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Abstract

Line-level keyword spotting (KWS) is presented on the basis of frame-level word posterior prob-

abilities. These posteriors are obtained using word graphs derived from the recognition process of

a full-fledged handwritten text recognizer based on hidden Markov models and N -gram language

models. This approach has several advantages. First, since it uses a holistic, segmentation-free

technology, it does not require any kind of word or character segmentation. Second, the use of

language models allows the context of each spotted word to be taken into account, thereby con-

siderably increasing the KWS accuracy. And third, the proposed KWS scores are based on true

posterior probabilities, computed taking into account all (or most) possible word segmentations of

the input image. These scores are properly bounded and normalized. This mathematically clean

formulation lends itself to smooth, threshold-based keyword queries which, in turn, permit com-

fortable trade-offs between search precision and recall. Experiments are carried out on several

historic collections of handwritten text images, as well as with a well-known dataset of mod-

ern English handwritten text. According to the empirical results, the proposed approach achieves

KWS results comparable to those obtained with the recently-introduced “BLSTM neural networks

KWS” approach and clearly outperform the popular, state-of-the-art “Filler HMM” KWS method.

Overall, the results clearly support all the above-claimed advantages of the proposed approach.
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1. Introduction

Large amounts of handwritten text have been produced over the centuries. In fact it has been

claimed that the total accumulated amount of handwritten text is most likely larger than the nowa-

days available amount of (original) printed text available today, including modern, digitally-born

text. In recent years, large quantities of these documents have been scanned and made available as

digital images via web pages of libraries and archives all over the world. Despite these efforts to

make the documents accessible, raw images are largely useless for their primary purpose, ; namely

exploiting the wealth of information given in the text of the document images. Consequently,

there is a fast-growing interest in automated methods that allow the users to search these images

for arbitrary textual information.

In order to use conventional text information retrieval approaches, a first necessary step would

be to convert the text images into digital text. However, OCR technology is completely useless

for typical handwritten text images, and current handwritten text recognition (HTR) technology is

still far away from offering sufficiently-accurate transcripts for the type of (historical) document

considered in this work. This renders exact searches impossible.

This situation has brought about the need for search approaches that are specifically-designed

for large text image collections. Obviously exact searching is not possible in this case.

Approximate keyword searching should follow a precision-recall trade-off model, based on

word confidence measures. For each query, users should be able to specify whether they need

high precision, to ensure that most of the spotting results do correspond to the query keyword, or

a high recall, to make sure that most of the instances of the query keyword are retrieved. This

entails the use of confidence thresholds, which can be specified more or less explicitly, depending

on the application. For instance, in cases where the spotting results are provided in the form of

ranked lists, the threshold is indirectly defined by the size of the list.

This confidence-based query model cannot be properly implemented straight-forwardly us-

ing conventional textual information retrieval methods on the noisy output of an automatic HTR

system. Instead, recognition techniques are needed which assign confidence scores to alternative

word recognition hypotheses are needed. Keyword spotting (KWS) [32, 45, 6, 53, 46, 13, 16, 14,

17, 72] has long been seen as an adequate way to obtain the required word confidence scores, and
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is thereby often considered an alternative to full HTR. However, this view of KWS and HTR as

competing technologies is disputable. As we will see in Section 3, any word recognition process

relies more or less explicitly on computing word confidence scores (posterior probabilities) and,

equally, any method that computes KWS scores always entails some form of word recognition.

Accordingly, HTR and KWS should be seen as complementary rather than competing technolo-

gies. This is in fact the viewpoint adopted in this paper.

KWS and information retrieval (IR) are also related technologies. Both terms are used more

or less interchangeably in many papers in the document image literature, while others propose

different, often subtly opposite, points of view on this relationship. For instance, in [32] KWS is

presented as a technique for “obtaining the index” needed for IR, while in [6] KWS is considered

to be the process of “keyword retrieval in document images”. Moreover, some authors define

KWS as a way to do things, rather than as a process or a function to be accomplished. For

instance, in [45] KWS is understood as a way to compute confidence scores “by matching word

images with each other”. Here we rather prefer a functional definition, where KWS is any process

which provides confidence scores suitable for searching and retrieving words in document images.

That is, we in part share the view of [32] in that document indexing is based on the scores obtained

by KWS, but diverge from that presented in [45], in seeing KWS as a function or process, rather

than as a specific way to accomplish the intended goal of obtaining the word confidence scores

neded in the precision-recall trade-off model.

In the field of automatic speech recognition (ASR), a field closely-related to HTR), early

works [10, 22, 48, 30] also considered KWS as an alternative to full ASR. The close relation-

ship between full recognition and KWS soon became commonly acknowledged, and more recent

works [56, 7, 8, 9] do indeed capitalize on the complementarity of ASR and KWS. On the other

hand, as a result of work inspired by a series of competitions organized by the NIST [7, 8, 9, 69],

the relationship between IR and KWS1 is also becoming increasingly clear and commonly ac-

knowledged in the field of ASR. Our standpoints on the relationships between HTR, KWS, and

IR match the trends reflected in the ASR papers mentioned above.

Based on the above discussion, we propose to obtain KWS confidence scores through word

1After NIST competitions, ASR KWS is often referred to as “Spoken Document Retrieval” (SDR) and/or “Spoken

Term Detection” (STD).
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graphs (WG) produced by a full-fledged statistical HTR system, based on stochastic optical char-

acter models, as well as probabilistic lexicon models and language models. This entails several

important advantages: a) The proposed formal framework is mathematically sound and compu-

tationally tractable and does not rely on heuristics; b) While most KWS techniques proposed so

far are based on a single (given or computed) word segmentation of the given text image, our

proposed framework is holistic and does not require any kind of word or character segmenta-

tion. In fact, our KWS scores are true posterior probabilities, computed by taking into account

all (or most) of ) the possible word segmentations; c) Since these KWS scores are well-defined

and properly normalized, they do not need further normalization heuristics to achieve smooth

precision-recall trade-offs in practical use; and d) and most importantly, it allows us to take ad-

vantage of word contexts, which significantly boosts KWS performance with respect to systems

which are linguistically and contextually agnostic.

These convenient features require linguistic resources, in particular a lexicon which, for smaller

applications, may constitute a limitation of the proposed approach. Yet, our target applications

are those involving large handwritten collections, where the effort or cost to produce these re-

sources will be more than offset by the benefits of accurately making the textual contents of these

collections available for exploration and retrieval.

Traditional work on handwritten KWS assumed prior segmentation of the text images into

words (c.f. Sec. 3). However, this word pre-segmentation is plainly impossible for the mil-

lions of historical handwritten documents and, even in favorable cases, it is quite prone to er-

rors [40, 33, 31] which tend to significantly hinder overall KWS performance [1]. To overcome

this considerable drawback, recent works [58, 26, 17, 16, 14, 72, 52] assume the (word-unseg-

mented) line image as the lowest search level, without any further segmentation into words. This

is a convenient setting because, in most cases of interest, text images can be fully-automatically

segmented into lines with fair accuracy [40, 5], and lines are sufficiently precise target image

positions for most practical document image search and retrieval applications.

In this paper we also consider (word-unsegmented) line level KWS and present experiments

to compare our proposed approach with other recently proposed approaches which also work at

the line level. Results obtained with four different data sets do support the interest of WG-based

KWS, where the WGs are provided by holistic HTR using language models to leverage contextual

word information.
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The rest of this paper is organized as follows: Section 2 outlines two reference systems with

which we compare our results. Section 3 proposes a general probabilistic KWS framework, which

is the basis of the KWS approach proposed in this paper, and properly accounts for most of

the other KWS methods proposed so far. Section 4 quickly reviews the basic concepts of HTR

based on hidden Markov models. Section 5 provides a simple and compact formulation of word

graph concepts, properties and computational procedures (needed for WG-based KWS). To our

knowledge, this is the first time such a review, short but comprehensive, is given. Section 6

presents the proposed line-level KWS approaches based on WGs. Section 7 reports empirical

results showing the interest and capabilities of these approaches, and in Section 8 we draw some

main conclusions and discuss related future lines of research.

The main contributions of this paper, emphasized in italics above, are outlined in Sections 3,

5, 6 and 7.

2. Reference Systems

In this paper we compare our results with those achieved using the approach presented in [14].

Since it is based on exactly the same optical character HMMs as in the approaches proposed here,

accurate comparisons can be made. We also consider the less comparable neural-networks based

work presented in [17], which is based on neural networks and has been proven to yield excellent

results on various datasets.

2.1. HMM Filler

In this approach, character HMMs are used to build both a “filler” model and a word-specific

model. The idea of using word-specific and a filler – or “garbage” – models was proposed a long

time ago for KWS in the field of ASR and it has been in use for many years in this field [24, 30, 56].

More recently, the same idea was applied to KWS in handwritten images [14, 59, 72].

In this work, we have adopted the system proposed in [14] as a reference for the following

reasons: a) over recent decades, the filler model has become a consolidated as a commonly-

accepted, state-of-the-art KWS technique both for spoken signals and text images; b) as in our

approach, it is based on trained character HMMs, which allows a fair comparison using identical

pre-processing, feature extraction, and HMM training procedures; and c) again as in our approach,

it performs KWS at the text line level.
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Following [14], let F be the filler HMM andKv be a keyword HMM for the word v. F is built

by arranging all the trained character HMMs in parallel with a back-loop, enabling recognition of

any unrestricted sequence of characters. In addition, for each individual keyword v to be spotted,

Kv is built to model the exact character sequence of v, surrounded by the space character and the

same unrestricted character sequences modeled by F .

