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Abstract

We present FDCMSS, a new sketch—based algorithm for mingggient items in data streams. The algorithm cleverly
combines key ideas borrowed from forward decay, the Countavid the Space Saving algorithms. It works in the
time fading model, mining data streams according to the caglster model. We formally prove its correctness
and show, through extensive experimental results, thatatgarithm outperformg-HCount, a recently developed
algorithm, with regard to speed, space used, precisiomati@nd error committed on both synthetic and real datasets
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1. Introduction

A data streamr consists of a sequence ftems drawn from a univers®. Without loss of generality, let be
the number of distinct items ior i.e., letY = {1,2,...,m}. Depending on the applications, items may be numbers,
IP addresses, points, graph edges etc. Owing to the hugefsizean algorithm in charge of processing its items
is subject to the stringent requirement that no more thanpaiss over the data is allowed. In practice, storing the
items is not a feasible option. We refer the interested netd{80], a very good survey of streaming algorithms,
for additional details and underlying reasons motivatiesearch in this area. In this paper, we deal with mining of
frequent items in a data stream. This problem has been éénstudied, and is recognized as one of the most
important in the streaming algorithms literature, wheris ialso called, depending on the specific contbxt, list
analysig[21], market basket analysis|[3] ammeberg quenfl9], [2].

Among the many possible applications, we recall here ndtraffic analysis[[156],[[18],[[31], analysis of web
logs [€], Computational and theoretical Linguistics|[20].

Letting f; denote the frequency of the iteme U (i.e., its number of occurrences i), f = (f1,..., fn) the
frequency vector, < ¢ < 1 a support threshold arjf||; the 1-norm off (which represents the total number of
occurrences of all of the stream items), an approximatdisolvequires returning all of the items which are frequent,
i.e., those itemssuch thatfi > ¢|/f||; and, letting O< € < 1 denote the error committed, an algorithm must not return
any itemi such thatf; < (¢ — €)|lf||1. In particular, the error is such thak ¢.

Beyond the traditional distinction between deterministici randomized algorithms, in this area algorithms for
detecting frequentitems are also often referred to as leihgrcounteror sketctbased. In counter—based algorithms,
a fixed number of counters is used to keep track of stream itémaged, given a support thresholdO¢ < 1, the
number of possible frequent items is an integer belongintpéoopen interval (QL/¢). Sketch—based algorithms
monitor the data stream by using a set of counters, storedketh data structure, usually a bi-dimensional array.
Stream items are mapped by hash functionsto their correpgoells in the sketch. Whilst counter—based algorithms
are deterministic, sketch—based ones are randomized andl@a probabilistic guarantee.

The streaming model we have described so far is caldesth registeror strict turnstile model [30], since only
insertionsare allowed. On the other hand, in the more genenaistile model, deletionsare also allowed. An
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advantage of sketch—based algorithms is that they cary sagiport deletions and can therefore work in the turnstile
model; counter—based algorithms only work in the cash tegimsodel.

Among the counter based algorithms, the first sequentiakitfgn has been proposed by Misra and Gries [29].
Later, this algorithm was rediscovered independently bgnBiee et al. [[16] (the so-callderequentalgorithm) and
Karp et al. [24]. Recently developed counters—based dlgos includeSticky SamplingndLossy Counting27],
andSpace Savin{8]. Notable sketch—based algorithms @®untSketclf6], Group Tes{12], Count-Min[11] and
hCount[23].

Regarding parallel algorithmsg,1[5] and [4] present mesgagsing based parallel versions of the Frequent and
Space Saving algorithms. Among the algorithms for sharedrary architectures we recall here a parallel version
of Frequent[[35], a parallel version of Lossy Countingl[3#d parallel versions of Space Saving![32]/[14]. Novel
shared-memory parallel algorithms for frequent items weoently proposed in [33]. Accelerator based algorithms
for frequent items exploiting a GPU (Graphics Processing)uclude [22] and([17].

In this paper, we are concerned with the problem of detedtiaguent items in a stream with the additional
constraint that recent items must be weighted more thandoitams. The underlying assumption is that, in some
applications, recent data is certainly more useful andald&uthan older, stale data. Therefore, each item in tharstre
has an associated timestamp that will be used to deternsiveeight. In practice, instead of estimating frequency
counts, we are required to estimatecayed countsTwo different models have been proposed in the literature: the
sliding windowand thetime fadingmodel.

In the sliding window model [15] [30], freshness of receenils is captured by a time window, i.e., a temporal
interval of fixed size in which only the most receMtitems are taken into account; detection of frequent items is
strictly related to those items falling in the window. Theits in the stream become stale over time, since the window
periodically slides forward.

The time fading model [26] [8][]7] does not use a window slgliover time; freshness of more recent items
is instead emphasized bgding the frequency count of older items. This is achieved by usirdgcaying factor
0 < 1 < 1 to compute an item'decayed counfalso calleddecayed frequengyhrough decay functions that assign
greater weight to more recent elements. The older an itegripther its decayed count is: in the case of exponential
decay, the weight of an item occurredime units in the past is™", which is an exponentially decreasing quantity.

This paper is organized as follows. We recall in Sedtion 2dedjnitions and concepts that will be used in the rest
of the manuscript, and introduce in Secf{idn 3.tRdCount algorithm([7], a recently published sketch—-badgdrithm
that detects frequent items in the time fading model. Themjniroduce in Sectiohl4 our FDCMSS algorithm and
formally prove in SectionEl5 arid 6, respectively, its errouid and correctness. Next, we compaseCount to
FDCMSS from a theoretical perspective, and show that owrlgn achieves its error bound using a tiny fraction of
the space required bi*HCount. Then, we provide extensive experimental resnl®dctior 8, in which we compare
again FDCMSS versus-HCount from a quantitative, practical perspective, anairssthat FDCMSS outperforms
HCount with regard to speed, space used, precision attaimé@rror committed on both synthetic and real datasets.
Finally, we draw our conclusions in Sectioh 9.

