
1

A solution to bi/tri-level programming problems using particle swarm

optimization

Jialin Han
a,b

, Guangquan Zhang
a
, Yaoguang Hu

b
, Jie Lu

a,*

a
Decision Systems and e-Service Intelligence Laboratory, Centre for Quantum Computation &

Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology

Sydney, Australia
b
Industrial and Systems Engineering Laboratory, School of Mechanical Engineering, Beijing

Institute of Technology, China

E-mails: Jialin.Han@student.uts.edu.cn (J. Han), Guangquan.Zhang@uts.edu.au (G. Zhang),

hyg@bit.edu.cn (Y. Hu), Jie.Lu@uts.edu.au (J. Lu).

Corresponding author at: Faculty of Engineering and Information Technology, University of

Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia. Tel.: +61-2-95141838.

Abstract: Multilevel (including bi-level and tri-level) programming aims to solve decentralized

decision-making problems that feature interactive decision entities distributed throughout a

hierarchical organization. Since the multilevel programming problem is strongly NP-hard and

traditional exact algorithmic approaches lack efficiency, heuristics-based particle swarm

optimization (PSO) algorithms have been used to generate an alternative for solving such problems.

However, the existing PSO algorithms are limited to solving linear or small-scale bi-level

programming problems. This paper first develops a novel bi-level PSO algorithm to solve general

bi-level programs involving nonlinear and large-scale problems. It then proposes a tri-level PSO

algorithm for handling tri-level programming problems that are more challenging than bi-level

programs and have not been well solved by existing algorithms. For the sake of exploring the

algorithms' performance, the proposed bi/tri-level PSO algorithms are applied to solve 62

benchmark problems and 810 large-scale problems which are randomly constructed. The

computational results and comparison with other algorithms clearly illustrate the effectiveness of

the proposed PSO algorithms in solving bi-level and tri-level programming problems.

Keywords: Bi-level programming, tri-level programming, multilevel decision-making, particle

swarm optimization, computational intelligence.

2

1. Introduction

Multilevel programming (also known as multilevel decision-making) attempts to address

compromises between interactive decision entities that are distributed throughout a hierarchy[1].

Decision entities at the upper level and the lower level of a multilevel programming problem are

respectively termed the leader and the follower [8, 26]. The leader and follower make their

individual decisions in sequence with the aim of optimizing their respective objectives, which

means that the follower reacts after and in full knowledge of the leader's decision. However, the

leader's decision is implicitly affected by the follower's reaction. Bi-level and tri-level programming

problems are two special, typical and popular situations of multilevel programming, which have

motivated a number of significant efforts in decision models, solution approaches and applications

in areas of mathematics, computer science and business [13, 25, 44].

To achieve a quick understanding of multilevel programming, a tri-level programming case in

relation to three-echelon supply chain management can be taken as an example. The three-stage

supply chain is composed of a manufacturer, a distributor and a vendor, which are distributed

throughout three hierarchical levels. Within a stable sales cycle, they have to hold a certain amount

of inventory to fully satisfy market demand, which indicates that one decision entity has to increase

its holding inventory if the others reduce their inventories; all of them however seek to minimize

their individual inventory holding costs. When inventory decision-making, the manufacturer (the

top-level leader) take the lead in developing an optimal inventory plan which considers the current

market demand and implicit reactions of other decision entities. According to the decision given by

the manufacturer, the distributor (the middle-level follower) then makes an optimal inventory plan;

likewise, it references the implicit reaction of the vendor. Lastly, the vendor (the bottom-level

follower) determines its inventory to minimize its own cost in light of the fixed inventory plans by

the manufacturer and distributor. The decision process will not stop until each decision entity is

unwilling to change its decision. This example describes a tri-level programming problem, in which

decision entities make decisions in sequence from the manufacturer to the distributor and then to the

vendor, but the upper-level decision is affected by implicit reactions of the lower level.

Although multilevel programming problems have been proved to be strongly NP-hard by

Ben-Aved and Blair [10] and Bard [7], a number of methodologies have been developed to solve

bi-level and tri-level programming problems. In terms of bi-level programming problems, various

exact algorithmic approaches have been developed that can be mainly classified into three

3

categories: the vertex enumeration approach [8, 11, 31, 46], the Kuhn-Tucker approach [8, 9, 20,

32], and the penalty function approach [8, 41]. In addition, many certain algorithms have been

developed to solve some special kinds of bi-level problems, such as exact penalty method [3],

disjunctive cuts method [5] and parametric programming algorithm [16]. While the majority of

studies on multilevel programming have focused on bi-level versions, tri-level programming has

increasingly attracted investigations into solution approaches since it can be applied to handle many

real-world problems [19, 27]. In line with related discussion on the optimality conditions and

related geometric properties [6, 29, 42], a range of solution approaches have been developed for

solving tri-level programming problems, e.g. cutting plane algorithm [6], penalty function approach

[42], Kuhn-Tucker transformation methods [2, 35], multi-parametric programming approach [17],

tri-level Kth-Best algorithm [45] and a category of fuzzy programming approaches [4, 24, 28, 33,

36, 37]. It is notable that readers can refer to the latest survey papers [25, 43] for systematically

reviews of up-to-date bi-level and tri-level programming research.

In general, a number of approaches have been proposed to solve bi-level and tri-level

programming problems, but these existing approaches are limited to solving linear problems or very

time consuming for solving nonlinear and large-scale problems. Nowadays, large-scale and

nonlinear features have increasingly appear in multilevel programming problems. For example,

business firms usually work in a decentralized manner in a complex supply chain network, then

high-dimensional decision variables and nonlinear objectives/constraints are often involved when

handling related multilevel programming problems. Consequently, further investigation into solving

nonlinear and large-scale multilevel programming problems is necessary.

Particle swarm optimization (PSO) is a population-based heuristic algorithm first proposed by

Kennedy and Eberhart [22], which is inspired by the social behavior of organisms such as fish

schooling and bird flocking. As PSO is computationally inexpensive in terms of both memory

requirements and speed [15], it has a good convergence performance and has been successfully

applied in many fields. In relation to solving multilevel programs, Kuo and Huang [23] developed a

PSO algorithm for solving linear bi-level programming problems in which decision entities from

different decision levels share constraint conditions. Wan et al. [39] proposed a hybrid intelligent

algorithm by combining the PSO with chaos searching technique (CST) for solving nonlinear

bi-level programming problems. Gao et al. [18] and Zhang et al. [47] respectively applied PSO

algorithms to solve bi-level programming models in relation to the pricing problem in supply chain

4

and competitive strategic bidding optimization in electricity markets. Although PSO-based

algorithms have been developed to solve multilevel programs, it is only limited to some special (e.g.

linear formulations and certain applications) and small-scale bi-level programming problems.

The main contributions of this paper are twofold. First, this paper develops a novel bi-level PSO

algorithm to solve general bi-level programs involving nonlinear and large-scale problems. Second,

it proposes a tri-level PSO algorithm for solving complicated tri-level programming problems. For

the sake of exploring the algorithms' performance, the proposed bi/tri-level PSO algorithms are

applied to solve 62 benchmark problems and 810 randomly constructed large-scale problems.

Moreover, we compare the computational results with those obtained by the existing heuristic

algorithms, such as the existing PSO-CST algorithm [39], evolutionary algorithms [34, 38, 40] and

genetic algorithm [12].

This paper is organized as follows. Following the introduction, we present a general bi-level

programming problem and develop a bi-level PSO algorithm in Section 2. In Section 3, we present

a tri-level PSO algorithm to solve tri-level programming problems. In Section 4, the proposed

bi/tri-level PSO algorithms are applied to solve 62 benchmark problems and 810 large-scale

problems. Lastly, concluding remarks and further avenues of study are given in Section 5.

2. Bi-level PSO algorithm

In this section, we first propose a general bi-level programming problem and related solution

concepts. Second, we develop a bi-level PSO algorithm for solving the proposed bi-level

programming problem.

2.1. General bi-level programming problem and solution concepts

The general bi-level programming problem presented by Bard [8] is defined as follows.

Definition 1 [8] For pRXx  ,
qRYy  , a general bi-level programming problem is

defined as:

),(min yxF
Xx

 (1st level, leader) (1a)

s.t. 0),(yxG , (1b)

 where, for each x given by the leader, y solves the follower's problem (1c-1d)

),(min yxf
Yy

 (2nd level, follower) (1c)

s.t. 0),(yxg , (1d)

where x, y are the decision variables of the first level and the second level respectively;

5

1:, RRRfF qp  are the objective functions of the first level and the second level respectively;

mqp RRRG : ,
nqp RRRg : are the constraint conditions of the first level and the second

level respectively.

To find an optimal solution for the bi-level programming problem (1), relevant solution

concepts are presented as follows.