In a preparatory phase, F is used to perform a unique handwriting decoding process, for each

text line image x (cf. Sect. 4.1), yielding a decoding log-likelihood score log pf (x). In the actual

search phase itself, for each keyword v, Kv is similarly used for each text line image to compute

the decoding log-likelihood score log pv(x). The spotting score S′(v,x) is then defined as:

S′(v,x) =
log pv(x)− log pf (x)

Lv
(1)

where Lv is the length of v in number of frames between the detected word borders. The restricted

decoding score log pv(x) is bounded above by the unrestricted one log pf (x), hence S′(v,x) is

non-positive, and higher values are expected if the spotted word v is contained in x.

The preparatory and search decoding processes are done using the Viterbi algorithm [23]. The

computational cost of Viterbi decoding with both the filler and the keyword-specific HMMs is

γ′ ·n, where n is the length of x, and γ′ is a constant which depends on the total number of HMM

states and on the square of the number of character models in F [23]. Therefore, the total cost of

the preparatory phase is γ′ · n ·N , where N is the number of line images in the collection. In the

search phase, the asymptotic complexity of each query is again γ′ · n ·N , leading to a total cost

of γ′ · n ·N ·M , where M is the number of spotted keywords.

Finally, character HMMs are trained using the Baum-Welch re-estimation algorithm [23]. The

computational cost of this algorithm is essentially linear in the number and the length of training

lines, with a relatively low constant which depends on the number of character HMMs and on

their topology.

2.2. Neural Network Based BLSTM

We also consider the neural network-based keyword spotting method proposed in [17]. It, too,

performs KWS at the text line level and it has been shown to outperform the HMM filler approach

and many other KWS methods on a number of datasets. There are important differences between

the BLSTM-based and the HMM-based approaches, including training computational costs. In
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this paper, BLSTM is considered as an upper reference, assuming training computational costs

are not taken into account.

BLSTM-based KWS is a two-step process. In the first preparatory step, a recurrent neural

network transforms a sequence of input features into a sequence of character posterior probability

vectors called “character activations”. Then, dynamic programming is used to compute the spot-

ting score for a given keyword , represented as a character sequence. In step one, the system uses

the Bidirectional Long-Short Term Memory (BLSTM) neural network introduced for handwriting

recognition in [21]. The sequence is processed in both directions, through separate hidden layers

into a common output layer. The hidden layer is recurrent and made up of so-called LSTM nodes,

which can be seen as differentiable memory cells. By having a recurrent connection weight of

1, and separate nodes to control the information flow, this architecture does not suffer from the

vanishing gradient problem often encountered when training recurrent neural networks [18].

The computational time needed to generate the character activations from an input sequence

of length n is Γ′′·n, where Γ′′ is a constant proportional to I ·H+H2 +H ·O and I , H , andO are

the sizes of the input, the hidden and the output layers, respectively. Therefore, for a collection of

N text line images, the computational time needed by the preparatory step is Γ′′· n ·N .

For keyword spotting, the character probability sequence is extended by an additional entry

with a constant value of 1. By adding this symbol at the beginning and at the end of the keyword,

a dynamic programming procedure similar to Viterbi decoding is able to efficiently find the best

path through the output matrix, passing through the symbol added at the beginning, then through

all the characters of the keyword itself, and then through the symbol added at the end. In other

words, the path traverses through the letters of the keyword at their most likely position, while

the rest of the text line has no influence. This way, we get a keyword spotting score, sc(v,x),

that reflects the product of all character probabilities at the optimal sub-sequence that starts with

the space before the first character of the keyword and ends with the space after its last character.

Likewise, to obtain a normalized value which can be thresholded, the logarithm of sc(v,x) is

taken and divided by the length L′′v of the spotted word v in number of characters:

S′′(v,x) =
log sc(v,x)

L′′v
(2)

The runtime of the dynamic programming step to compute sc(v,x) is γ′′ · n, where n is the

length of the sequence and γ′′ is proportional to the number of characters of the keyword. There-
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fore, in the search phase, the computational time needed to perform M queries on a collection of

N text line images is γ′′ · n ·N ·M .

Finally, BLSTM models are essentially trained with back-propagation [21] which, as in the

case of HMMs, entails a computational cost which is essentially linear in the number and length

of training text lines. However, in this case the constant is very large, which makes the BLSTM

training cost very much larger than that of other more traditional approaches.

3. A General KWS Probabilistic Framework

Since the KWS approach presented here is line-based, our search domain consists of a set of

text line images. The goal is to determine whether a given keyword is or is not present in each

text line, regardless of the number of occurrences.

We start by defining a word posterior probability at frame level to account for the degree

of uncertainty about the presence of a given keyword in a specific horizontal position within

a text line image, represented by a feature vector sequence x = ~x1, ~x2, . . . , ~xn (see Sec. 4.1).

Given x and a horizontal position i, (the index of a feature vector or “frame” of x), we define

P (v | i,x) as the probability that the word v appears in some horizontal segment of x that contains

i. Considering the contribution of all intervals containing i, this probability can be computed as:

P (v | i,x) =
∑
k,l:

1≤k≤i≤l≤n

P (v, k, l | i,x) (3)

where [k, l] ⊆ [1, n] is a frame interval of x and P (v, k, l | i,x) is the probability that [k, l]

contains the frame i and the segment of x defined by this interval corresponds to the word v. By

rearranging the sum and applying Bayes’ rule, we can write:

P (v | i,x) =

i∑
k=1

n∑
l=i

P (k, l | i,x) · P (v | k, l, i,x) (4)

And assuming, for simplicity, that P (k, l | i,x) is uniform among all the intervals [k, l] containing

i:
P (v | i,x) ≈ K

i∑
k=1

n∑
l=i

P (v | k, l,x) ; K =
1

i · (n− i+ 1)
(5)

Given a keyword v to be spotted, KWS could be naively addressed in a naive way by com-

puting the frame-level word posterior probabilities P (v | i,x) for each x and i, and marking as
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candidate hits those positions for which P (v | i,x) is greater than a given threshold τ . By varying

τ , adequate precision-recall trade-offs could be achieved.

However, since we aim for line-level KWS, we need a line-level global measure that scores

the degree of presence of a keyword in each text line, without considering any specific position

within the line image. To this end, we adopt a confidence score S(v,x), based on P (v | i,x), as:

S(v,x)
def
= max

i
P (v | i,x) . (6)

Line-level KWS is then performed by computing S(v,x) for each line image, x, and marking as

candidate hits those lines whose scores are greater than a given threshold τ .

It can be argued that this way of combining frame-level word posteriors is overly simplistic

and can fail to adequately cope with several instances of the same word appearing in a line image.

However, it has the advantage of being well normalized and bounded in the [0, 1] range and can be

properly interpreted in probabilistic terms. Moreover, even in the (uncommon) case2of repeated

word instances, it can be shown that it is in fact a good approximation to the true probability

that v is written in x. Similar score definitions have already been proposed and used as good

heuristics to obtain word and sentence recognition confidence measures in ASR [70, 54], machine

translation [67] and HTR [57].

It is worth noting that P (v | k, l,x) in Eq. (5) is the exact word posterior probability which is

implicitly or explicitly used by any system capable of recognizing a presegmented word image,

i.e. a segment of x between fixed positions k and l). Therefore, the computation of Eq. (5)

essentially entails a simple sliding window process, where the required word posteriors, P (v |
k, l,x), can be provided by any isolated word recognizer. Of course, the better the recognizer,

the better the resulting frame-level word posterior estimate. We should consider, however, that

the computational complexity of directly computing Eq. (5) for all the frames of x is exceedingly

high: at least Ω(n4) or quartic with the length of x.

All of the early KWS techniques relying on pre-segmented word images circumvented this

prohibitive cost by reducing the summation in Eq. (5) to just one fixed , given interval. Clearly,

this makes it possible to reduce the computational cost to O(n · m), where m is the average

2Repetitions of interesting words within a line are rare. For example, in the IAM dataset (see Sec. 7.2), the distribution

of counts of repeated keywords (excluding stop words and punctuation marks) per line has a mean of 1.02 ± 0.13; and

only about 1.5% of the lines contain one or more repeated words.
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length of the word image segments, at the expense of previously requiring precise image word

segmentation in advance, which is generally difficult. More recent works, such as [46], rely

on automatic over-segmentation of the text images to mitigate the impact of word segmentation

errors. Such techniques can be seen as heuristic approximations to the marginalization in Eq. (5).

Finally, in the case of KWS approaches which work with completely unsegmented line images,

the summation in Eq. (5) is more or less implicitly approximated by the dominating addend only,

( which is typically a good approximation ). Then, dynamic programming techniques are used

to avoid repeated computations during the sliding window process. This is specifically the case

of segmentation-free dynamic time warping KWS methods such as [58, 26], as well as all the

modern techniques based on HMMs [59, 14, 72] and recurrent neural networks [17].

In this work, we show (in Sec. 6) that the full summation over all (or most) segment intervals

required to accurately obtain P (v | i,x) as in Eq. (5), can be easily and efficiently computed by

using state-of-the-art segmentation-free HTR technology based on optical HMMs and N -gram

language models. This kind of HTR recognizer can obtain not only the best word sequence and

its corresponding unique segmentation hypothesis for a given line image x, but also a word graph

(WG) representing a huge set of best hypotheses, including the corresponding segmentations and

likelihoods. As we will see, such a WG can be considered as a fair representation of the text

image itself, in that it contains all the probabilistic and segmental information required for the

fast computation of Eq. (5). One remarkable advantage of this approach is that it allows the use

of multiple contextual knowledge sources (optical shape, lexicon, syntax, etc.) in a fully holistic,

albeit simple, way. This generally results in more discriminating word posterior probabilities than

those provided by a context-agnostic word recognizer, thereby allowing us to obtain what are

ultimately better KWS scores.

