdani and TSK systems were proposed to solve large-scale regression problems.
Moreover, in [23] an adaptive fuzzy inference system was proposed to cope with high-dimensional problems.

The simplicity of the models obtained by GFSs for regression has been mostly achieved in the literature through
the control of the number of rules and/or the number of labels used in the rule base through a multi-objective approach
[9, 18]. More recently, the use of instance selection techniques has received more attention in both classification
[13, 11] and regression [29] problems. This approach faces two problems at once: decreases the complexity for large-
scale problems and reduces the overfitting, as the rules can be generated with a part of the training data and the error
of the rule base can be estimated with another part (or the whole) training set. Moreover, when no expert knowledge
is available to determine the fuzzy labels, two different approaches can be applied: uniform discretization combined
with lateral displacements [1], or non-uniform discretization [19]. Recently, [10, 14] have shown the application of
non-uniform discretization techniques to classification problems.

The use of TSK fuzzy rule bases implies another complexity dimension: the polynomial in the consequent —
usually with degree 1 (TSK-1) or 0 (TSK-0). The most widely used approach for learning the coefficients of the
polynomial is the least squares method. However, that choice often leads to models that overfit the training data and
misbehave in test. This problem can be solved by shrinking (Ridge regularization) or setting some coefficients to zero
(Lasso regularization), obtaining simpler models. Moreover, a combination of both regularizations, called Elastic Net
[38] can be used.

In this paper we present FRULER (Fuzzy RUle Learning through Evolution for Regression), a new GFS algo-
rithm for obtaining accurate and simple linguistic TSK-1 fuzzy rule base models to solve regression problems. The
simplicity of the fuzzy system aims to improve the readability of the model —and, therefore, the interpretability— by
obtaining linguistic fuzzy partitions with few labels, a low number of rules, and the regularization of the consequents
—which reduces the number of input variables that contribute to the output. The main contributions of this work
are: i) a new instance selection method for regression, ii) a novel multi-granularity fuzzy discretization of the input
variables, in order to obtain non-uniform fuzzy partitions with different degrees of granularity, iii) an evolutionary
algorithm that uses a fast and scalable method with Elastic Net regularization to generate accurate and simple TSK-1
fuzzy rules.

This work is structured as follows. Section 2 defines the TSK model used in this work. Section 3 describes the
different stages of the GFS: the instance selection method, the discretization approach, and the evolutionary algorithm.
Sec. 4 shows the results of the approach in 28 regression problems, and the comparison with other proposals through
statistical tests. Finally, the conclusions are presented in Sec. 5.
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2. Takagi-Sugeno-Kang fuzzy rule systems

Takagi, Sugeno, and Kang proposed in [34, 33] a fuzzy rule model in which the antecedents are comprised of
linguistic variables, as in the case of Mamdani [20, 21], but the consequent is represented as a polynomial function of
the input variables. These type of rules are called TSK fuzzy rules. The most common function for the consequent of
a TSK rule is a linear combination of the input variables (TSK-1), and its structure is as follows:

If X1 is A1 and X2 is A2 and . . . and Xp is Ap then
Y = β0 + X1 · β1 + X2 · β2 + · · · + Xp · βp (1)

where X j represents the j-th input variable, p the number of input variables, A j is the linguistic fuzzy term for X j, Y
is the output variable, and β j is the coefficient associated with X j in the consequent part of the rule.

The matching degree h between the antecedent of the rule rk and the current inputs to the system (x1, x2, . . . , xp)
is calculated as:

hk = T (Ak
1(x1), Ak

2(x2), . . . , Ak
p(xp)) (2)

where Ak
j is the linguistic fuzzy term for the j-th input variable in the k-th rule and T is the t-norm conjunctive operator,

usually the minimum function. The final output of a TSK fuzzy rule base system composed by m TSK fuzzy rules is
computed as the average of the individual rule outputs Yk weighted by the matching degree:

ŷ =

∑m
k=1 hk · Yk∑m

k=1 hk
(3)

Linguistic TSK fuzzy rule systems represent a good trade-off between accuracy and interpretability:

• The use of linguistic terms in the antecedent of the rules provides a full description of the input space due to the
shared definition of the fuzzy partitions in the data base of the system.

• The linear representation of the output allows to obtain accurate solutions using different well-studied statistical
methods.

• The consequent of the rules represented by a linear combination of the input variables allows an easy under-
standing of the relationship between the inputs and the output.

Thus, even if the TSK fuzzy rule systems are less comprehensible in natural language terms than a Mamdani approach,
the system can provide useful and understandable information, and is the preferable choice in some domains. In this
article we focus on developing simple and accurate TSK fuzzy rule models based on a linguistic representation of the
antecedents.

3. FRULER description

This section presents the three main components of FRULER: a two-stage preprocessing —formed by the instance
selection and multi-granularity fuzzy discretization modules—, and a genetic algorithm, which contains an ad-hoc
TSK 1-order rule generation module (Fig. 1). Both preprocessing techniques are executed to improve the simplicity
of the fuzzy rule bases obtained by the evolutionary algorithm. On one hand, the instance selection reduces the
variance of the models focusing the generated rules on the representative examples. On the other hand, the multi-
granularity fuzzy discretization decreases the complexity of the fuzzy partitions and, therefore, it is not necessary to
establish an upper bound in the number of rules in the evolutionary stage.

The evolutionary learning process obtains a definition of the data base of the knowledge system. Then a novel
ad-hoc TSK 1-order rule generation module calculates the antecedents and consequents of each possible rule using
only the representative examples. Finally, each knowledge base generated by the evolutionary algorithm is evaluated
using the full training dataset.
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Preprocessing

Etra

✓  e1: x1, …, xp, y
1

✘  e2: x1, …, xp, y
2

✘  e3: x1, …, xp, y
3

✓  e4: x1, …, xp, y
4

Instance Selection

Multigranularity
Fuzzy Discretize

g3

g2

ES

Evolutionary 
Learning 
Process

Ad-hoc TSK 1-order 
Rule Generation

Evaluation
(MSE)

Data Base

Rule Base

Figure 1: FRULER architecture showing each of the three separated stages. Dashed lines indicate flow of data sets, dotted lines multigranularity
information and solid lines represent process flow.

