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Mining frequent items in the time fading model

Massimo Cafaroa,∗, Marco Pulimenoa, Italo Epicocoa, Giovanni Aloisioa

aUniversity of Salento, Lecce, Italy

Abstract

We present FDCMSS, a new sketch–based algorithm for mining frequent items in data streams. The algorithm cleverly
combines key ideas borrowed from forward decay, the Count-Min and the Space Saving algorithms. It works in the
time fading model, mining data streams according to the cashregister model. We formally prove its correctness
and show, through extensive experimental results, that ouralgorithm outperformsλ-HCount, a recently developed
algorithm, with regard to speed, space used, precision attained and error committed on both synthetic and real datasets.
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1. Introduction

A data streamσ consists of a sequence ofn items drawn from a universeU. Without loss of generality, letm be
the number of distinct items inσ i.e., letU = {1, 2, . . . ,m}. Depending on the applications, items may be numbers,
IP addresses, points, graph edges etc. Owing to the huge sizeof σ, an algorithm in charge of processing its items
is subject to the stringent requirement that no more than onepass over the data is allowed. In practice, storing the
items is not a feasible option. We refer the interested reader to [30], a very good survey of streaming algorithms,
for additional details and underlying reasons motivating research in this area. In this paper, we deal with mining of
frequent items in a data stream. This problem has been extensively studied, and is recognized as one of the most
important in the streaming algorithms literature, where itis also called, depending on the specific context,hot list
analysis[21], market basket analysis [3] andiceberg query[19], [2].

Among the many possible applications, we recall here network traffic analysis [16], [18], [31], analysis of web
logs [6], Computational and theoretical Linguistics [20].

Letting fi denote the frequency of the itemi ∈ U (i.e., its number of occurrences inσ), f = ( f1, . . . , fm) the
frequency vector, 0< φ < 1 a support threshold and||f||1 the 1-norm off (which represents the total number of
occurrences of all of the stream items), an approximate solution requires returning all of the items which are frequent,
i.e., those itemsi such thatfi > φ||f||1 and, letting 0< ǫ < 1 denote the error committed, an algorithm must not return
any itemi such thatfi ≤ (φ − ǫ)||f||1. In particular, the error is such thatǫ < φ.

Beyond the traditional distinction between deterministicand randomized algorithms, in this area algorithms for
detecting frequent items are also often referred to as beingeithercounteror sketchbased. In counter–based algorithms,
a fixed number of counters is used to keep track of stream items. Indeed, given a support threshold 0< φ < 1, the
number of possible frequent items is an integer belonging tothe open interval (0, 1/φ). Sketch–based algorithms
monitor the data stream by using a set of counters, stored in asketch data structure, usually a bi-dimensional array.
Stream items are mapped by hash functions to their corresponding cells in the sketch. Whilst counter–based algorithms
are deterministic, sketch–based ones are randomized and provide a probabilistic guarantee.

The streaming model we have described so far is calledcash registeror strict turnstilemodel [30], since only
insertionsare allowed. On the other hand, in the more generalturnstile model, deletionsare also allowed. An
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advantage of sketch–based algorithms is that they can easily support deletions and can therefore work in the turnstile
model; counter–based algorithms only work in the cash register model.

Among the counter based algorithms, the first sequential algorithm has been proposed by Misra and Gries [29].
Later, this algorithm was rediscovered independently by Demaine et al. [16] (the so-calledFrequentalgorithm) and
Karp et al. [24]. Recently developed counters–based algorithms includeSticky SamplingandLossy Counting[27],
andSpace Saving[28]. Notable sketch–based algorithms areCountSketch[6], Group Test[12], Count-Min[11] and
hCount[23].

Regarding parallel algorithms, [5] and [4] present message-passing based parallel versions of the Frequent and
Space Saving algorithms. Among the algorithms for shared-memory architectures we recall here a parallel version
of Frequent [35], a parallel version of Lossy Counting [34],and parallel versions of Space Saving [32] [14]. Novel
shared-memory parallel algorithms for frequent items wererecently proposed in [33]. Accelerator based algorithms
for frequent items exploiting a GPU (Graphics Processing Unit) include [22] and [17].

In this paper, we are concerned with the problem of detectingfrequent items in a stream with the additional
constraint that recent items must be weighted more than former items. The underlying assumption is that, in some
applications, recent data is certainly more useful and valuable than older, stale data. Therefore, each item in the stream
has an associated timestamp that will be used to determine its weight. In practice, instead of estimating frequency
counts, we are required to estimatedecayed counts. Two different models have been proposed in the literature: the
sliding windowand thetime fadingmodel.

In the sliding window model [15] [30], freshness of recent items is captured by a time window, i.e., a temporal
interval of fixed size in which only the most recentN items are taken into account; detection of frequent items is
strictly related to those items falling in the window. The items in the stream become stale over time, since the window
periodically slides forward.

The time fading model [26] [8] [7] does not use a window sliding over time; freshness of more recent items
is instead emphasized byfading the frequency count of older items. This is achieved by usinga decaying factor
0 < λ < 1 to compute an item’sdecayed count(also calleddecayed frequency) through decay functions that assign
greater weight to more recent elements. The older an item, the lower its decayed count is: in the case of exponential
decay, the weight of an item occurredn time units in the past ise−λn, which is an exponentially decreasing quantity.

This paper is organized as follows. We recall in Section 2 keydefinitions and concepts that will be used in the rest
of the manuscript, and introduce in Section 3 theλ-HCount algorithm [7], a recently published sketch–based algorithm
that detects frequent items in the time fading model. Then, we introduce in Section 4 our FDCMSS algorithm and
formally prove in Sections 5 and 6, respectively, its error bound and correctness. Next, we compareλ-HCount to
FDCMSS from a theoretical perspective, and show that our algorithm achieves its error bound using a tiny fraction of
the space required byλ-HCount. Then, we provide extensive experimental results in Section 8, in which we compare
again FDCMSS versusλ-HCount from a quantitative, practical perspective, and show that FDCMSS outperformsλ-
HCount with regard to speed, space used, precision attainedand error committed on both synthetic and real datasets.
Finally, we draw our conclusions in Section 9.

2. Key ideas

Our algorithm cleverly combines ideas borrowed from forward decay [9], the Count-Min sketch–based algorithm
[11] , and the Space Saving counter–based algorithm [28]. Inthis section, we recall preliminary definitions and key
concepts.

Definition 1. Given an itemi with arrival timeti , adecay functionreturns a weight for the item. In our algorithm the
weightw(i, t) determined at timet, depends on the timestampti associated to the item. Decay functions satisfy the
following properties: (i)w(i, t) = 1 whenti = t and 0≤ w(i, t) ≤ 1 for all t ≥ ti ; (ii) w is monotone non-increasing as
time increases, i.e.,t′ ≥ t =⇒ w(i, t′) ≤ w(i, t).

