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Abstract

We study the case of scheduling a Contextual Information Process (CIP) over
incomplete multivariate contextual data streams coming from sensing devices
in Internet of Things (IoT) environments. CIPs like data fusion, concept drift
detection, and predictive analytics adopt window-based methods for processing
continuous stream queries. CIPs involve the continuous evaluation of functions
over contextual attributes (e.g., air pollutants measurements from environmen-
tal sensors) possibly incomplete (i.e., containing missing values) thus degrading
the quality of the CIP results. We introduce a mechanism, which monitors
the quality of the contextual streaming values and then optimally determines
the appropriate time to activate a CIP. CIP is optimally delayed in hopes of
observing in the near future higher quality of contextual values in terms of va-
lidity, freshness and presence. Our time-optimized mechanism activates a CIP
when the expected quality is maximized taking also into account the induced
cost of delay and an aging framework of freshness over contextual values. We
propose two analytical time-based stochastic optimization models and provide
extensive sensitivity analysis. We provide a comparative assessment with slid-
ing window-centric models found in the literature and showcase the efficiency
of our mechanism on improving the quality of results of a CIP.

Keywords: Incomplete multivariate context streams, quality of streaming
data, Internet of Things, optimal stopping theory.

1. Introduction

Huge volumes of sensory data in Internet of Things (IoT) environments are
continuously generated as streams, which need to be analyzed on-line. Multi-
variate streaming data can be considered as one of the main sources of what is
coined big data. Many IoT applications deal with multivariate contextual data5
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coming in the form of time series like Wireless Sensors Network (WSN) data.
IoT applications for e.g., forest monitoring [34], and statistical analytics appli-
cations over large-scale data streams require efficient, accurate, and timely data
analysis to facilitate (near) real-time decision-making and situational context
awareness [3]. A contextual data stream (or context stream) contains values10

from contextual parameters corresponding to IoT sources, e.g., humidity sen-
sor. IoT applications exploit all such context, for instance, to (i) infer the top-k
recent congested segments of city road networks, or (ii) obtain regularly the
highest pollution level within a time horizon in a smart city.

1.1. Motivation & Challenge15

All pieces of context captured by IoT contextual information sources are
considered as continuous context streams, where Contextual Information
Processes (CIPs) are applied to (i) reason over incomplete data and (ii) infer
new knowledge. Recent development in big data analytics [9] examines large
amounts of contextual data to uncover hidden patterns, correlations, and other20

insights. With CIPs, it is possible to analyze contextual data from streams al-
most immediately an effort that is less efficient with more traditional business
intelligence solutions. The major challenge in a stream of contextual information
is that contextual data are usually imprecise, incomplete, and noisy including
missing and out-of-order data. Such incompleteness is due to various errors, e.g.,25

data interference and limitations of sensor equipment, limited WSN resources,
and harsh deployment environments. The values of contextual parameters are
missing, or not available, or stale. In such cases, we observe values for only a
subset of contextual parameters. Hence, a CIP, which ranges from: a data ag-
gregation function to an information fusion engine, towards to a context30

inference process, cannot be accurately evaluated. This degrades the quality
of the CIP result in terms of prediction accuracy and consistent inference.

Accurate CIP results rely on the information quality of context stream.
Stream quality is expressed by meta-information, e.g., value validity, expiration
thresholds, and missingness indicators. Inaccurate observations due to missing35

values can be either corrected (data imputation) [2] or removed. However, this
yields bias in the extracted knowledge and the CIP results [12]. The baseline
solution is invoking a Missing Values Substitution (MVS) process e.g., [6],
over context streams at every time before the invocation of a CIP. Evidently,
this imposes significant computational effort. One has to decide whether such40

MVS methods should be continuously invoked and at which rate. The trade-off
between information quality and computational resource utilization is studied
in this paper, which motivated us to introduce an intelligent mechanism for
scheduling CIP invocations over incomplete context streams. The motivation
here is to compensate the degree of information quality that an IoT application45

requires with the available computational resources, especially, when dealing
with remote sensing devices. An optimally scheduled CIP over incomplete con-
textual information streams in order to avoid continuous calls of MVS methods
establishes a mechanism that achieves the information quality levels of the ap-
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plication requirements. A time-optimized CIP scheduling algorithm is deemed50

appropriate to cope with that trade-off.
Due to incomplete data, it is difficult to determine/predict a time instance at

which the entire set of contextual values of all context streams are present (not
missing) to apply a CIP. The major research challenge here is to decide when to
apply a CIP over context streams that are of ‘good’ quality. A CIP process could55

not be performed continuously but once within a finite time interval, which
guarantees at some point quality data, thus saving computational resources.
That is a CIP could be executed only when the ‘necessary’ information for
guaranteeing quality results is available. With the term ‘necessary’ information
we denote a degree of completeness of the context streams in order to maximize60

the quality of CIP results. Ideally, the maximum quality of CIP results is
obtained when all values are complete/present/timely/available. The following
question arises: Given incomplete context streams, when one should activate a
CIP for maximizing the quality of results by avoiding continuous call of MVS
methods to save computational resources?65

2. Literature Review & Contribution

2.1. Literature Review

We report on the CIPs that are applied over incomplete context streams
and are activated once necessary information for guaranteeing quality results is
available. We distinguish two basic types of a CIP over context streams: (i)70

CIP for Data Management and (ii) CIP for Knowledge Discovery. CIP for Data
Management refers to handling, querying, scheduling, and storage of context
sensory data streams. This type of CIP refers basically to data reduction and
(statistical) summaries. In both cases, queries (e.g., aggregation queries and
top-k queries) over context streams are executed over a summary, which refers75

to a compact data-structure that captures the underlying distribution of the
data streams. Moreover, the well-known ‘sliding window’ CIP is considered as
a fundamental technique for producing approximate answers to a data stream
query like aggregation operators SUM, AVG, and COUNT. The idea behind the
sliding window is to perform detailed analysis and data processing over the80

most recent data items. This idea has been adopted in many data stream
mining and management systems [1], [31]. It is worth noting that all sliding
window methods invoke a CIP operator continuously over a fixed-size window.
Once a piece of contextual value is missing/incomplete, then all these methods
attempt to predict the missing value and then apply any CIP operator over the85

window.
CIP for Knowledge Discovery studies methods and algorithms for extracting

knowledge from volatile context streams [13], [7]. Among such types of CIPs,
the on-line learning and model adaptation, concept drift detection and outliers
identification have become important research topics. Pioneer contextual data90

stream mining processes include stream clustering [17], [8], outliers detection
[33], classification and prediction [24], frequent pattern [21], time series [22] and
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change detection [18], [26]; the list is not exhaustive. Moreover, contextual in-
formation fusion processing has gained significant importance. The objective of
this type of CIP is to infer the relevant states and events of the system that is95

being observed or activity being performed. Finally, contextual inference meth-
ods are generally applied in situational context inference [3], where inference is
taken based on perceived situational knowledge.

2.2. Rationale

Contextual data streams pose a challenge to large-scale predictive analytics100

and real-time CIP. There is an increasing need for intelligent methods to check
and correct (sensed) context to ensure that is of the highest quality. The above-
mentioned CIPs demand computational resources to proceed in a continuous
manner. This motivated us to introduce an optimally scheduled context quality
aware mechanism, which improves the quality of the delivered context to the105

back-end monitoring IoT system for (near) real time information processing
and knowledge extraction through CIPs. The proposed mechanism materializes
quality assessment prior to the delivery of context to the system by
minimizing the induced bias in statistical inference and/or estimation processes
due to incomplete context. Our mechanism decides when to ‘deliver’110

context streams of high quality, by saving computational resources
and avoiding the invocation of data imputation methods. This yields to:
(1) improve the quality of the CIP results at the expense of a controlled delay,
(2) avoid the continuous activations of data imputation methods each time
incomplete context is received to the back-end monitoring system, as proposed115

in all approaches of the related work, and (3) avoid the continuous activation
of CIPs, as adopted in all related works.

To the best of our knowledge, the proposed delay-resilient and quality-aware
mechanism over incomplete context streams is novel for improving the quality
of the CIP results and saving computational resources. The novel concept of120

an optimal delay mechanism that controls the scheduling of the application of
a CIP operator differentiates our idea with prior approaches for CIPs. Through
our mechanism, one does not need to continuously invoke a CIP operator over a
given window (of variable or fixed length). Moreover, our mechanism does not
rely on the invocation of a MVS method like [27]–[16], for predicting the incom-125

plete data before the invocation of a CIP operator. Many CIPs for Data Man-
agement and Knowledge Discovery over incomplete data require the forecasting
of any incomplete data (through MVS methods) and then apply a CIP operator
continuously, thus, imposing high computation resources. As it will substanti-
ated by our comparative assessment in Section 7, our mechanism (through two130

stochastic optimization models): (1) avoids the invocation of any MVS method
and/or contextual data cleaning/imputation method and (2) minimizes redun-
dant invocations of CIP operators by optimally scheduling the CIP invocations
achieving high accuracy results along with efficient resource usage. The trade-off
between efficient resource usage and achieved information accuracy is indicated135

through the comparative assessment of our models with certain sliding window
models in [27], [10], and [16] from the literature. The authors would like also
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to mention their prior work [19] on dealing with the optimal maintenance of
the top-k list of objects over incomplete multivariate data streams. Our pre-
vious work and the current one introduce a framework of optimally scheduled140

mechanisms over contextual data streams.
We propose an optimally scheduled mechanism for finding the most appropri-

ate time instance to activate a CIP (e.g., data aggregation, multivariate fusion,
outliers detection, event identification and inference, concept drift, context clas-
sification) over incomplete context streams. The introduced mechanism helps145

CIPs to improve the quality of their output. The proposed mechanism is applied
prior to the performance of a CIP in order to provide a time-optimized decision
on when to be activated. Moreover, our mechanism can be applied prior to the
CIP to maximize the quality of results (e.g., correctness of context inference,
minimizing false alarms).150

The idea of the proposed mechanism is to continuously assess the quality
of the observed context stream (defined later) and on the fly decide whether
to activate a CIP or not based on the recent history the quality pattern of
the context streams. The objective is to maximize the expected quality of CIP
results subject to a quality guarantee level specified by the application/user. We155

cast this time-optimized decision problem as an optimal stopping time problem
derived from the Optimal Stopping Theory (OST) [28]. The OST is proved to
be very efficient in cases where we try to find the appropriate time instance to
stop the observation of a stochastic process with the objective of maximizing
our payoff. Naturally, we build our mechanism on the principles of OST to160

maximize the quality of CIP results by inducing a delay. Through this delay we
attempt to balance between immediate CIP execution and delayed CIP execution
in hopes of observing e.g., more non-missing values before applying aggregation
and fusion operators over context streams.

The outcome of the mechanism indicates whether we should stop observing165

the quality of the context streams and activate a CIP, or to continue. This delay-
resilient CIP activation supports applications that can tolerate some delay in
hopes of obtaining high quality results. As it will be shown in the performance &
comparative assessment, our mechanism provides a wide range of quality results,
ranging between medium quality results with almost zero delay and high quality170

results with a acceptable delay. Through this acceptable delay (in terms of
the application tolerance), the system saves computational resources
and eliminates redundant CIP activations.

2.3. Contribution

The contribution of this work is summarized as follows:175

• A novel time-optimized, quality-aware mechanism based on the OST,
which decides when a CIP should be activated over incomplete context
streams by guaranteeing the highest possible quality results.