3.1. Instance Selection for Regression
The instance selection method for regression is an improvement of the CCISR (Class Conditional Instance Se-

lection for Regression) algorithm [29], which is an adaptation for regression of the instance selection method for
classification CCIS (Class Conditional Instance Selection) [22]. The main differences between FRULER instance
selection process and CCISR are:

• The output variable is discretized in order to simplify the generation of the different graphs needed in the
process. However, the discretization does not imply that the CCIS process can be used without modification, as
the selected instances must assure a good behavior in regression problems.

• The error measure is based on the 1− nearest neighbor (1NN) approach for regression, thus reducing the com-
plexity of the calculations compared with CCISR, which uses an ad-hoc fuzzy system to evaluate the instances.

• The stopping criteria is more flexible, allowing more iterations without improvement until the termination of
the process.

• The size of the initial set of selected examples was also modified, taking the previous improvements into ac-
count.

The instance selection process is based on a relation called class conditional nearest neighbor (ccnn) [22], de-
fined on pairs of points from a labeled training set as follows: for a given class c, ccnn associates to instance a its
nearest neighbor computed among only those instances (excluded a) in class c. Thus, this relation describes proximity
information conditioned to a class label.

In regression problems, the outputs are real values instead of labels and, therefore, they must be discretized in
order to use the ccnn relation. Traditionally, an unsupervised discretization process needs the definition of either the
number of intervals or their shape [8]. In FRULER, the shape of the intervals is guided by the output density, i.e.,
the intervals are selected such that they represent dense clusters. In other words, the split points between intervals are
selected in the zones where the density of the output is locally minimum.

We use Kernel Density Estimation (KDE) with a gaussian kernel in order to estimate the probability density
function of the output variable (y) in a non-parametric way. In order to select the appropriate kernel bandwidth,
Scott’s rule is applied. [32]. Once the probability density function is obtained, the local minimum determines the split
points, and, therefore, which labels/classes are used for the ccnn relation. Thus, each instance is associated with one
of the labels obtained by this process and the instance selection method can follow the CCIS procedure.

4



Two different graphs can be constructed using this relation, as proposed in CCIS:

• Within-class directed graph (Gwc): consists in a graph where each instance has an edge pointing to the nearest
instance of the same class.

• Between-class directed graph (Gbc): is a graph where each instance has an edge pointing to the nearest instance
of any different class.

These graphs are used to define an instance scoring function by means of a directed information-theoretic measure
(the K-divergence) applied to the in-degree distributions of these graphs. The scoring function, named Score, is
defined as:

Score(ei) = pi
w · log

 pi
w

(pi
w + pi

b)/2

 − pi
b · log

 pi
b

(pi
w + pi

b)/2

 (4)

where ei is the example to which the score is calculated, pi
w is the in-degree of ei in Gwc divided by the total in-degree

of Gwc, and pi
b is the inner degree of ei in Gbc divided by the total in-degree of Gbc. This scoring function is used to

develop an effective large margin instance selection method, called Class Conditional selection (Fig. 2).
The instance selection algorithm starts from a set of training examples:

E = {e1, e2, . . . , en} (5)

where n is the number of examples. The method proposed here uses the leave-one-out mean squared error (MSE)
with 1NN (this error is called ε) in order to estimate the information loss. Thus, although the scoring function and the
graphs are based on the labels obtained by KDE, the error measure is based on the original regression problem.

1: {e1, . . . , en} = E sorted in decreasing order of Score
2: S = {e1, . . . , ek0 }

3: itwi = 0
4: repeat
5: Temp = S ∪ {el}

6: if εTemp < εS then
7: itwi = 0
8: S best = Temp
9: else

10: itwi = itwi + 1
11: S = Temp
12: until E = S ∨ itwi >

√
|E|/|S |

13: return S best

Figure 2: Pseudocode of Class Conditional selection [22].

First, an initial core of instances from E is selected, sorted by Score (Fig. 2, lines 1-2). The size of this initial set
is:

k0 = max
(
c,

⌈
εE · |E|

max(y) − min(y)

⌉)
(6)

where c is the number of classes obtained from KDE and εE is the error using the set of examples in E. This choice
is motivated because (i) there has to be at least one example for each class, and (ii) the error in the second part can
be interpreted as the miss-classification probability divided by the range of the output max(y) − min(y). Thus, the
second part indicates that at least the miss-classified examples must be selected in order to be correctly classified.
After this, the instance selection method iteratively selects instances and adds them to the set S (lines 4-12), choosing
in first place those with the highest score. The process terminates when all the examples of E are in S or when itwi

—the number of consecutive iterations for which the empirical error (εS ) increases— is greater than
√
|E|/|S | (line

12). This threshold allows more iterations without improvement at the beginning of the selection process, when the
error is more sensitive, and stops earlier when the number of selected instances is high.
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In order to further improve the number of selected instances, CCIS uses the Thin-out post-processing (Fig. 3).
This algorithm selects points close to the decision boundary of the 1NN rule. This is achieved by selecting instances
having positive in-degree in the between-class graph set S (GS

bc) and storing them in S f . Then, an iterative process is
done as follows: points having positive in-degree in the GS 1

bc are added to S f if they were not “isolated” in the previous
iteration, that is, if their in-degree was not zero (line 6). This iterative process terminates when the empirical error
increases (line 7).

1: S f = {el ∈ S with in-degree in GS
bc > 0}

2: S prev = S
3: S 1 = S \ S f

4: go on = true
5: while go on do
6: S t = {e ∈ S 1 with in-degree in GS 1

bc > 0 and with in-degree in GS prev

bc > 0}
7: go on = εS f∪S t < εS f

8: if go on then
9: S f = S f ∪ S t

10: S prev = S 1
11: S 1 = S \ S f

12: return S f

Figure 3: Pseudocode of Thin-out selection [22].

3.2. Multi-granularity Fuzzy Discretization for Regression

The definition of the fuzzy partition of each input variable is a critical step in the design of TSK fuzzy rule
bases. When no knowledge is available, the set of fuzzy labels for a variable is automatically obtained through
fuzzy discretization. Moreover, if the number of labels is unknown, then a multi-granularity approach is used, i.e.,
the definition of a different fuzzy partition for each regarded granularity. Specifically, a granularity gi

var divides the
variable var in i fuzzy labels, i.e., gi

var = {Ai,1
var, . . . , A

i,i
var}.