Regarding the time fading model, related work has mostly exploited backward decayfunctions, in which the
weight of an item is a function of its age,a, where the age at timet > ti is simplya = t − ti . The term backward decay
stems from the aim of measuring from the current time back to the item’s timestamp.
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Definition 2. A backward decay function is defined by a positive monotone non-increasing functionf so that the
weight of theith item with arrival timeti determined at timet is given byw(i, t) = f (t−ti )

f (t−t) =
f (t−ti )
f (0) . The denominator in

the expression normalizes the weight, so that it obeys condition (i) of Definition 1.

Prior algorithms and applications have been using backwardexponential decay functions such asf (a) = e−λa with
λ > 0. In our algorithm, we use instead a forward decay function,defined as follows. Under forward decay, the weight
of an item is computed on the amount of time between the arrival of an item and a fixed pointL, called thelandmark
time, which, by convention, is some time earlier than the timestamps of all of the items. The idea is to look forward
in time from the landmark to see an item, instead of looking backward from the current time.

Definition 3. Given a positive monotone non-decreasing functiong, and a landmark timeL, the forward decayed
weight of an itemi with arrival timeti > L measured at timet ≥ ti is given byw(i, t) = g(ti−L)

g(t−L) .

Whent = ti the weight is 1 (condition (i) of Definition 1). Sinceg is monotone non-decreasing, ast increases the
weight does not increase, and 0≤ w(i, t) ≤ 1.

It’s easy to prove that backward and forward exponential decay coincide. In our algorithm, we could use the
exponential decay; however, we prefer to use the polynomialforward decay functiong(n) = n2. It has been proved
that this class of functions (i.e.,g(n) = nβ) satisfies arelative decayproperty, which states that for any timet after a
landmark timeL, the weight for items with timestampγt + (1− γ)L is the same. In practice, relative decay holds for
forward decay functions assigning the weight of an item depending only on where the item falls as a fraction in the
window defined byL andt. As an example, a function for which relative decay holds assigns to an item arriving half
way betweenL andt the same weight ast increases.

Intuitively, this property requires assigning to an item a weight which is a function of its relative age, i.e., its age
as a fraction of the total time period observed. Since backward decay is only concerned with absolute age, it can not
provide relative decay. An important consequence of relative decay is that it allows selecting a meaningful landmark
time L to choose for forward decay.

Besides its flexibility (e.g., choosing an appropriate polynomial function we can select and control a slower rate
of decay with regard to an exponential), another advantage of forward decay is related to its ability to deal with out of
order arrival of stream items. Indeed, forward decay does not rely on items arriving in increasing order of timestamps.
On the contrary, under backward decay, handling out of orderarrivals can require significant effort to accommodate.

Definition 4. Thedecayed count, C, of a streamσ of n items is the sum of decayed weights of items:C =
∑n

i=1
g(ti−L)
g(t−L) .

We can now formally state the problem solved by our algorithm: approximate frequent items under forward decay.

Definition 5. (Frequent items under forward decay) For each item in the input, v, its decayed count is given by
fv =

∑

vi=v
g(ti−L)
g(t−L) . Given a threshold valueφ, the frequent items are all of the itemsv satisfying fv > φC.

Definition 6. (Approximate frequent items under forward decay problem) Given an error boundǫ and a thresholdφ,
determine all of the items satisfyingfv > φC, and report no items withfv ≤ (φ − ǫ)C.

Our goal is to design an algorithm solving theApproximate frequent items under forward decayproblem by
providing the following (ǫ, δ) approximation.

Definition 7. ((ǫ, δ) approximation) LetA(σ) denote the output of a randomized streaming algorithmA on inputσ; it
is worth noting here thatA(σ) is a random variable. Moreover, letf (σ) be the function thatA is supposed to compute.
The algorithmA (ǫ, δ) approximatesf if Pr[|A(σ) − f (σ)| > ǫ] ≤ δ.

Count-Min is based on a sketch whose dimensions are derived by the input parametersǫ, the error, andδ, the
probability of failure. In particular, for Count-Mind = ⌈ln 1/δ⌉ is the number of rows in the sketch andw = ⌈e/ǫ⌉ is
the number of columns. Every cell in the sketch is a counter, which is updated by hash functions. By using this data
structure, the algorithm solves with high probability (i.e., with probability greater than or equal to 1 -δ) thefrequency
estimationproblem for arbitrary items. The algorithm may also be extended to solve theapproximate frequent items
problem as well, by using an additional heap data structure which is updated each time a cell is updated. Since in
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Count-Min the frequencies stored in the cells overestimatethe true frequencies, a point query for an arbitrary item
simply inspects all of thed cells in which the item is mapped to by the corresponding hashfunctions and returns the
minimum of thosed counters.

In addition, Count-Min allows us reusing the same underlying data structure to solve (if needed), beside frequent
items, additional problems related to the same input stream(e.g., quantiles, frequency estimation, medians, etc).
Moreover, the Count-Min data structure requires less spacewith regard to other sketch-based algorithms.

We shall prove later (see Theorem 2) that in our algorithm, with high probability, if an itemi is frequent, then it
appears as a majority item candidate in at least one of thed sketch cells in which it falls. Therefore, in order to detect
frequent items, we decided to use the Space Saving algorithm[28]. This is a counter–based algorithm, designed to
solve theapproximate frequent itemsproblem usingk ≥ ⌈1/φ⌉ counters in order to determine the frequent items in the
input data stream.

We could use a different counter–based algorithm (e.g.,Frequent[16]); our choice stems from the well-known fact
that Space Saving provides the greatest accuracy (precision, total and average relative error) among the counter-based
algorithms [10] [25]. Moreover, exploiting in FDCMSS the Space Saving algorithm within the sketch cells allows us
avoiding the need for an additional, separate data structure to keep track of frequent items. We now briefly recall how
Space Saving works.

LetS denote the Space Saving stream summary data structure. UpdatingS upon arrival of an item works as shown
in the pseudocode of Algorithm 1. We denote byc j .i andc j. f respectively the item monitored by thejth counter of
S and its corresponding estimated frequency. When processing an item which is already monitored by a counter, its
estimated frequency is incremented by its weightw. When processing an item which is not already monitored by
one of the available counters, there are two possibilities.If a counter is available, it will be in charge of monitoring
the item and its estimated frequency is set to its weightw. Otherwise, if all of the counters are already occupied
(their frequencies are different from zero), the counter storing the item with minimum frequency is incremented by
its weightw. Then the monitored item is evicted from the counter and replaced by the new item. This happens since
an item which is not monitored can not have a frequency greater than the minimal frequency. The complexity of the
Space Saving update procedure isO(1).