2. Key ideas

Our algorithm cleverly combines ideas borrowed from forvdecay|[9], the Count-Min sketch—based algorithm
[11] , and the Space Saving counter—based algorithin [28hisnsection, we recall preliminary definitions and key
concepts.

Definition 1. Given an itemi with arrival timet;, adecay functiometurns a weight for the item. In our algorithm the
weightw(i, t) determined at timé, depends on the timestamypassociated to the item. Decay functions satisfy the
following properties: (iw(i,t) = 1 whent; = t and 0< w(i,t) < 1 for allt > t;; (i) wis monotone non-increasing as
time increases, i.et, >t = w(i,t") < w(i,t).

Regarding the time fading model, related work has mostlyletgul backward decayunctions, in which the
weight of an item is a function of its aga, where the age at timte> t; is simplya = t — t;. The term backward decay
stems from the aim of measuring from the current time backédtem’s timestamp.



Definition 2. A backward decay function is defined by a positive monotonginoreasing functiorf so that the
weight of theith item with arrival timet; determined at timeéis given byw(i, t) = ) — 1D The denominator in
the expression normalizes the weight, so that it obeys tiondj) of Definition[.

f-y) — f(0)

Prior algorithms and applications have been using backesgsdnential decay functions suchfqg) = e with
A > 0. Inour algorithm, we use instead a forward decay functiefined as follows. Under forward decay, the weight
of an item is computed on the amount of time between the aofvan item and a fixed poirit, called thdandmark
time, which, by convention, is some time earlier than thesBtamps of all of the items. The idea is to look forward
in time from the landmark to see an item, instead of lookingklgard from the current time.

Definition 3. Given a positive monotone non-decreasing functipand a landmark timé, the forward decayed

weight of an item with arrival timet; > L measured at time> t; is given byw(i, t) = gg((tt'_’LL))

Whent = t; the weight is 1 (conditioni) of Definition[d). Sinceg is monotone non-decreasing,tdacreases the
weight does not increase, andOn(i, t) < 1.

It's easy to prove that backward and forward exponentiabgemincide. In our algorithm, we could use the
exponential decay; however, we prefer to use the polynoimialard decay functiomg(n) = n?. It has been proved
that this class of functions (i.eg(n) = n’) satisfies aelative decayproperty, which states that for any tirhafter a
landmark timel, the weight for items with timestamy + (1 — y)L is the same. In practice, relative decay holds for
forward decay functions assigning the weight of an item depw® only on where the item falls as a fraction in the
window defined byL andt. As an example, a function for which relative decay holdggassto an item arriving half
way betweerl andt the same weight asncreases.

Intuitively, this property requires assigning to an itemigit which is a function of its relative age, i.e., its age
as a fraction of the total time period observed. Since baottwacay is only concerned with absolute age, it can not
provide relative decay. An important consequence of rdatecay is that it allows selecting a meaningful landmark
time L to choose for forward decay.

Besides its flexibility (e.g., choosing an appropriate poiyial function we can select and control a slower rate
of decay with regard to an exponential), another advantbfyeward decay is related to its ability to deal with out of
order arrival of stream items. Indeed, forward decay doesatypon items arriving in increasing order of timestamps.
On the contrary, under backward decay, handling out of cad@rals can require significantfert to accommodate.

Definition 4. Thedecayed counC, of a streanr of nitems is the sum of decayed weights of itef@s= Y., gg((tt_’LL))

We can now formally state the problem solved by our algoritapproximate frequent items under forward decay

Definition 5. (Frequent items under forward decay) For each item in thetjnp its decayed count is given by

fu= Yuoy g((tt:LL)) Given a threshold valug, the frequent items are all of the itemsatisfyingf, > ¢C.

Definition 6. (Approximate frequent items under forward decay probleimg@an error bound and a thresholg,
determine all of the items satisfyinfg > ¢C, and report no items witl, < (¢ — €)C.

Our goal is to design an algorithm solving tAg@proximate frequent items under forward deqagblem by
providing the following €, §) approximation

Definition 7. ((e, 6) approximation) LefA(c") denote the output of a randomized streaming algoriéhom inputo; it
is worth noting here thak(o) is a random variable. Moreover, 1&¢o) be the function tha is supposed to compute.
The algorithmA (e, §) approximated if Pr[|A(c) — (o) > €] < 6.

Count-Min is based on a sketch whose dimensions are deriyéldebinput parameters the error, and, the
probability of failure. In particular, for Count-Mid = [In 1/6] is the number of rows in the sketch awd= [e/¢€] is
the number of columns. Every cell in the sketch is a countbitlvis updated by hash functions. By using this data
structure, the algorithm solves with high probability (iwith probability greater than or equal to &)-thefrequency
estimationproblem for arbitrary items. The algorithm may also be edtzhto solve thapproximate frequent items
problem as well, by using an additional heap data structiniewis updated each time a cell is updated. Since in
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Count-Min the frequencies stored in the cells overestirtaterue frequencies, a point query for an arbitrary item
simply inspects all of the cells in which the item is mapped to by the corresponding Hiasttions and returns the
minimum of thosel counters.

In addition, Count-Min allows us reusing the same undegydata structure to solve (if needed), beside frequent
items, additional problems related to the same input stréam, quantiles, frequency estimation, medians, etc).
Moreover, the Count-Min data structure requires less spgtteregard to other sketch-based algorithms.

We shall prove later (see Theoré€in 2) that in our algorithnth Wwigh probability, if an itemi is frequent, then it
appears as a majority item candidate in at least one af gketch cells in which it falls. Therefore, in order to detect
frequent items, we decided to use the Space Saving algof28m This is a counter—based algorithm, designed to
solve theapproximate frequent itenggoblem using > [1/¢7 counters in order to determine the frequent items in the
input data stream.