The generation of the fuzzy linguistic labels can be divided into two stages. First, the variable must be discretized
to obtain a set of split points Cg for each granularity g. Then, given the split points, the fuzzy labels can be defined
for each granularity. In a top-down approach, the split points are searched iteratively, i.e., only a new split point is
added at each step, obtaining two new intervals. Therefore, the approach proposed in this work aims to preserve
interpretability between contiguous granularities: adding a new label to the previous granularity and modifying the
flanks of the adjacent labels (Fig. 4). In regression problems (TSK-1 in our case), the discretization process must
search for the split point that minimizes the error when a linear model is applied to each of the resulting intervals.

In order to select the maximum number of split points for a variable, we have used the well-known Bayesian
Information Criterion (BIC). This measure can be separated into two parts: the error of applying the model to the data
and its complexity. In this case, the error is obtained from the summation of the mean squared error of a least squares
fitted model for each interval of the discretization. On the other hand, the complexity of the model is determined by
the number of parameters, in this case the number of inner splits and the parameters fitted by each regression applied
in each interval.

The pseudocode of the discretization method for a variable is shown in Fig. 5. First, the split points for granularity
1 are initialized using the domain limits (line 2). The BIC measure for this first granularity is calculated (line 3)
using MSE, a function that gets a set of examples X, learns a linear regression model using least squares and, finally,
calculates the mean squared error of the model. In this case, the number of parameters is two, corresponding to the
coefficients of the linear model. After that, an iterative process is executed: at each step, the split points of a new
granularity are defined adding a new split point to the previous granularity (lines 5-16).

In order to obtain the split point for the new granularity, first, the best split point (ci) for each interval between the
split points of the previous granularity ([Cg

i ,G
g
i+1]) is obtained (line 6). The best split point is defined as the point that

obtains the global minimum of the function LinearError (Fig. 6) in an interval (Fig. 5, line 7). LinearError gets
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c1 c2
0.0

0.2

0.4

0.6

0.8

1.0

µ
(x

)

c1 c2 c3

x

0.0

0.2

0.4

0.6

0.8

1.0

µ
(x

)

Figure 4: Top-down approach for the multi-granularity discretization. Only one label is divided into two new labels in order to obtain the next
granularity.

1: g = 1
2: Cg = {min(X),max(X)}
3: BICg = |X| · log(MSE(X)) + 2 · log(|X|)
4: itwi = 0
5: repeat
6: C =

{
ci | ci = argminc LinearError({x ∈ X : Cg

i < x < Cg
i+1}, c), ∀i = 0, ..., g, ∀c ∈ [Cg

i ,C
g
i+1]

}
7: imin = argmini LinearError({x ∈ X : Cg

i < x < Cg
i+1}, ci), ∀ci ∈ C

8: Cg+1 = Cg ∪ {cimin }

9: g = g + 1
10: BICg = |X| · log(

∑g
i=0 MSE({x ∈ X : Cg

i < x < Cg
i+1}) + (|Cg| − 2) · 2 · log(|X|)

11: if BICg < BICmin then
12: itwi = 0
13: min = g
14: else
15: itwi = itwi + 1

16: until itwi >
√
|X|
30 /min

17: return C1, . . . ,Cmin

Figure 5: Pseudocode of the discretization method.

a set of examples X and a split point c and calculates the total squared error (SE) of X, which is calculated with the
corresponding linear regression models at each side of the split point. Only split points that obtain intervals with size
of at least 30 are taken into account to assure that the obtained linear regressions are statistically valid.

The selected split point is added to the new granularity split points (lines 8-9), and the BIC measure is calculated
(line 10). The number of parameters used for the BIC measure is 2 (coefficients of the linear regression for a single
variable) for each interval. The number of intervals is calculated as |Cg| − 2, where 2 is subtracted to disregard the
split points at the end of the domain of variable X.

Finally, when the number of consecutive iterations without improvement in the BIC value (itwi) is greater than√
|X|
30 /min, the algorithm stops (lines 11-16). This criterion ensures that at the beginning of the discretization process

7



1: function LinearError(X, c)
2: Xl = {x ∈ X : x < c}
3: Xr = {x ∈ X : x > c}
4: return SE(Xl) ·

|Xl |

|X| + SE(Xr) ·
|Xr |

|X|

Figure 6: Pseudocode of the function to be minimized by the discretization method.

—the granularity is low—, the BIC may worsen for more iterations, while with larger granularities, the algorithm
becomes stricter in the stopping criterion. The number of data points is divided by 30 in order to obtain the maximum
number of intervals.

After obtaining the discretization of the variable for each granularity, the method proposed in [19] is applied for
each Cg —set of split points for the granularity g— in order to get the multi-granularity fuzzy partitions. This method
uses a fuzziness parameter that indicates how fuzzy are the linguistic labels. A fuzziness 0 indicates crisp intervals,
while a fuzziness 1 indicates the selection of a fuzzy set with the smallest kernel —set of points with membership
equal to 1.

3.3. Evolutionary Algorithm
The evolutionary algorithm learns a linguistic TSK model. The integration of the evolutionary algorithm with the

preprocessing stage is as follows (Fig. 1):

• First, the instance selection process is executed over the training examples Etra in order to obtain a subset of
representative examples ES .

• Then, the multi-granularity fuzzy discretization process obtains the fuzzy partitions for each input variable.

• Finally, the evolutionary algorithm searches for the best data base configuration using the obtained fuzzy parti-
tions, generates the entire linguistic TSK rule base using ES and evaluates the different rule bases using Etra.

Evolutionary Process
Etra

Ad-hoc TSK-1
Rule Generation

Evaluation
(MSE)

Data Base

Rule BaseRemplacement

Selection Crossover and
Mutation

Local Search

Initialization
ES

Stop?

Yes

No

Fuzzy 
Partitions

Figure 7: The Evolutionary learning process used in FRULER. Dashed lines indicate flow of data sets, dotted lines are for multigranularity
information and solid lines represent process flow.

Figure 7 shows the evolutionary learning process and how it uses the fuzzy partitions and the training examples.
In what follows, we describe in detail the different components of the evolutionary algorithm.
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3.3.1. Chromosome Codification
The chromosome codification represents the parameters needed to create the data base and the rule base. Each

individual has to codify a single fuzzy partition for each input variable from the fuzzy partitions obtained in the multi-
granularity fuzzy discretization (Sec. 3.2). Moreover, the individuals also use the 2-tuple representation of the labels
[17]. This approach applies a displacement of a linguistic term within an interval that expresses the movement of a
label between its two adjacent labels. In our case, a different displacement is going to be applied to each of the split
points.