Let σ be the input stream andS the stream summary data structure at the end of the sequential Space Saving
algorithm’s execution. Moreover, let

∑

c j∈S
c j . f be the sum of the counters inS, fv the exact frequency of an itemv, f̂v

its estimated frequency,f = ( f1, . . . , fm) the frequency vector,̂f min the minimum frequency inS andε̂v the estimated
error of itemv, i.e. an over-estimation of the difference between the estimated and exact frequency.

Finally, denote bySφ the set of counters inS which are monitoring items (
∣

∣

∣Sφ
∣

∣

∣ ≤ k). It is worth noting here that
f̂ min = 0 when

∣

∣

∣Sφ
∣

∣

∣ < k. The following relations hold (as shown in [28]):
∑

c j∈S

c j . f = ||f||1, (1)

f̂v − f̂ min ≤ f̂v − ε̂v ≤ fv ≤ f̂v, v ∈ Sφ, (2)

fv ≤ f̂ min, v < Sφ, (3)

f̂ min ≤

⌊

||f||1
k

⌋

. (4)

Therefore, it holds that

f̂v − fv ≤ f̂ min ≤

⌊

||f||1
k

⌋

, v ∈ U. (5)

To recap, we end this Section summarizing the reasons for combining forward decay, the Count-Min and the Space
Saving algorithms:

• forward exponential decay coincides with backward exponential decay, so that we can still use exponentials;
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Algorithm 1 Space Saving update
Require: S, a stream summary;j, an item;w, the weight of itemj
Ensure: a stream summaryS containing frequent items

1: procedureSpaceSavingUpdate(S, j,w)
2: if j is monitoredthen
3: let cl be the counter monitoringj
4: cl . f ← cl . f + w
5: else
6: if there is a countercr which is not monitoring any itemthen
7: cr .i ← j
8: cr . f ← w
9: else

10: let cs be the counter monitoring the item with least hits
11: cs.i ← j
12: cs. f ← cs. f + w
13: end if
14: end if
15: end procedure

• forward decay allows for greater flexibility (e.g., choosing a polynomial function we can select a different,
slower rate of decay with regard to an exponential);

• forward decay allows easily dealing with out of order arrival of stream items;

• forward decay satisfies a relative decay property, which states that for any timet after a landmark timeL, the
weight for items with timestampγt + (1− γ)L is the same;

• the Count-Min algorithm allows us reusing the same underlying data structure to solve (if needed), beside
frequent items, additional problems related to the same input stream (e.g., quantiles, frequency estimation,
medians, etc);

• the Count-Min data structure requires less space with regard to other sketch-based algorithms;

• we use Space Saving to detect frequent items within the sketch cells;

• the Space Saving algorithm provides the greatest accuracy (precision, total and average relative error) among
the counter-based algorithms;

• the Space Saving algorithm allows us avoiding the need for anadditional, separate data structure to keep track
of frequent items.

3. Theλ-HCount algorithm

We now introduceλ-HCount [7], a recently published sketch–based algorithm that detects frequent items in the
time fading model by using a backward decay exponential function. Theλ-HCount algorithm, shown in pseudocode
as Algorithm 2, requires a two dimensional sketchD of sizer × m to store decayed weights and timestamps, and a
doubly linked listF to store frequent items candidates, accessed through a hashfunction. λ-HCount is based on the
use ofr FNV hash functionshi(x), i = 1, . . . , r which uniformly and independently map an item to an integer in the
interval [1,m]; the algorithm requires a support thresholdsand an error boundǫ. The occurrence of an item at timeta
is weighted in time by a factorλt−ta, whereλ represents the fading factor (0< λ < 1). The decayed count of an item
is given by the sum of its decayed weight in time. The decayed count of the streamσ, as proved by the authors, is
bounded by 1

1−λ .
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Each entryD[i, hi(x)] in the sketchD storesD[i, hi(x)].swhich is the decayed count of itemx (also calleddensity),
andD[i, hi(x)].t which is the last time the value ofD[i, hi(x)].swas updated. Whenever an itemx arrives, its decayed
count is updated in all of ther cellsD[i, hi(x)], i = 1, . . . , r. Then, the algorithm computeŝfx = min1≤i≤r {D[i, hi(x)].s}
as the estimated decayed count ofx; if f̂x is greater than or equal to the thresholds−ǫ

1−λ than the tuple{x, tx, f̂x} is created
or updated in the linked listF. The authors proved that the listF requires at mostr

s−ǫ entries to store all of the items
with decayed count greater thans−ǫ1−λ . Basically,λ-HCount can be considered a variant of Count-Min, designed to
support frequent items detection in the time fading model.

The authors ofλ-HCount proved that with a sketch requiring
e(1−λ) ln (− M

ln p )

ǫ2
space, whereM is the number of

distinct items andp is the success probability, and an additional data structure requiring at most r
s−ǫ space, wherer is

the number of hash functions used, their algorithm is able toestimate the frequent items decayed count with an error
less than ǫ1−λ with probability greater thanp. The algorithm’s analysis also shows that all of the items whose exact
decayed count exceedss1−λ will be output (there are no false negatives) and no items whose decayed count is less than
s−ǫ
1−λ will be output.

The worst case complexity ofλ-HCount depends on the time required for updating the sketchD and the linked
list F. When an item is received from the stream, the algorithm computesr hash functions and updatesr entries in
D; the linked listF is also updated accordingly. Since the linked listF is accessed through a hash function, and its
update is done in constant time, overall the worst case complexity of per item update isO(1). Therefore, the whole
algorithm has worst case complexityO(r), i.e.,O

(

ln(− M
ln p)

)

. The space complexity is given by the memory required

by the sketchD and the linked listF. Overall, the worst case space complexity isO(r ·m) = O
( ln(− M

ln p )

ǫ2

)

.

Algorithm 2 λ-HCount algorithm: the update phase
Require: λ: fading factor;ǫ: error bound;s: support threshold;x: received item;t: arrival time;
Ensure: update of sketchD and linked listF related to itemx

1: procedureλ-HCount Update(λ, ǫ, s, x, t)
2: f̂x ← ∞

3: for k = 1 to r do
4: y← hk(x)
5: D[k, y].s← D[k, y].s · λt−D[k,y].t + 1
6: D[k, y].t← t
7: if D[k, y].s< f̂x then
8: f̂x ← D[k, y].s
9: end if

10: end for
11: if f̂x >

s−ǫ
1−λ then

12: if x ∈ F then
13: change its entry to{x, f̂x, t} and move it to the tail of the queueF
14: else
15: if the queueF is full then
16: delete the item at the head of the queueF
17: end if
18: insert{x, f̂x, t} at the tail of the queueF
19: end if
20: end if
21: end procedure

4. The FDCMSS algorithm

In this section, we introduce our algorithm, distinguishing three different phases: initialization, stream processing,
and querying.
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The algorithm’s initialization, shown in pseudo-code as Algorithm 3, requires as input parametersǫ, the error;
δ, the probability of failure;φ, the support threshold; andtinit , a timestamp. Initialization returns a sketchD. The
procedure starts derivingd = ⌈ln 1/δ⌉, the number of rows in the sketch andw = ⌈ e

2ǫ ⌉, the number of columns in the
sketch. We shall explain the reason why we setw to this value in Section 5.