We could use a dlierent counter—based algorithm (ekgequentl16]); our choice stems from the well-known fact
that Space Saving provides the greatest accuracy (precistal and average relative error) among the counterebase
algorithms|[[10][25]. Moreover, exploiting in FDCMSS the&e Saving algorithm within the sketch cells allows us
avoiding the need for an additional, separate data streitdukeep track of frequent items. We now briefly recall how
Space Saving works.

LetS denote the Space Saving stream summary data structuretitip8aipon arrival of an item works as shown
in the pseudocode of Algorithid 1. We denotedyy andc;.f respectively the item monitored by thth counter of
S and its corresponding estimated frequency. When proagssiritem which is already monitored by a counter, its
estimated frequency is incremented by its weightWhen processing an item which is not already monitored by
one of the available counters, there are two possibilitiea.counter is available, it will be in charge of monitoring
the item and its estimated frequency is set to its weightOtherwise, if all of the counters are already occupied
(their frequencies are filerent from zero), the counter storing the item with minimuegtiency is incremented by
its weightw. Then the monitored item is evicted from the counter andaagal by the new item. This happens since
an item which is not monitored can not have a frequency gréiade the minimal frequency. The complexity of the
Space Saving update procedur©{d).

Let o be the input stream anfl the stream summary data structure at the end of the sequSptae Saving
algorithm’s execution. Moreover, e}, c;.f be the sum of the counters & f, the exact frequency of an item f,

cjeS
its estimated frequencl= (fi, ..., fn) the frequency vectof™" the minimum frequency i$ ande, the estimated
error of itemv, i.e. an over-estimation of theftérence between the estimated and exact frequency.

Finally, denote byS, the set of counters i§ which are monitoring itemg&,| < k). It is worth noting here that

fmin = 0 when|S,| < k. The following relations hold (as shown in]28]):

> et =i, 1)

CjES
fofine f,_a,<f<f, vesS, (2)
f, < fmin, Ve S, 3)
mi [Ifll1
min it
frin { I J (4)
Therefore, it holds that
f,—f, < fm‘”sw{%J, veUu. (5)

To recap, we end this Section summarizing the reasons foicamg forward decay, the Count-Min and the Space
Saving algorithms:

o forward exponential decay coincides with backward exptiabtecay, so that we can still use exponentials;
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Algorithm 1 Space Saving update
Require: S, a stream summary; an item;w, the weight of itemj
Ensure: a stream summart§ containing frequent items

1: procedure SpacESAVINGUPDATE(S, j, W)

2: if jis monitoredhen

3 let ¢, be the counter monitoring

4: c.f —c.f+w

5: else

6: if there is a counter; which is not monitoring any iterthen
7: Cr.i « |

8: C.f —w

9: else
10: let ¢ be the counter monitoring the item with least hits
11 Cold «
12: Cs.f —Cs.f +W
13: end if
14: end if

15: end procedure

o forward decay allows for greater flexibility (e.g., choasgia polynomial function we can select dfdrent,
slower rate of decay with regard to an exponential);

o forward decay allows easily dealing with out of order arrivestream items;

o forward decay satisfies a relative decay property, whictestéat for any time after a landmark timé,, the
weight for items with timestamgpt + (1 — y)L is the same;

e the Count-Min algorithm allows us reusing the same undeglydata structure to solve (if needed), beside
frequent items, additional problems related to the samatisfream (e.g., quantiles, frequency estimation,
medians, etc);

¢ the Count-Min data structure requires less space with detgasther sketch-based algorithms;
e we use Space Saving to detect frequent items within the lsketts;

e the Space Saving algorithm provides the greatest accupaegigion, total and average relative error) among
the counter-based algorithms;

e the Space Saving algorithm allows us avoiding the need fadalitional, separate data structure to keep track
of frequent items.

3. The A-HCount algorithm

We now introducel-HCount [7], a recently published sketch—based algorithat tietects frequent items in the
time fading model by using a backward decay exponentialtfonc TheA-HCount algorithm, shown in pseudocode
as Algorithm2, requires a two dimensional skefztof sizer x mto store decayed weights and timestamps, and a
doubly linked listF to store frequent items candidates, accessed through duragion. 1-HCount is based on the
use ofr FNV hash function$;(x),i = 1,...,r which uniformly and independently map an item to an integehe
interval [1, m]; the algorithm requires a support thresheland an error bouné The occurrence of an item at time
is weighted in time by a factor''2, whereAl represents the fading factor €01 < 1). The decayed count of an item
is given by the sum of its decayed weight in time. The decayethtof the strearar, as proved by the authors, is
bounded by:L-.



Each entnyD[i, hj(X)] in the sketchD storesD[i, hj(x)].swhich is the decayed count of itex{also calleddensity,
andDJi, hj(x)].t which is the last time the value @&[i, h;(X)].swas updated. Whenever an itenarrives, its decayed
count is updated in all of thecellsD[i, hi(x)],i = 1,...,r. Then, the algorithm computdg = mini< {D[i, hi(X)].s}
as the estimated decayed counkpif f, is greater than or equal to the threshéid than the tupléx, ty, f,} is created
or updated in the linked ligE. The authors proved that the listrequires at most-— entries to store all of the items
with decayed count greater thgn. Basically, .-HCount can be considered a variant of Count-Min, desigoed t
support frequent items detection in the time fading model.

The authors ofti-HCount proved that with a sketch requiriw space, wheréM is the number of
distinct items ang is the success probability, and an additional data stracquiring at most— space, whereis
the number of hash functions used, their algorithm is abkstonate the frequent items decayed count with an error
less than;s; with probability greater thap. The algorithm’s analysis also shows that all of the itemssehexact
decayed count exceeds; will be output (there are no false negatives) and no itemssefaecayed count is less than
75 will be output.

The worst case complexity afHCount depends on the time required for updating the skitelmd the linked
list F. When an item is received from the stream, the algorithm adegp hash functions and update®ntries in
D; the linked listF is also updated accordingly. Since the linked ksis accessed through a hash function, and its
update is done in constant time, overall the worst case aaxitplof per item update i©(1). Therefore, the whole
algorithm has worst case complexidyfr), i.e., O( In(—%)). The space complexity is given by the memory required

by the sketctD and the linked lisE. Overall, the worst case space complexit{s - m) = O(In(;'"_”)).