Thus, the chromosome is codified with a double coding scheme (C = C1 + C2):

• C1 represents the granularity used in each input variable. It is codified with a vector of p integers:

C1 = (g1, g2, . . . , gp) (7)

where gi represents the granularity selected for input variable i. When the granularity of a variable is equal to
1, then it is not used in the antecedent part. However, this variable can still be used in the consequent, since it
could be relevant for calculating the output.

• C2 represents the lateral displacements of the split points of the input variables fuzzy partitions. Thus, the length
of C2 depends on the granularity for each input variable: |C2| =

∑p
j=1 (|g j| − 1),∀g j ∈ C1:

C2 = (α1
1, . . . , α

g1−1
1 , . . . , α1

p, . . . , α
gp−1
p ) (8)

where α j
i represents the lateral displacement of the j split point of variable i. Each lateral displacement can vary

in the (0.5, 0.5) interval which represents half of the distance between each split point (Fig. 8). An example of
a lateral displacement can be seen in Figure 9. The fuzzy partitions are always strong —the sum of the degree
of fulfillment for each point of the domain is always equal to 1— and, therefore, interpretability is maintained.

α1 α2 α3

0.0

0.2

0.4

0.6

0.8

1.0

µ
(x

)

Figure 8: An example of lateral displacement intervals for limits equal to (0.5, 0.5). The split points can move a maximum of half of the distance
to the next split point.

3.3.2. Initialization
The initial pool of individuals is generated by a combination of two initialization procedures. A half of the

individuals are generated with the same random granularity for each variable, while the other half is created with a
different random granularity for each variable. The lateral displacements are initialized to 0 in all cases.

After that, when the product of the granularities indicated in C1 (i.e., the maximum number of rules that can be
obtained) is greater than the number of input variables times the highest maximum granularity of the variables, then a
variable is randomly selected to be removed from the antecedent part —its granularity is set to 1— until the previous
condition is satisfied. This is done in order to avoid too complex solutions in the initialization stage —during the
evolutionary learning this upper bound to the number of rules does not apply.
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α1 =−0.25 α2 =0.2 α3 =−0.1
0.0

0.2

0.4

0.6

0.8

1.0

µ
(x

)

Figure 9: A lateral displacement example. The dashed lines indicate the original fuzzy partition, while the solid lines indicate the obtained partition
after the displacement has been applied.

3.3.3. TSK Rule Base Generation
An ad-hoc method is used to construct the rule base from the data base codified in the chromosome, i.e. the fuzzy

partitions indicated in C1 after applying the displacement in C2. The Wang & Mendel algorithm [37] is used to create
the antecedent part of the rule base for each individual. The method is quick and simple, and obtains a representative
rule base given the definition of the data base and a set of examples.

The consequent part of the rules is learned using the Elastic Net method [38] in order to obtain the coefficients
of the degree 1 polynomial for each rule. Elastic Net linearly combines the `1 (Lasso regularization) and `2 (Ridge
regularization penalties of the Lasso and Ridge methods to overcome some of their limitations. This combination
allows obtaining sparse models —forces variables with little or none correlation with the output to have coefficients
equal to 0— while learning a smooth linear regression —the coefficients are shrunk towards 0.

Elastic Net obtains the coefficients of a linear regression minimizing the following equation:

β̂ = arg min
β
||Y − X · β||22 + λ · α · ‖β‖22 + λ · (1 − α) · ‖β‖1 (9)

where β is the coefficients vector (β0, β1, . . . , βp), Y is the outputs vector (y1, . . . , yn), X is the inputs matrix with size
n × p —rows represent examples while columns are the input variables—, λ is the regularization parameter and α
represents the trade-off between `1 and `2 penalization.

In order to use Elastic Net for learning the consequents, the coefficients for each rule cannot be calculated sepa-
rately due to the aggregation function used to obtain the output of the system (Eq. 3). Therefore, all the coefficients
must be optimized at the same time, taking into account the degree of fulfillment of each rule (Eq. 2) for each input
vector xi. Thus, the matrix X is modified as follows:

• The normalized degree of fulfillment for each rule rk for each example ei is calculated as:

zi
k =

hk(xi)∑m
u=1 hu(xi)

(10)

where the denominator is the normalization term for each input vector xi, i.e., the summation of the degree of
fulfillment of all rules.

• Then, the matrix X is defined as:

X =


z1

1, x1
1 · z

1
1, . . . , x1

p · z
1
1, . . . , z1

m, x1
1 · z

1
m, . . . , x1

p · z
1
m

...
...

zn
1, xn

1 · z
n
1, . . . , xn

p · z
n
1, . . . , zn

m, xn
1 · z

n
m, . . . , xn

p · z
n
m

 (11)

where each row replicates the input vector xi = (1, xi
1, x

i
2, . . . , x

i
p) —where a 1 was added to take into account

the independent term— as many times as the number of rules (m), weighting each rule rk by zi
k.
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• Finally, the coefficient vector is the concatenation of the coefficients of all rules:

β =
(
β1

0, β1
1, . . . , β1

p, . . . , βm
0 , βm

1 , . . . , βm
p

)
(12)

In order to solve the minimization problem of Elastic Net (Eq. 9), the Stochastic Gradient Descent (SGD) op-
timization technique was used [6, 35]. This gradient descent method is characterized by updating each coefficient
separately using only one example at a time. This is particularly suited for sparse datasets, which is a common case
when X is constructed using Eq. 11 —zi

k is 0 when a rule does not cover an example.
The pseudocode of the method is shown in Figure 10. SGD needs three parameters to solve the Elastic Net

approach: the regularization (λ), the trade-off between Lasso and Ridge (α) and the initial learning rate (η0). On
one hand, α usually takes a low value in order to behave like `1 but with the shrinkage of `2 in the features with
coefficient not equal to 0. On the other hand, λ and η0 can be obtained using a grid search —testing a set of possible
values between a predefined interval— using only a small subset of examples since the convergence properties are
maintained [6].