Then, for each of thed × w cells available in the sketchD we allocate a data structureS with two Space Saving
countersc1 and c2. Given a counterc j , j = 1, 2, we denote byc j .i and c j . f respectively the counter’s item and
estimated decayed count. Finally, we set the support threshold to φ, selectd pairwise independent hash functions
h1, . . . , hd : [m] → [w] mappingm distinct items intow cells, initialize thecountvariable, representing the total
decayed count of all of the items in the stream (see Definition4) to zero and theL variable (our landmark time) totinit ,
which is a timestamp less than or equal to all of the items’ timestamps. The worst case complexity of the initialization
procedure isO( 1

ǫ
ln 1
δ
).

Updating the sketch upon arrival of a stream itemi with timestampti , shown in pseudo-code as Algorithm 4,
requires computingx, which is the forward decayed weight of the item, and incrementingcountby x. Note that when
computingx, we do not normalize the result (dividing byg(t − L) wheret is the query time, since we do not know in
advance the query time); normalization occurs instead at query time. Then, we update thed cells in which the item
is mapped to by the corresponding hash functions by using theSpace Saving item update procedure. The worst case
complexity of the update procedure isO(ln 1

δ
).

Finally, in order to retrieve the frequent items, a query canbe posed when needed. Lett be the query time. The
query, shown in pseudo-code as Algorithm 5, initializesR, an empty set, and then it inspects each of thed × w cells
in the sketchD. For a given cell, we determinecm, the counter in the data structureS with maximum decayed count.
We normalize the decayed count stored incm dividing byg(t − L), and then compare this quantity withφ count

g(t−L) . If the
normalized decayed count is greater, we pose a point query for the itemcm.i, shown in pseudo-code as Algorithm 6.
If p, the returned value, is greater thanφ count

g(t−L) , then we insert inR the pair (cm.i, p).
The point query for an itemj returns its estimated decayed count. After initializing theanswervariable to infinity,

we inspect each of thed cells in which the item is mapped to by the corresponding hashfunctions, to determine the
minimum decayed count of the item. In each cell, if the item isstored by one of the Space Saving counters, we set
answerto the minimum betweenanswerand the corresponding counter’s decayed count. Otherwise (none of the two
counters monitors the itemj), we setanswerto the minimum betweenanswerand the minimum decayed count stored
in the counters. We return the normalizedanswer, dividing byg(t − L).

From the previous discussion it is clear that our algorithm also solves thedecayed count estimationproblem for
arbitrary items. Indeed, given an item, it suffices to pose a point query for that item. Finally, since the worst case
complexity of a point query isO(ln 1

δ
), the worst case complexity of the query procedure isO( 1

ǫ
(ln 1

δ
)2). We shall

argue in section 7 that a query only takes a few milliseconds and therefore its complexity is, in practice, negligible.

Algorithm 3 Initialize
Require: ǫ, error;δ, probability of failure;φ, threshold;
Ensure: a sketchD[1 . . .d][1 . . .w] properly initialized

1: procedure initialize(ǫ, δ, φ, tinit)
2: d← ⌈ln 1/δ⌉
3: w← ⌈ e

2ǫ ⌉

4: for i = 1 to d do
5: for j = 1 to w do ⊲ allocate a data structureS with two countersc1, c2 for D[i][ j]
6: D[i][ j] ← S
7: end for
8: end for
9: Set support threshold toφ

10: Choosed pairwise independent hash functionsh1, . . . , hd : [m] → [w]
11: count← 0
12: L← tinit ⊲ tinit must be≤ of all of the items’ timestamps
13: end procedure
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Algorithm 4 Process
Require: i, an item;ti , timestamp of itemi;
Ensure: update of sketch related to itemi

1: procedureprocess(i, ti) ⊲ compute the decayed weight of itemi and update the sketch
2: x← g(ti − L)
3: count← count+ x
4: for j = 1 tod do
5: S ← D[ j][h j(i)]
6: SpaceSavingUpdate(S, i, x)
7: end for
8: end procedure

Algorithm 5 Query
Require: t, query time
Ensure: set of frequent items

1: procedurequery(t)
2: R= ∅
3: for i = 1 to d do
4: for j = 1 to w do
5: S ← D[i][ j]
6: let c1 andc2 be the counters inS, andcm the counter with maximum decayed count
7: cm← argmax(c1, c2)
8: if cm. f

g(t−L) > φ
count
g(t−L) then

9: p← PointEstimate(cm.i, t)
10: if p > φ count

g(t−L) then
11: R← R∪ {(cm.i, p)}
12: end if
13: end if
14: end for
15: end for
16: return R
17: end procedure
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Algorithm 6 PointEstimate
Require: j, an item;t, query time
Ensure: estimation of itemj decayed count;

1: procedurepointestimate( j, t)
2: answer← ∞
3: for i = 1 to d do
4: S ← D[i][hi( j)]
5: let c1 andc2 be the counters inS
6: if j == c1.i then
7: answer← min(answer, c1. f )
8: else
9: if j == c2.i then

10: answer← min(answer, c2. f )
11: else
12: m← min(c1. f , c2. f )
13: answer← min(answer,m)
14: end if
15: end if
16: end for
17: return answer

g(t−L)
18: end procedure

4.1. Example

Here, we provide a concise example of the FDCMSS update and query algorithms. Of course, illustrating a really
significant example will require using a sketch of suitable dimensions, but, in the interest of clarity and to avoid
wasting space, we use a sketchD with d = 2 rows andw = 5 columns. Settingd andw implicitly determineδ andǫ.
The other parameters areρ = 1.1, φ = 0.025 andλ = 0.999. Table 1 shows the state of the sketch after processing
1000 items coming from a stream derived from the universeU = {x ∈ N : 1 ≤ x ≤ 20}.

Table 2 depicts the sketch state after updating the data structure upon arrival of item 6 with timestamp 1001. The
hash functions associated to each row map the item 6 respectively to column 5 in the first row and to column 3 in
the second row of the sketch. Since item 6 was already monitored by a counter in sketch cellsD[1][5] and D[2][3]
(see Table 1), Space Saving increments these counters by adding the corresponding weight which is computed as
g(t − L) = (1/λ)t−L = 2.72 wheret = 1001 is the timestamp of item 6 andL = 0 is the landmark time.

Upon arrival of item 5 with timestamp 1002 (see Table 3), the hash functions associated to each row map the item
respectively to column 1 in the first row and to column 5 in the second row of the sketch. However, this time the item
is not monitored and both counters are full in the sketch cellsD[1][1] andD[2][5]. Therefore, the counters monitoring
the item with minimum weight are selected and updated by Space Saving evicting the monitored items, substituting
them with item 5 and incrementing them by the corresponding weight.