Algorithm 2 2-HCount algorithm: the update phase
Require: A: fading factor;e: error bounds: support thresholdx: received itemt: arrival time;
Ensure: update of sketcld and linked listF related to itenx

1: procedure A-HCount Uppate(4, €, S, X, 1)

2: fy « o0
3: fork=1tordo
4 y « h(X)
5: D[k, y].s < D[k, y].s- APkt 4 1
6: D[k, y].t «t
7: if D[k,y].s< fx then
8: fy — D[k Y].s
9: end if
10: end for
11: i fy > ££ then
12: if x e F then
13: change its entry tox, f;, t} and move it to the tail of the quetre
14: else
15: if the queud- is full then
16: delete the item at the head of the quéue
17: end if
18: insert{x, i t} at the tail of the queuk
19: end if
20: end if

21: end procedure

4. The FDCMSS algorithm

In this section, we introduce our algorithm, distinguighihree diferent phases: initialization, stream processing,
and querying.



The algorithm’s initialization, shown in pseudo-code agd@ithm[3, requires as input parametershe error;

d, the probability of failure, the support threshold; arigli, a timestamp. Initialization returns a sketbh The
procedure starts derivirdy= [In 1/67, the number of rows in the sketch and= rz—i], the number of columns in the
sketch. We shall explain the reason why wewét this value in Sectionl 5.

Then, for each of thd x w cells available in the sketdh we allocate a data structufewith two Space Saving
countersc; andc,. Given a countec;, j = 1,2, we denote by;.i andc;.f respectively the counter’s item and
estimated decayed count. Finally, we set the support thigdh ¢, selectd pairwise independent hash functions
hi,....hq : [m — [w] mappingm distinct items intow cells, initialize thecountvariable, representing the total
decayed count of all of the items in the stream (see Defirifjdo zero and thé variable (our landmark time) tig,
which is a timestamp less than or equal to all of the itemsetamps. The worst case complexity of the initialization
procedure i(2 In 1).

Updating the sketch upon arrival of a stream itemith timestampt;, shown in pseudo-code as Algorithih 4,
requires computing, which is the forward decayed weight of the item, and incneting countby x. Note that when
computingx, we do not normalize the result (dividing lggt — L) wheret is the query time, since we do not know in
advance the query time); normalization occurs instead atygtime. Then, we update thiecells in which the item
is mapped to by the corresponding hash functions by usingplaee Saving item update procedure. The worst case
complexity of the update procedure@%In %).

Finally, in order to retrieve the frequent items, a query barposed when needed. lidie the query time. The
guery, shown in pseudo-code as Algorithim 5, initialiBegn empty set, and then it inspects each ofdhew cells
in the sketclD. For a given cell, we determirg,, the counter in the data structusewith maximum decayed count.
We normalize the decayed count storedjdividing by g(t — L), and then compare this quantity w'rﬂac(‘t’%‘;. If the
normalized decayed count is greater, we pose a point quethdédtemce.i, shown in pseudo-code as Algorittitn 6.
If p, the returned value, is greater t fE’L‘)t then we insert irR the pair €m.i, p).

The point query for an itemireturns its estimated decayed count. After initializingahswervariable to infinity,
we inspect each of the cells in which the item is mapped to by the corresponding Hasttions, to determine the
minimum decayed count of the item. In each cell, if the iterst@@ed by one of the Space Saving counters, we set
answerto the minimum betweeanswerand the corresponding counter’s decayed count. Otherwisee(of the two
counters monitors the itef), we setanswerto the minimum betweeanswerand the minimum decayed count stored
in the counters. We return the normalizaaswer dividing by g(t — L).

From the previous discussion it is clear that our algorithsn aolves thelecayed count estimatigrroblem for
arbitrary items. Indeed, given an item, itfBoes to pose a point query for that item. Finally, since thestvoase
complexity of a point query i©(In %), the worst case complexity of the query procedur@@(ln %)2). We shall
argue in sectionl7 that a query only takes a few millisecomdstiaerefore its complexity is, in practice, negligible.

Algorithm 3 Initialize
Require: ¢, error;é, probability of failure;¢, threshold;
Ensure: a sketchD[1...d][1...w] properly initialized
1: procedure INITIALIZE(€, &, @, tinit)
d < [In1/8]
W |'2—ee'|
fori=1toddo
for j=1towdo > allocate a data structutewith two counters, ¢ for DIi][ j]
Dl][]] « S
end for
end for
Set support threshold ®
10: Choosdl pairwise independent hash functidms. .., hg : [m] — [w]
11: count— 0
12: L « tinit > tinit Must be< of all of the items’ timestamps
13: end procedure
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Algorithm 4 Process
Require: i, an item;t;, timestamp of iteni;
Ensure: update of sketch related to item
1: procedure process(i, t;) > compute the decayed weight of itéarand update the sketch
2: X < g(ti— L)
3 count« count+ x
4 for j=1toddo
5 S « DIjl[hi()]
6: SpACESAVINGUPDATE(S, i, X)
7
8:

end for
end procedure

Algorithm 5 Query

Require: t, query time

Ensure: set of frequent items
1: procedure Query(t)

2: R=10
3: fori=1toddo
4: for j=1towdo
5: S « D[illj]
6: let c; andc; be the counters it¥, andcy, the counter with maximum decayed count
7: Cm < ARGMAX(C1, Cp)
8: it ol > pes then
9 p < POINTESTIMATE(C., t)
10: if p> ¢é‘(‘t’f[‘; then
11 R« RU{(cn.i, p)}
12: end if
13: end if
14: end for
15: end for
16: return R

17: end procedure




Algorithm 6 PointEstimate

Require: j, an item;t, query time

Ensure: estimation of itemj decayed count;
1: procedure poINTESTIMATE( ], t)

2 answer— oo
3 fori=1toddo

4 S < DIi][hi(j)]

5: let c; andc; be the counters iy

6: if j ==cy.i then

7 answer«— min(answerc;. f)

8 else

9 if j == cp.ithen

10: answer«— min(answeyc,. f)
11 else

12: m « miN(Cy. f, Co.f)

13: answer« min(answeym)
14: end if

15: end if

16: end for

17: return 2nswer

(t-L)
18: end procedure

4.1. Example

Here, we provide a concise example of the FDCMSS update agry gigorithms. Of course, illustrating a really
significant example will require using a sketch of suitabi@ehsions, but, in the interest of clarity and to avoid
wasting space, we use a skefetwith d = 2 rows andv = 5 columns. Setting andw implicitly determines ande.