The following two sections review the fundamental concepts of HTR based on HMMs andN -

grams, as well as all the details on the WGs which are needed for the proposed KWS approach.

4. HTR based on HMMs and N -Grams

The fundamentals of HTR based on HMMs and N -grams were originally presented in [2]

and further developed in [68, 63], among other works. Recognizers of this kind accept a given

handwritten text line image, represented as a sequence of feature vectors, x, and find a most likely
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word sequence, ŵ = ŵ1ŵ2 . . . ŵl, according to

ŵ = arg max
w

P (w | x) = arg max
w

p(x,w) = arg max
w

p(x | w) · P (w) . (7)

The conditional density p(x | w) is approximated by optical word models, built by concatenating

character HMMs, and the prior P (w) is approximated using an N -gram language model [23].3

The decoding problem of Eq. (7) can be adequately approached with the Viterbi algorithm [23].

Several variations of the basic algorithm and acceleration techniques have been developed which

allow to implement the decoding process to be implemented in a very time- and memory-efficient

way, typically entailing computational costs linear in the length of x. Moreover, rather than ob-

taining just one single-best solution to Eq. (7), a huge set of almost-best solutions can be obtained

in the form of a WG as a byproduct of this process, as discussed in Sec. 5.

4.1. System Architecture, Preprocessing, Feature Extraction, Training and Model Integration

Text line images constitute the basic input of the HTR process. They can be obtained from

each document image by means of conventional text line detection and segmentation techniques [29].

Two main modules make up the HTR process [63]: preprocessing and feature extraction,

and decoding. Preprocessing performs style attribute normalizations, such as slant and slope

correction, and size normalization. For details we refer to [63, 49]. Feature extraction, on the

other hand, processes each normalized line image and represents it as a sequence x of feature

vectors, where each vector ~xi, 1 ≤ i ≤ n = |x| describes grey-level and/or other geometric

features of a narrow vertical window at uniformly spaced horizontal line positions. Details of the

different feature extraction techniques will be given in Sec. 7. The modeling scheme encompasses

three levels. Character shapes are represented by optical character HMMs. Each lexical entry

(word) is modeled by an adequate composition of character HMMs which represents the possible

concatenations of individual characters to form the word. Finally, text line word sequences are

modeled using an N -gram language model.

Character HMM parameters are trained from unsegmented handwritten text images repre-

sented by feature vector sequences, along with the transcription of these images into the corre-

sponding sequence of characters, according to the corresponding lexical models of the words. This

3In practice, these two models are not used directly; P (w) is affected by an exponent φ, called grammar scale factor,

and a length-dependent factor |w|λ is included in the product of Eq. (7), where λ is called “word insertion penalty”. Both

φ and λ are tuned empirically to better balance the contribution of these two models.
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training process is carried out using a well-known instance of the EM algorithm called forward-

backward or Baum-Welch re-estimation [23]. As previously commented in Sec. 2.1, this training

process is exactly the same as that needed for the Filler-HMM approach. discussed in Sec.2.1,

with identical (relatively low) computational cost, which essentially grows linearly in the number

and length of training line images. Lexical models are straightforwardly built according to word

spellings obtained from the transcripts of the training text images and/or from an adequate dic-

tionary. Finally, N -gram language model parameters are estimated from the training transcripts

(and/or from adequate external texts) and usually smoothed using the Kneser-Ney back-off tech-

nique [25]. The computational costs of lexicon building and N -gram training are completely

negligible with respect to HMM training costs. All these (character, lexicon, and language) finite-

state models can be easily integrated into a single global model on which the search process of

Eq. (7) is performed to decode x into either an optimal output word sequence ŵ, or a huge set of

optimal sequences represented as a WG.

5. Word Graphs

Word graphs were first proposed by several authors some decades ago during the development

of ASR technology [37]. A WG is a labeled, weighted directed acyclic graph (WDAG) in which

the edges are labeled with words and weighted with scores, and the nodes hold word segmentation

boundaries. These scores and boundaries are derived from probabilities and alignments computed

during the line image decoding process. This data structure allows the representation of a huge

number of most-likely word sequence and segmentation hypotheses in a compact and convenient

way. Fig. 1 shows a small, illustrative example of a normalized (see below) WG obtained from

the decoding of a text line image, also shown in this figure.

5.1. WG Definition and Properties

Let x be a feature vector sequence of length n. A WG of x is a direct acyclic graph defined by

a finite set of nodes Q and another finite set of edges E ⊂ (Q−F )× (Q− qI), where qI ∈ Q is a

special initial node and F ⊆ (Q− qI) is a set of final nodes. An edge is denoted by its departing

and ending nodes (q′, q) ∈ E. A position function, t : Q → {0, 1, . . . , n}, associates each node

with a frame of the input sequence x. It must fulfill: t(qI) = 0 , t(q′) < t(q) ∀(q′, q) ∈ E ,
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Figure 1: Illustrative, simplified example of a normalized WG that would be obtained by decoding a line image, x, with

the Spanish handwritten text: “lindo volteo de colores, verde, rojo, blanco”, represented by its sequence of feature

vectors of length n = |x|. Each edge (q′, q) is labeled with the corresponding word, ω(q′, q), and weighted with its

“edge posterior”, ϕ(q′, q). Node positions, t(q), delimiting word alignments, are also indicated on the bottom ruler.

t(q) = n ∀q ∈F . Each edge (q′, q) has an associated a word, denoted as ω(q′, q), and a score,

denoted as s(q′, q). See Fig. 1 for an illustration of these concepts.

The score s(q′, q) represents the likelihood of the hypothesis that the word ω(q′, q) appears

between frames t(q′) + 1 and t(q). More specifically, it is the product of the two elementary, i.e.

word-level, optical and LM probabilities4 needed to compute the respective factors of Eq. (7).

A complete path of a WG is a sequence of nodes starting with qI and ending with a node in

F . Complete paths correspond to whole -line decoding hypotheses. The WGs considered in this

work are unambiguous; that is, no two complete paths may correspond to the same word sequence

w. A path’s score is the product of the scores of all the edges making up the path. Thus, for a

given word sequence w, the joint probability p(x,w) can be approximately computed from a WG

4In practice, log-probabilities are used with an arbitrary logarithm base. Changing this base for a different one, b,

affects the impact of the different WG path scores in the computation of pG(x) in Eq. (9). It also affects the actual

values of PG(w | x) computed in Eq. (13). While these changes do not affect the best (or the N -best order of) the word

sequence(s) in the WG, some KWS performance improvements can be achieved by adequately tuning b empirically.
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G as:

p(x,w) ≈
∏

(q′,q)∈ψ(w)

s(q′, q)
def
= pG(x,w) (8)

where ψ(w) denotes the set of edges of the (unique) complete path in G, such that w is the

sequence of words associated with the edges of this path. On the other hand, a A WG typically

contains the majority of the most probable decoding hypotheses considered in the maximization

of Eq. (7), including the best hypothesis. Therefore, the unconditional likelihood of x can be

approximated by the total accumulated score (joint probability) of the paths corresponding to all

possible word sequence hypotheses represented in G:

p(x) ≈
∑
w

pG(x,w)
def
= pG(x) (9)

Although, for useful WGs, this sum typically has a prohibitively large number of addends, it

can be very efficiently computed using dynamic programming by means of recursively-computed

forward (α) or backward (β) accumulated path scores [70]:

pG(x) = β(qI) =
∑
q∈F

α(q) (10)

where:

α(q) =
∑

q′:(q′,q)∈E

α(q′) · s(q′, q) if q 6= qI ; α(qI) = 1 (11)

β(q) =
∑

q′′:(q,q′′)∈E

s(q, q′′) · β(q′′) if q 6∈ F ; β(q ) = 1 ∀q ∈ F (12)

Finally, word sequence posteriors P (w | x) can be approximately computed as:

P (w | x) ≈ pG(x,w)

pG(x)

def
= PG(w | x) (13)

Most WG extracting algorithms, (such as that of the Hidden Markov Model Toolkit (HTK) [74],

used in this work), have a parameter to specify the maximum input degree of each WG node. This

allows control over the amount of information retained on which words end at each node [71] is

cotrolled. In addition, pruning techniques, such as beam search, can be applied to accelerate the

Viterbi search. Using these pruning criteria, the size of the generated WGs and, therefore, the

amount of best hypotheses finally represented can be adequately tuned.
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5.2. WG Normalization and “Edge Posteriors”

The scores, or likelihoods, of the edges of a WG can be “normalized” in several ways. For the

purposes of this paper, we need edge scores to be normalized in such a way that they are useful to

obtain the frame-level word posterior probabilities P (v | i,x) discussed in Sec. 3. To this end, for

a given edge (q′, q), its normalized score ϕ(q′, q), often called “edge posterior” [70], is defined as

the sum of the posterior probabilities of all the complete decoding hypotheses whose paths pass

through (q′, q). That is:

ϕ(q′, q)
def
=

∑
w:(q′,q)∈ψ(w)

PG(w | x) (14)

For a WG normalized in this way, the following properties can be shown (see proofs in Ap-

pendix I and illustrations in Fig. 1):

Efficient, dynamic programming computation [70]:

ϕ(q′, q) =
α(q′) · s(q′, q) · β(q)

β(qI)
(15)

Nodes are flow preserving:∑
q′:(q′,q)∈E

ϕ(q′, q) =
∑

q′′:(q,q′′)∈E

ϕ(q, q′′), ∀q ∈ Q (16)

Edge posteriors are consistent at frame-level:∑
(q′,q)∈E:

t(q′)<i≤t(q)

ϕ(q′, q) = 1, 1 ≤ i ≤ n (17)

5.3. Computational Cost of WG Generation and Normalization

WGs are obtained as a by-product of Viterbi decoding by storing the best HMM and language

model scores for a number of partial hypotheses. Then, all the paths starting from initial states

and reaching a final state with sufficiently large total score are added to the graph [39, 70].