We now show how to query the sketch to retrieve the frequent item candidates. We query the sketch after updating
it upon arrival of item 5 and before processing the next item.When querying the sketch data structure, all of the
involved weights are normalized dividing them by (1/λ)tq−L = 2.725, wheretq = 1003 is the query’s timestamp.

The estimated normalized decayed count is equal at this point to C = 632.671; sinceφ = 0.025, the threshold
required for an item to be considered frequent is given byφC = 15.817.

We scan each of the sketch cells, determine the monitored item with maximum weight and, if the normalized
weight of this item exceeds the threshold, we execute a pointquery for this item, which returns the normalized
minimum weight associated to the item in the sketch. Then, wecompare the normalized minimum weight to the
threshold again, and consider the item frequent if it exceeds the threshold.

For instance, we determine that item 2 is frequent as follows. Since item 2 is the majority item inD[1][1] and its
normalized weight 203.78 is greater than the threshold, we execute a point query which produces the best frequency
estimate for the item. In our case the point query for item 2 returns 198.08, and item 2 therefore is selected as
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candidate frequent item because its normalized minimum weight is still greater than the threshold. Table 4 includes
all of the frequent item candidates as returned by the query algorithm. None of the other items is selected as candidate
frequent item. For instance, item 14 is not selected as candidate frequent item since its normalized minimum weight
is 13.35< 15.817.

Table 1: Sketch state after 1000 updates

Item Weight Item Weight Item Weight Item Weight Item Weight
c1 2 555.33 3 262.06 12 36.55 10 52.27 6 98.22
c2 4 537.23 14 103.54 17 14.78 18 21.88 11 36.76
c1 4 172.20 14 36.40 6 125.75 2 539.78 3 263.07
c2 12 109.28 16 35.78 7 125.15 8 117.33 10 193.90

Table 2: Sketch state after arrival of item 6 with timestamp 1001

Item Weight Item Weight Item Weight Item Weight Item Weight
c1 2 555.33 3 262.06 12 36.55 10 52.27 6 100.94
c2 4 537.23 14 103.54 17 14.78 18 21.88 11 36.76
c1 4 172.20 14 36.40 6 128.47 2 539.78 3 263.07
c2 12 109.28 16 35.78 7 125.15 8 117.33 10 193.90

Table 3: Sketch state after arrival of item 5 with timestamp 1002

Item Weight Item Weight Item Weight Item Weight Item Weight
c1 2 555.33 3 262.06 12 36.55 10 52.27 6 100.94
c2 5 539.95 14 103.54 17 14.78 18 21.88 11 36.76
c1 4 172.20 14 36.40 6 128.47 2 539.78 3 263.07
c2 12 109.28 16 35.78 7 125.15 8 117.33 5 196.62

5. Error bound

In this section, we formally prove the error bound of our algorithm. Let fi and f̂i be respectively the exact and
estimated decayed count of itemi. We denote byS a Space Saving summary, which is a data structure present in each
one of the cells available in the sketchD. LetC be the decayed count of all of the items in the streamσ (see Definition
4). The main result of this section is the following theorem.

Theorem 1. ∀k ∈ [m], f̂k estimates the exact decayed count fk with error less thanǫC and probability greater than
1− δ.

Proof. The algorithm is based on the use ofd pairwise independent hash functionsh1, . . . , hd : [m] → [w]. In the
following, we shall use related indicator random variablesI i, j,k defined as follows:

Table 4: Frequent Item Candidates

Item Normalized Decayed Weight

2 198.08

3 96.16

5 72.15

6 37.04
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I i, j,k =

{

1 hi(k) = j
0 otherwise

. (6)

In other words, the indicator random variablesI i, j,k are equal to one when the itemk ∈ [m] falls in theD[i][ j] cell.
By pairwise independence of the hash functions, it follows that the expected value ofI i, j,k is

E[ I i, j,k] = Pr[hi(k) = j] =
1
w
=

2ǫ
e
. (7)

Denote bySi, j the sum of the decayed counts of the items falling in the cellD[i][ j], i.e.,

Si, j =

m
∑

k=1

fkI i, j,k. (8)

Our algorithm processes each item falling in the same cell byusing Space Saving with two counters. Now, we
bound the error committed by Space Saving. By eq. (5), the error of an item monitored by a Space Saving counter is
bounded by the sum of the decayed counts of the items which fall in the same cell divided by the number of counters.
Therefore, denoting bŷfi,k the estimated decayed count of itemk returned by Space Saving for theD[i][hi(k)] cell and
by fk its exact decayed count, it holds that

f̂i,k − fk ≤
Si, j

2
. (9)

By linearity of expectation,

E

[

Si, j

]

= E















m
∑

k=1

fkI i, j,k















=

m
∑

k=1

fkE[ I i, j,k] =
C
w
=

2ǫC
e
, (10)

with C equal to the total decayed count, as defined in Definition 4. Itholds that, on average,

E[ f̂i,k − fk] ≤
1
2
E

[

Si, j

]

=
2ǫC
2e
=
ǫC
e
. (11)

Since the error̂fi,k − fk is nonnegative, we can apply the Markov inequality, obtaining

Pr[ f̂i,k − fk ≥ ǫC] ≤
E[ f̂i,k − fk]

ǫC
≤
ǫC
eǫC
= e−1. (12)

It follows that, when considering all of thed cells in which items are mapped to by the independent hash functions
hi, i = 1, . . . , d, and recalling that the estimated decayed countf̂k = min { f̂1,k, . . . , f̂d,k}, we get

Pr[ f̂k − fk ≥ ǫC] = Pr[min{ f̂1,k, . . . , f̂d,k} − fk ≥ ǫC]

= Pr

















d
∧

i=1

( f̂i,k − fk ≥ ǫC)

















=

d
∏

i=1

Pr[ f̂i,k − fk ≥ ǫC]

≤ e−d = δ.

(13)

Consequently,

Pr[ f̂k − fk < ǫC] > 1− δ. (14)
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Remark 1. Here, we explain the reason why we setw = e
2ǫ when we initialize the sketch data structure. In Theorem

1, letting w unspecified in equation (10), we can easily derive the relationship betweend andw at the end of the

Theorem:d =
log 1

δ

log 2wε . Settingw = e
2ǫ we minimize the total space occupied by the sketch data structure. Indeed, the

total space iswd = w
log 1

δ

log 2wε ; minimizing analyticallywd with regard tow, we obtain the minimum forw = e
2ǫ .

6. Correctness

We are going to formally prove the correctness of our algorithm. Before discussing its correctness, it is worth
noting here that given a cell in the sketchD, the sum of the decayed counts stored by its two Space Saving counters
is equal to the value that the Count-Min algorithm would store in that cell. However, Count-Min relies on an external
heap data structure to keep track of frequent items. By usinga data structureS, with just two Space Saving counters
per cell, we are able to dynamically maintain frequent items. Therefore, by usingO(dw) space as in Count-Min,
our algorithm can solve both thedecayed count estimationand theapproximate frequent items under forward decay
problems.