The algorithm is composed of three different loops: i) lines 3-27 which represent an iteration over the whole
dataset, ii) lines 6-17 which iterate over each example and iii) lines 11-17 which iterate over the coefficients. Note
that, in this case, the number of coefficients is the number of columns in X (p · m), i.e., the number of input variables
of the problem (p) times the number of rules (m). First, the examples are shuffled (line 5) each time the whole dataset
is used. Then, for each example ei, t is incremented by 1 and the learning rate (ηt) and the shrinkage portion for both
`1 and `2 (s and u respectively) are updated (lines 6-10). After that, for each coefficient w j, line 12 applies Ridge
regularization [6], while lines 13-17 apply the Lasso approach [35]. The Lasso approach uses thresholds in order to
decide if the variable is going to be selected (weight different from 0) and updates the threshold for each input variable
for the next iterations (q j in line 17). Finally, the coefficient of determination R2 is calculated (line 18) and compared
with the best obtained so far. If it is better, then the estimated coefficients β̂ are updated and, if it is not, the number
of iterations without improvement (itwi) is incremented by 1. When itwi exceeds the threshold defined in line 27, the
algorithm stops. This threshold is directly proportional to the number of examples, and decreases with the number of
iterations.

Only those examples in Es are used to obtain the rule base from the codified chromosome. In this manner, those
examples that are not representative are not considered for the rule generation. Thus, the method avoids the creation
of too specific rules, and reduces the time needed to create the rule base.

3.3.4. Evaluation
The fitness function is based on the estimation of the error of the generated rule base:

fitness = MSE(Etra) =
1

2 · |E|

|E|∑
i=1

(F(xi) − yi)2, (13)

where Etra is the full training dataset and F(xi) is the output obtained by the knowledge base for the input xi. Using all
the examples for evaluation can be seen, in some way, as a validation process, as the rule base was constructed with a
subset of them (ES ).

3.3.5. Selection and Replacement
The selection is performed by a binary tournament. On the other hand, the replacement method joins the previous

and current populations, and selects the N best individuals as the new population.

3.3.6. Crossover and Mutation
Two crossover operations are defined: one-point crossover for exchanging the C1 parts (it also exchanges the

corresponding C2 genes) and, when the C1 parts are equal, the parent-centric BLX (PCBLX) [16] is used to crossover
the C2 part. In order to prevent the crossover of too similar individuals, an incest prevention was implemented. When
the euclidean distance of the lateral displacements is less than a particular threshold L, the individuals are not crossed.

The mutation (with probability pmut) applies two possible operations with equal probability to a randomly selected
gene of the C1 part: i) decreasing the granularity by 1 or ii) increasing the granularity to a more specific granularity
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1: function SGD-ElasticNet(X, Y, λ, α, η0)
2: it = 0, t = 0, s = 1, u = 0, w0 = 01×p, q = 01×p

3: repeat
4: Shuffle Rows(X) . SGD needs to reorder the rows of X
5: for i = 1, . . . , n do
6: t = t + 1 . t counts how many updates of the weights have been applied
7: ηt = η0 · (λ · t)−1 . Updates the learning rate to be more conservative
8: ŷi = xi · wt · s . Obtains the estimated output
9: s = s · (1 − α · ηt · λ) . Updates how much of `2 was applied

10: u = u + (1 − α) · ηt · λ . Updates how much of `1 was applied
11: for j = 1, . . . , p do
12: wt+ 1

2
j = wt

j − η
t · (ŷi − yi) · xi

j/s . Applies the `2 regularization

13: if s · wt+ 1
2

j > 0 then . Applies `1 regularization and thresholds in the following 5 lines

14: wt+1
j = max(0,wt+ 1

2
j − (u + q j)/s) . Positive threshold

15: else if s · wt+ 1
2

j < 0 then

16: wt+1
j = min(0,wt+ 1

2
j + (u − q j)/s) . Negative threshold

17: q j = q j + s · (wt+1
j − wt+ 1

2
j ) . Updates thresholds

18: R2
i t = 1 − 1

n
∑n

i=0(xi · wt+1 · s − yi)2 . Calculates the coefficient of determination
19: if R2

i t > R2
best then . Updates the best values so far and the iterations without improvement

20: β̂ = wt+1 · s
21: R2

best = R2
t

22: itwi = 0
23: else
24: itwi = itwi + 1
25: it = it + 1 . it counts how many times the full dataset was used
26: until itwi > sqrt(|X|/it)
27: return β̂

Figure 10: Pseudocode of SGD for Elastic-Net.

—all the granularities have the same chance. In order to calculate the new lateral displacements in the corresponding
C2 part, the displacements of the previous granularity are taken into account. The displacement associated with a
particular split point is calculated adding the displacements of the two nearest split points of the previous granularity
(before mutation) weighted by the distance between the split points.

3.3.7. Local Search
After the replacement, all the new individuals (their C1 part of the chromosome was not generated before) are

used in a local search process. This stage generates nls new C1 parts with equal or less granularity —with equal
probability— for each variable. Then, the C2 part is generated randomly with a uniform distribution in the (−0.5, 0.5)
interval. The new chromosomes are decoded and evaluated and, if there is a solution that obtains better fitness, then it
replaces the original individual.

3.3.8. Restart and Stopping Criteria
The restart mechanism uses the incest prevention threshold L as a trigger. First, L is initialized as the maximum

length of the C2 part, i.e. the product of the number of input variables times the largest maximum granularity of the
variables, divided by 4. This implies that the incest prevention allows crossovers between individuals that have a
distance higher than a quarter of the maximum euclidean distance. Then, for each iteration, L is decreased in different
ways in order to accelerate convergence:

12



• L is decreased by 0.4 in all the iterations, in order to increase convergence.

• If there are no new individuals in the population, then L is decreased by 0.2.

• If the best individual does not change, L is also decreased by 0.2.

Finally, when L reaches 0, the population is restarted, and L is reinitialized. Only the best individual so far is kept,
and the local search process is executed to the best individual in order to generate new individuals until the population
is complete. When the restart criterion is fulfilled twice, the algorithm stops, i.e., one single restart is executed.
Moreover, if the number of evaluations reaches a threshold, then the algorithm is also stopped. When the evolutionary
algorithm stops, the best rule base consequents are optimized applying the SGD algorithm (Sec. 3.3.3) using all the
training examples.