Definition 2 [8]

(1) The constraint region of the bi-level programming problem:

 }0),(,0),(:),{( yxgyxGYXyxS .

(2) The feasible set of the second level for each fixed x:

 }0),(:{)( yxgYyxS .

(3) The rational reaction set of the second level:

)] }(:),(m i n [a r g:{)(xSyyxfyYyxP  .

(4) The inducible region of the bi-level programming problem:

)}(,),(:),{(xPySyxyxIR  .

(5) The optimal solution set of the bi-level programming problem:

]}),(:),(min[arg),(:),{(IRyxyxFyxyxOS  .

It is clear from Definition 2 that the constraint domain associated with a bi-level programming

problem is implicitly determined by two optimization problems which must be solved in a

predetermined sequence from the first level to the second level [21]. To ensure the bi-level

programming problem is well posed, the following assumptions based on Definition 2 are

commonly made.

Assumption 1. F, f, G and g are continuous functions, while f and g are continuously

differentiable.

Assumption 2. f is strictly convex in y for)(xSy where S(x) is a compact convex set.

Assumption 3. F is continuous convex in x and y.

Under Assumptions 1 and 2, the rational reaction set of the second level P(x) is a point-to-point

map and closed. This implies that the IR is compact. Thus, under the assumption 3 solving the

bi-level programming problem (1) is equivalent to optimizing the leader's continuous function F

6

over the compact set IR. It is well known that the solution to such a problem is guaranteed to exist.

We thereby develop a bi-level PSO algorithm for the purpose of finding a solution for the bi-level

programming problem (1).

2.2. The bi-level PSO algorithm description

PSO is a category of the population-based heuristic algorithm that is motivated by the social

behavior of organisms such as fish schooling and bird flocking. The population of PSO is known as

a swarm, while each element in the swarm is termed a particle. In a swarm with the size N, the

position vector of each particle with index i),,2,1(Ni  is denoted as),(t
i

t
i

t
i yxX  at iteration t,

which represents a potential solution to the problem (1). For the sake of convenient discussion, we

let),(),(21
t
i

t
i

t
i

t
i

t
i xxyxX  . At iteration t, each particle i moves from

t
iX to

1t
iX in the search

space at a velocity),(1
2

1
1

1   t
i

t
i

t
i vvV along each dimension. Each particle keeps track of its

coordinates in hyperspace which are associated with the best solution (fitness), called pbest

(),(21 iii ppp ), it has achieved so far; while the PSO algorithm is divided into two versions,

respectively known as the GBEST version and the LBEST version, due to different definitions of

the best solution [15]. In the GBEST version, the particle swarm optimizer keeps track of the

overall best value, called gbest (),(21 ggg ppp ), and its location obtained thus far by any particle

in the population, known as the global neighborhood. For the LBEST version, particles only contain

their own and their nearest array neighbors’ best information within a local topological

neighborhood, rather than that of the entire group. However, in either PSO version, the PSO

concept , at each iteration, always consists of an aggregated acceleration of each particle towards its

pbest and gbest position. In this paper, the GBEST version of PSO is followed, and in this section,

detailed procedures for solving the problem (1) are developed based on Definition 2.

(1) Initial population

In an initial population of particles with the number N, each particle i),,2,1(Ni  can be

represented as),(),(0
2

0
1

000
iiiii xxyxX  . As an initial population is randomly constructed for the

PSO algorithm, we propose a random method to construct an initial population with the size N.

First, we randomly generate the required number of the first level decision variables
0
ix

),,2,1(Ni  . Second, we adopt the existing simplex method or interior point method to solve the

7

second level problem }0),(:),({min 


yxgyxf
Yy

 under
0
ixx  and obtain the corresponding

solution
0
iy . In this way, we complete the construction of the initial population and

),(),(0
2

0
1

000
iiiii xxyxX  .

Nevertheless, a number of particles of the initial population may occur outside the constraint

region S particularly in relation to solving large-scale problems with complex constraints. To ensure

many more particles of the initial population occur over the constraint region, we propose another

construction method to supplement part particles to the initial population.

First, we obtain two solutions),(minminmin yxX  and),(maxmaxmax yxX  respectively for

solving the problems }),(:),(min{ SyxyxF  and }),(:),(max{ SyxyxF  .

Second, a formula is defined to construct the initial population:

])(,)[(),(),(2
minmax

1
minmaxminmin00 ryyrxxyxyx ii  , where Ni ,,2,1  , r1 and r2 are

random numbers uniformly distributed between 0 and 1.

The second method provides more particles occurring over the constraint region, even though

the particles may be not uniformly distributed throughout the constraint region. Consequently, when

the PSO algorithm is performed for solving small-scale problems, we can only use the first method

to construct the initial population; whereas both methods mentioned are able to be combined to

construct the initial population for solving large-scale problems. Moreover, the percentage of the

population generated by the second method should goes up with the increase in the problem size.

Although some particles of the initial population still occur outside the constraint region S using

these above construction methods, the particles will be tugged to return towards the constraint

region S at the following iterations if there exist better solutions in S [15]; this is an advantage of the

PSO algorithm in constructing the initial population.

(2) The updating rules of particles

In the PSO algorithm, each particle i moves toward),(),(1
2

1
1

111   t
i

t
i

t
i

t
i

t
i xxyxX in the

search space at a velocity),(1
2

1
1

1   t
i

t
i

t
i vvV at each iteration t. In this paper, the velocity and

position of each particle i are updated as follows for Nij ,,2,1,2,1  based on related

definitions proposed by Shi and Eberhart [30]:

)()(2211
1 t

ij
t
gj

t
ij

t
ij

t
ij

t
ij xprcxprcwvv  , (2)

8

11   t
ij

t
ij

t
ij vxx . (3)

We now determine the selection of parameters involved in the formula (2). For the updating

velocity, there are usually maximum and minimum velocity levels maxv and minv . If the current

velocity max
1 vvt

ij  , we set max
1 vvt

ij  ; while min
1 vvt

ij 
 if min

1 vvt
ij 

. In the beginning, we set

max
0 vvij  .

w is the inertia weight, which controls the impact of the previous velocities on the current

velocity. The inclusion of the inertia weight involves two definitions proposed by Shi and Eberhart

[30]: a fixed constant and a decreasing function with time. In our PSO algorithm, we use the latter

to define the inertia weight, because large inertial weight can be used to possess more exploitation

ability at the beginning to find a good seed while it is reduced for better local exploitation later on

in the search [30]. The inertia weight is represented as:

t
Iter

ww
ww 




max_

minmax
max , (4)

where maxw and minw are the upper and lower bounds on the inertia weight, which are determined

by the practical problem; Iter_max is the maximum number of PSO iterations while t represents the

current iteration number.

1c and 2c are known as learning factors or acceleration coefficients, which control the

maximum step size that the particle can do. A recommended choice for constant 1c and 2c is

integer 2 as proposed by Kennedy and Eberhart [22].

1r and 2r are uniform random numbers between 0 and 1.

(3) Fitness evaluation

For each particle i at the iteration t),(t
i

t
i

t
i yxX  , adopt the existing simplex method or interior

point method to solve the problem }0),(:),({min 


yxgyxf
Yy

 under
t
ixx  and obtain the

solution),(yxt
i where)(t

ixPy  . If the solution Syxt
i ),(, update),(),( yxyxX t

i
t
i

t
i

t
i .

Note that)(t
ixPy  and Syxt

i ),(mean IRyxt
i ),(by Definition 2, that is,),(yxt

i is a

feasible solution for the bi-level problem (1). The pbest solution is ),(21 iii ppp),(t
i

t
i yx if

),(),(21 ii
t
i

t
i ppFyxF 

or),(),(21 ii

t
i

t
i ppfyxf 

under),(),(21 ii

t
i

t
i ppFyxF  where we set

9

),(),(00
21 iiiii yxppp  and ),(00

ii yxF at the beginning. The global best solution gbest of

the swarm at the iteration t is),(21 ggg ppp  where },,2,1),,(min{),(2121 NippFppF iigg  .

(4) Termination criterion

The PSO algorithm will be terminated after a maximum number of iterations Iter_max or when

it achieves a maximum CPU time.

(5) Computational procedures of the bi-level PSO algorithm

Based on the theoretical basis proposed above, we will present the complete computational

procedures of the bi-level PSO algorithm for solving the bi-level programming problem (1).

[Begin]

Step 1: Initialization.

(a) Construct the population size N and generate the initial population of particles

NiyxX iii ,,2,1),,(000  ;

(b) Initialize the pbest solution as),(),(00
21 iiiii yxppp  and the fitness ),(00

ii yxF ;

(c) Set the maximum and minimum velocity levels maxv and minv , and initialize max
0 vvij  ;

(d) Set the upper and lower bounds on the inertia weight maxw and minw , acceleration

coefficients 1c and 2c , and the maximum iteration number Iter_max;

(e) Set the current iteration number t=0 and go to Step 2.