It is well-known that the computational complexity of the Viterbi algorithm is linear in the

length of x, and the cost can be made independent of the lexicon size and the overall size of

the models used by means of pruning techniques [23]. However, when WG generation is also
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included in this process, the computational complexity of the whole decoding process is observed

to grow very fast with the size of the resulting WG (exponentially in the WG density, according

to [55]). Overall, the asymptotic cost of generating a WG for a line image of length n can be

expressed as Γ · n, where Γ is a (generally large) constant which is dependent upon the WG size.

Nevertheless, we should remember that this process is carried out only once and that, by choosing

adequate WG sizes, reasonable processing times for WG generation can be achieved for WG

generation in practice.

The WG normalization process, on the other hand, entails an extra computational cost, which

is also linear in n. However, according to [39], as well as to our own observations (c.f. Sec. 6.3),

this cost is negligible.

6. Line-Level Keyword Spotting Using Word Graphs

We continue now with the presentation, begun in Sec. 3, of our proposed approach to line-level

KWS based on WGs. Following Eq. (6), we explain below how very accurate frame-level word

posteriors can be easily and efficiently obtained from WGs.

6.1. Computing Frame-Level Word Posteriors from WGs

Following essentially the same arguments as in the derivation of Eqs. (3–5) in Sect. 3, the

frame-level word posterior P (v | i,x) can be obtained by considering the contribution of all the

WG edges labeled with v which correspond to segmentation boundaries that include the frame i:

P (v | i,x) ≈
∑

(q′,q)∈E:
v=ω(q′,q),
t(q′)<i≤t(q)

ϕ(q′, q)
def
= PG(v | i,x) (18)

From Eq. (17), this is a properly defined word posterior; that is,
∑
v PG(v | i,x) = 1 for all i.

This computation can be straightforwardly carried out by sequentially visiting the WG edges

in sequence and updating, for each edge (q′, q), the values of PG(v | i,x) for v = ω(q′, q) and

for all i comprised between t(q′) and t(q). Obviously, the computational time required for this

process is proportional to the number of edges of the WG and to the average length t(q′) − t(q)
of the segment of x defined by an edge (q′, q). This cost can also be more conveniently given as

Θ(κ · n), where n is the length of x. This follows from the observation that, for each WG word v
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and frame i, the value of PG(v | i,x) has to be updated for a relatively small number κi of edges

(q′, q), such that t(q′) < i ≤ t(q). The average value of this number, κ, depends on the size of

the WG.

6.2. Computing Line Confidence Scores from WGs

According to the definition given by Eq. (6) and to the WG-based computation of frame-level

word posteriors given by Eq. (18), the confidence score S(v,x) is finally computed as:

S(v,x) = max
i
PG(v | i,x) (19)

6.3. Overall Computational Cost of the Proposed KWS Approach

As in the case of the reference systems discussed in Sec. 2, two processing phases are distin-

guished: the preparatory phase, which involves all the processes which do not depend on specific

query words, and the search phase, which corresponds to actually locating each query word v in

the plain text line-level word score lists computed from Eq. (19).

In the preparatory phase, WGs are generated and normalized. As discussed in Sec. 5.3, this

requires Γ · n computational time for each text line image of length n, where Γ is a (generally

large) constant which is dependent upon the average WG size. In addition, the line-level scores

S(v,x) have to be computed for each line image, according to Eqs. (18–19). As discussed above,

the computational time of Eq. (18), and hence Eq. (19), is also linear in n, with a relatively small

constant which is typically negligible with respect to Γ. Therefore, for a collection of N line

images, the overall preparatory computational time is Γ · n ·N . As we have already commented,

this cost is heavily dominated by the cost of generating the WGs5.

In the search phase, if line-level confidence score lists are used directly, the search cost is

obviously γ ·N , where γ is a typically a small constant dependent upon the average sizes of the

confidence score lists (which ultimately depend on the average WG sizes). Overall, to spot M

query words on the whole collection of N line images, γ ·N ·M computational time is required.

5For example, the time needed to generate a typical, large WG of the IAMDB corpus (see Table 1) was about 6.5

minutes. In contrast, the corresponding combined time needed for a) WG normalization and computing the edge posteriors

(Eqs. 10–15), b) computing the frame-level posteriors (Eq. 18) and c) computing the final line-level confidence scores

(Eq. 19), was about 0.3 seconds, less than 0.1% of the time needed to generate the WG.
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As compared with the reference systems outlined in Sec. 2, the proposed approach has a

similar asymptotic computational times trend; namely, linear in the number of line images N and

queries M . Since the relative actual cost of the different approaches will depend on constants

which are difficult to compare analytically, real computational times, including training times,

have been determined empirically and will be reported in Sec. 7.8.

7. Experiments and Results

The empirical work carried out to assess the effectiveness of the proposed approach is pre-

sented in this section.

7.1. Experimental Framework

Three main sets of experiments were carried out. In the first set, baseline results were es-

tablished using the KWS reference system described in Sec. 2.1, which will be referred to as

“Filler-HMM”. In addition, results using the BLSTM approach outlined in Sec. 2.2 are also re-

ported. KWS BLSTM is known to significantly outperform Filler-HMM (and many other KWS

techniques) [17]. However, the computational cost for training and validating BLSTM models

can be orders of magnitude higher than for HMMs. Because of this, among other important dif-

ferences between BLSTM- and HMM-based approaches, BLSTM is considered here only as an

upper reference, assuming model training costs are ignored.

In the second set, the proposed WG-based KWS approach was tested without using a language

model for WG generation. Since this setting uses the same character-level knowledge sources as in

Filler-HMM (trained character HMMs), the benefits of the proposed confidence scores, based on

frame-level word posteriors computed with the help of a lexicon for most possible word intervals,

can be fairly assessed. This setting will be referred to as “Plain-WG”.

In the the third set, finally, the proposed approach was tested using WGs produced by means of

a full-fledged HTR system, including a bi-gram language model. This setting, named “LM-WG”,

allows us to study the KWS performance gain that can be achieved by adding word-contextual

information.

7.2. Corpora

Two main data sets, referred to as IAMDB and CS were used in the experiments. Basic

information about these data sets, along with the corresponding standard partitions for empirical
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evaluation, are given hereafter. Details about the use of these data in this work are given in

Sec. 7.4.

IAMDB is a publicly available, well-known modern English handwritten text corpus compiled by

the FKI-IAM Research Group on the basis of the Lancaster-Oslo/Bergen electronic text corpus

(LOB). The last released version (3.0) consists of 1, 539 scanned text pages, handwritten by 657

different writers and partitioned into writer-independent training, validation and test sets. The line

segmentation provided with the corpus [36] is used here. Statistics of the IAMDB corpus appear

in Table 1. The “text data” information for this corpus refers to three external text corpora (LOB,

Brown and Wellington, collectively called “LBW”) which were used to compile the lexicon and

for train the IAMDB bi-gram language model [3] used in the LM-Plain and LM-WG settings. The

OOV (out-of-vocabulary) row shows the numbers of words of the test and validation partitions

which do not appear in the training partition.

CS (“CRISTO SALVADOR”) is a 19th-century Spanish manuscript, made up of 50 color images

of relevant text pages written by a single writer. Line images were extracted from the original

page images in previous works [50]. The CS corpus, along with directions for its use in HTR

experiments, is publicly available for research purposes6. The first 29 pages (675 lines) are used

for training (and validation) and the test set comprises the remaining 21 pages (497 lines). The

text ground truth of CS is case-insensitive. Statistics of this dataset are also shown in Table 1.

Both IAMDB and CS were used in the main experiments reported in Sec. 7.6. In addition,

in Sec. 7.9 we will report the results obtained using the techniques proposed here with two other

corpora, PARZIVAL [15] and GEORGE WASHINGTON (GW) [28], also used frequently for KWS

experimentation.

7.3. Keyword Selection

Several criteria can be adopted for the selection of the keywords to be used in KWS assessment

experiments. Clearly, any given KWS system may perform better or worse depending on the query

words it is tested with and how these words are distributed in the test set. In general, the larger the

set of keywords, the more reliable the empirical results. In accordance with these observations, in

this work we adopt the same criterion as in [17], where all the words seen in the training partition

6The CS corpus can be downloaded from https://prhlt.iti.upv.es/page/data
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Table 1: The IAMDB and CS datasets and their corresponding partitions. The IAMDB Running Words, Lexicon and

OOV (out of vocabulary) figures labeled “Text data” correspond to the external text corpora (LBW) used to train the

bi-gram language model. For CS, these figures correspond only to the reference transcripts of the CS text images.