• Two novel analytical time-optimization stochastic models that derive the
optimal time for activating a CIP taking into account: (i) the cost of delay180
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due to additional observations and (ii) an aging factor over the currently
buffered contextual values.

• Comprehensive experimental results showcasing the benefits of our mecha-
nisms over real-data context streams with missing values involving widely
applied aggregation and fusion operators vis-à-vis the sliding window-185

centric model.

• Comprehensive comparative assessment of our models with the sliding
window models: the Incremental Mean Model (IMM) and Skewness Sen-
sitive Model (SSM) in [27], the Average Nearest Exponential Smoothing
Model (ANESM) in [16], and the Exponential Moving Average Model190

(EMAM) in [10] over incomplete contextual streams using real datasets
with widely applied aggregation CIP operators.

In this paper, we focus on the optimally scheduled mechanism of two widely-
used CIPs: aggregation operator process and fusion process over context streams.
The former process is an instance of the CIP for Data Management category195

dealing with aggregate queries (e.g., COUNT, MIN, AVG) over sliding windows with
incomplete multivariate streaming contextual data. The latter process refers to
an instance of the CIP for Knowledge Discovery category dealing with events
detection/inference over incomplete multivariate data streams. Both CIPs are
core components of data stream management systems.200

3. Preliminaries

3.1. Data Stream Quality

Consider a discrete time domain T = {1, 2, . . .} and time instance t ∈ T.

Definition 1 (Quality Context Stream). A quality stream s of a contextual
attribute is an infinite sequence of 〈t, x, I(x)〉, where x ∈ R is the contextual205

value at time instance t ∈ T and I(x) is meta-data representing the quality of x
at time t.

At time t we observe the values xi of n context streams, thus forming a stream
vector x = [x1, x2, . . . , xn]>. Let also S = {s1, s2, . . . , sn} be the set of context
streams si, i = 1, . . . , n. We report on certain notions of data stream quality210

I(x) of contextual value x coming from a stream s ∈ S. The authors in [29]
discuss certain dimensions of the Data Quality (DQ). The generic DQ model
allows for a number of DQ dimensions that are adaptable to various applica-
tion requirements. In our case we adopt such DQ dimensions to improve the
accuracy of CIPs results. We report on the DQ dimensions provided in [32] for215

interpreting the meta-data quality indicator I(x).
The DQ dimension accuracy describes the maximal systematic numeric error

of a sensor measurement x. It indicates the degree to which x correctly describes
the ‘real world’ phenomenon or event being described. The confidence DQ di-
mension represents the maximal statistical error. The timeliness evaluates the220
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temporal context of the data stream, e.g., x is sufficiently up-to-date for being
involved in an aggregation function. There are two perceptions of timeliness:
(i) on the one hand, timeliness expresses the age of x as the difference between
the recording time instance and the current system time, (ii) on the other hand,
timeliness is interpreted as the punctuality of x with respect to the application225

context. The latter perception presumes the definition of the subjective appli-
cation and will not be regarded in this work. The completeness DQ dimension
characterizes missing values in a stream, while the volume describes the amount
of underlying contextual values. The completeness helps to distinguish between
measured values x and imputed or missing ones x̂. Completeness up to time t230

refers to the fraction of the number of the non-missing (or non-imputed) values
observed by a stream up to t.

All these DQ dimensions interpret whether the contextual value x of stream
s at time t is of a certain degree of quality I(x) for feeding the CIP or not.
We abstract DQ evaluation of x by classifying value x at time t as ‘usable’,235

notated by I(x) = 1, or ‘unusable’, notated by I(x) = 0. For instance, based
on the above mentioned DQ dimensions, an unusable x can refer to (i) an
expired value with respect to timeliness, or (ii) a missing or imputed value with
respect to completeness, or (iii) anything that could assert that x is unusable
for further processing, thus, degrading the ‘quality’ of the data stream and then240

the quality of the CIP result. A usable x is, for instance, an non-missing, up-
to-date, highly reliable value thus usable for further processing. A holistic DQ
evaluation function I(x) involving all or some DQ metrics is beyond the scope
of this paper. In this work, we abstract the implementation of I(x) and assume
that the mechanism is capable of evaluating I(x) over a given stream. We focus245

on the completeness DQ dimension, that is at time t the mechanism determines
immediately if x is missing or not. We represent the value of I(x) ∈ {0, 1} at
time t by a random variable (r.v.) indicating whether x is classified as usable
or unusable. Let βi ∈ (0, 1) be the probability that xi is usable at time t. We
then define:250

I(xi) =

{
1 if xi is usable w.p. βi
0 otherwise

(1)

with E[I(xi)] = βi and w.p. stands for ‘with probability’.

Definition 2 (Vector Quality). The vector quality Yt of a stream vector xt =
[x1(t), . . . , xn(t)] at time t is defined as the quantity of the usable values of the n
streams, i.e., Yt =

∑n
i=1 I(xi(t)).

We assume that at time t, the I(xi) indicators are independently distributed255

Bernoulli random variables, each with probability of success βi. Then Y =∑n
i=1 I(xi) is a Poisson-Binomial random variable with parameters (βi; i =

1, . . . , n). When all βi are equal to β > 0, this reduces to the Binomial dis-
tribution with parameters (n, β). Moreover, when n is large and all βi are not
relatively high but not necessarily equal, the distribution of Y is well approx-260
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imated by a Poisson distribution1. For simplicity of analysis, we assume that
βi = β,∀i, and that n is large, i.e., we assume a high number of context streams,
e.g., multi-dimensional stream vectors are coming from a high number of WSN
sources. The latter implies that the probability of unusable values 1− β is not
negligible, which holds true in our case. Moreover, Y may be binomial concep-265

tually, but exact βi values may be unknown and we may only know the rate on
unusable values per time instance t, which can be easily calculated by historical
observation of the data streams, as will be discussed in Section 5.3. In this case,
the Y is a Poisson random variable with parameter λ = nβ, i.e., the average
number of usable values, with probability mass function:270

P (Y = y) =
e−λλy

y!
, λ = nβ, (2)

with FY (y) = P (Y ≤ y) = e−λ
∑y
k=0 λ

k/k! = 1 − P (Y > y) and the expected
vector quality at time t is E[Yt] = nβ.

Remark 1. The assumption βi = β,∀i does not spoil the theoretical results of
our models and is adopted for eliminating the computations of FY (y) involved
in the optimal stopping criteria discussed later. Obviously, when βi 6= βj , i, j =275

1, . . . , n then FY (y) is provided in [11].

We have up to now defined the notion of vector quality over the current values
from n streams. To proceed with the stream quality definition over a specific
time horizon, we firstly refer to well-known data stream window constructs, i.e.,
landmark and sliding window, that contain stream vectors used by the CIPs.280

In both window constructs we assume that within the time interval [t, t+ 1) we
either observe one value xi or not at all, ∀i.

Definition 3 (Landmark Window). In a landmark windowW(τ, t), the lower
time bound is fixed at a specific time instance τ ∈ T (‘temporal landmark’) while
the upper time bound follows the evolution of time t > τ . Newly arriving stream285

vectors xt are appended to the window without discarding existing ones.

For instance, at time t with τ < t, a landmark window W(τ, t) is a sequence of
all stream vectors observed from τ to t (including the vector at t), i.e.,W(τ, t) =
(xτ ,xτ+1, . . . ,xt); e.g., ‘get all stream vectors collected after 10 pm’.

Definition 4 (Sliding Window). A sliding window W(h) is specified by a290

fixed-size temporal extent h > 0 (‘horizon’) by appending new stream vectors
and discarding older ones on the basis of their appearance.

For instance, at time t, a sliding window W(h) is a sequence of all stream
vectors observed from t − h to t (including the vector at t), i.e., W(h) =
(xt−h,xt−h+1, . . . ,xt); e.g., ‘continuously return all stream vectors of the past295

hour, i.e., h=60 minutes’. The sliding window is the most widely used in con-
tinuous aggregation and fusion functions over streams [1], [31].

1It is also known as Poisson ‘law of rare events’.
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Definition 5 (Window Quality). Given a landmarkW(τ, t) and sliding win-
dow W(h), the window quality Zt is the cumulative sum of the vectors quality
up to t, i.e., Zt =

∑t
k=τ Yk and Zt =

∑t
k=t−h Yk, respectively.300

Note, the window quality Zt is a reference of the completeness DQ dimension
provided that we restrict our interest in data streams that contains missing
values.

3.2. Data Stream Aggregation and Fusion Operator

The aggregation and fusion are evaluated over the contents of a window. The305

aggregated/fused value changes over time as the window slides (in a sliding win-
dow) or new values append (in a landmark window). We use the classification
from [14] that divides aggregation functions into three categories: distributive,
algebraic, and holistic. Let W, W1, and W2 be windows. An aggregation func-
tion f is distributive if f(W1 ∪W2) can be computed from f(W1) and f(W1)310

for allW1,W2. An aggregation function f is algebraic if there exists a ‘synopsis
function’ σ such that for all W, W1, and W2: (1) f(W) can be computed from
σ(W); (2) σ(W) can be stored in constant memory; and (3) σ(W1 ∪ W2) can
be computed from σ(W1) and σ(W2). An aggregation function is holistic if it
is not algebraic. Among the standard aggregates, MAX and MIN are distributive,315

AVG is algebraic, since it can be computed from a synopsis containing SUM and
COUNT, and QUANTILE, MEDIAN are holistic.

In our case, the aggregation operator fi(W) of the i-th stream over win-
dow W (landmark or sliding window) takes into account only the usable values
xi w.r.t. I(xi). For instance, given a landmark window W(τ, t), we can sim-320

ply define the SUM, COUNT, AVG and MIN operators fi(W(τ, t)) for each stream
si at time t, respectively, as follows: fsumi =

∑t
k=τ xi(k)I(xi(k)), f

count
i =∑t

k=τ I(xi(k)), f
avg
i = fsumi /f counti , fmini = min{xi(k)|I(xi(k)) = 1, τ ≤ k ≤

t}, respectively. Similarly, given a sliding window W(h), at time t we ob-
tain: fsumi (W(h)) =

∑t
k=h−t xi(k)I(xi(k))/

∑t
k=t−h I(xi(k)) and, fmini (W(h)) =325

min{xi(k)|I(xi(k)) = 1, t− h ≤ k ≤ t}, respectively. Such operators are built-in
constructs in application specific continuous queries. For instance, the query
‘every minute find the average temperature and the maximum humidity over
context streams ‘temperature’ and ‘humidity’ collected during the past hour’ in
Continuous Query Language [5] involving AVG and MAX operators in a sliding win-330

dowW(h), h = 60min can be expressed as follows: SELECT AVG(temperature),

MAX(humidity) FROM Context Streams [RANGE 60 MINUTES SLIDE 1 MINUTE]

Note, typical progressive aggregates like SUM, MIN and AVG requires constant time
O(1) per value since there is no need to scan the entire window.