Step 2: Compute the fitness value and update the pbest solution for each particle. Set i=1 and go to

Step 2.1.

Step 2.1: Under
t
ixx  , solve the problem }0),(:),({min 


yxgyxf

Yy
 and obtain the solution

),(yxt
i . Go to Step 2.2.

Step 2.2: If the solution Syxt
i ),(, update),(),( yxyxX t

i
t
i

t
i

t
i ; otherwise, set

),(t
i

t
i yxF . Go to Step 2.3.

Step 2.3: If),(),(21 ii
t
i

t
i ppFyxF 

or),(),(21 ii

t
i

t
i ppfyxf 

under),(),(21 ii

t
i

t
i ppFyxF  ,

),(),(21
t
i

t
iiii yxppp  . If i<N, set i=i+1 and go to Step 2.1; otherwise, go to Step 3.

Step 3: Update the gbest solution. Set),(21 ggg ppp  where

10

},,2,1),,(min{),(2121 NippFppF iigg  . Go to Step 4.

Step 4: Termination criterion. If t<Iter_max, go to Step 5; otherwise, stop and),(21 ggg ppp  is a

solution for the bi-level programming problem (1).

Step 5: Update the inertia weight, and the velocity and the position of each particle by the formulas

(2), (3) and (4). If the current velocity max
1 vvt

ij  , set max
1 vvt

ij  ; while min
1 vvt

ij 
 if

min
1 vvt

ij 
. Set t=t+1 and go to Step 2.

[End]

3. Tri-level PSO algorithm

In this section, based on the proposed bi-level PSO algorithm, we propose a tri-level PSO

algorithm for solving tri-level programming problems.

3.1. General tri-level programming problem and related theoretical properties

The general tri-level programming problem presented by Faísca et al. [17] is defined as follows.

Definition 3 [17] For pRXx  ,
qRYy  ,

rRZz  , a general tri-level programming

problem is defined as:

),,(min 1 zyxf
Xx

 (1st level, leader) (5a)

s.t. 0),,(1 zyxg , (5b)

where, for each x given by the 1st level, (y, z) solves the problems (5c-5f):

),,(min 2 zyxf
Yy

 (2nd level, middle-level follower) (5c)

s.t. 0),,(2 zyxg , (5d)

 where, for each (x, y) given by the 1st and 2nd levels, z solves the problem (5e-5f) :

),,(min 3 zyxf
Zz

 (3rd level, bottom-level follower) (5e)

s.t. 0),,(3 zyxg , (5f)

where x, y, z are the decision variables of the three levels respectively; RRRRfff rqp :,, 321

are the objective functions of the three levels respectively; 3,2,1,:  iRRRRg ikrqp
i are the

constraint conditions of the three levels respectively.

To find an optimal solution for the tri-level programming problem (5), relevant solution

concepts are proposed as follows based on the nested hierarchical structure of multilevel

programming and the existing research on bi-level programming.

11

Definition 4 [17]

(1) The constraint region of the tri-level programming problem:

 }3,2,1,0),,(:),,{( izyxgZYXzyxS i .

(2) The feasible set of the second level for each fixed x:

 }0),,(,0),,(:),{()(32  zyxgzyxgZYzyxS .

(3) The feasible set of the third level for each fixed (x, y):

 }0),,(:{),(3  zyxgZzyxS .

(4) The rational reaction set of the third level:

)] },(:),,(m i n [a r g:{),(3 yxSzzyxfzZzyxP  .

(5) The rational reaction set of the second level:

)] },(),(),(:),,(min[arg),(:),{()(2 yxPzxSzyzyxfzyZYzyxP  .

(6) The inducible region of the tri-level programming problem:

)}(),(,),,(:),,{(xPzySzyxzyxIR  .

(7) The optimal solution set of the tri-level programming problem:

]}),,(:),,(min[arg),,(:),,{(1 IRzyxzyxfzyxzyxOS  .

For the sake of developing an efficient algorithm to solve the tri-level programming problem (5),

we now turn our attention to the geometry of the solution space and related theoretical properties.

To ensure the problem (5) is well posed, it is common to make the following assumptions based on

Definition 4.

Assumption 4. f1, f2, f3, g1, g2 and g3 are continuous functions, whereas f2, f3, g2 and g3 are

continuously differentiable.

Assumption 5. f3 is strictly convex in z for),(yxSz where S(x, y) is a compact convex set,

while f2 is strictly convex in (y, z) for)(),(xSzy  where S(x) is a compact convex set.

Assumption 6. f1 is continuous convex in x, y, and z.

Under the assumptions 4 and 5, the rational reaction sets of the third level and the second level

P(x, y) and P(x) are point-to-point maps and closed, which implies that IR is compact. Thus, under

the assumption 6 solving the tri-level programming problem (5) is equivalent to optimizing the

leader's continuous function f1 over the compact set IR. It is well known that the solution to such a

12

problem is guaranteed to exist.

It is noticeable that, if the third-level problem is a convex parametric programming problem that

satisfies the Manasarian-Fromowitz constraint qualification (MFCQ) for each fixed (x, y) [8, 14],

the third-level problem is equivalent to the following Kuhn-Tucker conditions (6-9):

),,,(),,(),,,(33 zyxguzyxfuzyxL zzz  (6)

,0),,(3 zyxug (7)

,0),,(3 zyxg (8)

,0u (9)

where),,(),,(),,,(33 zyxugzyxfuzyxL  is the Lagrangian function of the third level,

),,,(uzyxLz denotes the gradient of the function),,,(uzyxL with respect to z, and u is the

vector of Lagrangian multipliers.

Theorem 1 [14] A necessary and sufficient condition that)(),(xPzy  is that the row vector

u exists such that (x, y, z, u) satisfies the Kuhn-Tucker conditions (6-9).

Theorem 2 (x, y, z) solves the tri-level programming problem (5) if and only if (x, y, z, u) solves

the bi-level programming problem (10).

Proof. Based on Theorem 1, the tri-level programming problem (5) is equivalent to solving the

bi-level programming problem (10) by replacing the third-level problem with the Kuhn-Tucker

conditions (6-9).

),,(min 1 zyxf
x

 (1st level, leader) (10a)

s.t. ,0),,(1 zyxg (10b)

 where, for each given x, (y, z, u) solves (10c-10h)

),,(min 2
,,

zyxf
uzy

 (2nd level, follower) (10c)

s.t. ,0),,(2 zyxg (10d)

,0),,(),,(33  zyxguzyxf zz (10e)

,0),,(3 zyxug (10f)

,0),,(3 zyxg (10g)

.0u (10h)

Clearly, if (y, z, u) solves (10c-10h) for each given x,)(),(xPzy  is obtained in line with

Theorem 1. Therefore, solving the tri-level programming problem (5) is equivalent to finding a

13

solution (x, y, z, u) to the bi-level programming problem (10) that (x, y, z) is a solution to problem

(5). The proof is completed. □

In this study, we extend the bi-level PSO algorithm to a tri-level PSO algorithm for finding a

solution (x, y, z) for the tri-level programming problem (5) based on Theorems 1 and 2.

3.2. The tri-level PSO algorithm description

In a swarm with the size N, the position vector of each particle with index i),,2,1(Ni  is

denoted as),,(t
i

t
i

t
i

t
i zyxX  at iteration t, which represents a potential solution to the problem (5).

For the sake of accessibility, we let),,(),,(321
t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX  . At iteration t, each particle i

moves from
t
iX to

1t
iX in the search space at a velocity),,(1

3
1

2
1

1
1   t

i
t
i

t
i

t
i vvvV along each

dimension. Also, we set the pbest solution),,(321 iiii pppp  and gbest solution

),,(321 gggg pppp  . Based on Theorems 1 and 2, the tri-level PSO algorithm for solving the

tri-level programming problem (5) is developed in this section.

(1) Initial population

The method of constructing the initial population is similar to the bi-level PSO algorithm. First,

we randomly generate the required number of the first level decision variables
0
ix),,2,1(Ni  .

Second, we solve the following problem (11) under
0
ixx  using the branch and bound algorithm

[8] or interior point method and obtain the corresponding solution),,(000
iii uzy . In this way, we

complete the construction of the initial population and),,(),,(0
3

0
2

0
1

0000
iiiiiii xxxzyxX  ,

Ni ,,2,1  .