IAMDB CS
Training Validation Test Total Training Test Total

Im
ag

e
da

ta

Total number of chars 269 270 39 318 39 130 347 718 35 176 25 819 60 995

Number of diff. chars 72 69 65 81 53 52 54

Running words 53 765 8 599 8 315 70 679 6 227 4 691 10 918

Lines 6 161 920 929 8 010 675 497 1 172

Te
xt

da
ta Running words 3 128 155 8 599 8 315 3 145 069 6 227 4 691 10 918

Lexicon size 19 892 2 450 2 492 20 773 2 474 1 879 3 805

OOV running words (%) 0.00 6.12 6.27 0.00 0.00 29.03 0.00

are tested as keywords. This is exactly true for CS but, following [17], no stop words are included

in the IAMDB keyword list. Table 2 shows basic information about the keyword sets used in the

two corpora considered (see more details in [66]).

Note that, by selecting the keywords in this way, there may be many keywords which do not

actually appear in any of the test images. We say that these keywords are non-relevant, while the

remaining ones are relevant. In both datasets, the amount of relevant words is less than one third

of the total number of selected keywords. Clearly, spotting non-relevant words is also challenging,

since the system may erroneously find other similar words, thereby leading to important precision

degradations. Overall, the selected keywords constitute rather challenging sets.

In line-level KWS experiments, rather than the number of line images (N ) or keywords (M ),

it is more informative to consider the total number query events; that is, the number N ·M of

pairs composed of an image and a keyword. A query event (x, v) is relevant if v is relevant for x,

i.e. the keyword v is actually written in the image x. According to Table 2, from the large amount

of query events in each dataset, only a few are actually relevant, even though most of the IAMDB

test images, and all of the CS test images, are relevant to at least one of the selected keywords.

7.4. Systems Setup

In general, the basic system architecture outlined in Sec. 4.1 is used in all the experiments

using character HMMs, viz. HMM-Filler, Plain-WG, and LM-WG. However, some details of line

image pre-processing, writing style attribute normalization, and feature extraction usually adopted
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Table 2: Sizes and other related information for the keyword sets selected for IAMDB and CS. A line image is considered

“relevant” if it contains at least one of the M words of the corresponding Keywords set.

IAMDB CS

Total Relevant Total Relevant

Line images (N ) 929 855 497 497

Keywords (M ) 3 421 1 098 2 236 620

Query events (N ·M ) 3 178 109 1 916 1 111 292 3 005

for each of the two corpora are different.

The features extracted for the IAMDB consist of 9-dimensional geometric features computed

for each pixel column of the line images [35]. On the other hand, the 60-dimensional features

extracted for CS which are also well-known, consist of raw grey-level values, and grey-level hor-

izontal and vertical gradient components, averaged over a horizontal sliding image window [60].

Regarding the optical models, character HMMs were trained from the corresponding training

partitions of each corpus. A left-to-right HMM was trained for each of the elements appearing in

the training images, such as lowercase and uppercase letters, punctuation marks, special symbols,

possible inter-word spaces, etc. In the case of CS, a case-less topology was trained, that is, each

character was modeled “in parallel” by two HMM, one for each corresponding lower- and upper-

case glyph. The same character HMMs were used for both, the Filler-HMM reference system and

for the WG-based approaches proposed here.

On the other hand, For the Plain-WG and LM-WG approaches, the training partition transcripts

of CS were used to build the lexicon and to train the language model, ignoring letter cases, punc-

tuation signs and diacritics. The lexicon and bi-gram language model of IAMDB were directly

obtained using the training partition of the external LBW text data [3].

The HTK toolkit [74] was used to obtain two kinds of WG for each test line image, one using

the bi-gram LM for the LM-WG and one without any language model but the same vocabulary for

the Plain-WG approach. The WGs were normalized as explained in Sec. 5 and then frame-level

word posterior probabilities PG(v | i,x) were computed. Finally, the line-level word confidence

scores, S(v,x), were obtained as described in Sec. 6.2. Table 3 shows some statistics of the

resulting WGs.

In the case of LM-WG, three different sets of WGs were produced, both for CS and IAMDB,

by setting the HTK parameter which specifies the maximum node input degree (NID) [74] to 40, 5
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and 1. The latter value yields degenerated WGs which represent solely the single best recognized

hypotheses (see Tab. 3).

Table 3: IAMDB and CS statistics of the Plain-WG and bi-gram LM-WG word graphs for different node input degree

values (NID). All the figures are numbers of elements, averaged over all the generated WGs.

Corpus Type NID Nodes Edges Words Paths

IAMDB

Plain-WG (no LM) 40 745 23 061 410 ∼1026

40 876 22 080 493 ∼1021

LM-WG (bi-grams) 5 76 297 61 ∼108

1 9 8 7 1

CS

Plain WG (no LM) 40 7 060 252 958 473 ∼1030

40 7 230 258 243 498 ∼1028

LM-WG (bi-grams) 5 169 765 56 ∼108

1 10 9 8 1

Meta-parameters of the line-image preprocessing, feature extraction, HMMs, and N -grams,

as well as the log-base parameter, b, for WG normalization (Sec. 5.1), were optimized through

cross-validation on the training data for CS and on the validation data for IAMDB. More details

about all these settings can be found in [66, 17].

For the BLSTM system, exactly the same setup and networks as in [17] were adopted here

for the IAMDB corpus. Using the feature vector sequences of the training text line images and

their corresponding transcripts, 75 neural networks were trained with 100 LSTM nodes each in

both hidden layers, using a learning rate of 10−4 and a momentum of 0.9. Training regularization

implicitly consisted in initializing all weights to random values, with a mean of 0 and a standard

deviation of 0.1, and restricting the error gradient for each LSTM weight to be within the interval

[−1 : 1]. These fixed parameters were tested in previous experiments and found to be optimal for

the task of text line transcription. The stopping criterion was the label error rate of the text lines

of the validation set.

Essentially identical, The training procedure was carried out for the CS corpus was essentially

identical. However, since CS data are smaller and more regular, only 10 neural networks were

trained in this case. Finally, to single out the best network for each corpus, BLSTM keyword

spotting was performed on the IAMDB validation set and on the CS training set. These two
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networks were then used to obtain results on the corresponding test partitions.

According to Eqs. (1) and (2), the line spotting scores S′(v,x) and S′′(v,x), cannot be directly

interpreted in probabilistic terms and their (negative) ranges are unbounded. While this is not a

problem for obtaining the precision and recall results needed to be able to compare these systems

with ours, it may raise practical issues when trying to regulate the score threshold, τ , in order

to meet real-life search requirements. In the results presented below, it is clear that this problem

clearly shows up whenever performance is plotted as a function of τ (Fig. 3). In order to mitigate

this problem, and to allow better comparison of the different approaches in Fig. 3, the ranges of

the original scores S′(v,x) and S′′(v,x) were mapped to the [0, 1] interval as follows:

SF (v,x) = exp (η′ · S′(v,x)) , SB(v,x) = exp (η′′ · S′′(v,x)) (20)

where the scale parameters η′ and η′′ were tuned in order to make F1(τ), the F1-measure (see

Eq. (23 )) as a function of τ in a wide interval around τ ≈ 0.5 as flat as possible, (shown in Fig. 3).

Of course, since these mappings increase monotonically, they do not affect the precision-recall or

max-F1 results. , which are in fact all independent of η′ or η′′.

7.5. KWS Evaluation Measures

KWS effectiveness is assessed by means of the standard recall and precision measures. Let r

be the total number of relevant events (c.f. Sec. 7.3) and, for a fixed search threshold, τ , let d(τ)

be the number of events detected, or retrieved as relevant by the system and h(τ) be the number

of hits, or correctly detected events. Recall, ρ(τ), and precision, π(τ), are defined as:

ρ(τ) =
h(τ)

r
, π(τ) =

h(τ)

d(τ)
(21)

The interrelated trade-off between recall and precision can be conveniently displayed as a so-

called recall-precision (R-P) curve, π(ρ) [11]. Any KWS system should allow users to (more

or less explicitly) regulate the search threshold in order to choose the precision-recall operating

point which is most appropriate for each query. Of course, good systems should achieve both high

precision and high recall for a wide range of values of τ .

In Eq. (21), precision can become undefined and, moreover, it can fail to exhibit the typi-

caly expected concavely-decreasing curve typically expected for increasing recall values [11]. To

overcome these problems, the so-called interpolated precision, π′, is often used. In [34], it is
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defined as the highest precision value found for any recall value ρ′ ≥ ρ:

π′(ρ) = max
ρ′:ρ′≥ρ

π(ρ′) (22)

This definition makes π′(ρ) a well-defined, monotonically-decreasing function, even for d(τ) = 0

(and null recall).

To assess the overall behavior of a search and retrieval system as an explicit function of the

search threshold τ , the harmonic mean of precision and recall, called F1-measure, is often used:

F1(τ) = 2 · π
′(τ) · ρ(τ)

π′(τ) + ρ(τ)
(23)

Finally, to summarize how well a KWS system can perform without referring to any specific

value of τ , some scalar assessment measures are often used. The most simple is what is known

as R-precision (RP), which is the precision (or recall) such that π′(ρ) = ρ. A better scalar KWS

measure is based on the commonly-accepted fact that the better the KWS algorithm performs, the

larger is the area under the corresponding R-P curve, which is expressed by the average precision

(AP) [75].

AP should not be confused with the mean AP (mAP), which is the average over all the queries

of the individual AP value computed for each query. While mAP is often reported in KWS papers,

in this work it can not be computed because it becomes undefined if non-relevant keywords are

used, as it is the case in our choice for keyword selection (see Sec. 7.3).

7.6. Main Results

Interpolated R-P curves were obtained for both the IAMDB and CS corpora presented in

Sec 7.2. Results are shown in Fig. 2 for the settings discussed in Sec. 7.1.