A fusion operator over a subset or all context streams indicates whether a335

set of conjunctive predicates, e.g., aggregation operators over contextual values
fall within pre-specified intervals, or instantly contextual values satisfy a crite-
rion. A fusion operator typically involves more than one context streams with
complex event pattern definitions for a specific time horizon. It is defined as
the logical conjunction f(W) =

∧n
i=1(φi(fi(W))) ∈ {TRUE, FALSE} of n logical340

operators φi(f) over aggregated (or not) values, e.g., f ≤ y or f ∈ [ylow, yhigh].
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We can envisage f as an IF-THEN rule, for instance, when evaluating the situ-
ational context which refers to the event stream processing fusion operator for
the past ten minutes it refers to the activation of the following rule with con-
junctive predicates associated with AVG and MAX operators over context streams345

‘temperature’ and ‘wind-speed’: EVENT := IF AVG(temperature) ≥ 90 AND

MAX(wind-speed) ∈ [10,20] WITHIN 10 minutes THEN ACTION is ‘warning’.
We define the aggregation or fusion error ei between the estimated result of the
applied operator f̂i over window W (either landmark or sliding window) of the
i-th stream and the actual result fi applied on W when all values are usable,350

i.e., the aggregation result error for stream si is: ei = |f̂i(W) − fi(W)|. In
the fusion case, e.g., dealing with EVENT identification, we define as fusion error
from stream si as: ei = 0 if fi = f̂i; ei = 1, otherwise. If fi = FALSE and
f̂i = TRUE, we obtain false alarm; the other combinations are similarly defined.
The involvement of n context streams at time t, (i.e., when a continuous query355

engaging n operators over the context streams is executed over W) yields the
(total) CIP result error e, which is defined as the 1-norm of the error vector
e = [e1, . . . , en], i.e., e = ‖e‖1 =

∑n
i=1 ei. Finally, the error-per-stream is the

fraction e/n, where in the case of the EVENT operator, e/n ∈ [0, 1] indicates the
portion of those context streams si that correctly identify/evaluate the logical360

operator φi(f). Hereinafter, the terms: CIP, aggregation operator, and fusion
operator are used interchangeably according to the context.

3.3. Optimal stopping rule problem

The theory of optimal stopping [28], [30] is concerned with the problem
of choosing a time instance to take a certain action, in order to minimize an365

expected loss (or maximize an expected payoff). A stopping rule problem is
associated with: (1) a sequence of random variables (r.v.) Y1, Y2, . . ., whose
joint distribution is assumed to be known and (2) a sequence of loss functions
(Lt(y1, . . . , yt))1≤t or payoff functions (Gt(y1, . . . , yt))1≤t which depend only
on the observed values y1, . . . , yt of corresponding r.v.s. An optimal stopping370

rule problem is described as follows: We are observing the sequence of the
r.v.s (Yt)1≤t and at each time instance t we choose either to stop observing or
continue. If we stop observing at time instance t, we induce loss Lt or gain
payoff Gt. We desire to choose a stopping rule or stopping time to minimize our
expected loss, or equivalently, maximize our expected payoff.375

Definition 6. An optimal stopping rule problem is to find the optimal stopping
time t∗ which minimizes the expected loss E[Lt∗ ] = inf0≤t≤T E[Lt]. In the
case of payoff, t∗ maximizes the expected payoff, i.e., E[Gt∗ ] = sup0≤t≤T E[Gt].
Note, T might be ∞.

The available information up to t is a sequence Ft of values of the r.v.s380

Y1, . . . , Yt (a.k.a. filtration).

Definition 7. The 1-stage look-ahead (1-sla) stopping rule/time is

t∗ = inf{t ≥ 0 : Lt ≤ E[Lt+1|Ft]} and t∗ = inf{t ≥ 0 : Gt ≥ E[Gt+1|Ft]} (3)
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In other words, t∗ calls for stopping at the first time instance t for which
the loss Lt (or payoff Gt) for stopping at t is (at most) as small as (or as high
as) the expected loss (payoff) of continuing to the next time instance t+ 1 and385

then stopping.

Definition 8. Let At denote the event {Lt ≤ E[Lt+1|Ft]} (or {Gt ≥ E[Gt+1|Ft]}).
The stopping rule problem is monotone if A0 ⊂ A1 ⊂ . . . almost surely (a.s.)

A monotone stopping rule problem can be described as follows: The set At
is the set on which the 1-sla rule calls for stopping at time instance t. The390

condition At ⊂ At+1 means that if the 1-sla rule calls for stopping at time t,
then it will also call for stopping at time t + 1 no matter what Yt+1 happens
to be. Similarly, At ⊂ At+1 ⊂ At+2 ⊂ . . . means that if the 1-sla rule calls for
stopping at time t, then it will call for stopping at all future times no matter
what the future observations turn out to be.395

Theorem 1. The 1-sla rule is optimal for monotone stopping rule problems.

Proof. See [28] �

4. Problem Statement

Consider a sliding windowW(h) and assume that we require exactly h usable
values to apply an operator fi, e.g., SUM, AVG, MIN, or MAX, over a specific stream400

si within W(h), i = 1, . . . , n. In the multidimensional case, i.e., dealing with
stream vectors, we require nh usable values (h usable values for each stream)
to apply operators fi, within W(h). The operator fi involves only the usable

values xi that are, on average, E[
∑h
k=t−h+1 I(xi(k))] = hβ < h. (It is the

expected number of successes out of a number of h trials each one with success405

probability β.) The aggregation result f̂i over hβ usable values deviates from
the ideal one fi, at which we have full information, i.e., exactly h usable values.
The more usable values we have inW(h), the lower the error we get, with result

error ei = |fi(W(h)) − f̂i(W(h))|. In the multidimensional case, the total CIP
error is e =

∑n
i=1 ei.410

Evidently, the CIPs over W(h) would not guarantee zero error e that would
be obtained if all values inW(h) were usable. That is because we on average ob-
tain nhβ < nh usable values, as discussed above. We could prolong the horizon
of the window to h′ = h/β in hopes of receiving more usable values. However,
we would obtain nh usable values on average with variance nβ, thus not exactly415

nh (or at least very close to nh). Moreover, in the sliding window new vectors
are appending and older ones are discarded thus we cannot accumulate more
than nh′ usable values.

The fixed horizon of the sliding window h does not provide us with the
flexibility to gather more usable values in hopes of minimizing the global CIP420

error e. Nonetheless, we can exploit the flexibility of the landmark window in
which the upper bound can be extended until assembling a desired number of
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usable values. This implies that, we delay the activation of the CIP operators fi
by continuously observing more stream vectors expecting to gather more usable
values. Ideally, we want to apply CIP operators fi over a window with as much425

usable values as possible, or exactly nh usable, if possible. (We assume here
that all streams are equally important thus we desire h usable values for each
stream.)

Consider a landmark window W(τ, t). Instead of applying the operators
fi at time t, with t − τ = h, we apply them at some unknown time t∗ > t430

over W(τ, t∗) such that the number of usable values for each stream si be h or,
counting for all streams, be nh. In this case, more vectors have to be appended
to window W(τ, t∗). This does not necessarily means that t∗ − τ = h since
at each time an usable value appears w.p. β < 1. Generally, we obtain that
t∗−τ ≥ h where the equality holds w.p. β(t∗−τ). Nonetheless, it is unpredictable435

when we can gather nh usable values in a landmark window, i.e., when it is the
time t∗ of gathering nh usable values. The problem here is to find the time
instance t∗ at which we stop appending vectors x to W and the sum of the
usable values be as close to nh as possible, i.e., the quality Zt∗ of the window
be as close to nh as possible. In that case, the CIP error e is minimized and440

becomes zero when Zt∗ = nh.
Starting at a time landmark τ ∈ T, we apply the fi operators over a landmark

windowW(τ, t∗) at time t∗ > τ such that t∗ minimizes the difference |Zt∗−nh|,
i.e., we desire that Zt∗ =

∑t∗

k=τ Yk ' nh. The time t∗ refers to the optimal
stopping time in our case, which minimizes the above difference and the value445

of T = nh specifies the lowest bound of the total CIP error over the window.
The difference t∗ − τ refers to the (dynamic) size of the landmark window,
which evidently cannot be determined a priori due to the stochastic nature of
the window quality measure. The T value refers to quality guarantee and
indicates the minimum acceptable quality level of the context streams. It is450

worth mentioning that by maximizing the window quality Zt with respect to
guarantee T implicitly indicates the minimization of the CIP error e. One
could reform this (stochastic) optimization problem by finding the time t∗ at
which we minimize the cumulative total CIP error

∑t
k=h−t+1 ek given a sliding

window W(h). This, however, is not applicable since the missing values are455

never revealed (by definition) thus we cannot actually estimate the CIP error.
Finally, by using landmark window, the cumulative total CIP error will be
continuously non-decreasing thus could never be minimized, since new vectors
are appended and old ones are nor discarded.

We propose a time-optimized mechanism which determines the optimal time460

upper bound t∗ > τ of a landmark window given a fixed landmark τ ≥ 0 such
that the derived window quality Zt∗ is as close to T as possible. When t∗ is
determined then we apply the fi operators involving the maximum possible
number of usable values, thus, minimizing the CIP error. Then, the mechanism
starts-off a new era with setting the time landmark τ = t∗+1. Evidently, the size465

of the landmark window is dynamic and its value is governed by the stochasticity
of the appearance of the usable values in time. We proceed with the definition
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of two problems that implicitly minimize the CIP error e by estimating the
optimal stopping time t∗.

4.1. Quality Distance Minimization470

The first problem refers to finding the optimal stopping time which minimizes
the expected distance between window quality and quality guarantee. Let the
landmark time τ = 0. We apply the CIP operators at time t > τ when Zt =∑t
k=0 Yk is close to T . We do not know and cannot forecast when Zt will

reach T since Z1 = Y1, Z2 = Y1 + Y2, . . . , Zt = Y1 + Y2 + · · · + Yt is a Poisson475

process independent of T with mean λ = nβ. We delay the observation process
by appending stream vectors in hopes of accumulating usable values. If we
gathered more usable values than T , i.e., Zt∗ > T , then we should have stopped
before t∗ since we performed redundant observations. We treat this problem as
a stopping time rule problem by defining as loss Lt the absolute difference of Zt480

from T :

Lt = |T − Zt|, for t = 0, 1, 2, . . . and L∞ =∞, (4)

where Z0 is defined to be zero and L0 = T represents the loss if we apply the
CIP operators immediately, i.e., without any delay (no extra observation taken).

Problem 1. Given a quality guarantee T > 0, find the optimal stopping time
t∗ such that inf1≤t≤∞E[Lt] is attained. The minimum expected loss is E[Lt∗ ].485

4.2. Cost delay-aware and Time-decaying aware Quality Maximization

In Problem 1, our target is to reach T as close as possible. In the case
that Zt > T , then immediately at that time t we stop the observation and
activate the CIP operators, since we have accumulated much more usable values
than required. Obviously, the latter case is not undesirable but it induces a490

‘penalty’ that we should have stopped earlier before getting Zt > T . This
penalty is quantified by Zt − T . However, we can incorporate a specific cost
due to additional delay for observing one more stream vector until we stop.
Each time t we do not stop, thus, not activating CIP we induce a certain cost
c > 0. This cumulative cost up to t enforces the mechanism to take a decision on495

whether to stop or continue with another observation by balancing between the
trade-off: prolong the observation for possible more usable values and additional
delay to activate the CIP operators. Such cost could represent the urgency of a
monitoring application that requires near real-time CIPs. On the other hand, if
the application is in need of highly accurate CIP results, a certain (controlled)500

delay must be tolerated.
Moreover, we consider the case where the stream vectors in W are subject

to the timeliness DQ dimension. Each time we continue the observation by
appending a new stream vector to W, the least recent stream vectors turn
gradually obsolete to a certain degree. Obviously, we cannot delay for ever to505

obtain the highest window quality, since the buffered stream vectors have to
represent the current (or better near past) state of nature. An aging factor
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a ∈ (0, 1] over all buffered stream vectors enforces the mechanism to take into
account both: delay for gathering possibly more usable values and timeliness
of the buffered stream vectors to avoid involving almost obsolete values. Based510

on the above interpretation, we provide the following payoff function Gt(Zt),
which involves (i) the quality guarantee T , (ii) the delay cost per observation
c ≥ 0, and (iii) the aging factor 0 < a ≤ 1:

Gt(Zt) =

{
atZt − ct if Zt ≤ T,
0 if Zt > T.