4. Results

In order to analyze the performance of FRULER, we have used 28 real-world regression problems from the KEEL
project repository [3]. Table 1 shows the characteristics of the datasets, with the number of instances ranging from
337 to 40,768 examples, and the number of input variables from 2 to 40. The most complex problems —large scale—
due to both the number of examples and variables are the ones in the last 8 rows (Table 1).

Problem Abbr. # Variables # Cases

Electrical Length ELE1 2 495
Plastic Strength PLA 2 1,650
Quake QUA 3 2,178
Electrical Maintenance ELE2 4 1,056
Friedman FRIE 5 1,200
Auto MPG6 MPG6 5 398
Delta Ailerons DELAIL 5 7,129
Daily Electricity Energy DEE 6 365
Delta Elevators DELELV 6 9,517
Analcat ANA 7 4,052
Auto MPG8 MPG8 7 398
Abalone ABA 8 4,177
Concrete Compressive Strength CON 8 1,030
Stock prices STP 9 950
Weather Ankara WAN 9 1,609
Weather Izmir WIZ 9 1,461
Forest Fires FOR 12 517
Mortgage MOR 15 1,049
Treasury TRE 15 1,049
Baseball BAS 16 337
California Housing CAL 8 20,640
MV Artificial Domain MV 10 40,768
House-16H HOU 16 22,784
Elevators ELV 18 16,559
Computer Activity CA 21 8,192
Pole Telecommunications POLE 26 14,998
Pumadyn PUM 32 8,192
Ailerons AIL 40 13,750

Table 1: The 28 datasets of the experimental study.
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In the following subsections we show the results obtained by the different parts of the algorithm. Moreover, the
results obtained by the FRULER algorithm are compared with other state of the art approaches.

4.1. Experimental Setup

FRULER was designed to keep the number of parameters as low as possible. For the instance selection technique,
no parameters are needed. In the multi-granularity fuzzy discretization, the fuzziness parameter used for the generation
of the fuzzy intervals from the split points was 1, i.e., the highest fuzziness value. For the evolutionary algorithm,
the values of the parameters were: population size = 61, maximum number of evaluations = 100, 000, pcross = 1.0,
pmut = 0.2, and nls = 5. For the generation of the TSK fuzzy rule bases, the weight of the tradeoff between `1 and `2
regularizations on the Elastic Net is α = 0.95, and the regularization parameter λ was obtained from a grid search in
the interval [1, 1E − 10]. η0 was obtained halving the initial value (0.1) until the result worsens.

A 5-fold cross validation was used in all the experiments. Moreover, 6 trials (with different seeds for the random
number generation) of FRULER were executed for each 5-fold cross validation. Thus, a total of 30 runs were obtained
for each dataset. The results shown in the next section are the mean values over all the runs. The time measures have
been done using a single thread in an Intel Xeon Processor E5-2650L (20M Cache, 1.80 GHz, 8.00 GT/s Intel QPI).

4.2. Performance of the Instance Selection Process

We considered two different measures to evaluate the instance selection process:

• Reduction: is the percentage of reduction in the number of examples, defined as:

Reduction =

(
1 −

|Es|

|Etra|

)
· 100 (14)

where |Es| is the number of examples in the subset of selected examples and |Etra| is the original number of
examples in the training set.

• Increase in error: is the increment in the error after applying the instance selection process, defined as:

Increase =
εEs

εEtra

(15)

where εE is the mean squared error obtained using leave-one-out 1NN for regression.

Table 2 shows the average values of reduction and error increase for each data set. The percentage of reduction
achieved is, in general, over 80% in most of the datasets. Another four datasets (QUA, FRIE, DEE, STP) have a
reduction in the range 70-80%, and only one dataset (WIZ) has a reduction below 70% (64.2%). The reduction rate
does not depend neither on the size of the dataset, nor on the number of variables, but on the complexity of the data.
On the other hand, the increase in 1NN error is very low, as it is greater than 2 for only eight datasets (ELE2, ANA,
STP, MOR, TRE, MV, CA, POLE). The time needed for the execution of the instance selection process is generally
low, and only the large scale problems consume more than 15 minutes.

4.3. Performance of the Multi-Granularity Fuzzy Discretization Process

We evaluated the discretization with three different measures:

• Average maximum granularity (over all the variables) for each dataset: This measure summarizes the complex-
ity of the fuzzy partitions generated by the discretization.

• Maximum granularity among the variables for each dataset. This represents the upper bound of the fuzzy
partitions obtained for each dataset. It is expected that the smaller this value, the simpler the models obtained
by FRULER.

• The number of variables that have not been discretized at all, i.e., their maximum granularity is equal to 1.
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Data sets Reduction (%) Increase in error Time (m:s)

ELE1 83.4 0.85 00:54
PLA 91.8 0.76 01:54
QUA 70.9 1.07 03:50
ELE2 84.9 4.08 02:09
FRIE 79.5 1.53 01:33
MPG6 81.6 1.24 00:45
DELAIL 96.9 1.04 10:59
DEE 77.7 1.14 00:42
DELELV 94.0 0.97 15:44
ANA 98.8 16.61 05:09
MPG8 81.4 0.92 00:44
ABA 91.7 0.96 06:13
CON 88.0 1.33 02:04
STP 73.6 2.35 02:07
WAN 85.4 1.58 02:03
WIZ 64.2 1.36 02:37
FOR 93.3 0.54 00:58
MOR 83.4 4.28 02:12
TRE 81.6 5.35 02:20
BAS 83.5 1.61 00:38
CAL 91.6 1.27 39:44
MV 98.7 3.87 40:33
HOU 95.4 1.12 46:08
ELE 96.0 1.33 30:49
CA 98.9 7.40 11:57
POLE 98.7 18.36 27:15
PUM 80.3 1.01 14:48
AIL 95.4 1.12 24:31

Table 2: Average (5-fold cross validation) results obtained by the instance selection for regression method for each dataset.

Table 3 summarizes the results for each dataset. The average maximum granularity is below 9 in all the cases
except for DELAIL dataset. Moreover, the maximum granularity is always below 20 and only in 11 cases (DELAIL,
DELELV, CON, WAN, CAL, MV, HOU, ELE, CA, POLE, AIL) it is above granularity 10. Even in the datasets with
high granularities, the maximum number of fuzzy sets does not generate a huge search space for the evolutionary
algorithm. Finally, the number of variables without discretization is 0 in most of the cases. In terms of computational
time, the discretization module has almost no cost, as the most expensive discretization process is less than 3 seconds.