In IAMDB, both WG-based KWS approaches very significantly outperform the Filler-HMM

reference system. On the other hand, by leveraging word contexts by means of a bi-gram LM, the

LM-WG-D40 approach performs significantly better than Plain-WG-D40,( which uses no LM).

For a wide, useful range of recall (0.3 . ρ . 0.7), LM-WG-D40 also achieves precision values

slightly higher than those of the reference BLSTM system, yet precision is significantly lower in

the high-recall range. The recall-precision point corresponding to LM-WG-D1 was also included

in the plots of Fig. 2 for comparison purposes. In fact, this is equivalent to directly searching the

query words just in the HTR single-best ASCII transcription only.
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Figure 2: KWS Recall-Precision curves (with interpolated precision) using BLSTM, LM-WG-D40 (with bi-grams and

NID=40), LM-C-WG-D40 (with closed-vocabulary bi-grams and NID=40), Plain-WG-D40 (NID=40), Filler-HMM,

and LM-WG-D1 (with bi-grams and NID=1) for the IAMBD and CS datasets (LM-C-WG-D40 only for CS).

For the CS dataset, LM-WG-D40 again outperforms Filler-HMM significantly but the preci-

sion achieved by LM-WG-D40 falls short of that obtained by the BLSTM system for the whole

recall range. In our interpretation, this relative degradation with respect to BLSTM KWS is mainly

caused by the large OOV rate of 29.0% in CS, compared with 6.3% in IAMDB (see Tab. 1).

To support this interpretation, an additional experimental setting was considered, called LM-

C-WG-D40. It is identical to LM-WG-D40, except a closed vocabulary was used. While the

bi-gram LM was trained only on the training partition text (as in LM-WG-D40), this time all

the test-set OOV words were added to the lexicon. This yielded the thin-line curve shown in

Fig. 2(b). Clearly, while a huge external text dataset was used to build the IAMDB lexicon, no

such a resource was readily available for (the kind of historical text in) CS and only the very

few words seen in the few transcripts of the training set images were used in this case. On the

other hand, since the BLSTM approach does not use a lexicon, this problem is not encountered.

For a real-life application, it would not be difficult to collect electronic text corresponding to a

language usage similar to that found in CS (19th-century Spanish) and we expect this would bring

LM-WG-D40 results closer to those of LM-C-WG-D40.
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Fig. 3 shows the F1(τ) curves for the different KWS approaches and corpora. The relative

performance levels are similar to those shown in the precision-recall curves of Fig. 2. As in

Fig. 2(b), the thin curve of Fig. 3(b) corresponds to the use of a closed vocabulary in LM-WG-

D40 and illustrates how well LM-WG-D40 might behave if a very good lexicon were available.
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Figure 3: KWS F1-measure (F1) curves using BLSTM, LM-WG-D40, LM-C-WG-D40 (closed-vocabulary), Plain-WG-

D40 (NID=40) and Filler-HMM for the IAMBD and CS datasets (LM-C-WG-D40 only for CS). All LM-WG curves

correspond to WGs obtained with bi-grams and NID=40. To obtain the Filler-HMM and BLSTM curves, respectively, the

following scaling factors were used (see Eq. (20)): η′ = 1 and η′′ = 3 for IAMDB; η′ = 1/3 and η′′ = 1/3 for CS.

Table 4 summarizes the overall KWS performance of all the approaches tested in this work,

including the closed vocabulary LM-C-WG-D40 for CS, expressed in terms of average-precision

(AP), R-precision (RP) and maximum F1-measure (F ∗1 ). Results using WGs with NID values of

40, 5 and 1 are included for the LM-WG setting. 95% confidence intervals, computed for all the

AP results (except those of BLSTM) using the bootstrap method proposed in [4], were all smaller

than ±0.03. It is worth noting that no significant differences in KWS performance are observed

between NID values 40 and 5, though AP results degrade dramatically for the degenerate WGs

with NID=1. However, as shown in Tab. 3, WGs with NID=5 are almost two orders of magnitude

smaller than those with NID=40, leading to total computing costs for NID=5 that are less than

half of those incurred with NID=40 (see Tab. 5). In [62, 61], we study in depth how the KWS

performance and computational costs are affected by varying NID values.
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Table 4: Average Precision (AP), R-Precision (RP) and maximum F1-measure (F ∗1 ), considering different input degree

values (IND), corresponding to the (bi-gram) LM-WG, Plain-WG, Filler-HMM and BLSTM KWS approaches for the

IAMDB and CS corpora. Results for the closed-vocabulary bi-gram LM (LM-C-WG) are also shown for CS. 95%

confidence intervals, computed for the AP results (except for those of IAMDB), were all smaller than ±0.03.

IND
IAMDB CS

AP RP F ∗1 AP RP F ∗1

BLSTM (best on validation set) – 0.78 0.72 0.73 0.80 0.75 0.77

LM-C-WG (closed-voc bi-grams) 40 – – – 0.82 0.78 0.80

40 0.72 0.70 0.72 0.71 0.70 0.71

LM-WG (bi-grams) 5 0.71 0.69 0.72 0.71 0.70 0.71

1 0.48 0.66 0.69 0.42 0.76 0.64

Plain-WG (no LM) 40 0.60 0.59 0.61 0.62 0.64 0.65

Filler-HMM – 0.36 0.44 0.44 0.62 0.63 0.64

7.7. Qualitative Analysis of Spotting Results

It is worth noting the relatively low precision achieved by Filler-HMM for low recall, which

can be clearly observed in the R-P curves in Fig. 2. An analysis of this behavior reveals that

it is mainly caused by false positives, most of which correspond to short query words that are

substrings of other possible query words. Fig. 4-left shows one of these false positives, where

the query word “ways” is incorrectly spotted by Filler-HMM, with confidence 1, in a text line

image which instead contains the word “always”. In contrast, both WG-based confidence scores

are significantly lower than 1. In particular, LM-WG would never spot the keyword “ways” in this

line image unless an extremely low confidence threshold τ < 3 ·10−9 is specified.

On the other hand, Fig. 4-right illustrates another (less frequent) example where Filler-HMM

(and also Plain-WG) work as expected, but LM-WG fails to produce the desired results. The

uncapitalized keyword v =“senior” is spotted by LM-WG with SL(v,x) = 0.89 in a line image

which contains the capitalized word “Senior” instead.

It is illustrative to analyze how the bi-gram LM leads to the above LM-WG behaviors. In

the first example, P (“been” | “always”) = 0.08 and P (“always” | “has”) = 0.01. In contrast, both

P (“been” | “ways”) and the bi-gram probabilities of plausible word prefixes for “ways”, such as “at”

or “all”, are all lower than 10−4. In the second example, both “Senior” and “senior” have similarly

high HMM likelihoods, and P (“Officers” | “senior”) = 0.005, P (“senior” | “squadron”) = 0.014.
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SP (v,x) = 0.11

SF(v,x) = 1.00

SL(v,x) ≈ 3·10−9

11961005

1005 1125

SL(v,x) ≈ 0.89

SP (v,x) = 0.003

1212 1371

1212 1364
SF(v,x) = 0.07

Figure 4: Left: Example of a Filler-HMM false positive keyword detection where the query word v =“ways” is incorrectly

spotted with full confidence (SF (v,x) = 1). The confidence scores SL(v,x) and SP (v,x) of to the two WG-based

approaches (with and without using a bi-gram LM, respectively), as well as the corresponding spotting boundaries, are also

shown. Right: example of a LM-WG false positive keyword detection where the uncapitalized query word v =“senior”

is incorrectly spotted with high confidence (SL(v,x) = 0.89).

However all the (smoothed) LM probabilities involving “Senior” are very small.

To finish this section, Fig. 5 illustrates how a normalized WG is used to obtain the word con-

fidence scores for a line image from CS containing the handwritten text “tiempos modernos a

las generaciones de soldados ...” ( “modern times to the generations of soldiers ...” in English).

It also shows another example of how the LM-WG approach steps on the linguistic context to

boost its discriminative behaviour. The best confidence score is S(v1,x) = 0.99 and corre-

sponds to the word v1 = “generaciones”. The next best scores are for the (also plausible) words

v2 =“generacion”, v3 =“general” and v4 =“racion” (“portion” in English): S(v2,x) = 2.72 ·10−6,

S(v3,x) = 1.69 · 10−10 and S(v5,x) = 8.73 · 10−16, all of which are orders of magnitude lower

than the first (and correct) one. It is interesting to note that both v2 and v4 are (close to) sub-words

of “generaciones”. However, since they have very low confidence scores, they will not be spotted

in this line (as an image part of “generaciones”), unless extremely low confidence thresholds are

used. Such a behaviour is clearly achieved thanks to the lingustic context captured in the bi-gram

LM. The probabilities of the bi-grams “las generaciones” and “generaciones de” are high. In con-

trast, the probabilities of other possible bi-grams involving the words “general” and “racion”, such

as “las general”, “general cimas”, “general cosas”, “gema racion”, “genio racion”, “racion es”, etc.,

are low or very low. We see the discriminating behaviour achieved in this way as an important

advantage of the proposed, context-aware approach with respect to many other KWS methods

based on pattern matching which do not take context into account.