(5)

Our target is to reach T by maximizing the expected window quality. If Zt is
over T then the return is zero, since the mechanism should have activated CIP,515

thus, any extra delay occurred and aging discount applied was of no avail.

Problem 2. Given a quality guarantee T , delay cost c ≥ 0, and aging factor a ∈
(0, 1], find the optimal stopping time t∗ such that sup1≤t≤∞E[Gt] is attained.
The maximum expected return is E[Gt∗ ].

5. Quality-aware Mechanisms520

5.1. Distance Quality Model

We provide a solution to the Problem 1 through the Distance Quality Model
(DQM). Based on Theorem 1 we first provide an 1-sla rule for the Problem 1
and then prove that this rule is optimal with respect to the loss function Lt
defined in (4). In Appendix A, we also provide certain insights (indigenous525

characteristics) of a family of quality loss functions applicable to Problem 1.
Let the landmark time τ = 0 and window W(τ, t), τ < t. On the event

{Zt < T}, the loss Lt is simply Lt = T − Zt. On the event {Zt ≥ T}, it is
definitely optimal for the DQM to stop the observation of the context streams
and activate the CIP. Now consider that Zt < T and let us decide whether530

to continue observing the context streams at the next time instance t + 1, i.e.,
receiving one more context vector x, and not stopping at t. Given that {Zt < T}
we calculate the expected loss at the next time t + 1: E[Lt+1|Ft] = E[|T −
Zt − Y ||{Zt < T}], where Zt+1 = Zt + Y and Y is the Poisson variable with
parameter (mean) λ defined in (2). To apply the 1-sla rule (5), we have to535

assert that it is optimal to stop at the first time instance at which it holds
true that Lt = T − Zt ≤ E[Lt+1|{Zt < T}]. This implies that the difference
E[Lt+1|{Zt < T}] − T + Zt is a.s. monotonically non-decreasing with Zt with
Zt < T ; recall that when Zt > T then we stop immediately.

Theorem 2. Given a sequence of window quality r.v.s Z1, . . . , Zt, the optimal540

stopping rule t∗ for Problem 1 is

t∗ = inf{t ≥ 0 :

T−Zt∑
y=0

yP (Y = y) + (T − Zt)(1− FY (T − Zt)) +
λ

2
≥ 0}. (6)
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Proof. For any ` > 0 we have

E[|`− Y |] = E[`− Y ] + 2E[max(0, Y − `)] = `− λ+ 2P (Y > `)E[Y − `|Y > `]

= `− λ+ 2E[Y − `, Y > `] = `− λ+ 2

∞∑
y=`+1

(y − `)P (Y = y)

Hence, given the event {Zt < T}, we obtain with ` = T − Zt that E[|T −
Zt − Y |] = T − Zt − λ + 2

∑∞
y=T−Zt+1(y − T + Zt)P (Y = y). Therefore, by

comparing with T −Zt we obtain that the DQM stops at the first time instance545

t at which T − Zt ≤ E[|T − Zt − Y |] or
∑∞
y=T−Zt+1(y − T + Zt)P (Y = y) ≥

λ/2. Evidently, the problem is monotone since
∑∞
y=`+1(y − `)P (Y = y) with

` = T − Zt is monotonically non-decreasing with Zt for Zt < T , given that Zt
is a.s. increasing, by definition. �

When the window quality Zt at time t is such that the stopping criterion in550

(6) becomes non-negative then the DQM immediately stops appending stream
vectors and activate the CIP with the stream vectors in the landmark window
W(τ, t). Due to the 1-sla rule and the monotone nature of the Problem 1, no
other stopping rule can guarantee us as much, i.e., to minimize the expected
‘distance’ of the window quality from quality guarantee T . Note that with a low555

λ value, the mechanism delays the CIP invocation since, with small incremental
steps (i.e., relatively small values of Y ) it attempts to reach T . On the other
hand, a high λ value yields the DQM to quit at an early stage of the observation
process (thus low delay), since large incremental steps would possibly results to
Zt that significantly overpasses T .560

Remark 2. The stopping criterion evaluation should be as quick as possible
with trivial complexity thus avoiding time-consuming decision making whether
to activate the CIP or not. From (6), the stopping criterion depends on the
calculation of a summation from 0 to T − Zt at time instance t. Evidently, we
can recursively evaluate this sum at time t by simply use the sum up to time565

t − 1 plus a loop of length E[|Zt − Zt+1 + 1|]. Hence, the time complexity of
evaluating the sum at t is O(λ).

5.2. Delay-aware and Time-decaying Quality Model

We provide a solution to Problem 2 by defining the delay-aware and time-
decaying quality model (DAQM). Consider again that landmark time τ = 0570

and window W(τ, t), with τ < t. The DAQM attempts to stop the observation
(and appending) of context vectors x at which the window quality Zt is close to
T but also takes into consideration the cumulative delay cost up to that time
and the aging factor over the buffered stream vectors. We report on an 1-sla
stopping rule based on the principle of optimal stopping in Theorem 1, at which575

we stop at the first time t such that Gt(Zt) ≥ E[Gt+1(Zt+1)|Ft], with the event
{Zt ≤ T} ∈ Ft. That is any additional observation at time t + 1 would not
additionally contribute to the payoff maximization. The 1-sla rule is optimal
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when the difference E[Gt+1(Zt+1)|Ft]−Gt(Zt) is monotonically non-increasing
with Zt.580

Theorem 3. Given a sequence of window quality r.v.s Z1, . . . , Zt, the optimal
stopping rule t∗ for Problem 2 is

t∗ = inf{t ≥ 0 :

T−Zt∑
y=0

(at+1(Zt + y)− c(t+ 1))P (Y = y) ≤ atZt − ct}. (7)

Proof. Given that Zt ≤ T , the conditional expectation E[Gt+1(Zt+1)|Zt ≤ T ]
is given by

E[Gt+1(Zt+1)|Zt ≤ T ] = EY [Gt+1(Zt + Y )|Zt ≤ T,Zt + Y ≤ T ]P (Zt + Y ≤ T )

+EY [Gt+1(Zt + Y )|Zt ≤ T,Zt + Y > T ]P (Zt + Y > T )

= EY [at+1(Zt + Y )− c(t+ 1)|Y ≤ T − Zt]P (Y ≤ T − Zt)

=

T−Zt∑
y=0

(at+1(Zt + y)− c(t+ 1))P (Y = y)

Hence, the mechanism stops at the first time instance t with Zt such that585

E[Gt+1(Zt+1)|Zt ≤ T ] ≤ atZt − ct. The corresponding difference is monotoni-
cally non-increasing with Zt with Zt < T , i.e., the 1-sla rule is optimal. �

Since the 1-sla rule in Theorem 1 is optimal, then the DAQM with fixed T and
taking into consideration the delay cost c and the aging factor a can guarantee
that the expected window quality based on the stopping criterion is as much590

close to T as possible and no other stopping rule can guarantee us much. Based
on the c and a parameters, the DAQM is flexible to treat and control the
expected delay and the freshness of the contextual values involved in the CIP.
We define the variants of DAQM w.r.t. the cost and aging parameters.

• Case c = 0, a ∈ (0, 1). Here, mechanism does not consider any delay cost,595

thus, it is only enforced to stop the observation once the timeliness of the
buffered stream vectors is discounted. In this case, the stopping criterion
is given by t∗ = inf{t ≥ 0 :

∑T−Zt
y=0 yP (Y = y) ≤ Zt( 1

a − FY (T − Zt))}.

• Case c > 0, a = 1. Here, DAQM cares about the delay cost of observation
while assuming that all buffered stream vectors are fresh for being applied600

to the CIP. The DAQM here is enforced to stop the observation to avoid
waiting for a long time, especially when λ is relatively small, thus it is
required a high number of usable values to sum up to T .

• Case c = 0, a = 1. Here, we require that the window quality be as much
close to T as possible but not greater than T 2. In this variant, the stopping605

2This variant reduces to the discrete case of the continuous time black jack OST problem
in [15] where the sum of values must be close to T , otherwise the payoff is zero
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criterion is: t∗ = inf{
∑T=Zt
y=0 yP (Y = y) ≤ Zt(1−FY (T−Zt))}. Note that

this variant is different with the DQM, where in the DQM if Zt overpasses
T then the penalty is the difference Zt − T and we stop immediately.

Remark 3. DAQM requires O(λ) time to evaluate the stopping criterion (7).

5.3. The Algorithm of the DQM and DAQM610

The algorithm for both models the DQM and DAQM for an era is shown in
Algorithm 1. The input of the algorithm is the probability of an usable value
β, the quality guarantee T = nh and, in the case of the DAQM, the input is the
delay cost per observation c, 0 ≤ c ≤ λ as a portion of λ to quantify the penalty
of the delay as the mean value of the vector quality, and aging factor a ∈ (0, 1].615

The probability β can be incrementally estimated by the maximum like-
lihood estimation of β of the Poisson distribution with mean λ = nβ after
observing a series of t instances of (Yτ )tτ=1, t > 1. The log-likelihood Ht(β)
of a series of t samples of Y1, . . . , Yt with the probability distribution in (2) is
Ht(β) =

∑t
τ=1[Yτ log nβ−nβ− log Yτ !] = lognβ ·

∑t
τ=1 Yτ−tnβ−

∑t
τ=1 log Yτ !.620

Since Ht(β) is a continuous function of β given t observations, i.e., β = βt, its
maximum value derives from the derivative of Ht(β) with respect to βt by set-
ting it equal to zero. After this calculation, we obtain that up to the t-th
observation, the probability βt is: βt = 1

nt

∑t
τ=1 Yτ . Hence, we can incremen-

tally estimate the βt value by the previous βt−1 and the current value of Yt by625

using the recursion βt = t−1
t βt−1 + 1

ntYt, with β1 = 1
nY1. After a series of t

observations, we can estimate the β = βt and then initiate our mechanisms.

ALGORITHM 1: The algorithm of the quality-aware mechanism.

Input: Probability of usable value β, quality guarantee T ; observation cost c ∈ [0, λ],
aging factor a ∈ (0, 1].

Output: Optimal stopping time t∗, i.e., size of the landmark window.
/* the algorithm runs for an era starting at temporal landmark τ ≥ 0 */ ;
Stop ← False; t← 0; Z0 ← 0; λ← nβ;
repeat

Yt ← 0 /* initialize the vector quality */ ;
observe vector x ;
for each context stream si ∈ S do

Yt ← Yt + I(Xi);
end
Zt ← Zt−1 + Yt /* update the window quality */ ;
if criterion in (6) (or in (7)) is satisfied then

Stop ← True;
t∗ ← t /* activate the CIP and start-off a new era*/ ;

else
t← t+ 1 /* continue with the next context vector*/ ;

end

until Stop=True;
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6. Performance Evaluation

6.1. Methodology

We report on the performance of the models DQM and DAQM over real-data630

streams with respect to a sensitivity analysis of the basic models’ parameters
and examine the corresponding (i) CIP results error, (ii) expected delay E[t∗],
i.e., expected size of the landmark window, (iii) scalability in terms of number
of context streams n and coefficient h of quality guarantee T . We also com-
pare the performance of both models with the baseline solution of the Sliding635

Window Model (SWM) with window size h referring to the quality guarantee
T used for the DQM and DAQM. We chose SWM for performance comparison
with our proposed models since it is widely adopted by numerous data stream
management systems e.g., [1] and [31]. The idea of the comparative assessment
is to demonstrate how a time-optimized delay of the CIP activation, as achieved640

by our models, could come along with benefits in minimizing the CIP error and
saving computational resources of a back-end system by invoking the CIP when
appropriate usable information is accumulated.