),,(min 2
,,

zyxf
uzy

 (11a)

s.t. ,0),,(2 zyxg (11b)

,0),,(),,(33  zyxguzyxf zz (11c)

,0),,(3 zyxug (11d)

,0),,(3 zyxg (11e)

.0u (11f)

14

(2) The updating rules of particles

Within the tri-level PSO algorithm, each particle i moves toward

),,(),,(1
3

1
2

1
1

1111   t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX in the search space at a velocity),,(1

3
1

2
1

1
1   t

i
t
i

t
i

t
i vvvV

at each iteration t. The velocity and position of each particle i are updated as well as the bi-level

PSO algorithm developed in Section 2 by the formulas (2), (3) and (4).

(3) Fitness evaluation

For each particle i at the iteration t),,(t
i

t
i

t
i

t
i zyxX  , solve the problem (11) under

t
ixx 

using the branch and bound algorithm [8] or interior point method and obtain the solution

),,,( uzyxt
i . If the solution Szyxt

i ),,(, update),,(),,( zyxzyxX t
i

t
i

t
i

t
i

t
i . The pbest

solution is),,(),,(321
t
i

t
i

t
iiiii zyxpppp  , if),,(),,(32111 iii

t
i

t
i

t
i pppfzyxf  where we set

),,(),,(000
321 iiiiiii zyxpppp  and ),,(000

1 iii zyxf at the beginning. The global best solution

gbest of the swarm at the iteration t is),,(321 gggg pppp  where

},,2,1),,,(min{),,(32113211 Nipppfpppf iiiggg  .

(4) Termination criterion

The tri-level PSO algorithm will be terminated after a maximum number of iterations Iter_max

or when it achieves a maximum CPU time.

(5) Computational procedures of the tri-level PSO algorithm

Based on the bi-level PSO algorithm and the theoretical basis proposed above, we will present

the complete computational procedures of the tri-level PSO algorithm for solving the tri-level

programming problem (5).

[Begin]

Step 1: Initialization.

(a) Construct the population size N and generate the initial population of particles

NizyxX iiii ,,2,1),,,(0000  by solving the problem (11);

(b) Initialize the pbest solution as),,(),,(000
321 iiiiiii zyxpppp  and the fitness

),,(000
1 iii zyxf ;

(c) Set the maximum and minimum velocity levels maxv and minv , and initialize max
0 vvij  ;

15

(d) Set the upper and lower bounds on the inertia weight maxw and minw , acceleration

coefficients 1c and 2c , and the maximum iteration number Iter_max;

(e) Set the current iteration number t=0 and go to Step 2.

Step 2: Compute the fitness value and update the pbest solution for each particle. Set i=1 and go to

Step 2.1.

Step 2.1: Under
t
ixx  , solve the problem (11) using the branch and bound algorithm or

interior point method and obtain the solution),,,( uzyxt
i . Go to Step 2.2.

Step 2.2: If the solution Szyxt
i ),,(, update),,(),,( zyxzyxX t

i
t
i

t
i

t
i

t
i ; otherwise, set

),,(1
t
i

t
i

t
i zyxf . Go to Step 2.3.

Step 2.3: If),,(),,(32111 iii
t
i

t
i

t
i pppfzyxf  , update),,(),,(321

t
i

t
i

t
iiiii zyxpppp  . If i<N, set

i=i+1 and go to Step 2.1; otherwise, go to Step 3.

Step 3: Update the gbest solution. Set),,(321 gggg pppp  where

},,2,1),,,(min{),,(32113211 Nipppfpppf iiiggg  . Go to Step 4.

Step 4: Termination criterion. If t<Iter_max, go to Step 5; otherwise, stop and

),,(321 gggg pppp  is a solution for the tri-level programming problem (5).

Step 5: Update the inertia weight, and the velocity and the position of each particle by the formulas

(2), (3) and (4) for Nij ,,2,1,3,2,1  . If the current velocity max
1 vvt

ij  , set max
1 vvt

ij  ; while

min
1 vvt

ij 
 if min

1 vvt
ij 

. Set t=t+1 and go to Step 2.

[End]

In view of the procedures of bi/tri-level PSO algorithms, the differences and improvements of

the proposed PSO algorithms compared with existing heuristic algorithms can be summarized as

follows.

(1) In regard to a nonlinear and large-scale bi-level problem, either of the problems at both

levels often appears very difficult to be solved. Whereas the existing bi-level heuristic algorithms

[12, 23, 38-40] transform the bi-level problem into a much more complex single-level problem, it

will be much easier and more convenient to solve the bi-level problem using the proposed bi-level

16

PSO algorithm in which the leader's problem and the follower's problem are separated and

respectively solved in sequence.

(2) In contrast to the existing bi-level heuristic algorithms [12, 18, 23, 34, 38-40, 47] that cannot

be used to solve tri-level problems, the proposed bi-level PSO algorithm can be extended to a

tri-level PSO algorithm for solving tri-level problems.

(3) To handle the complexity of the constraint region of nonlinear and large-scale problems, two

construction methods of the initial population are given, which can effectively ensure many more

particles of the initial population occur over the constraint region and improve the convergence

speed of the bi/tri-level PSO algorithms compared with the existing bi-level heuristic algorithms [12,

18, 23, 34, 38-40, 47].

(4) Different from the existing bi-level PSO algorithms [18, 23, 39, 47] using the constant

inertia weight, the decreasing inertia weight with time is used to control the velocity of particles in

the search space at different stages, which aims to improve both search and convergence abilities of

the bi/tri-level PSO algorithms.

We will explore the performance of the proposed bi/tri-level PSO algorithms and demonstrate

these aforementioned improvements in the following Section.

4. Computational analysis

A completed computational study is conducted to analyze the performance of the proposed

bi/tri-level PSO algorithms. First, we apply the bi/tri-level PSO algorithms to solve 25 bi-level and

8 tri-level benchmark problems involving linear and nonlinear versions. Second, the bi-level PSO

algorithm is applied to solve 29 large-scale nonlinear bi-level benchmark problems. Lastly, for the

sake of exploring the algorithm performance in depth, we generate 810 large-scale bi-level

programming problems using the random method proposed by Calvete et al. [12]. These

computational experiments are operated in MATLAB(2014a) programs performed on a 3.47GHz

Inter Xeon W3690 CPU with 12G of RAM under a Red Hat Enterprise Linux Workstation. Also,

these large-scale problems are randomly generated using the MATLAB(2014a) environment.

4.1. Small-scale benchmark problems

In this section, the bi/tri-level PSO algorithms are applied to solve 25 bi-level and 8 tri-level

programming problems involving linear and nonlinear versions. Moreover, we compare the

computational results respectively obtained by the bi/tri-level PSO algorithms and other algorithms.

The benchmark problems and their related sources are listed in Table 1.

17

To solve the benchmark problems 1-33, related parameters involved in the bi/tri-level PSO

algorithms are chosen in Table 2. Under the parameters in Table 2, the PSO algorithms are

performed in 20 independent runs on each of the above 33 benchmark problems. The computational

results for bi-level programming problems 1-25 are shown in Table 3.

Table 1. Benchmark problems and their related sources

Problems Sources

1-14 Problems 1-14 in [39]

15 Ex 1. in [38]

16 Ex 3. in [38]

17 Ex 5. in [38]

18 Ex 7. in [38]

19-20 Problems 1-2 in [40]

21-25 Problems 5-9 in [40]

26 Example 1 in [6]

27 The tri-level numerical illustration in [2]

Example 1 in [35]

The tri-level example in [24]

Example 3 in [33]

28 Example 2 in [35]

Example 1 in [37]

Example 1 in [36]

Example 1 in [28]

29 Example 2 in [36]

30 Example 4.1 in [29]

Illustrative example 1 in [17]

31 Example 4.2 in [29]

32 The numerical example in [45]

33 The case study in [45]

In Table 3, the solution and the corresponding objective values obtained by the bi-level PSO

algorithm are respectively denoted by),( yx and),( fF , while the values obtained by other

algorithms are respectively denoted by),(yx and),(fF . It can be seen from Table 3 that for

problems 4, 6-8, 15-16, 18-22 and 24, the solutions obtained by our bi-level PSO algorithm are

equal or extremely close to those found by the PSO-CST algorithm [39] and the evolutionary

algorithm in [40]. In terms of problems 1-3, 5, 9-14, 17, 23 and 25, the solutions obtained by our

bi-level PSO algorithm are better or much better than those found by the compared algorithms in

[38, 40], which are highlighted in Table 3. In particular for problems 9-11, 23 and 25, the objective

values of the first level respectively obtained by our bi-level PSO algorithm and the compared

algorithm are extremely close to one another under different solutions, which implies that there

18

exist multiple solutions for problems 9-11, 23 and 25. Under this situation, using our bi-level PSO

algorithm can achieve better or much better objective values for the second level than the compared

PSO-CST algorithm and evolutionary algorithm.