Here, we show that, with high probability, if an item is frequent, our algorithm will detect it. Indeed, given a
cell, by using a data structureS with two counters, we are able to detect themajority item candidatewith regard
to the sub-stream of items falling in that cell. LettingSi, j denote the total decayed count of the items falling in the

cell D[i][ j], the majority item is, if it exists, the item whose decayed count is greater thanSi, j

2 . The corresponding
majority item candidate in the cell is the item monitored by the Space Saving counter whose estimated decayed count
is maximum.

The main result of this section is the following theorem.

Theorem 2. If an item i is frequent, then it appears as a majority item candidate in at least one of the d cells in which
it falls with probability greater than or equal to1− ( 1

2φw)d.

Proof. Let k be a frequent item,j = hi(k), D[i][ j] one of thed cells in which the itemk is mapped to by the
corresponding hash function andf (i, j)

min the minimum of the two Space Saving counters available in thedata structureS
monitoring the items falling inD[i][ j]. Moreover, let f̂i,k be the estimated decayed count of itemk returned by Space
Saving for theD[i][hi(k)] cell.

Our algorithm will not output the itemk (and therefore will not be correct) iff for all of thed cells in which the
item k is mapped to by the corresponding hash functions, the itemk is not reported as a majority item candidate, so
that

f̂i,k ≤ f (i, j)
min ,∀i = 1, . . . , d. (15)

Indeed, by construction, our algorithm during a frequent item query only checks if an item is frequent when the
item is reported in the cell as a majority item candidate. By assumption, since the itemk is frequent, its decayed count
is fk > φC; since fk ≤ f̂i,k∀i = 1, . . . , d, it holds that

φC < fk ≤ f̂i,k∀i = 1, . . . , d. (16)

Let Si, j denote the total decayed count of the items falling in the cell D[i][ j]. By eq. (5), for the minimum decayed

count in a cellD[i][ j] it holds that f (i, j)
min ≤

Si, j

2 .
We must now determine the probability that the event described in eq. (15) occurs. This is the probability of

failing to correctly recognize a frequent item. Taking intoaccount thatφC < f̂i,k and f (i, j)
min ≤

Si, j

2 , it holds that

Si, j > 2φC. (17)

By the previous argument, it follows that

Pr[ f̂i,k ≤ f (i, j)
min ] < Pr[Si, j > 2φC]. (18)
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Reasoning as in section 5,E[Si, j] = C
w with C equal to the total decayed count as defined in Definition 4. Using

the Markov inequality we can bound the probability of failure (i.e., the probability of the item not being reported as a
majority item candidate) in a single cellD[i][ j] taking into account eq. (17) and (18)

Pr[ f̂i,k ≤ f (i, j)
min ] < Pr[Si, j > 2φC] ≤

E[Si, j ]

2φC
=

C
2φwC

=
1

2φw
. (19)

Therefore, we fail to identify a frequent itemk when in all of thed cellsD[i][ j], i = 1, . . . , d in which the frequent
item falls it is not reported as a majority item candidate in the data structureS. We now estimate the corresponding
probability. By eq. (19), the probability of failure is

Pr

















d
∧

i=1

( f̂i,k ≤ f (i, j)
min )

















< Pr

















d
∧

i=1

(Si, j > 2φC)

















≤

(

1
2φw

)d

. (20)

Consequently, we succeed with probability greater than or equal to 1−
(

1
2φw

)d
.

Remark 2. Since we proved in Theorem 2 that, if an item is frequent, thenit appears as a majority item candidate
in at least one of the cells in the sketch with high probability, it follows by the Space Saving design that two Space
Saving counters are necessary and sufficient to determine this majority item candidate. Using morethan two counters
is useless for our purposes, and only wastes precious space.

7. Theoretical comparison ofFDCMSS and λ-HCount

We provide here a thorough comparison of FDCMSS andλ-HCount. Both algorithms use a sketch data structure;
FDCMSS is based on Count-Min andλ-HCount on thehCountalgorithm [23]. However,λ-HCount relies on a
backward decay exponential function, whilst FDCMSS can useeither an exponential function or any other forward
decay function. In particular, the use of a polynomial function allows more flexibility with regard to time fading.
Indeed, using an exponential function the time fades faster, whilst with a polynomial function the times fades more
slowly. Another advantage of using forward decay is that FDCMSS can easily deal with out of order arrival of stream
items [9], something requiring significant effort to accommodate forλ-HCount.

Another difference is the use inλ-HCount of a dedicated data structureF to keep track of frequent items. Instead,
our algorithm FDCMSS does not require additional space beyond its sketch data structure. Even though a query for
frequent items requires in the worst caseO( 1

ǫ
(ln 1

δ
)2), a query execution only takes a few milliseconds and therefore

its complexity is, in practice, negligible (this has been verified in all of the experimental tests carried out). Moreover,
queries are posed to FDCMSS from time to time whilst updates happen with high frequency, especially in high-speed
streams. Therefore, FDCMSS has been designed to provide very fast updates, besides accurate results.

Theoretically, the main drawback ofλ-HCount lies in the huge amount of space required to attain its error bound.

In particular, theλ-HCount sketch requires
e(1−λ) ln (− M

ln p )

ǫ2
cells, whereM is the number of distinct items andp is the

success probability. Without taking into account the additional data structureF requiring r
s−ǫ entries, wherer is the

number of hash functions used, for a sketch using a total ofr ×m cells, we have:

r ×m=





















e(1− λ) ln (− M
ln p)

ǫ2





















, (21)

whilst, in our case, FDCMSS requires only

d× w =

⌈

ln
1
δ

e
2ǫ

⌉

. (22)

As an example, fixingλ = 0.99, M = 1048575,p = 0.96 andǫ = 0.001, a total ofr × m = 463779 cells are
required byλ-HCount. In order to achieve the same success probabilityp, in FDCMSS we need to setδ = 0.04 and
ǫ = 0.001, so thatp = 1− δ = 0.96 and a total of justd× w = 4375 cells is required instead by our algorithm.
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Let us now consider only the sketch size, without taking intoaccount theλ-HCount additional data structureF
required for tracking the frequent items. Each cell in theλ-HCount sketch stores a decayed count (a double, 8 bytes)
and a timestamp (a long, 8 bytes), whilst a FDCMSS cell storestwo Space Saving counters. A counter keeps track of
an item (an unsigned int, 4 bytes) and its decayed count (a double, 8 bytes). Therefore,λ-HCount requires 16 bytes
per cell and FDCMSS 24 bytes per cell.