We use the real data-streams D from the GreenOrbs [25] application for for-
est surveillance and forestry observation. There are n = 450 TelosB sensor nodes645

(context streams) scattered on the Tianmu Mountain, China and capture con-
text parameters: temperature, light, humidity, illumination, and carbon dioxide
titer, once every half minute with 20000 sensing intervals for over one year. In
the experiments, the usable value probability β ranges from 0.1 to 0.9. If β = 0
then all data are lost, thus, no method can work. If β = 1.0 the context streams650

are complete, thus, it is unnecessary to pay any attention. In order to mea-
sure the CIP result error, based on the dataset D, we create a corresponding
incomplete dataset D′ where at each time instance t, a value xi of the context
vector x ∈ D is missing with probability 1 − β. Hence, on average we obtain
n(1−β) missing entries in each incoming incomplete context vector x̂ ∈ D′. For655

experimentation of CIP operators over the n context streams, we apply repre-
sentative CIPs from each class of CIPs, i.e., MAX for standard aggregates, AVG
for algebraic aggregates, and EVENT for fusion operator involving the aggregates:
MIN, MAX, and AVG in its definition. The DQM and DAQM initiate at τ = 0 with
a landmark window, where they stop the observation process at stopping time660

t∗. Then, immediately, they apply the CIP operators over the corresponding
window W(τ, t∗). We then measure the CIP result error ei for each context
stream given the complete and incomplete context vectors, the 1-norm CIP er-
ror vector e = ‖e‖1 =

∑n
i=1 ei and the error-per-stream e/n. Note, in the EVENT

case, the e/n ∈ [0, 1] denotes the number of context streams that provide op-665

posite logical predicates φi with the actual ones in the IF-THEN definition rule
of an event. After the stopping at t∗, both models initiate a new ‘era’ through
a new landmark window acting with the same way. The expected delay after a
large number of eras is E[t∗]. The SWM operates on a sliding window of size h
corresponding to the same guarantee threshold T . We measure at each time in-670

stance t, the 1-norm error vector e and error-per-stream e/n applying the same
aggregate/fusion operators as in the DQM and DAQM. In the SWM there is not
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Parameter Description Default value/range

n number of context streams {10, 100, 200, 300, 450}
β probability of usable value {0.1, . . . , 0.9}
λ mean value of vector quality nβ

h sliding window size;
coeff. of quality guarantee [10, 1000]

T quality guarantee nh

a aging factor (0, 1]

c delay cost per observation [0, λ]

Table 1: Notations and default range/values of parameters.

delay. We also define the percentage decrease of error ν = eSWM−ex
eSWM

% between
the error of SWM, eSWM , and of a model x ∈ {DQM,DAQM}. A positive ν%
value indicates that a model x achieves lower CIP error than SWM.675

We set the aging factor a ∈ (0, 1] and the delay cost per observation c = [0, λ]
to quantify the maximum penalty of an extra delay, with respect to the vector
quality Y , as a portion of its mean value λ. The application quality guarantee
threshold is set to T = nh, for diverse values of h. Note that, a high h value
implies (i) high storage capacity, (ii) the applied CIP operators could refer680

to a high portion of obsolete values (especially when h is large), and (iii) the
dynamics (e.g., concept drifts, peaks, sudden changes) of the context streams are
more or less ‘flattened’. Hence, shorter window length would be more applicable
to catch the current dynamics of the context streams and to deal with freshness
of the CIP results. For that reasons we experimented with h = 10, which refers685

to a time horizon of five minutes. However, in the comparative assessment of
the SWM, DQM and DAQM we study the impact of higher h values on the
derived CIP result error. The experimental parameters and their default values
are shown in Table 1.

6.2. Experimental Evaluation690

Figures 1(left), and 2(left) shows the error-per-stream of the DQM and the
SWM with respect to probability β for AVG and EVENT operators, respectively,
for n ∈ {10, 100} and sliding window size h = 10 for the SWM. We observe the
applicability of the DQM especially in the case of high degree of loss (i.e., β <
0.5) in context streams, which is not rare in real-life environmental monitoring695

applications [20]. Specifically, with a low β value denoting high portion of
observed unusable values, we obtain a very high error with SWM compared
with the DQM. This error percentage difference is quantified by ν% in Figures
1(right), and 2(right), respectively. The DQM is robust in all β values since
it attempts to optimally delay the process in hope of receiving more usable700

values thus decreasing the CIP error. Evidently, as β → 1 then less unusable
values are observed, thus both models DQM and SWM assume the same error.
But even in this case, the DQM on average achieves to 10%-15% lower error
than SWM. The benefit gained from our time-optimized mechanism is clear
compared to SWM, which is also robust in terms of the number of context705
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streams n. The more context streams we have the higher the error we obtain
with SWM. On the other hand, the DQM attempts to optimally reach the
quality guarantee given all context streams simultaneously each one with equal
importance. However, as we will show later, our models (DQM and DAQM)
are highly scalable (linearly increase) in terms of accuracy with an increase710

number of streams compared with the DQM, which the latter does not scale
well (the corresponding error exponentially increases with the number of context
streams); see Figure 6 (right).

Probability β
0 0.2 0.4 0.6 0.8 1

E
rr
or

p
er

st
re
am

e/
n

0

10

20

30

40

50

60

70

DQM (n = 10)

SWM (n = 10)

DQM (n = 100)

SWM (n = 100)

Probability β
0 0.2 0.4 0.6 0.8 1

E
rr
or

d
ec
re
as
e
ra
ti
o
ν
(%

)

0

20

40

60

80

n = 10

n = 100

n = 300

Figure 1: (Left) Error per stream e/n for AVG operator and (right) percentage ν% of the DQM
and the SWM against probability β.

Note that in Figure 2 (left) the error-per-stream in the EVENT operator indi-
cates the portion of the context streams that produce false alarms out of the n715

streams when evaluating an event. In this case the accuracy of the fusion result
plays a significant role in certain event-based monitoring applications, especially
when evaluating events with high confidence [3]. That is because the error refers
not only to estimation errors of the aggregate operators in the involved pred-
icates but also on the evaluation of the situational context itself, which is of720

prime importance for context-aware applications. In the DQM, 27% (on aver-
age) of the context streams falsely evaluate an event for all β values. In SWM
around 80% of the context streams falsely evaluate events for low β values and
at least 40% of streams proceed with erroneous event inference for β ∼ 0.5. The
DQM is more precise in event detection than SWM as shown in Figure 2 (right).725

In that case, if a certain delay on proceeding with an event inference/detection
is tolerated then one could obtain more precise fusion results or at least obtain
usable contextual information for further processing. Nonetheless, we have to
study the trade-off of achieving low result error and robust behavior of the DQM
in highly incomplete context streams with the incurred delay.730

Figure 3 shows the the expected delay E[t∗] of the DQM, i.e., the average
window size of the landmark window used for achieving low error given the
quality guarantee T ; over MAX,AVG,EVENT operator. Obviously, in the case of
β ≤ 0.1 the delay is high corresponding to a landmark window with a size of ten
times that of the sliding window size h for the SWM. This is attributed to the735

fact that, the DQM delays the observation process in observing usable pieces
of context for minimizing the quality distance to the threshold T . In this case
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Figure 2: (Left) Error per stream e/n for EVENT operator and (right) percentage ν% of the
DQM and SWM against probability β.

we obtain on average 80% less error than SWM for all operators. Nevertheless,
with a relatively high incomplete data streams, i.e., β = 0.3, the DQM requires
much less delay, specifically, only a factor of 2.03 of window size h for achieving740

55% less error w.r.t. SWM. This implies the efficiency of the proposed model
and its adaptability to the underlying data quality indicators in order to au-
tonomously decide when to stop the observation process for achieving its goal
under uncertainty. Obviously, when β → 1 then the delay obtained by the DQM
is close to the SWM case, i.e., the average (expected) landmark window length745

is of the same length h as the sliding window size (but, we need to examine also
the variance of t∗ as will be discussed later). This is due to the fact that the
underlying context streams do not contain many missing values thus any extra
delay is of no avail. This also depicts the adaptability of the proposed model
even when the underlying data streams are not so incomplete. The capability750

of the DQM to efficiently and optimally adapt to the degree of incompleteness
of the underlying streams balancing between low error and relatively low ex-
pected delay render it as an appropriate model for stream-based context aware
applications. Moreover, it is worth mentioning that the expected delay of the
DQM is independent of the aggregation and fusion operators rendering thus our755

model applicable to certain CIP applications over context streams.
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Figure 3: Expected delay E[t∗] for (left) MAX, (middle) AVG, and (right) EVENT operator of the
DQM against probability β.

Figure 4 shows the error-per-stream and the percentage decrease error ν%
of the DAQM with respect to SWM having aging factor a ∈ {0.8, 0.9, 0.99} and
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delay cost c = 0 for AVG (similar results are observed for MAX,EVENT) and n ∈
{10, 200}. In this case, the DAQM attempts to reach the quality guarantee T760

taking into consideration the aging factor of the pieces of values in the landmark
window. We observe that the DAQM behaves very efficient in cases where β is
low and achieves a high relative difference with the quality of the aggregation
results compared to SWM.
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Figure 4: (Left) Error per stream e/n for AVG operator and (right) percentage ν% of the
DAQM and the SWM against probability β; n = 200, c = 0.

Notably, for c = 0 the aging factor a does not play so significant role in765

expected delay and error. In case where we desire to control the expected delay
and the achieved accuracy, the combination of c and a provide us this flexibility.
The higher the cost c along with low a value, the more conservative the DAQM
becomes in terms of stopping the observation process at an earlier stage of an
era. This denotes that the expected size of the landmark window size, expressed770

by E[t∗] is shorter however at the expense of higher error compared to the DQM,
but also very lower than that of the SWM. Evidently, when c = 1 · λ then the
delay cost is of utmost importance thus the DAQM obtains a high error, here in
the case of low n, it achieves almost the same accuracy as SWM with E[t∗] ∼ h.
However, in case where n is relatively large, even with high cost c the DAQM775

achieves lower error than the SWM denoting its applicability with a high number
of context streams.

To further demonstrate the flexibility of DAQM to trade-off accuracy with
expected delay, we examine the impact of a factor of DAQM on the error and
the expected delay. Figure 5 shows the error and expected delay for DAQM with780

c = 0.5λ, the SWM and DQM against a range of a values (the SWM and DQM
are shown for comparison reasons, since they do not depend on a). DAQM
provides us with the flexibility to achieve low delay compare with the DQM but
at the expense of high error and on the other hand to achieve very low error
with a relatively high delay. Note that, the DAQM through a can reach the785

accuracy results of the DQM, i.e., with high a values and also achieves quite the
same delay of the DQM. Moreover, DAQM achieves lower error than SWM for
a > 0.6. A low a value results to a high aging factor, denoting that the values
in the landmark window turn obsolete with a high rate. Hence, in this case, the
DAQM stops the observation process in a very short time with expected delay790
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E[t∗] lower than h, i.e., lower than that of SWM. An a value higher than 0.6
results to lower error than SWM and higher than the DQM. Nonetheless, in
this case DAQM achieves lower delay than the DQM. Hence, DAQM through
a ∈ [0.6, 1) can balance the trade-off accuracy and acceptable delay. In the
extreme values, i.e., a → 1 DAQM behaves the same as the DQM in terms795

of accuracy and delay. Indicatively, to achieve 50% and 80% lower error than
SWM, we require and expected delay E[t∗] of two and four times the sliding
window size h for DAQM and the DQM, respectively.
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Figure 5: (Left) Error e and (right) expected delay E[t∗] against a of the DAQM and the
DQM for AVG operator with β = 0.5; c = 0.5λ.