Table 2. Parameters employed in the bi/tri-level PSO algorithms for solving problems 1-33

Problems N vmax vmin wmax wmin

c1 c2 Iter_max

1 30 1.0 -1.0 0.5 0.01 2.0 2.0 100

2 30 1.0 -1.0 0.5 0.01 2.0 2.0 150

3 20 1.0 -1.0 0.5 0.01 2.0 2.0 60

4 50 1.0 -1.0 0.5 0.01 2.0 2.0 100

5 30 1.0 -1.0 0.5 0.01 2.0 2.0 60

6 50 1.0 -1.0 1.0 0.01 2.0 2.0 150

7 30 1.0 -1.0 0.5 0.01 2.0 2.0 60

8 30 1.0 -1.0 0.5 0.01 2.0 2.0 60

9 60 0.5 -0.5 0.5 0.01 2.0 2.0 100

10 60 1.0 -1.0 0.5 0.01 2.0 2.0 80

11 60 1.0 -1.0 0.5 0.01 2.0 2.0 80

12 40 1.0 -1.0 0.5 0.01 2.0 2.0 60

13 40 1.0 -1.0 0.5 0.01 2.0 2.0 60

14 40 1.0 -1.0 0.5 0.01 2.0 2.0 60

15 50 1.0 -1.0 0.5 0.01 2.0 2.0 150

16 80 1.0 -1.0 1.0 0.01 2.0 2.0 100

17 20 1.0 -1.0 0.5 0.01 2.0 2.0 50

18 30 1.0 -1.0 0.5 0.01 2.0 2.0 60

19 20 1.0 -1.0 0.5 0.01 2.0 2.0 60

20 30 1.0 -1.0 0.5 0.01 2.0 2.0 60

21 50 1.0 -1.0 1.0 0.01 2.0 2.0 150

22 60 0.5 -0.5 0.5 0.01 2.0 2.0 100

23 40 1.0 -1.0 0.5 0.01 2.0 2.0 60

24 40 1.0 -1.0 0.5 0.01 2.0 2.0 60

25 40 1.0 -1.0 0.5 0.01 2.0 2.0 60

26 20 1.0 -1.0 1.0 0.01 2.0 2.0 30

27 20 1.0 -1.0 1.0 0.01 2.0 2.0 30

28 30 1.0 -1.0 1.0 0.01 2.0 2.0 40

29 30 1.5 -1.5 1.0 0.01 2.0 2.0 40

30 20 1.0 -1.0 0.5 0.01 2.0 2.0 30

31 20 1.0 -1.0 0.5 0.01 2.0 2.0 20

32 30 2.0 -2.0 1.0 0.01 2.0 2.0 40

33 30 3.0 -3.0 1.0 0.01 2.0 2.0 40

In relation to problems 2 and 12, it seems in Table 3 that the solutions found by our bi-level

PSO algorithm are worse than those obtained by the compared algorithm. With respect to problem 2,

the second level will choose y=(y1, y2, y3)=(0, 0, 0) to achieve an optimal objective value

4832.0f (better than 3641.2f) in view of x=(x1, x2)=(0.1324, 0.1754). Clearly, the solution

19

)2273.0,7327.0,6935.0(),,(321  yyyy given by the PSO-CST algorithm in [39] occurs outside

the rational reaction set P(x), which implies that)3188.0,4599.1,8606.0(),(yx is not a feasible

solution for problem 2 according to Definition 2 in Section 2.1. Similarly, the solution

)3188.0,4599.1,8606.0(),(yx given by the evolutionary algorithm in [40] is not a feasible

solution for problem 12, because the second level will choose y=(y1, y2)=(1.5382, 0.2166) to

achieve an optimal objective value 4980.2f (better than 5621.2f) in view of x=0.8606.

Clearly, the algorithms in [39, 40] cannot find an optimal solution for problems 2 and 12. Therefore,

our bi-level PSO algorithm performance better than the compared algorithms in [39, 40] in terms of

solving problems 2 and 12.

Table 3. The computational results for bi-level programming problems 1-25

Problems),( yx),( fF),(yx),(fF

1 (0, 2, 1.875, 0.9063) (-18.6787, -1.0156) (0.3844, 1.6124, 1.8690, 0.8041) (-14.7772, -0.2316)

2 (0, 0.9, 0, 0.6, 0.4) (-29.2, 3.2) (0.1324, 0.1754, 0.6935, 0.7327, 0.2273) (-29.2064, 2.3641)

3 (0, 1, 0) (1000, 1) (0.1511, 0.6256, 0.369) (640.7139, 0.9946)

4 (9.9998, 9.9998) (99.996, 0) (10.0020, 9.9961) (100.0393, 0)

5 (2.0345, 0.8838, 0) (-1.2312, 7.7818) (1.8602, 0.9073, 0.005) (-1.1660, 7.4441)

6 (7.0696, 7.0696, 6.9279, 6.9278) (1.98, -1.98) (7.0321, 6.84204, 5.9071, 6.8312) (1.9816, -1.9816)

7 (20.0282, 14.8381, 0.0282, -5.1619) (0, 0) (17.5039, 29.8906, -2.4994, 9.8894) (0.0527, 0)

8 (17.8377, 20.1712, -2.1623, 0.1712) (0, 0) (12.4124, 19.3109, -7.5859, -0.6899) (0.0004, 0)

9 (20, 5, 10, 5) (0, 100) (17.2024, 7.4665, 7.2189, 2.4251) (0.0075, 125.0854)

10 (10.9317, 9.6004, 10, 9.6004) (0, 0.868) (0.1946, 14.9870, 6.1019, 7.9628) (0, 84.2367)

11 (6.4462, 11.9941, 6.4462, 10) (0, 3.9763) (10.6084, 10.0550, 9.4545, 5.1257) (0.0001, 25.6292)

12 (1.8888, 0.889, 0) (0, 7.6167) (0.8606, 1.4599, 0.3138) (0.0082, 2.5621)

13 (0.6648, 1.5746, 0.0722) (0, 2.5) (0.9099, 1.5294, 0.1762) (0.0374, 2.6969)

14 (0.6648, 1.5746, 0.0722) (0, 2.5) (0.9233, 1.5083, 0.1899) (0.0337, 2.7442)

15 (4, 15, 9.2, 2) (41.2, -9.2) (4.000517, 14.999931, 9.199862, 2) (41.199207, -9.198828)

16 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100)

17 (1, 0) (1, 0) (10, 0) (82, 0)

18 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100)

19 (20, 5, 10, 5) (225, 100) (20, 5, 10, 5) (225, 100)

20 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100)

21 (1.0312, 3.0978, 2.597, 1.7929) (-8.9172, -6.136) (1.03, 3.097, 2.59, 1.79) (-8.92, -6.14)

22 (0.281, 0.4754, 2.3437, 1.0328) (-7.5774, -0.5777) (0.27, 0.49, 2.34, 1.036) (-7.58, -0.574)

23 (38.0907, 60.5204, 2.9985, 2.9985) (-11.9985, -219.2618) (12.47, 67.511, 2.999, 2.999) (-11.999, -163.42)

24 (2, 0, 2, 0) (-3.6, -2) (2, -2.84e-8, 2, 0) (-3.6, -2)

25 (-0.4009, 0.8023, 1.9998, 0) (-3.9194, -2.0109) (-0.381, 0.8095, 2, 0) (-3.92, -2)

Table 4 reports the computational results for tri-level programming problems 26-33. The

solution and the corresponding objective values obtained by the tri-level PSO algorithm are

respectively denoted by),,( zyx and),,(321
 fff , while the values obtained by other solution

20

approaches are denoted by),,(zyx and),,(321 fff . Table 4 clearly shows that the tri-level PSO

algorithm can find the same solutions as the compared approaches or much better solutions

highlighted in gray color. Note),,( zyx that),( zy denotes the best reactions of the 2nd

level and the 3rd level in the light of x determined by the 1st level. According to Definition 4,

),,(),,( zyxzyx under Szyx ),,(means the solution IRzyx ),,(, which implies that

),,(zyx is a feasible solution for the tri-level programming problem; otherwise,),,(zyx is not a

feasible solution. Thus, it can be seen from Table 4 that the solutions),,(zyx in [6] for problem

26, in [24] for problem 27, in [28, 36, 37] for problem 28, in [17] for problem 30 and in [45] for

problem 33 are not feasible solutions. In addition, although the solutions),,(zyx in [2, 33] for

problem 27, in [28, 35] for problem 28 and in [36] for problem 29 occurs over IR, they can be only

considered as local optimal solutions since our tri-level PSO algorithm can find much better

solutions for such problems. Thus, the tri-level PSO algorithm provides a better way to solve

tri-level programming problems.