The other parameters gre= 1.1, ¢ = 0.025 and1 = 0.999. Tabld L shows the state of the sketch after processing
1000 items coming from a stream derived from the univéfse {x e N: 1 < x < 20}.

Table[2 depicts the sketch state after updating the datetsteuupon arrival of item 6 with timestamp 1001. The
hash functions associated to each row map the item 6 regglgcto column 5 in the first row and to column 3 in
the second row of the sketch. Since item 6 was already meuwitoy a counter in sketch cel3[1][5] and D[2][3]

(see Tablé11), Space Saving increments these counters imgatié corresponding weight which is computed as
g(t-L) = (1/2)"" = 2.72 wheret = 1001 is the timestamp of item 6 ahd= 0 is the landmark time.

Upon arrival of item 5 with timestamp 1002 (see TdHle 3), taghhfunctions associated to each row map the item
respectively to column 1 in the first row and to column 5 in tkeand row of the sketch. However, this time the item
is not monitored and both counters are full in the sketcls@{lL][1] and D[2][5]. Therefore, the counters monitoring
the item with minimum weight are selected and updated by &@awing evicting the monitored items, substituting
them with item 5 and incrementing them by the correspondieig/at.

We now show how to query the sketch to retrieve the frequent tandidates. We query the sketch after updating
it upon arrival of item 5 and before processing the next itaihen querying the sketch data structure, all of the
involved weights are normalized dividing them by {)'«~- = 2.725, whereq = 1003 is the query’s timestamp.

The estimated normalized decayed count is equal at thig @ = 632671; sincep = 0.025, the threshold
required for an item to be considered frequent is givegp®y= 15.817.

We scan each of the sketch cells, determine the monitoredtih maximum weight and, if the normalized
weight of this item exceeds the threshold, we execute a mpiety for this item, which returns the normalized
minimum weight associated to the item in the sketch. Thencarapare the normalized minimum weight to the
threshold again, and consider the item frequent if it exseled threshold.

For instance, we determine that item 2 is frequent as foll@usce item 2 is the majority item iB[1][1] and its
normalized weight 2038 is greater than the threshold, we execute a point querghagroduces the best frequency
estimate for the item. In our case the point query for item tRrres 19808, and item 2 therefore is selected as
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candidate frequent item because its normalized minimunghtes still greater than the threshold. Table 4 includes

all of the frequent item candidates as returned by the gugoyithm. None of the other items is selected as candidate
frequent item. For instance, item 14 is not selected as datalfrequent item since its normalized minimum weight

is 1335< 15.817.

Table 1: Sketch state after 1000 updates

ltem Weight| Item Weight| Item Weight| Item Weight| Item Weight
C1 2 555.33 3 262.06) 12 36.55| 10 52.27 6 98.22
C 4 53723 14 10354 17 1478 18 21.88| 11  36.76
C1 4 17220 14 36.40 6 125.75 2 539.78 3 263.07
C 12 109.28| 16  35.78 7 125.15 8 117.33] 10 193.90

Table 2: Sketch state after arrival of item 6 with timestar@pil

Iltem Weight| Iltem Weight| Iltem Weight| Item Weight| Item Weight
C1 2 555.33 3 262.06f 12 36.55| 10 52.27 6 100.94
C 4 537.23| 14 10354 17 1478 18 21.88| 11  36.76
C1 4 17220 14 36.40 6 128.47 2 539.78 3 263.07
C2 12 109.28/ 16  35.78 7 125.15 8 117.33] 10 193.90

Table 3: Sketch state after arrival of item 5 with timestarap2

ltem Weight| Item Weight| Item Weight| Item Weight| Item Weight
C1 2 555.33 3 262.06f 12 36.55| 10 52.27 6 100.94
C 5 539.95| 14 10354 17 14.78| 18 21.83] 11 36.76
C1 4 17220 14 36.40 6 128.47 2 539.78 3  263.07
C 12 109.28| 16  35.78 7 125.15 8 117.33 5 196.62

5. Error bound

In this section, we formally prove the error bound of our aithm. Let f, and f; be respectively the exact and
estimated decayed count of itemAe denote byS a Space Saving summary, which is a data structure preseatin e
one of the cells available in the sketbh LetC be the decayed count of all of the items in the strea(see Definition
[4). The main result of this section is the following theorem.

Theorem 1. Yk € [m], f. estimates the exact decayed coumwith error less thansC and probability greater than
1-6.