To better illustrate this trade-off, Figure 6 (left) shows the expected delay
against the error-per-stream for the EVENT for all models with β ∈ {0.1, 0.3, 0.5}800

and different values of a. The DQM lies on the left side of the ‘box’ deter-
mined by the expected delay and error-per-stream with the least error and the
highest delay. DAQM ranges from the left side of the box to the bottom right
according to the a factor. The SWM results to the highest error without delay.
DAQM is more applicable than the DQM in terms of a high range of applica-805

tions. That is because, in DAQM one can tune (i) the cost c parameter, which
expedites the application of the aggregation/fusion operators over the window
thus adapting the ‘speed’ of obtaining results, e.g., in time critical applications
with a restricted tolerance, (ii) one can tune the aging factor a, which refers to
a ‘degree of freshness’ / ‘timeliness’ of the contextual values being involved in810

the aggregation/fusion operation, or (iii) a hybrid scheme of supporting both
speediness and freshness of results being as much accurate as possible.

We also experiment with the impact of the number of context streams n
on the derived CIP error. Note: in order to obtain a high number of context
streams n = 20, 000 (higher than 450 from the dataset D) for experimenting815

with the scalability limit of the models, we replicate each context stream si
many times (approx. 40 times) and generate its (time series) values xi drawn
from a Gaussian and uniform distribution (with equal probability each) using
its corresponding mean and variance. Figure 6 (right) shows the impact of n on
error e for the SWM, DQM, and DAQM for the EVENT operator with β = 0.3.820

We observe that SWM does not scale well with a high number streams, thus
being inappropriate when dealing with parallel processing of data streams. Our
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both models scale efficiently with the number of streams in terms of accuracy.
This is because, the ‘dimension’ of n is orthogonal to the time optimization
process already included in the quality guarantee threshold T . This renders825

both models to deal with stochastic optimization of the multivariate space (i.e.,
multivariate context vector x of n components) ahead of time minimizing the
quality distance. The decision is just scaled with the number n and does not
significantly influence the stopping criterion. Note that, for both models DQM
and DAQM the number of streams n does not influence the expected delay as830

discussed above thus render them scalable and robust when dealing with

7. Comparative Assessment

In this section we report on the comparison models: the Incremental Mean
Model (IMM) [27], the Skewness Sensitive Model (SSM) [27], the the Average
Nearest Exponential Smoothing Model (ANESM) [16], and Exponential Moving835

Average Model (EMAM) [10] adopted for applying a CIP over a window of
contextual streams. We provide a comprehensive comparative assessment with
our model in terms of a series of performance metrics.

7.1. Comparison Models

Incremental Mean Model (IMM). The IMM [27] is applied indepen-840

dently to each context stream si given a sliding window W(h). The idea is
to deliver a series of contextual values that are replaced by plausible estimates
(a.k.a. imputation) in case they are missing. That is, each time the observed
value xi,t from a context stream si is missing, then the IMM imputes this value.
Then, the IMM applies the CIP operator over a sliding window W(h). This845

model does not take into consideration any quality guarantee. Instead, it in-
vokes the CIP operator over the window W(h) and proceeds with a missing
value imputation method in case I(xi,t) = 0 at time instance t.
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Assume that at time t, the xi,t value is missing. The IMM relies on the
global incremental mean value µi,t−1 over the stream si up to time t−1 in order850

to impute the missing value xi,t. The µi,t value up to time t for the stream
si is incrementally calculated by the µi,t−1 value up to time t − 1 and the
current value xi,t. The adopted recursion for the estimation of the mean value
is: µi,t = µi,t−1+ 1

t (xi,t−µi,t−1). The interested reader could refer to Appendix
B for the generation of this recursion. IMM extrapolates the missing xi,t with855

the µi,t−1, which is calculated up to t−1. After this substitution, then the IMM
applies the CIP operator over the W(h) with the recent h actual and imputed
values for each stream si. Note here that, the IMM involves in the CIP operator
the values within a sliding window where a portion of them (statistically, they
are βh in number) refer to imputed values with the corresponding incremental860

mean value. On average, for the n streams, the CIP operator involves nβh
imputed values given a sliding window W(h). Obviously, for a given β > 0 the
number of actual values n(1− β)h is less than the quality guarantee threshold
T = nh. Our models, instead, ensure to deliver at least T actual values.

Skewness Sensitive Model (SSM). The SSM [27] exploits the incremen-865

tal median and incremental mean value in order to impute the missing values
before proceeding with a CIP operator over a sliding window W(h). The SSM
takes into consideration the skewness of each stream si to obtain an insight on
the degree of asymmetry of the underlying probability distribution of si. The
SSM at each time instance t incrementally updates the mean value µi,t and the870

median value mi,t. When a missing value xi,t is observed at time instance t, i.e.,
I(xi,t) = 0, then the SSM compares the incremental µi,t−1 with mi,t−1 up to the
time t− 1. Specifically, let us define the indicator function J (xi;h) which is 1
if xi is less than the average (mean) value of all values within a sliding window
W(h). Otherwise, J (xi;h) = 0. Based on this indicator function, two cases875

are distinguished in the SSM: [Case 1]: If µi,t−1 > mi,t−1 then the underlying
distribution of stream si is right skewed, also referred to as positive skewness.
In that case, the missing value xi,t is extrapolated with the average value of
those values within the sliding window W(h), which are less than µi,t−1, i.e.,

for those values with indicator J = 1. That is: xi,t =
∑h−1
k=t−h+1 J (xi,k;h)xi,k∑h−1
k=t−h+1 J (xi,k;h)

.880

[Case 2]: If µi,t−1 ≤ mi,t−1 then the underlying distribution of stream si is left
skewed, also referred to as negative skewness. In that case, the missing value xi,t
is extrapolated with the average value of those values within the sliding window
W(h), which are equal or greater than µi,t−1, i.e., for those values with indicator

J = 0. In this case, xi,t =
∑h−1
k=t−h+1(1−J (xi,k;h))xi,k∑h−1
k=t−h+1(1−J (xi,k;h))

. The SSM at each time885

instance t has to calculate the incremental mean value µi,t and the incremental
median mi,t. For each time instance, the SSM invokes the CIP operator over
the sliding window W(h). In the case of a missing value, the SSM based on the
median and mean value imputes the xi,t missing value and then invokes a CIP
operator over the sliding window. As in IMM, the SSM involves in the CIP op-890

erator the values within a sliding window where a portion of them (statistically,
they are βh) refer to imputed values corresponded with the conditional mean
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value as discussed in Cases 1 and 2. On average, for the n streams, the CIP
operator involves nβh imputed values given a sliding windowW(h). Given that
β > 0, the number of actual values is n(1− β)h with respect to n streams.895

Remark 4. The IMM depends only on the current mean value for imputation
and invokes a CIP operator over the sliding window W(h) at every time in-
stance t. The SSM depends on the current mean and median and depends on
the conditional mean value for imputation over the sliding window W(h). In
addition, the SSM invokes a CIP operator over W(h) at every time instance t.900

The computation complexity of the SSM has as follows: Given a sliding
window W(h), the SSM at each time instance t for each stream si calculates
the incremental mean with O(1) and calculates the incremental median with
O(h log h) (dynamic insertion of the new value and sorting of h values), given
that it exploits only the most recent values in the window W(h). Then it905

checks the indicator I(xi,t) for each stream si. If for a stream si it holds true
that I(xi,t) = 0, then the SSM imputes the missing value xi,t by calculating the
conditional mean overW(h) with O(h); it is the same complexity for both Cases
1 and 2. Then, after all required imputations, the SSM invokes the CIP operator
over the W(h) for all n streams with O(f(W(h))). Hence, at each time t, on910

average, the SSM requires O(nβh log h) +O(f(W(h))). In the case of the IMM,
only the incremental mean is calculated with O(1). Hence, for all the streams,
at time instance t, the processing overW(h) requires O(nβ)+O(f(W(h))) time.

Average Nearest Exponential Smoothing Model (ANESM). The
ANESM [16] depends on (i) the Average Nearest Observation (ANO) method915

and (ii) the Holt-Winters Double Exponential Smoothing (DSE) [23] method
for imputing a missing value at time instance t for every stream si. The ANO
method is applied over a sliding window W(h) and substitutes each value xi
with the average x′i of the nearest backward and forward values. That is given
the series of xi,k, k = t − h + 1, . . . , t − 1 from the sliding window W(h), the920

corresponding smoothed values x′i,k are: x′i,k = 1
h

∑k+h−1
2

j=k−h−1
2

xi,j . Once the x′i

values are generated in theW(h), then the missing value at time instance t, xi,t,
is imputed using the DES method. Specifically, once the series of values within
W(h) are smoothed using the ANO method, the xi,t missing value is predicted
by applying DES over those smoothed series. The DES method is represented925

as: ai,t = δx′i,t + (1− δ)(ai,t−1 + bi,t−1) and bt = γ(ai,t − ai,t−1) + (1− γ)bi,t−1,
where x′i,t is the actual smoothed value from the ANO method at time t, at and
at−1 are the intercepts at time instance t and t−1, respectively. The bt and bt−1
are the corresponding slopes (time series trends) at time t and t−1, respectively.
The δ and γ are smoothing constants in (0,1). The δ value is used to smooth930

the new actual and trend-adjusted previously smoothed intercept, while the γ
value is used to smooth the trend. The smoothing constants determine the
weight given to most recent past values and control the weight of smoothing.
Values close to 1 give weight to more recent values and near to 0 distribute
the weights to consider values from the more distant past within the window935

W(h). We set δ = 0.7 and γ = 0.9 as in [16]. Hence, upon the event of
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a missing value at time instance t at stream si, the xi,t value is imputed as:
xi,t = ai,t−1 + bi,t−1. Note that ai,t−1 takes into consideration the smoothed
series x′i,k, k = t − h + 1, . . . , t − 1, from the ANO method. For each time
instance, the ANESM invokes the CIP operator over the sliding window W(h).940

In the case of a missing value, the ANESM based on the ANO and DES method
imputes the xi,t value and, then, invokes a CIP operator over the sliding window.
On average, for the n streams, the CIP operator involves nβh imputed values
given a sliding window W(h). This means that the number of actual values is
n(1− β)h with respect to n streams.945

Remark 5. The computation complexity of the ANESM has as follows: Given
a sliding windowW(h), the ANESM at each time instance t checks the indicator
I(xi,t) for each stream si. If for a stream si it holds true that I(xi,t) = 0, then
the ANESM first proceed with the smoothing of the values within theW(h) and
then imputes the missing value of xi,t. This requires O(h2) time for smoothing950

all values in W(h) and O(h) time for imputation. Then, after all required
imputations, the ANESM invokes the CIP operator over the W(h) for all n
streams with O(f(W(h))). Hence, at each time t, on average, the ANESM
requires O(nβh2) +O(f(W(h))).