Table 4. The computational results for tri-level programming problems 26-33

Problems),,( zyx),,(321
 fff),,(zyx),,(321 fff

),,( zyx

26 (6.6667, 8, 0) (-10.6667, -8, 0) (4.6667, 1, 0) [6] (-16.6667, -1, 0) [6] (4.6667, 6.5, 4.5)

27 (1.5, 0, 0.5) (8.5, 0, 0.5) (0.5, 1, 0.5) [2] (4.5,1,0.5) [2] (0.5, 1, 0.5)

(1.5, 0, 0.5) [35] (8.5, 0, 0.5) [35] (1.5, 0, 0.5)

(1.66, 1, 0.34) [24] (13.26, 1, 0.34) [24] No solution

(0.92, 0.58, 0.5) [33] (6.18, 0.58, 0.5) [33] (0.92, 0.58, 0.5)

28 (2.3329, 0.0006,0.3335, 0) (14.9979, 1.0012,

5.0)

(0.86, 1.86, 0, 0.71) [35] (13, 4.7, 4.29) [35] (0.86, 1.86, 0, 0.71)

(1.59,1.08,0.62,0.06) [36, 37] (12.01,3.18,4.94) [36, 37] (1.59, 1.08, 0.705, 0)

(1.106, 1.525, 0, 0.631) [28] (13.58, 4.05, 4.37) [28] (1.106, 1.525, 0.581, 0.244)

(0.857, 1.857, 0, 0.714) [28] (13, 4.71, 4.28) [28] (0.857, 1.857, 0, 0.714)

29 (1, 2, 0, 2, 0) (14, 2, 8) (2, 1.99, 1.004, 0, 0.009) [36] (12.964,5.001,10.188) [36] (2, 1.99, 1.01, 0, 0.02)

30 (0.5, 1, 1) (4.5, -2, 1) (0.5, 1, 1) [29] (4.5, -2, 1) [29] (0.5, 1, 1)

(1, 0.5, 1) [17] (5, -2, 1) [17] (1, 1, 0.5)

31)0,0,2(x (0, 0, 0))0,0,2(x [29] (0, 0, 0) [29])0,0,2(x

32 (4, 6, 0) (-20, 10, -8) (4, 6, 0) [45] (-20, 10, -8) [45] (4, 6, 0)

33 No solution --- (10, 28.33, 11.66) [45] (146.6667,176.6,343.3) [45] Unbounded solution

4.2. Large-scale benchmark problems

In this section, we apply the bi-level PSO algorithm to solve the large-scale nonlinear bi-level

programming problems 34-62. The sources of the benchmark problems 34-57 are the problems

21

SMD1-SMD12 with five and 10 dimensions constructed by Sinha et al. [34], while the problems

58-62 with 20 dimensions are cited from the problems (Exs.12-16) solved in [38].

When solving the problems 34-57, the population size and iteration number are chosen as N=30,

Iter_max=60 and N=50, Iter_max=100 respectively for solving five-dimensional and

10-dimensional problems. The other parameters in the bi-level PSO algorithm are chosen as follows:

vmax=1.0, vmin=-1.0, c1=c2=2, wmax=0.5, wmin=0.01. In response to solving problems 58-62, the

related parameters are chosen as vmax=0.5, vmin=-0.5, c1=c2=2, wmax=0.5, wmin=0.01, N=30,

Iter_max=100.

Table 5. The computational results for five-dimensional test problems 34(SMD1) - 45(SMD12)

Problems),( yx),( fF),( fF

),(fF

34 (SMD1) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000114, 0.000087)

35 (SMD2) (-9.1024e-11, 1.3609e-10, -6.4516e-09, 1.0) (-9.3916e-17, 9.3952e-17) (9.3916e-17, 9.3952e-17) (0.000073, 0.000016)

36 (SMD3) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000054, 0.000055)

37 (SMD4) (-6.3714e-06, 2.7123e-06, -1.2107e-08,

1.3537e-08, 4.1916e-04)

(-1.7330e-07, 1.7339e-07) (1.7330e-07, 1.7339e-07) (0.000023, 0.000057)

38 (SMD5) (-6.0842e-08, -3.3604e-06, 1.0, 1.0, 0.0039) (-1.2665e-10, 1.3795e-10) (1.2665e-10, 1.3795e-10) (0.000002, 0.000009)

39 (SMD6) (-3.4925e-08, 2.5489e-05, 4.4706e-06,

4.4706e-06, 2.5474e-05)

(6.8968e-10, 1.4570e-15) (6.8968e-10, 1.4570e-15) (0.000108, 0.000061)

40 (SMD7) (3.8445e-09, -1.1977e-11, -6.4516e-09,

-6.4516e-09, 1.0)

(-9.3943e-17, 9.3943e-17) (9.3943e-17, 9.3943e-17) (0.000016, 0.000177)

41 (SMD8) (4.2671e-11, 2.4561e-09, 1.0, 1.0, 0.0233) (8.8549e-12, 2.0450e-10) (8.8549e-12, 2.0450e-10) (0.000174, 0.000027)

42 (SMD9) (3.2473e-05, -2.7497e-07, -1.6235e-04,

-1.6235e-04, 5.1978e-04)

(-3.2198e-07, 3.2409e-07) (3.2198e-07, 3.2409e-07) (0.000017, 0.000054)

43 (SMD10) (1.0, 1.0, 1.0, 1.0, 0.7854) (4.0, 3.0) (0, 0) (0.034759, 0.018510)

44 (SMD11) (8.2462e-06, -6.2919e-04, 1.0379e-07,

1.0379e-07, 2.7166)

(-1.0, 1.0) (0, 0) (0.0131643, 0.129893)

45 (SMD12) (1.0, 1.0, 1.0, 1.0, 0.7849) (4.9990, 3.0) (0.001, 0) (0.032372, 0.000206)

The computational results for the problems 34-45 and problems 46-57 are respectively provided

in Tables 5 and 6. In Tables 5 and 6, the solution and the corresponding objective values obtained

by the bi-level PSO algorithm are respectively denoted by),( yx and),( fF , while the

objective values obtained by the nested bi-level evolutionary algorithm developed in [34] are

denoted by),(fF . Let),(fF be the objective values under the exact solution.

|)||,(|),(ffFFfF   and |)||,(|),(ffFFfF  are adopted to reflect the accuracy

of the solution respectively obtained by both of the algorithms. The smaller number of),( fF

and),(fF means the higher accuracy of the solution obtained. It can be seen from Tables 5 and

22

6 that our bi-level PSO algorithm is able to find a more accurate solution than the nested bi-level

evolutionary algorithm.

Table 6. The computational results for 10-dimensional test problems 46(SMD1) - 57(SMD12)

Problems),( yx),( fF),( fF

),(fF

46 (SMD1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000332, 0.000018)

47 (SMD2) (1.6899e-08, -3.0972e-08, 8.2156e-08,

-2.1181e-07, 2.5143e-07, -6.4507e-09,

-6.4507e-09, -6.4507e-09, 1.0, 1.0)

(1.1593e-13, 8.1410e-15) (1.1593e-13, 8.1410e-15) (0.000066, 0.000011)

48 (SMD3) (1.4331e-06, -1.0599e-06, -1.4075e-06,

-4.3816e-07, 3.8293e-06, -3.7340e-09,

-3.7340e-09, 5.1703e-09, 1.3951e-08,

1.3951e-08)

(2.0014e-11, 5.1590e-12) (2.0014e-11, 5.1590e-12) (0.000359, 0.000033)

49 (SMD4) (2.3924e-07, 4.5629e-08, 3.7434e-07,

1.0472e-06, 1.6518e-07, -1.4097e-08,

-1.4097e-08, -1.4097e-08, 3.1005e-04,

3.0963e-04)

(-1.9119e-07, 1.9119e-07) (1.9119e-07, 1.9119e-07) (0.000286, 0.000027)

50 (SMD5) (2.4397e-05, -3.1364e-06, -5.7256e-06,

-2.1074e-05, -4.7159e-06, 1.0, 1.0, 1.0,

0.0040, 0.0038)

(9.9401e-10, 7.4795e-10) (9.9401e-10, 7.4795e-10) (0.000052, 0.000009)

51 (SMD6) (-8.7492e-06, -7.0808e-06, 7.6839e-05,

4.9603e-05, 5.0376e-05, 1.6532e-08,

5.3412e-05, 5.3412e-05, 4.9566e-05,

5.0338e-05)

(1.6735e-08, 6.0309e-09) (1.6735e-08, 6.0309e-09) (0.001435, 0.000082)

52 (SMD7) (-1.9409e-09, 1.4642e-08, 1.4642e-08,

-7.3262e-09, -7.1216e-09, -6.4688e-09,

-6.4688e-09, 1.1635e-04, 1.0, 1.0)

(-2.6032e-08, 1.0577e-16) (2.6032e-08, 1.0577e-16) (0.006263, 0.000127)