Proof. The algorithm is based on the usedpairwise independent hash functidms...,hy : [m] — [w]. In the
following, we shall use related indicator random variabhgg defined as follows:

Table 4: Frequent Item Candidates

‘ ltem ‘ Normalized Decayed Weigr{t

2 198.08
3 96.16
5 72.15
6 37.04
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Ii,j,k= { 1 hl(k) =_j ) (6)

0 otherwise

In other words, the indicator random variableg are equal to one when the itékre [m] falls in the D[i][ j] cell.
By pairwise independence of the hash functions, it followad the expected value &fjx is

. 1 2
Ellijl = Prih() = j] = = = EE 6
Denote byS; j the sum of the decayed counts of the items falling in the@EN[ j], i.e.,
m
Sij= Z ficli, k- (8)
k=1

Our algorithm processes each item falling in the same celldizg Space Saving with two counters. Now, we
bound the error committed by Space Saving. By Efy. (5), thter efran item monitored by a Space Saving counter is
bounded by the sum of the decayed counts of the items whikin fhle same cell divided by the number of counters.
Therefore, denoting bﬁ,k the estimated decayed count of itkmmeturned by Space Saving for tBxi][ hj(k)] cell and
by fi its exact decayed count, it holds that

S
flk_fk<% 9)

By linearity of expectation,

Slj [Z fklljk}—szE[lljk] (10)

with C equal to the total decayed count, as defined in Definfifion Holds that, on average,

ZEC eC
E[fix - fi] < E[s.,] S =5 (11)
Since the errof;, — f, is nonnegative, we can apply the Markov inequality, obtajni
- E[fix - f
Pr[fi,k - f > EC] < M < i =el (12)

eC ~ eeC
It follows that, when considering all of tiiecells in which items are mapped to by the independent hasttiturs
hi,i =1,...,d, and recalling that the estimated decayed cdunt mln{fl Ks - - fd K}, we get

Pr[fe — fc > €C] = Pr[min{fiy, ..., fax} — f« > €C]

d
=Pr /\(ﬁ,k - fk> EC)}
i=1
. (13)
= ]_[ Pr{f — fi > €C]
i=1
<ed=4¢
Consequently,
Pr[f — fc < C] > 1-6. (14)
o
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Remark 1. Here, we explain the reason why we set 5~ when we initialize the sketch data structure. In Theorem
[@, letting w unspecified in equatiof_(]L0), we can easily derive the miatiip between andw at the end of the

1 . I .
I;Zgaj'vg. Settingw = 5 we minimize the total space occupied by the sketch datatateicindeed, the
logl |

total space isvd = Wisgone:

Theoremd =

minimizing analyticallywd with regard tow, we obtain the minimum fow = .

6. Correctness

We are going to formally prove the correctness of our algarit Before discussing its correctness, it is worth
noting here that given a cell in the sketbh the sum of the decayed counts stored by its two Space Sawingers
is equal to the value that the Count-Min algorithm would storthat cell. However, Count-Min relies on an external
heap data structure to keep track of frequent items. By wsighgta structureés, with just two Space Saving counters
per cell, we are able to dynamically maintain frequent itefiberefore, by using>(dw) space as in Count-Min,
our algorithm can solve both tldecayed count estimati@nd theapproximate frequent items under forward decay
problems.

Here, we show that, with high probability, if an item is fresui, our algorithm will detect it. Indeed, given a
cell, by using a data structu® with two counters, we are able to detect thejority item candidatevith regard
to the sub-stream of items falling in that cell. LettiBg; denote the total decayed count of the items falling in the
cell D[i][ j], the majority item is, if it exists, the item whose decayediat is greater thal%‘. The corresponding
majority item candidate in the cell is the item monitored by Space Saving counter whose estimated decayed count
is maximum.

The main result of this section is the following theorem.

Theorem 2. If an item i is frequent, then it appears as a majority itemdidate in at least one of the d cells in which
it falls with probability greater than or equal th — (ﬁ d,

Proof. Let k be a frequent itemj = h;(k), DI[i][ j] one of thed cells in which the itemk is mapped to by the
corresponding hash function arfi”’ the minimum of the two Space Saving counters available inlta structure
monitoring the items falling iD[i][ j]. Moreover, Iethi,k be the estimated decayed count of itekmeturned by Space
Saving for theD[i][ hi(K)] cell.

Our algorithm will not output the iterk (and therefore will not be correctfifor all of thed cells in which the
item k is mapped to by the corresponding hash functions, the ité&smot reported as a majority item candidate, so
that

o<t vi=1,. .. d (15)

min
Indeed, by construction, our algorithm during a frequesgrnitquery only checks if an item is frequent when the

item is reported in the cell as a majority item candidate. 8suanption, since the itekis frequent, its decayed count
is fx > ¢C; sincef, < fixVi=1,...,d, it holds that

¢C < fx < f’i\’k\/i =1...,d (16)

LetS; j denote the total decayed count of the items falling in theE][ j]. By eq. [3), for the minimum decayed
countin a celD[i][ j] it holds thatf®:) < 21

min = 2

We must now determine the probability that the event desdrih eq. [(Ib) occurs. This is the probability of

failing to correctly recognize a frequent item. Taking iatcount thappC < fi, andf®) < S it holds that

min = 2
Sij > 2¢C. a7
By the previous argument, it follows that
Prifx < f491 < Pr[S; | > 24C]. (18)
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Reasoning as in secti¢h B[S; ;] = v% with C equal to the total decayed count as defined in Definiflon 4ndJsi
the Markov inequality we can bound the probability of fadifi.e., the probability of the item not being reported as a
majority item candidate) in a single c&Ni][ j] taking into account eq[{17) and{18)
E[Sij] C 1

2¢C 2¢WC 26W'
Therefore, we fail to identify a frequent itekwhen in all of thed cellsDJ[i][ j],i = 1, ..., d in which the frequent

item falls it is not reported as a majority item candidatehia tata structur§. We now estimate the corresponding
probability. By eq.[(IB), the probability of failure is

d ~ 0 d 1 d

Consequently, we succeed with probability greater tharmmoakto 1— (zi)

Prifix < £80] < Pr{S;; > 2¢C] <

— min

(19)

Pr < Pr

O

Remark 2. Since we proved in Theorelm 2 that, if an item is frequent, theppears as a majority item candidate
in at least one of the cells in the sketch with high probapiiitfollows by the Space Saving design that two Space
Saving counters are necessary anisient to determine this majority item candidate. Using ntbes two counters

is useless for our purposes, and only wastes precious space.