Exponential Moving Average Model (EMAM). The EMAM [10] weighs955

more the nearest neighbors of the current missing value xi,t through an expo-
nential decaying factor. The idea here is to update at each time instance the
weighted mean value over a sliding window W(h). Upon an event of a missing
value at time instance t, the missing value xi,t corresponding to stream si is

estimated by: xi,t =
∑t−1
k=t−h+1 xi,ke

−φ|k−t|∑t−1
k=t−h+1 e

−φ|k−t| . The φ ∈ (0, 1) parameter controls960

the decaying factor. For a small decaying factor, all values in window W(h)
are assigned similar weights. This effect diminishes as window size h increases
and φ introduces a higher variation among the weights of the near and distant
neighbors of the current missing value at time instant t. When we adopt a
high value for the decaying factor, φ = 1, the effect of the distant neighbors di-965

minishes faster, thus, rendering the size of the sliding window irrelevant for the
performance of the missing value imputation accuracy. We set φ = 0.5 as in [10].
For each time instance, the EMAM invokes the CIP operator over the sliding
window W(h). In the case of a missing value, the EMAM imputes the missing
value xi,t and then invokes a CIP operator over the sliding window. It should970

be noted here that the EMAM requires to compute the weighted mean value
only upon the occurrence of a missing value. On average, for the n streams, the
CIP operator involves nβh imputed values given a sliding window W(h). This
means that the number of actual values is n(1− β)h with respect to n streams.

Remark 6. The computation complexity of the EMAM has as follows: Given975

a sliding windowW(h), the EMAM at each time instance t checks the indicator
I(xi,t) for each stream si. if for a stream it holds true that I(xi,t) = 0, then
the EMAM imputes the missing value of xi,t. This requires O(h) computational
time. Then, after all required imputations, the EMAM invokes the CIP operator
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Model Computational Complexity

DQM O(nβ) + p∗O(f(W(τ, t∗)))

DAQM O(nβ) + p∗O(f(W(τ, t∗)))

SWM O(f(W(h)))

IMM O(nβ) +O(f(W(h)))

SSM O(nβh log h) +O(f(W(h)))

ANESM O(nβh2) +O(f(W(h)))

EMAM O(nβh) +O(f(W(h)))

Table 2: Time Complexity for the Comparison Models; p∗ ∈ (0, 1) is the probability that at a
given time instance the optimal stopping time criterion for the DAQM and DQM holds true.

over the W(h) for all n streams with O(f(W(h))). Hence, at each time t,980

on average, the EMAM requires O(nβh) + O(f(W(h))). Table 2 shows the
computational complexity of all models.

7.2. Comparative Metrics & Setup

For the comparative assessment of the models DQM, DAQM, IMM, SSM,
ANESM and EMAM, we adopt the real dataset provided by the Intel Berkeley985

Research Lad, called Intel Lab Data3. The dataset contains environmental
contextual data reading, such as temperature, humidity, and light, reported by
n = 54 Mica2Dot sensors. The sensors were installed in an indoor area, and
had the same reporting frequency of once per 31 seconds. In our comparative
evaluation, we choose the contextual parameter of temperature and the dataset990

consists of N = 43047 54-dimensional contextual vectors, where each dimension
corresponds to a context stream. The sliding window size h takes values in
{10, 50}, which correspond to a sliding window of 310 seconds (5.17 minutes) and
1550 seconds (25.8 minutes), respectively. Hence, the quality guarantee for the
DQM and DAQM is, respectively, T = nh ∈ {540, 2700}. In the experiments, we995

set the usable probability β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. That is, at each reporting
time instance t, for each context stream si, i = 1, . . . , 54, we consider a value
to be usable with probability β. Hence, on average each context stream si
has βN usable values, for different values of β. We deal with the MAX standard
aggregate and AVG algebraic aggregate operators for all models. The comparison1000

performance metrics for all models are: (1) the error-pre-stream e/n as defined
in Section 6.1, (2) the total number of CIP invocations per stream si, notated
by Ci, for the DQM and DAQM (landmark window methods) and the sliding
window methods, i.e., SWM, IMM, SSM, ANESM and EMAM, up to N , and
(3) the per stream invocation factor, notated by Mi, of window accesses (sliding1005

or landmark) due to CIP invocation and the invocation of a MVS method over
window W of length |W| out of N .

The Ci metric denotes how many times each model invokes a CIP operator
over a sliding/landmark window W up to N contextual data readings. The

3http://db.csail.mit.edu/labdata/labdata.html
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Mi metric denotes how many times each model invokes a CIP operator over a1010

window W weighted by the length |W| of the window and the extra required
window access due to the (possible) invocation of a MVS algorithm/method
adopted by a model, upon the event of a missing value. Since all methods
SWM, IMM, SSM, ANESM and EMAM each time instance t invokes the CIP
operator over a sliding window W(h), then the corresponding Mi/N value is1015

at least h, i.e., CIP invocation per every contextual value reading. Moreover,
for such methods, if at time instance t the event of a missing value holds true,
then they invoke their corresponding MVS method by accessing the sliding
window. Our models: DQM and DAQM based explicitly on the quantity of
the usable pieces of data for each context stream attempt to control/tune the1020

rate of CIP invocations in light of saving computational resources. The CIP
invocation in our models involves the length of the current landmark window,
which is variable. Recall also that in our models, there is no invocation of a
MVS method. However, this comes at the expense of the provided accuracy of
CIP results, as will be discussed below.1025

Formally, let us define the CIP invocation indicator function I1(t) at time
instance t, which takes the value of 1 if a CIP operator is invoked over a window,
otherwise zero. Evidently, in the case of SWM, IMM, SSM, ANESM and EMAM
we obtain: I1(t) = 1,∀t, while in the case of DQM and DAQM, we obtain that:

I1(t) =

{
1 if t = τ∗ w.p. p∗ = P (t = τ∗)
0 otherwise.

Recall τ∗ is the optimal stopping1030

time that DQM and DAQM decide to invoke a CIP operator over a landmark
window. In the case of SWM, IMM, SSM, ANESM and EMAM the (sliding)
window length is fixed h. In the case of DQM and DAQM, the (landmark)
window length is variable and depends on the length or an era between two
consecutive stopping decisions. This is captured by the introduced metric Mi1035

per stream si, which is defined as: Mi = 1
N

∑N
t=h(I1(t) + 1− I(xi,t))|W for the

SSM, ANESM and EMAM. Since both SWM and IMM do not depend on the
event of a missing value, then we obtain that: Mi = 1

N

∑N
t=h I1(t)|W|.

The length of window |W| = h in the case of SWM, IMM, SSM, ANESM and
EMAM (sliding window) and all these methods start from time instance t = h1040

since they require at least h values to operate on an initialized sliding window
of length h. Given that the probability of a usual value in a context stream is β,

then the expected value of Mi for a context stream si is: E[Mi] = (N−h)
N h(2−β)

for SSM, ANESM and EMAM, which operate over N − h streaming values. In

the case of SWM and IMM, the expected value of E[Mi] = (N−h)
N h, being1045

independent of β. The average value for all context streams with respect to the
Mi is M = 1

n

∑n
i=1Mi.

In the case of DQM and DAQM, when t = τ∗k , i.e., it is the k-th decision
to stop and invoke a CIP operator at time instance t, then the length of the
landmark window |Wt| = t − t′, which corresponds to the number of pieces of1050

values between the k-th and (k−1)-th stopping eras at time t = τ∗k and t′ = τ∗k−1
with t′ < t. The Mi per stream metric is defined for the DQM and DAQM as:
Mi = 1

N

∑N
t=1 I1(t)|Wt|. It is worth noting that in the case of DQM and DAQM,
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the Mi value is at most 1. Specifically, let us assume that up to N readings of
a context stream si, the DQM (or DAQM) method optimally decides to stop K1055

times, i.e., K eras. At each era, the length of the landmark window is: |Wk| =
τ∗k − τ∗k−1, assuming that the optimal stopping time τ∗0 = 0; fictitious state.
Evidently, the sum of the products of the I1(t) with |Wt| at the time instances

t = τ∗k , for k = 1, . . . ,K, equals to τ∗K =
∑K
k=1 |Wk| =

∑K
k=1(τ∗k − τ∗k−1) ≤ N .

That is, the corresponding Mi value up to N is at most 1, or more specifically,1060

τ∗K
N . The Mi = Mj for every pair of context streams si and sj since the stopping
time depends on all the values of the streams, thus, M = Mi.

Finally, the Ci per stream metric is defined for all models as: Ci =
∑N
t=1 I1(t),

i.e., the total number of CIP invocations for the DQM and DAQM (landmark
window methods) and the sliding window methods, i.e., SWM, IMM, SSM,1065

ANESM and EMAM, up to N . The average value for all context streams with
respect to Ci is C = 1

n

∑n
i=1 Ci. Overall, we require from a model a low error-

per-stream e/n value along with a low factor of window access M and, conse-
quently, low number of CIP invocations, to reflect efficient resource usage for
data stream processing.1070

7.3. Comparative Evaluation

We first compare the quality of the delivered context for all models in terms
of the error-per-stream e/n metric. Figure 7 shows the error per stream against
the probability of a usable value β for h = 10 and h = 50 over n = 54 streams
from the Intel Lab Data using the MAX operator. The IMM and SSM methods1075

achieve the highest error due to the fact that they only rely on the statistical
mean and median information to impute missing values, which are not reliable
when β is low. Moreover, the substitution of the missing values with the current
mean (in the case of IMM) and the conditional mean (in the case of SSM) does
not offer better accuracy results, especially when the sliding window length is1080

high (see Figure 7(right) with h = 50). The ANESM and EMAM methods
achieve better accuracy in terms of error-per-stream compared with the DQM
for high β values. It is however interesting to note that our DAQM achieves
significantly similar accuracy with the ANESM and EMAM methods for all
β values. Furthermore, the improvement of ANESM and EMAM methods in1085

absolute values compared with our models is marginal and is only observed
with high β. Both ANESM and EMAM require high computational time (see
Table 2) to achieve this accuracy level compared with our models. It is also
worth noting that the ANESM does not behave better than our models for low
β values with high window length. This is due to the fact that the ANESM1090

operates over an exponential smoother which is highly unstable (due to the
smoothing function) in the case of a high portion of missing values.

In Figure 8 we show the error per stream against the probability of a usable
value β for h = 10 and h = 50 over n = 54 streams from the Intel Lab Data
using the AVG operator. Since now the CIP operator is the AVG both the the1095

IMM and SSM methods achieve low error due to the fact that they exploit
the cumulative knowledge of the statistical mean and median. However, for a
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Figure 7: Impact of probability β on error per stream e/n for MAX operator over DQM, DAQM
(a = 0.95, c = 0.5), IMM, SSM, ANESM, and EMAM, using n = 54 context streams and (left)
h = 10, (right) h = 50; Intel Lab Data.

relatively high window length (see Figure 8 (right)), the impact of a high h on
the cumulative mean and median results in higher error for the IMM and SSM
methods. On the other hand, the EMAM method achieves the lowest error for1100

this type of CIP operator. This is due to the fact that the weighted exponential
mean value follows the current average of the values in a window, thus, the
CIP error is relatively small. However, this does not hold true for the ANESM
method, which achieves quite the same error with our models, but it requires
high computational resources. Especially, when h is high, then the ANESM1105

obtains higher error than DAQM and similar error with DQM at the expense
of a high number of window accesses and CIP invocations.
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Figure 8: Impact of probability β on error per stream e/n for AVG operator over DQM, DAQM
(a = 0.95, c = 0.5), IMM, SSM, ANESM, and EMAM, using n = 54 context streams and (left)
h = 10, (right) h = 50; Intel Lab Data.