53 (SMD8) (2.3591e-07, 4.3256e-05, 1.5413e-06,

1.2043e-07, 2.3549e-06, 1.0, 1.0, 1.0,

0.0320, 0.0324)

(9.9992e-05, 4.5035e-05) (9.9992e-05, 4.5035e-05) (0.003122, 0.000157)

54 (SMD9) (0.0012, 3.6938e-04, 3.2828e-05,

-2.9128e-04, -3.1246e-04, -9.4424e-04,

-9.0683e-04, -9.3510e-04, 0.0055, -0.0157)

(-2.7495e-04, 2.7829e-04) (2.7495e-04, 2.7829e-04) ---

55 (SMD10) (0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50,

0.50, 0.4636, 0.4636)

(12.0, 7.50) (0, 0) ---

56 (SMD11) (-1.8430e-06, 4.6479e-08, -6.4905e-07,

-3.6628e-07, 1.6103e-06, 6.6159e-08,

6.6159e-08, 6.6159e-08, 2.0281, 2.0281)

(-1.0, 1.0) (0, 0) ---

57 (SMD12) --- --- --- ---

Table 7 displays the computational results for problems 58-62 with 20 dimensions. As shown in

Table 7, the solutions found by our bi-level PSO algorithm are equal to those obtained by the

compared algorithm in [38] for problems 58-59 and 62. With regard to problems 60-61, the bi-level

PSO algorithm can achieve little better in terms of objective values. As highlighted in Table 7, we

23

can find that problems 60-61 have multiple solutions that can achieve objective values extremely

close to each other. To conclude, the results indicate that our bi-level PSO algorithm can find the

same solutions as the compared algorithm or better solutions for 20-dimensional nonlinear bi-level

problems.

Table 7. The computational results for 20-dimensional test problems 58-62

Problems),( yx),( fF),(yx),(fF

58 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1)

59 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1)

60 (-0.0859,-0.6008,0.2454,-0.1412,-1.2518,

-0.1978,-0.9856,-0.1297,-0.7022,-5,

0,0,0,0,0,0,0,0,0,0)

(1.2388e-6,1) (1.149034,0.08833383,1.254797,1.182997,

2.130051,1.742112,0.3082794,

1.591319,1.409942,-0.2195419,

0,0,0,0,0,0,0,0,0,0)

(4.64e-6,1)

61 (0.8882,0.7552,5,4.3309,-0.5017,0.8485,

-1.2183,2.2813,-1.5316,0.6639,

0,0,0,0,0,0,0,0,0,0)

(1.7316e-7,1) (-1.275612,0.4240169,-1.292204,-0.57017,

1.238698,2.83057,1.313386,

0.65589,-2.799304,-1.467915)

(1.12e-5,1)

62 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1)

4.3. Assessing the efficiency performance of the proposed bi-level PSO algorithm

In this section, we aim to assess the efficiency performance of the proposed bi-level PSO

algorithm in relation to solve large-scale problems. In Section 4.2, we provide the related

parameters employed in the bi-level PSO algorithm for solving large-scale nonlinear benchmark

problems. Much less iterations need to be executed by our bi-level PSO algorithm than the

evolutionary algorithm [34] that needs 330 and 678 iterations at least respectively for solving

five-dimensional and 10-dimensional problems. Clearly, our bi-level PSO algorithm has a better

convergence and efficiency performance than the evolutionary algorithm in solving large-scale

nonlinear bi-level programming problems. However, the increase in the number of decision

variables (e.g. more than 20 dimensions) may result in bi-level problems having no solutions apart

from some special versions [34]; thus, there are not sufficient benchmark nonlinear problems in the

existing research that can be used to explore the algorithm efficiency. In this study, to explore the

algorithm efficiency in solving much larger-scale (e.g. 20 dimensions or much more) problems, we

will apply the bi-level PSO algorithm to solve sufficient large-scale (40, 60 and 100 dimensions)

linear bi-level problems that can be randomly generated.

Sufficient large-scale linear bi-level programming problems are randomly generated using the

method proposed by Calvete et al. [12]. The problems are constructed by the following formulation

format:

24

ydxcyxF
x

11
0

),(min 


 (1st level)

ydxcyxf
y

22
0

),(min 


 (2nd level)

s.t. bByAx  .

The objective functions' coefficients (c1, d1, c2, d2) of both level are randomly generated from

the uniform distribution on [-10, 10]. For the sake of ensuring the problem is well posed, the

coefficients of one constraint condition are chosen from uniform random numbers between 0 and 10,

whereas the remainder elements of the coefficient matrix are uniformly distributed between -10 and

10. The right-hand side of each constraint condition is the sum of the absolute value of the

coefficients in the constraint condition. According to the construction method by Calvete et al. [12],

the test problems are classified into three groups (G1, G2 and G3) by the number n of decision

variables of the bi-level programming problem, shown in Table 8. n1 and n2 respectively denote the

number of decision variables of the first level and the second level, while m denotes the number of

constraint conditions of the bi-level problem. It can be seen from Table 8 that there are nine

problem types in each test problem group by different combinations of n1, n2 and m. In this

computational study, we randomly construct 30 test problems within each problem type; thus, there

are 8103930  bi-level problems randomly generated in total within three test problem

groups.

Table 8. Test problem dimensions

G1: n=40 G2: n=60 G3: n=100

n1 n2 m n1 n2 m n1 n2 m

28 12 12 42 18 18 70 30 30

28 12 20 42 18 30 70 30 50

28 12 32 42 18 48 70 30 80

20 20 12 30 30 18 50 50 30

20 20 20 30 30 30 50 50 50

20 20 32 3 30 48 50 50 80

 8 32 12 12 48 18 20 80 30

 8 32 20 12 48 30 20 80 50

 8 32 32 12 48 48 20 80 80

 Within the bi-level PSO algorithm, the key parameters involve the inertia weight w, the

population size N and the maximum number of iterations Iter_max. To explore the influence of the

three parameters on the performance of the bi-level PSO algorithm, each test problem is solved

under six kinds of parameter combinations of the bi-level PSO algorithm, which involve C1

25

(wmax=1.0, N=100, Iter_max=300), C2 (wmax=0.75, N=100, Iter_max=300), C3 (wmax=0.50, N=100,

Iter_max=300) , C4 (wmax=1.0, N=50, Iter_max=500), C5 (wmax=0.75, N=50, Iter_max=500) and C6

(wmax=0.50, N=50, Iter_max=500). In addition, we set other parameters within the bi-level PSO

algorithm: vmax=5.0, vmin=-5.0, wmin=0.01, c1=c2=2. For 810 test problems, each of them is carried

out 16 runs under each parameter combination. In terms of each test problem, we define minF as

the best objective value of the first level obtained from all parameter combinations; if the best

objective value F of the first level obtained from 16 runs under each parameter combination equals

to minF , we consider that the bi-level PSO algorithm can find a solution for the test problem under

the parameter combination. Table 9 displays the number of test problems successfully solved under

each parameter combination.

Table 9. The number of test problems successfully solved under each parameter combination

G1: n=40 G2: n=60 G3: n=100

n1-n2-m C1 C2 C3 C4 C5 C6 n1-n2-m C1 C2 C3 C4 C5 C6 n1-n2-m C1 C2 C3 C4 C5 C6

28-12-12 5 17 23 18 27 28 42-18-18 3 10 15 7 20 26 70-30-30 8 9 17 8 16 25

28-12-20 3 16 20 13 27 29 42-18-30 2 7 18 6 22 26 70-30-50 10 13 22 6 18 23

28-12-32 8 18 22 12 26 30 42-18-48 2 5 14 4 21 28 70-30-80 11 15 22 9 19 24

20-20-12 13 22 25 21 24 29 30-30-18 5 14 19 17 26 27 50-50-30 1 7 17 7 16 26

20-20-20 13 21 27 23 27 28 30-30-30 2 16 24 17 27 29 50-50-50 2 4 15 7 18 27

20-20-32 16 26 29 28 30 30 30-30-48 5 20 26 15 28 30 50-50-80 6 12 17 11 25 25

 8-32-12 19 20 23 20 21 29 12-48-18 23 25 26 22 27 30 20-80-30 10 18 22 14 21 28

 8-32-20 26 27 29 27 28 29 12-48-30 28 28 29 28 29 30 20-80-50 10 25 28 18 26 29

 8-32-32 29 30 30 29 30 30 12-48-48 27 29 29 30 30 30 20-80-80 13 23 29 21 28 30

Total 132 197 228 191 240 262 Total 97 154 200 146 230 256 Total 71 126 189 101 187 237

Table 9 clearly shows that different combinations of the inertia weight w, the population size N

and the maximum number of iterations Iter_max have significant influences on the performance of

the bi-level PSO algorithm. As shown in Table 9, most test problems are successfully solved under

the parameter combination C6 within each problem group, which means that the bi-level PSO

algorithm shows higher performance under C6 than other parameter combinations. However, the

algorithm performance under C1 - C5 becomes more and more close to that under C6 following the

decline of the number n1 of the first level decision variables, in particular in groups G1 and G2; Fig.1

clearly presents these results, which display the total number of test problems that have the same

number of the first level decision variables successfully solved under C1 - C6. Also, it is clear in Fig.