4.4. Statistical Analysis

In this section we compare FRULER with three genetic approaches that are the most accurate genetic fuzzy
systems for regression in the literature:

• FSMOGFS
e+TUNe [2]: a multi-objective evolutionary algorithm that learns Mamdani fuzzy rule bases. This

algorithm learns the granularities from uniform multi-granularity fuzzy partitions (up to granularity 7) and the
lateral displacement of the labels. It includes a post-processing algorithm for tuning the parameters of the
membership functions and for rule selection.

• L-METSK-HDe [12]: a multi-objective evolutionary algorithm that learns linguistic TSK-0 fuzzy rule bases.
The algorithm learns the granularities from uniform multi-granularity fuzzy partitions (up to granularity 7).
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Problem Average Max # Not used Time (s:ms)

ELE1 2.3 2.4 0.0 00:11
PLA 3.5 4.4 0.0 00:17
QUA 3.9 7.8 0.0 00:26
ELE2 5.1 7.6 0.0 00:21
FRIE 2.0 2.0 0.0 00:18
MPG6 3.6 5.8 0.0 00:13
DELAIL 9.8 14.0 0.0 00:65
DEE 2.2 3.0 0.0 00:11
DELELV 7.8 15.4 0.8 00:63
ANA 2.0 6.6 5.0 00:13
MPG8 2.9 5.6 1.0 00:09
ABA 4.0 7.8 1.0 00:35
CON 6.0 14.0 1.0 00:29
STP 4.3 9.4 0.0 00:24
WAN 5.0 14.8 0.0 00:28
WIZ 4.3 9.0 0.0 00:25
FOR 2.4 6.0 4.0 00:15
MOR 3.9 8.0 0.0 00:27
TRE 3.7 6.2 0.0 00:35
BAS 2.6 5.2 4.0 00:13
CAL 5.1 13.8 0.0 01:40
MV 3.4 18.6 3.0 02:91
HOU 3.7 12.2 5.0 02:20
ELE 8.0 17.2 2.0 01:57
CA 4.1 14.4 8.0 00:73
POLE 4.5 16.0 5.0 01:05
PUM 2.0 3.2 0.0 01:41
AIL 6.7 19.0 6.2 02:01

Table 3: Average (5-fold cross validation) results obtained by the multi-granularity fuzzy discretization process for each dataset.

• A-METSK-HDe [12]: a multi-objective evolutionary algorithm that learns approximative TSK-1 fuzzy rule
bases. The algorithm starts with the solution obtained on the first stage and applies a tuning of the membership
functions, rule selection and a Kalman-based calculation of the consequents of the rules.

Table 4 shows the average results of FRULER and the three algorithms selected for comparison. Two different
results are shown for each algorithm and dataset: the number of rules of the obtained rule base, and the test error
measured using equation (13) over the test data. These indicators allow to compare both the simplicity and the
accuracy of the learned models. The values with the best accuracy —lowest error— and best number of rules in table
4 are marked in bold.

It can be seen that the number of rules of FRULER is the lowest in the majority of the datasets. It should be
noted that the number of rules in the large scale problems (the last 8 problems) is also low despite the high number
of examples. Only in 5 problems the FSMOGFS

e+TUNe Mamdani proposal produces the lowest number of rules. In
the case of accuracy, in 15 of the 28 problems FRULER achieves the best results. In the other 13 datasets, the best
results are for FSMOGFS

e+TUNe (best in 4 problems) and A-METSK-HDe (best in 9 problems). From the results, we
did not find influence in the performance of FRULER by neither the training dataset size nor the dimensionality of the
problem.

In order to analyze the statistical significance of these results the STAC platform [26] was used to apply the
statistical tests. A Friedman test was used for both the number of rules and the test error in order to get a ranking of
the algorithms and check whether the differences between them were statistically significant.
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algorithms FRULER FSMOGFS
e+TUNe L-METSK-HDe A-METSK-HDe

# Rules Test Error # Rules Test Error # Rules Test Error # Rules Test Error

ELE1 4.1 2.012 8.1 1.954 15 1.925 11.4 2.022
PLA 1.4 1.219 18.6 1.194 23 1.218 19.2 1.136
QUA 7.8 0.0181 3.2 0.0178 35.9 0.019 18.3 0.0181
ELE2 4.3 6,729 8 10,548 59 20,095 36.9 3,192
FRIE 8.0 0.731 22 3.138 95.1 3.084 66 1.888
MPG6 13.7 3.727 20 4.562 99.6 4.469 53.6 4.478
DELAIL 2.5 1.458 6.2 1.528 98.3 1.621 36.8 1.402
DEE 7.9 0.080 18.3 0.093 96.4 0.095 50.6 0.103
DELELV 5.8 1.045 7.9 1.086 91 1.119 39.1 1.031
ANA 3.9 0.008 10 0.003 48.9 0.006 33.3 0.004
MPG8 12.7 4.084 23 4.747 98.7 5.61 64.2 5.391
ABA 4.5 2.393 8 2.509 42.4 2.581 23.1 2.392
CON 8.9 20.598 15.4 32.977 96.5 38.394 53.7 23.885
STP 42.4 0.353 23 0.912 100 0.78 66.4 0.387
WAN 5.6 0.888 8 1.635 91.1 1.773 48 1.189
WIZ 8.9 0.663 10 1.011 55.4 1.296 29.1 0.944
FOR 5.6 2,214 10 2,628 93.7 4,633 40.6 5,587
MOR 7.9 0.007 7 0.019 40.9 0.028 27.2 0.013
TRE 4.5 0.027 9 0.044 42.8 0.052 28.1 0.038
BAS 6.2 305,777 17 261,322 95.7 320,133 59.8 368,820
CAL 15.4 2.110 8.4 2.95 99.8 2.638 55.8 1.71
MV 6.0 0.083 14 0.158 76.4 0.244 56.5 0.061
HOU 12.1 8.005 11.7 9.4 68.9 10.368 30.5 8.64
ELE 5.4 2.934 8 9 76.4 8.9 34.9 7.02
CA 7.1 4.634 14 5.216 71.3 5.88 32.9 4.949
POLE 40.8 110.898 13.1 102.816 100 150.673 46.3 61.018
PUM 7.8 0.367 17.6 0.292 87.5 0.594 63.3 0.287
AIL 8.5 1.404 15 2 99.1 1.822 48.4 1.51

Table 4: Average results for the different algorithms. The test errors in this table should be multiplied by 105, 10−8, 10−6, 109, 108, 10−6, 10−4, 10−8

in the case of ELE1, DELAIL, DELELV, CAL, HOU, ELV, PUM, AIL respectively.