We also experiment with the required invocation factor and CIP invoca-
tions for each model to achieve a specific error per stream. This will provide
us with certain insights on the computational resources needed for each model1110

to efficiently proceed with a CIP operator and to deliver high quality context.
Figure 9 (left) shows the average invocation factor M for all models against the
probability of a usable value β in logarithmic scale. One could observe that our
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models do not depend on the probability β as concerns the invocation factor
M , since they adopt the landmark window and the rate of CIP invocations is1115

optimally scheduled. Moreover, our models do not require a MVS method to
impute any missing value and, more interestingly, they do not invoke a CIP
operator each time a new piece of value is received. This is optimally controlled
by the proposed delay mechanism. Hence, the invocation factor refers only to
those cases that both the DQM and DAQM method intelligently decide to in-1120

voke a CIP operator. On the other hand. the IMM, SMM, ANESM and EMAM
methods should invoke a CIP operator at every time, since there is not mech-
anism to schedule the rate of invocation. Moreover, such models have access
to a fixed window l and the quality of the delivered context depends only on
the invocation of a MVS method. This extra data access makes these models1125

to require high computational resources compared to our models. Hence, the
non-sophisticated schedule of the CIP operator invocation and the mandatory
invocation of a MVS method upon an event of a missing value result into a
high invocation factor. However, the ANESM and EMAM methods in certain
cases, i.e., with a relatively small window length and high β value, obtain better1130

performance in terms of the error-per-stream compared to our model. Nonethe-
less, in order for these models to achieve a slightly better accuracy they require,
on average, 15 times more computational resources (in terms of the M factor)
than our models. This is also observed in Figure 10, which plots the trade-off:
invocation factor M against the achieved error-per-stream for all models for1135

different β values. For instance, the DAQM for β = 0.5 achieves the same error
with the EMAM model with 93% less invocation factor. In terms of efficiency
(error and invocation factor), the IMM and SSM are the less efficient methods
for all β values. In case that we require very high accuracy, at the expense of
a high invocation factor, the ANESM and EMAM methods are deemed appro-1140

priate. Nonetheless, for low β values and for high efficiency, the DAQM model
is the most appropriate since it achieves quite the same accuracy level with a
highly computational resource demand method (EMAM, ANESM) over streams
with a low number of usable values. The same hold true for the DQM method,
which operates efficiently with low requirements of computational resources and1145

satisfactory accuracy levels.
To further present the trade-off of accuracy and computational resources, we

show in Figure 9 (right) the average CIP invocations C for both the MAX and
AVG operators against β values for all models: the DQM and DAQM landmark
window models and the IMM, SSM, ANESM, and EMAM, notated as sliding1150

window models. Through this metric C, we show the number of times a CIP
operator is invoked independently of the window access. Evidently, all the
sliding window models simply invoke a CIP operator at each time instance,
thus, without imposing any delay. However, this comes at the expense of high
computational resources demand, compared with the C metric for our models.1155

It is also worth noting that the DAQM and DQM methods increase the value
of C as the probability of a usable value β increases. This is due to the fact
that both methods minimize the imposed delay in light of a good quality of
context. Even in the case where β = 0.9, the C value obtained by our models
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models), using n = 54 context streams and h = 10; Intel Lab Data.

is more than four times lower than the C value obtained by the sliding window1160

models. This indicates the efficiency achieved by our models balancing between
accuracy and demands in computational resources.
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Figure 10: The trade-off invocation factor M and error per stream e/n for different probability
β values for all models; n = 54 context streams and h = 10; CIP is AVG; Intel LabData.

8. Conclusions

We studied the case of a time-optimized mechanism for improving the qual-
ity of results from contextual information processes. We proposed two time-1165

optimization models (the DQM and DAQM) based on the principles of the
theory of optimal stopping, where they evaluate the quality of the incomplete
contextual data streams and, then, optimally decide on when to activate a con-
textual information process (aggregation and/or fusion function) with the aim
to increase the quality of results. Both models can swiftly take optimal decisions1170

on-line thus being highly adaptable to on-line analytics tasks over contextual
data streams. We show that our models improve the quality of the CIP results
and avoid the continuous redundant activation of CIPs each time (incomplete)
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context is received to the back-end monitoring system, as proposed in the ap-
proaches of the related work. Our mechanism compensates between efficient1175

resource usage and achieved accuracy over incomplete context streams.

References

[1] D. J. Abadi, D.Carney, U.Cetintemel, M.Cherniack, C.Convey, S.Lee, M.
Stonebraker, N.Tatbul, S.Zdonik, ‘Aurora: a new model and architecture
for data stream management’, J. VLDB, 12(2):120–139, 2003.1180

[2] C. Anagnostopoulos, P. Triantafillou, ‘Scaling out big data missing value
imputations: pythia vs. godzilla’, ACM KDD ’14, 651–660, 2014.

[3] C. Anagnostopoulos, S. Hadjiefthymiades, ‘Enhancing situation-aware sys-
tems through imprecise reasoning’, IEEE Transactions on Mobile Comput-
ing, 7(10):1153–1168, 2008.1185

[4] C. Anagnostopoulos, Y. Ntarladimas, S. Hadjiefthymiades Situational com-
puting: an innovative architecture with imprecise reasoning J. System and
Software, 80 (12):1993–2014, 2007.

[5] A. Arasu, S. Babu, J. Widom, ‘The CQL continuous query language: se-
mantic foundations and query execution’, J. VLDB, 15(2):121–142, 2006.1190

[6] I. B. Aydilek, A. Arslan, ‘A hybrid method for imputation of missing values
using optimized fuzzy c-means with support vector regression and a genetic
algorithm’, Information Sciences, 233(1), 25–35, 2013.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. ACM PODS, 1–16, 2002.1195

[8] S. Bandyopadhyay, C. Gianella, U. Maulik, H. Kargupta, K. Liu, S. Datta,
Clustering distributed data streams in peer-to-peer environments. Informa-
tion Sciences, 176(14):1952–1985, 2006

[9] T.-M. Choi, H. K. Chan, X. Yue, Recent Development in Big Data Analyt-
ics for Business Operations and Risk Management, IEEE Transactions on1200

Cybernetics, 99:1–12, 2016.
[10] M. Dallachiesa, B. Nushi, K. Mirylenka, T. Palpanas. 2012. Uncertain time-

series similarity: return to the basics. Proc. VLDB, 5, 11, 1662–1673.
[11] C. Daskalakis et al. ‘Learning poisson binomial distributions’, ACM STOC

’12, 709–728.1205

[12] A. Farhangfar et al, ‘Impact of imputation of missing values on classification
error for discrete data’, Pattern Recognition, 41(12): 3692–3705, 2008.

[13] M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: A
review. SIGMOD, 34(2):18–26, 2005.

[14] J. Gray, S. Chaudhuri, et al. ‘Data cube: A relational aggregation operator1210

generalizing group-by, cross-tab, and sub totals’. Data Mining and Knowl-
edge Discovery, 1(1):29–53, 1997.

[15] A. Z. Grzybowski, ‘Simulation approach to optimal stopping in some black-
jack type problems’, Scientific Research of the Institute of Mathematics and
Computer Science, 2011, 10(2):75–86.1215

[16] P. Gupta and R.Srinivasan,‘Missing Data Prediction and Forecasting for
Water Quantity Data’, IPCSIT, 10, 2011, IACSIT Press.

34



[17] S. Guha, N. Mishra, R. Motwani, L. O’ Callaghan, Clustering Data
Streams’, Annual Symposium on Foundations of Computer Science, 2000,
359–366.1220

[18] K. Hiramatsu, T. Hattori, T. Yamada, T. Okadome, Finding small changes
using sensor networks. Ubicomp’05, 37–44.

[19] K. Kolomvatsos, C. Anagnostopoulos, S. Hadjiefthymiades, ‘A time op-
timized scheme for top-k list maintenance over incomplete data streams’,
Information Sciences, 311:59–73, 2015.1225

[20] L. Kong, M. Xia; Xiao-Yang Liu, Min-You Wu, X. Liu, ‘Data loss and
reconstruction in sensor networks’, IEEE INFOCOM, 2013, pp.1654–1662.

[21] C. Leung, Q. Khan, B. Hao, Distributed mining of constrained patterns
from wireless sensor data, IEEE/WIC/ACM WI-IATW06.

[22] J. Lian, K. Naik, L. Chen, Y. Liu, G. Agnew, Gradient boundary detection1230

for time series snapshot construction in sensor networks. IEEE Transactions
on Parallel and Distributed Systems, 2007.

[23] A. Lynwood, C. Johnson Douglas, Montgomery and John S. Gardiner.
‘Forecasting and Time Series Analysis’. McGraw–Hill, 2nd ed., 1990.

[24] S. McConnell, D. Skillicorn, A distributed approach for prediction in sensor1235

networks. SIAM Intl Conf Data Mining, pp. 28–37, 2005.
[25] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X. Li, G. Dai, ‘Canopy Closure

Estimates with GreenOrbs: Sustainable Sensing in Forest’, ACM SenSys
’09, 99–112.

[26] T. Palpanas, D. Papadopoulos, V. Kalogeraki, D. Gunopulos, Distributed1240

deviation detection in sensor networks. ACM SIGMOD, 32(4):77–82, 2003.
[27] K. Patel, R. G. Mehta, M. M. Raghuvanshi, N. N. Vandere, ‘Incremental

Missing Value Replacement Techniques for Stream Data’, Intl J. Computer
Applications, 122(17):0975–8887, 2015.

[28] G. Peskir, A. Shiryaev, ‘Optimal Stopping and Free-Boundary Problems’,1245

ETH Zuerich, Birkhauser Basel, 2006.
[29] L. L. Pipino, Y. W. Lee, R. Y. Wang, ‘Data quality assessment’, Commun.

ACM 45, 4:211–218, 2002.
[30] A. Shiryaev, ‘Optimal Stopping Rules’, Series: Stochastic Modelling and

Applied Probability, 8, 2007.1250

[31] M. Stonebraker, U. Cetintemel, S. Zdonik, ‘The 8 requirements of real-time
stream processing’, ACM SIGMOD, 34(4):42–47, 2005.

[32] R. Y. Wang, D. M. Strong, ‘Beyond accuracy: what data quality means to
data consumers’, J. Management Information Systems, 12(4):5–33, 1996.

[33] Z. Yang, N. Meratnia, P. Havinga, Outlier Detection Techniques for Wire-1255

less Sensor Networks: A Survey,” Communications Surveys & Tutorials,
IEEE, 12(2):159–170, 2010.

[34] E. Zervas, A. Mpimpoudis, C. Anagnostopoulos, O. Sekkas, and S. Had-
jiefthymiades. Multisensor data fusion for fire detection. Information Fusion,
Elsevier, 12(3):150-159, 2011.1260

35


	Introduction
	Motivation & Challenge

	Literature Review & Contribution
	Literature Review
	Rationale
	Contribution

	Preliminaries
	Data Stream Quality
	Data Stream Aggregation and Fusion Operator
	Optimal stopping rule problem

	Problem Statement
	Quality Distance Minimization
	Cost delay-aware and Time-decaying aware Quality Maximization

	Quality-aware Mechanisms
	Distance Quality Model
	Delay-aware and Time-decaying Quality Model
	The Algorithm of the DQM and DAQM

	Performance Evaluation
	Methodology
	Experimental Evaluation

	Comparative Assessment
	Comparison Models
	Comparative Metrics & Setup
	Comparative Evaluation

	Conclusions