28



naciones

generaciones

generacion

general

racion

S(v,x) = 1.60 · 10−10

S(v,x) = 1.83 · 10−11

S(v,x) = 8.73 · 10−16

S(v,x) = 2.72 · 10−6
S(v,x) = 0.99

1e-20

1e-15

1e-10

1e-05

1e+00

700 800 900 1000 1100 1200

P
(v

|
i,
x
)

Frames: i

generaciones
generacion

general naciones

racion

t=737

t=948

general / 6.35e-12

t=737
general / 8.87e-12

t=737

general / 1.24e-11

t=1086

generacion / 5.15e-08

t=1086

generaciones / 4.54e-03

t=1026

generacion / 7.32e-07

t=737

general / 1.21e-10

generacion / 1.90e-06

generaciones / 0.98

t=741
generacion / 6.20e-08

t=836
t=1086

naciones / 2.77e-13

t=855

t=1025
racion / 7.90e-16

t=1028
racion / 1.03e-17

t=1041

racion / 1.24e-17

t=1042
racion / 3.59e-17

naciones / 1.74e-11

Figure 5: The word confidence score, S(v,x), for several words. Bottom: a pruned, small part of a normalized WG of

the given image (arrows thickness represents edge posterior levels). Middle: a plot of the frame-level word posteriors,

PG(v | i,x), computed from the WG. Top: some spotting hypotheses, along with their corresponding confidence scores

and spotting boundaries. The correct word is highly discriminated with respect to competing hypotheses, thanks in part to

the bi-gram context provided by the LM used to obtain the WG.

7.8. Computing Efficiency

Table 5 presents the computing times for BLSTM, Filler-HMM, LM-WG-D40, and LM-WG-

D5 KWS on the IAMDB corpus. Although experiments were run on several different computers,

reported times are approximately scaled so as to correspond to the elapsed times which would
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be needed on a single dedicated core of a 64-bit Intel R© Core Quad R© CPU running at 2.83GHz.

Each approach has its own bottleneck or dominating computational cost. First, the training and

validation costs for BLSTM are by far the highest, at more than 6 years. As we have mentioned

(Sec. 7.1), this can be prohibitive for many applications, unless previously trained models can be

used or adapted [17]. Second, LM-WG has the highest preparatory time. According to Sec. 5.3,

this time is predominantly accounted for by the cost of generating the WGs. Finally, Filler-HMM

is by far the slowest approach in terms of query time.

Table 5: Approximate training, preparation and average query times for IAMDB using BLSTM, Filler-HMM and LM-

WG for two NID values. The Total Indexing Time is the sum of the Training & Validation time, the Preparatory time and

the Average Time per Query multiplied by the number of queries (3 421).

BLSTM Filler-HMM LM-WG-D40 LM-WG-D5

Training & Validation Time (days) 2 258 0.35 0.35 0.35

Preparatory Time (hours) 0.95 1.12 102 38

Average Time per Query (seconds) 1.90 4 080 0.003 0.003

Total Indexing Time (days) 2 258 162 4.6 1.9

Average Precision (AP) 0.78 0.36 0.72 0.71

The extremely fast query performance of LM-WG is worth commenting on. Clearly, this is

possible since the use of a lexicon allows the vast majority of the KWS work to be completed

in the preparatory phase. Of course, if the query words are available beforehand, the line-level

scores SB(v,x) and SF (v,x) can also be easily precomputed using BLSTM and Filler-HMM,

respectively, much the same as SL(v,x) is pre-computed using LM-WG. Therefore, to allow for

better, and fairer comparisons, the overall time needed to train the models, prepare the document

image collection and perform all the required queries is also reported in the “Total Indexing Time”

row of Tab. 5.

According to these overall computing times, and taking into account the corresponding KWS

performance (AP), the LM-WG models clearly achieve the best cost/performance trade-off, even

more so with the much smaller WGs produced with NID=5.

We should point out, however, that the bottleneck computational costs of the other approaches

can be reduced to some extent. The dominant query cost of Filler-HMM (queries) can be easily

reduced by more than one order of magnitude using a character-graph based technique we have
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introduced recently [65]. This would bring the overall computational cost (though not KWS

accuracy) of Filler-HMM closer to that of the approaches proposed in this paper. Similarly, the

very high training cost of BLSTM can be substantially reduced (perhaps by a factor of 5 or more)

simply by reducing the number of networks actually trained. In these experiments, 75 randomly

initialized networks were trained using back-propagation while observing the label error rate on

the validation set as a stopping criterion. However, only the best network is used for KWS. This

means, fewer networks can be trained, or poorly performing networks can be aborted at an early

training stage, with an increased risk of not finding a very good one. Also, the back-propagation

iterations can be limited at the cost of a less thoroughly trained network.

Finally, the space complexity is analyzed assuming the use of KWS for indexing purposes. In

this case, the required storage space is similar for all the approaches: for each test line image, a

list of words which might appear in the image, along with the corresponding KWS scores, must

be stored7 perhaps using appropriate data structures for the sake of efficiency. For the WG-based

approaches, using very large WGs affects the memory space temporally used in the preparatory

step, but not significantly the storage required for indexing.

7.9. Additional Results and Comparisons

Supplementary KWS experiments have been carried out using the proposed approach on two

additional corpora, PARZIVAL and GEORGE WASHINGTON (GW), on which several previous

KWS studies have been reported.

PARZIVAL contains 45 digital images of a medieval manuscript from the 13th century writ-

ten in Middle High German language [15]. Although written by several writers, all the writing

styles found in this dataset are very similar. GW consists of 20 pages of letters written by George

Washington and his associates in the year 1755. These 20 relatively clean pages, all of which

exhibit a very similar writing style, have been selected from a larger collection of images [28].

Given the small size of the data set, and in line with previous works on this corpus, a four-fold

cross validation is adopted for empirical evaluation.

The experimental setup established here for PARZIVAL and GW is essentially the same as

that outlined in Sec. 7.4 for the IAMDB and CS corpora, with the exception of feature extraction,

7The time needed to build these lists is essentially the preparatory time, plus the time per query multiplied by the size

of the indexing vocabulary..
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and some details of training and parameter optimization details. Feature extraction for PARZI-

VAL and GW were carried out as described in [41]. The PARZIVAL bi-gram LM was trained

using only the transcripts from its training and validation partitions. On the other hand, follow-

ing [17], the GW bi-gram was obtained by combining a bi-gram trained from the GW training

and validation transcripts with another bi-gram trained on the external LOB text corpus. Details

about these settings, including ground-truth, corpus partitions, keyword list selection8, etc., can

be seen in [14, 41]. Finally, PARZIVAL and GW WGs were generated with a maximum node

input degree of 40.

Our experimental results for these two datasets using the Plain-WG and (bi-gram) LM-WG

KWS approaches are presented in Fig. 6, which shows the Recall-Precision curves and the corre-

sponding AP figures.

By way of a rough comparison, we also outline here recently reported KWS results using the

same IAM data set as in the main experiments reported in Sec. 7.6, but with different experimental

setups. Only works following the same challenging segmentation-free and query-by-string (QbS)

paradigms adopted here have been considered. In contrast with the main empirical work presented

in Sec. 7.6, here we have not been able to re-run ourselves the experiments carried out by other

authors. Therefore the experimental conditions may vary (very) significantly across the different

works reported and care should be taken in any comparison.

Tab. 6 shows these results for the following approaches: Bag of Features HMMs (BoF HMMs) [51],

Dynamic Time Warping (DTW) [17, 14, 47], relevance-based language model (RBLM) [44],

semi-continuous HMMs (SC-HMMs) [47], pyramidal histogram of characters (PHOC) [20],

variational dynamic background model (VDBM) [27] and script-independent line-based spot-

ting framework (SILSF) [73]. The results can be loosely compared with those shown in Fig. 6.

The entries of Table 6, marked with † ( or ‡) indicate that KWS performance is reported in terms

of mean average precision (mAP), rather than the overall AP used in our results. Since mAP is

only computed for relevant queries, mAP values tend to be optimistic with respect to AP, which

significantly drops when false positives are produced for non-relevant queries.

Even taking into account the large variability in experimental conditions and evaluation pro-

8Standard PARZIVAL and GW partitions and keyword lists can be found here: http://www.iam.unibe.ch/

fki/databases/iam-historical-document-database
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Figure 6: Recall-Precision curves and AP figures us-

ing bi-gram LM-WG and Plain-WG. The GW curves

correspond to the second cross-validation partition.

Table 6: AP figures for different approaches on IAMDB,

PARZIVAL and GW under very varied empirical setups. Val-

ues marked with † are mean average precision (mAP) figures,

rather than plain overall AP, while the entry marked with ‡ is

an average calculated from a range of computed precision

values.

Ref. Approach IAMDB PARZ GW

[12]
Classic Filler-HMM — — 0.72

2-gram Filler-HMM 0.55 — 0.74

[51] BoF HMM — — 0.80 †

[19] Haar-Like-Features — — 0.77 ‡

[17]

BLSTM — 0.94 0.84

Classic Filler-HMM — 0.83 0.60

DTW — 0.37 0.48

[44] RBLM — — 0.54 †

[47]
SC-HMM — — 0.53 †

DTW — — 0.50 †

[14]
Classic Filler-HMM — 0.86 0.62

DTW — 0.39 0.44

[20] PHOC 0.39 † — 0.64 †

[27] VDBM 0.49 † — —

[73] SILSF 0.58 † — —

tocols, of the results in Tab. 6 they clearly show that the approaches proposed in this paper can

provide KWS performances that are much better than that of most other techniques proposed in

the recent years, some of which are currently considered state-of-the-art.

8. Concluding Remarks and Future Work

In this work we have explored a novel keyword spotting (KWS) framework designed for
searching in (large) collections of handwritten text images. Interesting features of this framework
include:
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• It properly supports fast word queries controlled by user-specified confidence thresholds.