Algorithm Ranking

FRULER 1.714
A-METSK-HDe 2.036
FSMOGFS

e+TUNe 2.786
L-METSK-HDe 3.464

p-value < 1E − 5

Table 5: Friedman test ranking results for the test error in table 4.

Comparison p-value

FRULER vs A-METSK-HDe 0.079

Table 6: Wilcoxon comparison for the two most accurate algorithms of table 5.

Table 5 shows the ranking for the test error, with the p-value of the test. Our proposal —generates linguistic
TSK-1 rules— gets the top ranking, i.e., it has the best results in accuracy among all the algorithms. Then, the next
algorithm in the ranking is the approximative approach, due to its fine tuning of the rules, followed by the linguistic
approaches. In order to compare whether the difference between FRULER and the second ranked algorithm (A-
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METSK-HDe[12]) is significant, a Wilcoxon test was performed (Table 6). The p-value indicates that the difference
is statistically significant when using a significance level of 0.1. Thus, even with linguistic rules, FRULER obtains a
great accuracy compared to approximative approaches, while getting simpler models.

Algorithm Ranking

FRULER 1.214
FSMOGFS

e+TUNe 1.786
A-METSK-HDe 3
L-METSK-HDe 4

p-value < 1E − 5

Table 7: Friedman test ranking results for the number of rules in table 4.

Comparison p-value

FRULER vs A-METSK-HDe < 1E − 4

Table 8: Wilcoxon comparison for the two simpler approaches in table 7.

To analyze the complexity of the models obtained for each algorithm, the same Friedman test was performed to
the number of rules in table 4 (Table 7). Once again, FRULER has the lowest ranking. The next algorithm in the
ranking is the FSMOGFS

e+TUNe Mamdani approach, followed by the METSK-HDe approaches with a big difference
in the ranking. In order to assess whether the difference in complexity among the most accurate proposals (Table 5)
is significant, a Wilcoxon test was also applied (Table 8). The difference is statistically significant (p-value equal to
1E − 4) in the number of rules. This shows that FRULER obtains accurate solutions with simpler models.

Datasets ELE1 PLA QUA ELE2 FRIE MPG6 DELAIL DEE DELELV ANA

Time (h:m:s) 0:00:51 0:01:41 0:09:48 0:03:05 0:05:46 0:02:12 0:09:58 0:02:26 0:25:01 0:05:05
Evaluations 8,885 7,345 13,020 16,798 17,283 21,556 19,236 24,131 24,386 27,107

Datasets MPG8 ABA CON STP WAN WIZ FOR MOR TRE BAS

Time (h:m:s) 0:03:29 0:17:45 0:05:55 0:27:41 0:10:27 0:26:03 0:02:28 0:27:50 0:23:30 0:04:41
Evaluations 29,355 31,537 32,318 38,468 35,812 36,168 45,367 60,101 57,569 59,362

Datasets CAL MV HOU ELE CA POLE PUM AIL

Time (h:m:s) 1:57:03 1:17:02 4:15:17 3:01:30 0:38:12 1:53:15 31:14:27 12:50:38
Evaluations 33,951 35,001 61,709 68,055 78,036 99,827 96,543 100,000

Table 9: Average run time and number of evaluations per run of FRULER.

Table 9 shows the average time consumed by a run of FRULER in each dataset. We also display the number of
evaluations until the stopping condition was met. Although each of the stages of FRULER increases the computational
complexity, they contribute to focus the search on the simplest models. Our method obtains solutions in the range
between 1-23 minutes for datasets 1-20 (the most simple ones) and solutions in the range from 1-30 hours for datasets
21-28 (the most complex ones). Moreover, the number of evaluations is below the 100, 000 limit, except for the largest
problem (AIL). The computational time of FRULER is in the same order of magnitude as A-METSK-HD, being only
worse in six datasets (QUA, WIZ, MOR, TRE, PUM and AIL) 1.

In order to demonstrate the simplicity of the models generated by FRULER, Figure 11 shows an example of one
of the rule bases generated for the WAN dataset. The Figure shows two columns for each rule: the fuzzy sets used

1We do not perform a quantitative comparison with the computational times of [12] as the processor is not the same
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Figure 11: An example of TSK fuzzy rule base for the WAN dataset. The system uses only 2 variables for the antecedent part and has 6 different
rules. For the sake of simplicity and understandability, the consequents are represented with their absolute value and have been scaled to have the
maximum weight equal to 1. The test error obtained by this example is 0.885.
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in the antecedent and the weight of the variables in the consequent. For the sake of simplicity and understandability,
the consequents are represented with their absolute value and have been scaled to put the maximum weight equal to
1. The antecedent only uses two variables with granularity 3 and 2 respectively, thus 6 rules are needed to cover all
the combinations. On the other hand, the consequent column shows the importance of each input variable for each
rule, providing a qualitative understanding of the model. In this case, the first three variables (X1, X2 and X3) have
the greatest importance in the consequent. Note that, even though this is one of the simplest models obtained by
FRULER, the test error is very low (0.885).

5. Conclusions

In this paper, a novel genetic fuzzy system called FRULER was presented. FRULER learns simple and linguistic
TSK-1 knowledge bases for regression problems. This new approach has two general-purpose preprocessing stages
for regression problems: a new instance selection for regression and a novel non-uniform multi-granularity fuzzy
discretization. The evolutionary learning algorithm incorporates an automatic generation of the TSK fuzzy rule bases
from fuzzy partitions that uses Elastic Net in order to obtain consequents with low overfitting.

FRULER was compared with three state of the art algorithms that learn different types of fuzzy rules: linguistic
Mamdani, linguistic TSK-0 and approximative TSK-1. The results were analyzed using statistical tests, which show
that FRULER obtains high accuracy, but with a lower number of rules and with a linguistic data base. This is of partic-
ular interest in problems where both high accuracy and interpretability are demanded, in order to provide qualitative
understanding of the model to the users.
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