Figures 1a and 1b plot, using a logarithmic scale, the sketchsize in kilobytes required respectively as a function
of the success probabilityp and as a function ofǫ for both algorithms. Here, we have fixed for the first plot the values
λ = 0.99, M = 1048575,ǫ = 0.001, and letp vary from 0.7 to 0.99. Similarly, for the second plot we have fixed
λ = 0.99,M = 1048575,p = 0.96, and letǫ vary from 0.001 to 0.01.

(a) Sketch size required as a function ofp (b) Sketch size required as a function ofǫ

Figure 1: Sketch sizes in Kilobytes

It is immediate verifying that, in order to attain its theoretical error bound,λ-HCount requires a huge amount of
space. On the contrary, FDCMSS achieves its bound using a tiny fraction of the space required byλ-HCount.

8. Experimental results

In this section, we report experimental results on both synthetic and real datasets. Here, we thoroughly compare
our algorithm againstλ-HCount [7] with regard to the performances on synthetic andreal datasets.

8.1. Synthetic datasets

We have implemented FDCMSS andλ-HCount in C++. FDCMSS uses thexxhashhash function, andλ-HCount
the FNV hash function as stated by its authors in [7]. The code has been compiled using the clang c++ compiler
v7.0 on Mac OS X v10.11.2 with the following flags: -Os -std=c++11. We recall here that, on Mac OS X, the
optimization flag -Os provides better optimization than the-O3 flag and is the standard for building the release build
of an application. The tests have been carried out on a machine equipped wth 16 GB of RAM and a 3.2 GHz quad-core
Intel Core i5 processor with 6 MB of cache level 3.

Regarding synthetic datasets, the input distribution usedin our experiments is the Zipf distribution. For each
different value ofn (number of items),φ (support threshold),ρ (skew of distribution) and sketch size, the algorithms
have been run 20 times using a different seed for the pseudo-random number generator associated to the distribution
(using the same seeds in the corresponding executions of different algorithms). For each input distribution generated,
the results have been averaged over all of the runs. The inputelements are 32 bits unsigned integers.

In order to provide a fair comparison of the algorithms, we make sure that the decayed frequencies computed by
both algorithms are equal. To this end, we use in FDCMSS the same exponential decay functiong(t − L) = ( 1

λ
)t−L

(in which the landmark time isL = 0) and the sameλ = 0.99 parameter as inλ-HCount. This way, for a given input
stream, the decayed counts of the input items and the set of frequent items computed by an exact algorithm are the
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same for both algorithms. However, it is worth reporting here that the use of a forward decay polynomial function
provides even better results for FDCMSS in terms of speed, measured asupdates per millisecond.

We compare our algorithm againstλ-HCount taking into account the following standard metrics: recall, precision,
mean absolute error, max absolute error, 96-th percentile absolute error, updates per millisecond. For each metric,
we plot the values (mean and confidence intervals) obtained varyingn, φ, ρ and the sketch size. In particular, for each
plot we shall always compare the algorithms by using exactlythe same sketch size in kilobytes. We will not take into
account the additional space required byλ-HCount for itsF data structure.

Recall, shown in Figure 2, is the total number of true frequent items reported over the number of true frequent
items given by an exact algorithm. Therefore, an algorithm is correct iff its recall is equal to 1 (or 100%). We note
here thatλ-HCount recall is always 1 since the algorithm inserts an item in theF data structure only when that item
has been detected as frequent. FDCMSS may instead provide a recall value lower than 1 (this follows immediately
by Theorem 2; however, the probability of failing to detect afrequent item may be made arbitrarily small and close
to zero by the user, setting appropriately the input parametersδ andǫ). This happened in our experiments in only one
case, when using a very small sketch size of only 6 KB. However, the measured recall value is 99.58% even in this
extreme case.

Precision, shown in Figure 3, is defined as the total number oftrue frequent items reported over the total number of
items reported. As such, this metric quantifies the number offalse positives outputted by an algorithm. It follows that,
from this point of view, an algorithm’s precision should ideally be 1 (or 100%). The precision achieved by FDCMSS
is 1 in the majority of the experiments, and our algorithm outperformedλ-HCount in particular when varyingn and
the sketch size, whilst providing anyway higher precision when varyingφ andρ.

Denoting with fi the true decayed count of itemi and with f̂i the corresponding decayed count computed by an
algorithm, then the absolute error is, by definition, the difference

∣

∣

∣ fi − f̂i
∣

∣

∣. Denoting withM the number of distinct

items in a stream (i.e., the stream domain size), themean absolute erroris then defined as
M
∑

i=1

| fi− f̂i |
M , i.e., the mean

of the absolute errors. Similarly, themax absolute erroris defined as maxi
∣

∣

∣ fi − f̂i
∣

∣

∣. Finally, consider theM absolute
errors in ascending sorted order: the 96-th percentile is the absolute error found in the position corresponding to 96%
of M.

Figures 4, 5 and 6 show, respectively, the mean, max and 96-thpercentile of absolute errors. FDCMSS outperforms
λ-HCount, in particular with regard to the experiments in which we varyn andφ.

Regarding the skew, when the value ofρ increases, a reduction in the error committed and a corresponding increase
in the accuracy is expected, owing to the Zipfian distribution. Indeed, the number of frequent items depends on the
value ofρ as follows. Increasingρ decreases the number of distinct items, i.e., we have less items but with higher
frequency. Vice versa, decreasingρ, we have more items but with lower frequency. It follows that, considering the
Count-Min sketch, the number of collisions decreases because there are less distinct numbers and the sketch cells can
therefore better estimate the items’ frequencies.

Let us now discuss the actual performances of the algorithmsin terms of updates per millisecond, where an
update is defined respectively as in Algorithm 2 forλ-HCount and Algorithm 4 for FDCMSS. As shown in Figure 7,
FDCMSS outperformsλ-HCount in all of the experiments carried out.

(a) varyingn (b) varyingφ (c) varyingρ (d) varying the sketch size

Figure 2: Recall (mean and confidence interval)
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(a) varyingn (b) varyingφ (c) varyingρ (d) varying the sketch size

Figure 3: Precision (mean and confidence interval)

(a) varyingn (b) varyingφ (c) varyingρ (d) varying the sketch size

Figure 4: Mean absolute error (mean and confidence interval)
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(a) varyingn (b) varyingφ (c) varyingρ (d) varying the sketch size

Figure 5: Max absolute error (mean and confidence interval)

(a) varyingn (b) varyingφ (c) varyingρ (d) varying the sketch size

Figure 6: 96-th Percentile absolute error (mean and confidence interval)

(a) varyingn (b) varyingφ (c) varyingρ (d) varying the sketch size

Figure 7: Updates/ms (mean and confidence interval)
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Table 5: Statistical characteristics of the real datasets

Kosarak Retail Q148 Webdocs

Count 8019015 908576 234954 299887139

Distinct items 41270 16470 11824 5267656

Min 1 0 0 1

Max 41270 16469 149464496 5267656

Mean 2387.2 3264.7 3392.9 122715

Median 640 1564 63 1988

Std. deviation 4308.5 4093.2 309782.5 549736

Skewness 3.5 1.5 478.1 6.1

8.2. Real datasets

We also provide experimental results for real datasets fromseveral domains [1] [13]. These datasets are public
domain and commonly utilized for data mining experiments. Moreover, a wide variety of statistical features, reported
in Table 5, characterize the datasets, described below.