7. Theoretical comparison ofF DCMSS and A-HCount

We provide here a thorough comparison of FDCMSS &htlCount. Both algorithms use a sketch data structure;
FDCMSS is based on Count-Min andHCount on thehCountalgorithm [23]. HoweverA-HCount relies on a
backward decay exponential function, whilst FDCMSS canaifeer an exponential function or any other forward
decay function. In particular, the use of a polynomial fumetallows more flexibility with regard to time fading.
Indeed, using an exponential function the time fades faateitst with a polynomial function the times fades more
slowly. Another advantage of using forward decay is that M3S can easily deal with out of order arrival of stream
items [9], something requiring significanffert to accommodate for-HCount.

Another diference is the use irHCount of a dedicated data structureo keep track of frequent items. Instead,
our algorithm FDCMSS does not require additional space heys sketch data structure. Even though a query for
frequent items requires in the worst c.ﬁ(e%(ln %)2), a query execution only takes a few milliseconds and tloeeef
its complexity is, in practice, negligible (this has beenfied in all of the experimental tests carried out). Moregve
gueries are posed to FDCMSS from time to time whilst updaaggén with high frequency, especially in high-speed
streams. Therefore, FDCMSS has been designed to providdéastrupdates, besides accurate results.

Theoretically, the main drawback @fHCount lies in the huge amount of space required to attaierior bound.

M
In particular, thet-HCount sketch reqwrM cells, whereM is the number of distinct items arglis the

success probability. Without taking into account the addil data structur& requiring ;= entries, where is the
number of hash functions used, for a sketch using a totakah cells, we have:

e(l—/l)ln(—lnp)
whilst, in our case, FDCMSS requires only
le
d =|In=—|. 22
xW {n o ZJ (22)

As an example, fixingl = 0.99, M = 1048575,p = 0.96 ande = 0.001, a total ofr x m = 463779 cells are
required byd-HCount. In order to achieve the same success probabpility FDCMSS we need to sét= 0.04 and
€ =0.001, so thap = 1 -6 = 0.96 and a total of justl x w = 4375 cells is required instead by our algorithm.
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Let us now consider only the sketch size, without taking extoount thel-HCount additional data structufe
required for tracking the frequent items. Each cell in.iHdCount sketch stores a decayed count (a double, 8 bytes)
and a timestamp (a long, 8 bytes), whilst a FDCMSS cell stivesSpace Saving counters. A counter keeps track of
an item (an unsigned int, 4 bytes) and its decayed count (blelp8 bytes). Therefor@-HCount requires 16 bytes
per cell and FDCMSS 24 bytes per cell.

FiguredTh and1b plot, using a logarithmic scale, the skaghin kilobytes required respectively as a function
of the success probabilifyand as a function of for both algorithms. Here, we have fixed for the first plot ta&res
A =099, M = 1048575, = 0.001, and letp vary from 0.7 to 0.99. Similarly, for the second plot we hawed
A=0.99,M = 1048575p = 0.96, and let vary from 0.001 to 0.01.

A=0.99, M = 1048575, € =0.001 A=0.99, M = 1048575, p = 0.96
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(a) Sketch size required as a functionpof (b) Sketch size required as a functioneof

Figure 1: Sketch sizes in Kilobytes

It is immediate verifying that, in order to attain its thetical error bound-HCount requires a huge amount of
space. On the contrary, FDCMSS achieves its bound using &&cation of the space required byHCount.

8. Experimental results

In this section, we report experimental results on bothisstit and real datasets. Here, we thoroughly compare
our algorithm against-HCount [7] with regard to the performances on synthetic rmad datasets.

8.1. Synthetic datasets

We have implemented FDCMSS aneHCount in G-+. FDCMSS uses thexhashhash function, and-HCount
the FNV hash function as stated by its authors[in [7]. The code has bempiled using the clang+e- compiler
v7.0 on Mac OS X v10.11.2 with the following flags: -Os =std+11. We recall here that, on Mac OS X, the
optimization flag -Os provides better optimization than408 flag and is the standard for building the release build
of an application. The tests have been carried out on a maeljnipped wth 16 GB of RAM and a 3.2 GHz quad-core
Intel Core i5 processor with 6 MB of cache level 3.

Regarding synthetic datasets, the input distribution usealr experiments is the Zipf distribution. For each
different value oh (number of items)¢ (support threshold) (skew of distribution) and sketch size, the algorithms
have been run 20 times using dfdrent seed for the pseudo-random number generator agzbtiahe distribution
(using the same seeds in the corresponding executionffefatit algorithms). For each input distribution generated,
the results have been averaged over all of the runs. The éguents are 32 bits unsigned integers.

In order to provide a fair comparison of the algorithms, we&kensure that the decayed frequencies computed by
both algorithms are equal. To this end, we use in FDCMSS thee sxponential decay functiaft — L) = (%)t‘L
(in which the landmark time ik = 0) and the samg@ = 0.99 parameter as in-HCount. This way, for a given input
stream, the decayed counts of the input items and the se¢qdiént items computed by an exact algorithm are the
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same for both algorithms. However, it is worth reportingehtirat the use of a forward decay polynomial function
provides even better results for FDCMSS in terms of speedsnred asipdates per millisecond

We compare our algorithm againsHCount taking into account the following standard metriegall, precision
mean absolute errgimax absolute errqro6-th percentile absolute errpupdates per millisecond-or each metric,
we plot the values (mean and confidence intervals) obtaiagdngn, ¢, p and the sketch size. In particular, for each
plot we shall always compare the algorithms by using exdh#ysame sketch size in kilobytes. We will not take into
account the additional space requiredblCount for itsF data structure.

Recall, shown in Figurg] 2, is the total number of true frequims reported over the number of true frequent
items given by an exact algorithm. Therefore, an algoriteroarrect ff its recall is equal to 1 (or 100%). We note
here thati-HCount recall is always 1 since the algorithm inserts am ite the F data structure only when that item
has been detected as frequent. FDCMSS may instead provetmk value lower than 1 (this follows immediately
by TheoreniP; however, the probability of failing to detedteguent item may be made arbitrarily small and close
to zero by the user, setting appropriately the input pararsé&tande). This happened in our experiments in only one
case, when using a very small sketch size of only 6 KB. Howeliermeasured recall value is 99.58% even in this
extreme case.