• Confidence scores are based on frame-level word posterior probabilities, which are com-
puted by taking into account the contribution of all (or most) word segmentations of the
input image. Since the confidence scores are properly bounded and normalized, they need
no further heuristics to allow comfortable adjustment of precision-recall trade-offs.

• The core frame-level word posteriors are very efficiently obtained from word graphs pro-
duced as a byproduct of processing unsegmented line images with a full-fledged handwrit-

ten image recognizer. This is a very versatile and well-understood framework.

• Since the recognizer is holistic, it does not require any kind of word or character image seg-

mentation. This is essential because accurate pre-segmentation of handwritten text images
into characters has proved extremely elusive.

• The recognizer relies on character hidden Markov models, a lexicon and an N -gram lan-

guage model, all of which can be trained or straightforwardly derived from moderate amounts
of training data. This allows for a simple, cost-effective adaptation of the system to new
writing styles, alphabets and languages.

• Character hidden Markov model training is also holistic, i.e. it requires only very simple
training data annotation. Only a literal text transcript of the training images is needed,
without any kind of costly ground truth such as coordinates of word or character bounding
boxes.

• The use of a language model allows easy leverage of the word context of the spotted words,
which significantly boosts spotting performance. According to various standard metrics,
this leads to performance that is significantly better than that of the well-known Filler-
HMM approach, which is considered one of the state-of-the-art KWS techniques, and is
comparable to that of BLSTM KWS, which is perhaps the best HTR KWS method currently
available if the very high training costs are not taken into account.

• The overall computational cost is much lower than that of other KWS approaches consid-
ered state-of-the-art.

Of course, these advantages come at a price. In particular, the accuracy level depends on

the quality of the lexicon and the language model. The lexicon is needed in order to specify,

in terms of character strings, the word forms that can be searched for. A basic lexicon can be

straightforwardly derived from the training transcripts, but both coverage and accuracy can be

significantly improved if it is expanded by including other words which are expected to appear

in the handwritten image collection being considered [38]. These words can be derived from
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similar texts and available vocabularies of the language and historical period of the collection.

Similarly, a basic language model is automatically learned from the training transcripts. In this

case, accoring to our experiments show that results significantly improve just by using a very

basic, largely under-trained bi-gram language model. But again, even larger improvements are

possible by augmenting this training text with other similar texts, where available. The demands

of these linguistic resources may be difficult to meet in some smaller applications, but the benefits

will certainly pay off in projects involving large handwritten text image collections.

The results of this paper, and the above demands raise a number of issues for future research.

One of the most important issues is to explore adequate techniques to avoid the need for a large

or specific lexicon. As an initial idea, words which are not in the lexicon can be searched for by

relying on the confidence scores of “similar” words which are in the lexicon, and therefore in the

WGs. A word similarity can be computed in terms of character edit distances, possibly weighted

by estimated optical dissimilarity between character pairs. Work exploring this idea, along with

the use the Filler-HMM model as a back-off method, is presented in [43].

A different alternative for coping with the lexicon requirements is to ignore the words alto-

gether and work directly with “character graphs” produced using a full-fledged character-level

handwritten recognizer. Such a pure character-level setting would bring us closer to the setting

assumed in the successful work of [17], with the added benefits of being able to easily lever-

age word-like contextual information by means of high-order character N -grams and much lower

training computational costs. First steps towards this goal are presented in [42, 64].

In addition to these research plans, perhaps the single most important issue for future devel-

opment is to further develop the ideas underlying the neural network based BLSTM approach

in the context of the word posterior probability-based KWS confidence scores introduced in this

work. The results reported in this paper show that, by taking advantage of word context, e.g.

by means of an N -gram LM, these confidence scores have the potential to significantly improve

KWS performance. As published in [17], BLSTM provides the best KWS performance for hand-

written images known so far, but it is essentially word-context agnostic. However, using the basic

BLSTM technology, it has been shown that a full-fledged HTR decoder can be implemented which

incorporates a lexicon and an N -gram language model [21] can be implemented. Therefore, an

obvious next step is to extend this kind of system to allow it to adequately produce word graphs

as a byproduct of decoding. In this way, all the WG-based techniques developed in this paper
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could be straightforwardly applied to further improve the already excellent BLSTM KWS results

reported in [17]. From a practical point of view, additional work will be also needed to reduce the

BLSTM training computational demands.

To close this paper, we would like to mention that some demonstration prototypes, directly

based on the approaches described and tested in this paper, have been implemented and are pub-

licly available at the tranScriptorium project web site9.
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[56] I. Szõke, P. Schwarz, L. Burget, M. Karafiát, J. Cernocký, Phoneme based acoustics keyword
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Appendix I: Proofs of some Properties of the paper: Word-Graph
Based Keyword Spotting in Handwritten Document Images

I - Efficient, Dynamic Programming computation of ϕ(q′, q) (Eqs. (14)-(15)):∑
w:(q′,q)∈ψ(w)

PG(w | x) =
α(q′) · s(q′, q) · β(q)

β(qI)
, ∀(q′, q) ∈ E

Proof: By applying successively (13), (10), (11), (12) and (15):∑
w:(q′,q)∈ψ(w)

PG(w | x) =
∑

w:(q′,q)∈ψ(w)

PG(w,x)

PG(x)
=

1

β(qI)

∑
w:(q′,q)∈ψ(w)

PG(w,x)

=
1

β(qI)

∑
w:

(q′,q)∈ψ(w)

∏
(q′′,q′′′)∈ψ(w)

s(q′′, q′′′)

Let Φ(qi, qj) denote the set of paths in G defined by sequences of nodes, departing from node qi

and arriving to node qj .

=
1

β(qI)

∑
(q1,q2,...,qi,q

′,q,qi+1,
...,qn−1,qn)∈Ξ(qI ,qn):

qn∈F

[ s(q1, q2) · · · s(qi, q′) ] · s(q′, q) · [ s(q, qi+1) · · · s(qn−1, qn) ]

=
1

β(qI)

∑
(qI ,q2,...,

qi,q
′)∈Φ(qI ,q

′)

∑
(q,qi+1,...,

qn−1,qn)∈Φ(q,qn):
qn∈F

[ s(q1, q2) · · · s(qi, q′) ] · s(q′, q) · [ s(q, qi+1) · · · s(qn−1, qn) ]

=
1

β(qI)

 ∑
(qI ,q2,...,

qi,q
′)∈Φ(qI ,q

′)

s(q1, q2) · · · s(qi, q′)

 · s(q′, q) ·


∑
(q,qi+1,...,

qn−1,qn)∈Φ(q,qn):
qn∈F

s(q, qi+1) · · · s(qn−1, qn)


=

α(q′) · s(q′, q) · β(q)

β(qI)
= ϕ(q′, q)

II - Flow Preserving Node Property (Eq. (16)):

∀q ∈ Q
∑

(q′,q)∈E

ϕ(q′, q) =
∑

(q,q′′)∈E

ϕ(q, q′′)

Proof: By applying successively (15), (11), (12) and (15):∑
q′:(q′,q)∈E

ϕ(q′, q) =
∑

q′:(q′,q)∈E

α(q′) · s(q′, q) · β(q)

β(qI)
=
α(q) · β(q)

β(qI)

=
∑

q′′:(q,q′′)∈E

α(q) · s(q, q′′) · β(q′′)

β(qI)
=

∑
q′′:(q,q′′)∈E

ϕ(q, q′′)



III - Frame-Level Edge Posterior Consistency Property (Eq. (17)):∑
(q′,q)∈E:

t(q′)<i≤t(q)

ϕ(q′, q) = 1, 1 ≤ i ≤ n

Proof: We must first show that:
∑

q:(qI ,q)∈E

ϕ(qI , q) = 1

∑
q:(qI ,q)∈E

ϕ(qI , q) =
∑

q:(qI ,q)∈E

α(qI) · s(qI , q) · β(q)

β(qI)
=

∑
q:(qI ,q)∈E

s(qI , q) · β(q)

β(qI)
=
β(qI)

β(qI)
= 1

Now, using mathematical induction:

- For i = 1 −→
∑

(qI ,q)∈E:
t(qI)<1≤t(q)

ϕ(qI , q) = 1, t(qI) = 0

- Assuming now for i = n −→
∑

(q′,q)∈E:
t(q′)<n≤t(q)

ϕ(q′, q) = 1

- We need to prove that for i = n+ 1 −→
∑

(q′,q)∈E:
t(q′)<n+1≤t(q)

ϕ(q′, q) = 1

Let be En = {(q′, q) ∈ E : t(q′) < n ≤ t(q)} and Qn = {q ∈ Q : n = t(q)}. Thereby, for

i = n: ∑
(q′,q)∈E:

t(q′)<n≤t(q)

ϕ(q′, q) =
∑

(q′,q)∈En

ϕ(q′, q) =
∑

(q′,q)∈En:
q/∈Qn

ϕ(q′, q) +
∑

(q′,q)∈En:
q∈Qn

ϕ(q′, q) = 1

And, for i = n+ 1∑
(q′,q)∈E:

t(q′)<n+1≤t(q)

ϕ(q′, q) =
∑

(q′,q′′)∈En:
q′′ /∈Qn,

t(q′)<n+1≤t(q′′)

ϕ(q′, q′′) +
∑

(q′′,q)∈E:
q′′∈Qn,

t(q′′)<n+1≤t(q)

ϕ(q′′, q)

=
∑

(q′,q′′)∈En:
q′′ /∈Qn,

t(q′)<n+1≤t(q′′)

ϕ(q′, q′′) +
∑

(q′,q′′)∈En:
q′′∈Qn,

t(q′′)<n+1

ϕ(q′, q′′) = 1 (by property 1)