Kosarak: This is a click-stream dataset of a Hungarian online news portal. It has been anonymized, and consists
of transactions, each of which is comprised of several integer items. In the experiments, we have considered every
single item in serial order.

Retail: This dataset contains retail market basket data coming froman anonymous Belgian store. Again, we
consider all of the items belonging to the dataset in serial order.

Q148: Derived from the KDD Cup 2000 data, compliments of Blue Martini, this dataset contains several data.
The ones we use for our experiments are the values of the attribute ”Request Processing Time Sum” (attribute number
148), coming from the ”clicks” dataset. A pre-processing step was required, in order to obtain the final dataset. We
had to replace all of the missing values (appearing as question marks) with the value of 0.

Webdocs:This dataset derives from a spidered collection of web html documents. The whole collection contains
about 1.7 millions documents, mainly written in English, and its size is about 5 GB. The resulting dataset, after
preliminary filtering and pre-processing, has a size of about 1.48 GB.

The experiments have been carried out by varying respectively φ and the sketch size. As we did for synthetic
datasets, for each plot we always compare the algorithms by using exactly the same sketch size in kilobytes. We are
not taking into account the additional space required byλ-HCount for itsF data structure.

Figures 8, 11, 14 and 17 show precision and recall for the datasets under examination. In all of the experiments,
FDCMSS andλ-HCount achieve 100% recall. Regarding precision, FDCMSS outperformsλ-HCount or provides
the same precision. Indeed, both algorithms achieve 100% precision when varyingφ, but FDCMSS outperforms
λ-HCount when varying the sketch size.

Figures 9, 12, 15 and 18 show mean and max absolute errors. Clearly, FDCMSS outperformsλ-HCount in all of
the experiments carried out. Figures 10, 13, 16 and 19 show the 96-th percentile of absolute error and the number of
updates per millisecond. FDCMSS outperformsλ-HCount in all of the experiments carried out for these metrics.

9. Conclusions

We have presented the design and implementation of FDCMSS, anew algorithm for mining frequent items in the
time fading model. Our algorithm is sketch based, and cleverly combines key ideas borrowed from forward decay, the
Count-Min and the Space Saving algorithms. We have formallyproved the correctness of our algorithm and shown,
through extensive experimental results, that FDCMSS outperformsλ-HCount, a recently developed algorithm, with
regard to speed, space used, precision attained and error committed on both synthetic and real datasets. Future work
include parallelizing the algorithm on both shared-memoryand message-passing architectures.
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(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 8: Kosarak: recall and precision (mean and confidenceinterval)

(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 9: Kosarak: Mean and max absolute error (mean and confidence interval)
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(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 10: Kosarak: Percentile absolute error and updates/ms (mean and confidence interval)

(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 11: Retail: recall and precision (mean and confidenceinterval)

(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 12: Retail: Mean and max absolute error (mean and confidence interval)
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(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 13: Retail: Percentile absolute error and updates/ms (mean and confidence interval)

(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 14: Q148: recall and precision (mean and confidence interval)

(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 15: Q148: Mean and max absolute error (mean and confidence interval)
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(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 16: Q148: Percentile absolute error and updates/ms (mean and confidence interval)

(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 17: Webdocs: recall and precision (mean and confidence interval)

(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 18: Webdocs: Mean and max absolute error (mean and confidence interval)
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(a) varyingφ (b) varying the sketch size (c) varyingφ (d) varying the sketch size

Figure 19: Webdocs: Percentile absolute error and updates/ms (mean and confidence interval)

23



References

[1] Frequent itemset mining dataset repository, 2016 (accessed August 1, 2016).http://fimi.ua.ac.be/data/ .

[2] Kevin Beyer and Raghu Ramakrishnan,Bottom–up computation of sparse and iceberg cubes, Proceedings of the acm sigmod international
conference on management of data. acm, new york, 1999, pp. 359–370.

[3] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur,Dynamic itemset counting and implication rules for market basket data,
Sigmod ’97: Proceedings of the 1997 acm sigmod international conference on management of data, 1997, pp. 255–264.

[4] Massimo Cafaro, Marco Pulimeno, and Piergiulio Tempesta, A parallel space saving algorithm for frequent items and thehurwitz zeta
distribution, Information Sciences329(2016), 1 –19.

[5] Massimo Cafaro and Piergiulio Tempesta,Finding frequent items in parallel, Concurr. Comput. : Pract. Exper.23 (October 2011), no. 15,
1774–1788.

[6] Moses Charikar, Kevin Chen, and Martin Farach-Colton,Finding frequent items in data streams, Icalp ’02: Proceedings of the 29th interna-
tional colloquium on automata, languages and programming,2002, pp. 693–703.

[7] Ling Chen and Qingling Mei,Mining frequent items in data stream using time fading model, Information Sciences257(2014), 54 –69.

[8] G. Cormode, F. Korn, and S. Tirthapura,Exponentially decayed aggregates on data streams, Data engineering, 2008. icde 2008. ieee 24th
international conference on, 2008April, pp. 1379–1381.

[9] G. Cormode, V. Shkapenyuk, D. Srivastava, and Bojian Xu,Forward decay: A practical time decay model for streaming systems, Data
engineering, 2009. icde ’09. ieee 25th international conference on, 2009March, pp. 138–149.

[10] Graham Cormode and Marios Hadjieleftheriou,Finding the frequent items in streams of data, Commun. ACM52 (2009), no. 10, 97–105.

[11] Graham Cormode and S. Muthukrishnan,An improved data stream summary: the count-min sketch and its applications, J. Algorithms55
(2005), no. 1, 58–75.

[12] , What’s hot and what’s not: Tracking most frequent items dynamically, ACM Trans. Database Syst.30 (March 2005), no. 1, 249–278.

[13] Michele Dallachiesa and Themis Palpanas,Identifying streaming frequent items in ad hoc time windows, Data Knowl. Eng.87 (2013), 66–90.

[14] Sudipto Das, Shyam Antony, Divyakant Agrawal, and Amr El Abbadi,Thread cooperation in multicore architectures for frequency counting
over multiple data streams, Proc. VLDB Endow.2 (August 2009), no. 1, 217–228.

[15] Mayur Datar, Aristides Gionis, Piotr Indyk, and RajeevMotwani, Maintaining stream statistics over sliding windows: (extended abstract),
Proceedings of the thirteenth annual acm-siam symposium ondiscrete algorithms, 2002, pp. 635–644.
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