Precision, shown in Figufé 3, is defined as the total numbiueffrequent items reported over the total number of
items reported. As such, this metric quantifies the numb&sé positives outputted by an algorithm. It follows that,
from this point of view, an algorithm’s precision should &g be 1 (or 100%). The precision achieved by FDCMSS
is 1 in the majority of the experiments, and our algorithmpeutormedi-HCount in particular when varying and
the sketch size, whilst providing anyway higher precisidrewvaryings andp.

Denoting with f; the true decayed count of iteirand with f; the corresponding decayed count computed by an
algorithm, then the absolute error is, by definition, thﬁetdénce| fi — f.| Denoting withM the number of distinct

M [f_f .
items in a stream (i.e., the stream domain size),niean absolute errois then defined ag’ % i.e., the mean
i=1

of the absolute errors. Similarly, tmeax absolute errors defined as ma>|<fi - fAi|. Finally, consider thévl absolute
errors in ascending sorted order: the 96-th percentilesisbisolute error found in the position corresponding to 96%
of M.

Figure$# b and 6 show, respectively, the mean, max and pértientile of absolute errors. FDCMSS outperforms
A-HCount, in particular with regard to the experiments in erhive varyn andé.

Regarding the skew, when the valugadficreases, a reduction in the error committed and a cornepgincrease
in the accuracy is expected, owing to the Zipfian distributi;ndeed, the number of frequent items depends on the
value ofp as follows. Increasing decreases the number of distinct items, i.e., we have lessibut with higher
frequency. Vice versa, decreasingwe have more items but with lower frequency. It follows thatnsidering the
Count-Min sketch, the number of collisions decreases tscthere are less distinct numbers and the sketch cells can
therefore better estimate the items’ frequencies.

Let us now discuss the actual performances of the algoriinmierms of updates per millisecond, where an
update is defined respectively as in Algorithim 2 feilCount and Algorithni ¥4 for FDCMSS. As shown in Figlie 7,
FDCMSS outperforma-HCount in all of the experiments carried out.

p =1.1, ¢ =0.01, sketch size = 24 KB o =1.1,n =50 M, sketch size = 24 KB n=>50M, ¢ =0.01, sketch size = 24 KB n=50M, p=11, ¢ =0.01
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Figure 2: Recall (mean and confidence interval)
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Figure 4: Mean absolute error (mean and confidence interval)
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Table 5: Statistical characteristics of the real datasets

‘ Kosarak‘ Retail ‘ Q148 Webdocs
Count 8019015| 908576| 234954 | 299887139
Distinct items| 41270 | 16470 11824 5267656
Min 1 0 0 1
Max 41270 | 16469 | 149464496| 5267656
Mean 2387.2 | 3264.7 3392.9 122715
Median 640 1564 63 1988
Std. deviation| 4308.5 | 4093.2| 309782.5 549736
Skewness 3.5 15 478.1 6.1

8.2. Real datasets

We also provide experimental results for real datasets Beweral domains [1] [13]. These datasets are public
domain and commonly utilized for data mining experimentsrébver, a wide variety of statistical features, reported
in Table[%, characterize the datasets, described below.

Kosarak: This is a click-stream dataset of a Hungarian online newtapdt has been anonymized, and consists
of transactions, each of which is comprised of several eitéggms. In the experiments, we have considered every
single item in serial order.

Retail: This dataset contains retail market basket data coming inranonymous Belgian store. Again, we
consider all of the items belonging to the dataset in ser@d¢io

Q148: Derived from the KDD Cup 2000 data, compliments of Blue Martthis dataset contains several data.
The ones we use for our experiments are the values of theutiriRequest Processing Time Sum” (attribute number
148), coming from the "clicks” dataset. A pre-processirgpsivas required, in order to obtain the final dataset. We
had to replace all of the missing values (appearing as questarks) with the value of 0.

Webdocs: This dataset derives from a spidered collection of web htmeldnents. The whole collection contains
about 1.7 millions documents, mainly written in Englishdats size is about 5 GB. The resulting dataset, after
preliminary filtering and pre-processing, has a size of alhal8 GB.

The experiments have been carried out by varying respéctdvand the sketch size. As we did for synthetic
datasets, for each plot we always compare the algorithmsimg @xactly the same sketch size in kilobytes. We are
not taking into account the additional space required{yCount for itsF data structure.

Figured 8[IN T4 arfd 17 show precision and recall for thesdtgainder examination. In all of the experiments,
FDCMSS andt-HCount achieve 100% recall. Regarding precision, FDCM8®erformsi-HCount or provides
the same precision. Indeed, both algorithms achieve 10@¥igion when varying, but FDCMSS outperforms
A-HCount when varying the sketch size.

Figured [ 1P, 15 arild 18 show mean and max absolute erroex\GCEDCMSS outperforms-HCount in all of
the experiments carried out. Figufes [10,[13, 16[and 19 she®6kth percentile of absolute error and the number of
updates per millisecond. FDCMSS outperfortald Count in all of the experiments carried out for these nastri

9. Conclusions

We have presented the design and implementation of FDCMB8&8yalgorithm for mining frequent items in the
time fading model. Our algorithm is sketch based, and clgwambines key ideas borrowed from forward decay, the
Count-Min and the Space Saving algorithms. We have fornpathyed the correctness of our algorithm and shown,
through extensive experimental results, that FDCMSS ofdpeas A-HCount, a recently developed algorithm, with
regard to speed, space used, precision attained and emanitted on both synthetic and real datasets. Future work
include parallelizing the algorithm on both shared-menang message-passing architectures.
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Figure 11: Retail: recall and precision (mean and confidérteeval)
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Figure 17: Webdocs: recall and precision (mean and confedienerval)
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