1 that the algorithm performance under each parameter combination experiences a noticeable

upward trend along with a decrease in the number n1 of the first level decision variables within

26

groups G1 and G2. In terms of problem group G3, it is noticeable that the number of test problems

with n1=70 successfully solved exceeds that with n1=50, which implies that the increase in the

population size of the bi-level PSO algorithm is able to improve its performance in solving these

problems when much more decision variables of the first level are involved.

Fig. 1. The performance of the bi-level PSO algorithm following different parameter combinations

0

10

20

30

40

50

60

70

80

90

100

C1 C2 C3 C4 C5 C6

T
h

e
n

u
m

b
er

 o
f

p
ro

b
le

m
s

so
lv

ed

Different parameter combinations

Group G1 n1=28 n1=20 n1=8

0

10

20

30

40

50

60

70

80

90

100

C1 C2 C3 C4 C5 C6

T
h

e
n

u
m

b
er

 o
f

p
ro

b
le

m
s

so
lv

ed

Different parameter combinations

Group G2 n1=42 n2=30 n3=12

0

10

20

30

40

50

60

70

80

90

100

C1 C2 C3 C4 C5 C6

T
h

e
n

u
m

b
er

 o
f

te
st

 p
ro

b
le

m
s

so
lv

ed

Different parameter combinations

Group G3 n1=70 n1=50 n1=20

27

To explore more in depth, we compare the algorithm efficiency of our bi-level PSO algorithm

with that of the genetic algorithm based on bases (GABB) developed by Calvete et al. [12] for

solving these test problems randomly constructed. We examine the convergent CPU time and the

total CPU time of all iterations completed for both algorithms. Table 10 shows the average of the

convergent CPU time (in seconds) and the total CPU time (in seconds) for each problem type using

both algorithms. Note that the computational results of the bi-level PSO algorithm are obtained

under the parameter combination C6, while the GABB is performed under its best related parameter

combination presented by Calvete et al. [12].

 Table 10. The computational results respectively obtained by the bi-level PSO algorithm and GABB

Test Problems PSO GABB

Group n1-n2-m Convergent iteration number Convergent time Total time Convergent time Total time

G1 28-12-12 356.03 45.34 74.22 4.92 27.32

 28-12-20 376.38 49.28 64.48 10.49 33.65

 28-12-32 344.50 59.35 84.90 13.85 41.26

 20-20-12 360.97 47.21 66.92 7.31 39.25

 20-20-20 365.39 52.28 72.57 11.58 51.36

 20-20-32 353.80 60.82 87.52 20.29 67.35

 8-32-12 265.48 72.58 136.15 13.75 72.10

 8-32-20 240.28 68.97 137.76 19.34 82.65

 8-32-32 237.50 80.64 169.46 38.52 110.65

G2 42-18-18 365.38 47.54 63.58 12.68 56.38

 42-18-30 370.81 51.27 69.68 20.96 71.84

 42-18-48 397.96 60.49 74.36 32.29 95.43

 30-30-18 366.52 54.18 73.87 21.03 105.57

 30-30-30 368.03 53.69 73.09 38.35 128.64

 30-30-48 383.47 62.36 81.26 59.31 169.91

 12-48-18 351.53 92.03 129.38 68.62 284.05

 12-48-30 358.03 95.11 135.48 108.24 361.54

 12-48-48 324.50 116.66 180.28 179.35 440.72

G3 70-30-30 318.96 48.83 76.69 54.69 115.20

 70-30-50 328.52 51.32 78.05 83.61 159.61

 70-30-80 337.29 67.33 99.80 145.37 231.49

 50-50-30 368.65 56.69 77.16 134.29 331.85

 50-50-50 340.52 75.70 107.85 221.89 428.96

 50-50-80 344.32 71.54 103.76 410.36 630.87

 20-80-30 339.29 86.84 128.72 771.59 1652.19

 20-80-50 396.31 132.91 168.76 1299.76 2238.47

 20-80-80 427.47 200.41 234.34 1684.53 2489.63

28

Fig. 2. The average of the convergent CPU time

0

10

20

30

40

50

60

70

80

90

T
h

e
co

n
v
er

g
ed

 C
P

U
 t

im
e

n1-n2-m

Group G1 PSO GABB

0

20

40

60

80

100

120

140

160

180

200

T
h

e
co

n
v
er

g
ed

 C
P

U
 t

im
e

n1-n2-m

Group G2 PSO GABB

0

200

400

600

800

1000

1200

1400

1600

1800

T
h

e
co

n
v
er

g
ed

 C
P

U
 t

im
e

n1-n2-m

Group G3 PSO GABB

29

Fig. 3. The average of the total CPU time of all iterations completed

It can be seen from Table 10 that our bi-level PSO algorithm spends more CPU times obtaining

the best solution and completing all iterations for solving problem group G1, however, both CPU

0

20

40

60

80

100

120

140

160

180

T
h

e
to

ta
l

C
P

U
 t

im
e

n1-n2-m

Group G1 PSO GABB

0

50

100

150

200

250

300

350

400

450

500

T
h

e
to

ta
l

C
P

U
 t

im
e

n1-n2-m

Group G2 PSO GABB

0

500

1000

1500

2000

2500

3000

T
h

e
to

ta
l

C
P

U
 t

im
e

n1-n2-m

Group G3 PSO GABB

30

times of our bi-level PSO algorithm become less and less than GABB following the increase in the

number of decision variables within problem groups G2 and G3; Fig. 2 and Fig. 3 display much

more evident results. Fig.2 and Fig.3 clearly show that both the convergent and total CPU times of

GABB increase steeply with the increase in the size of the test problems. In particular in group G3,

GABB takes much more CPU times than our bi-level PSO algorithm to converge to the best

solution and complete all the iterations, which implies that our bi-level PSO algorithm has a

significant advantage in solving larger-scale problems.

5. Conclusions and further study

In this paper, we sought to solve bi-level and tri-level programming problems using PSO. To

validate and illustrate the effectiveness of the proposed bi/tri-level PSO algorithms, we applied

them to solve 62 benchmark problems and 810 large-scale problems which were randomly

constructed. We also compared the computational results with those obtained by the existing

PSO-CST algorithm [39], evolutionary algorithms [34, 38, 40] and genetic algorithm [12]. On the

one hand, the computational results of these benchmark bi-level and tri-level programming

problems reported that our bi/tri-level PSO algorithms are able to find much better solutions than

the compared algorithms. On the other hand, the computational results of these large-scale problems

clearly indicated that our bi-level PSO algorithm shows much better performance in terms of

efficiency than the compared algorithms following the problem size becoming larger and larger. In

conclusion, the proposed bi-level PSO algorithm provides a practical way to solve nonlinear and

large-scale bi-level programming problems; also, it can be extended to a tri-level PSO algorithm for

solving tri-level programming problems.

In the future, we will apply the proposed multilevel programming techniques and bi/tri-level

PSO algorithms to model and solve decentralized decision-making problems in the real world, e.g.

supply chain management, logistics and hierarchical production operations. Moreover, we will turn

our attention to the generalization of the proposed bi/tri-level PSO algorithms into problem

scenarios with uncertain issues, e.g. multilevel programming problems with fuzzy and/or random

parameters.

Acknowledgements

This work is supported by the Australian Research Council (ARC) under discovery grant

DP140101366.

31

References

[1] M.A. Abo-Sinna, I.A. Baky, Interactive balance space approach for solving multi-level multi-objective programming

problems, Information Sciences, 177 (2007) 3397-3410.

[2] G. Anandalingam, A mathematical programming model of decentralized multi-level systems, Journal of the

Operational Research Society, 39 (1988) 1021-1033.

[3] Z. Ankhili, A. Mansouri, An exact penalty on bilevel programs with linear vector optimization lower level, European

Journal of Operational Research, 197 (2009) 36-41.

[4] S.R. Arora, R. Gupta, Interactive fuzzy goal programming approach for bilevel programming problem, European

Journal of Operational Research, 194 (2009) 368-376.

[5] C. Audet, J. Haddad, G. Savard, Disjunctive cuts for continuous linear bilevel programming, Optimization Letters, 1

(2007) 259-267.

[6] J.F. Bard, An investigation of the linear three level programming problem, IEEE Transactions on Systems, Man, and

Cybernetics, SMC-14 (1984) 711-717.

[7] J.F. Bard, Some properties of the bilevel programming problem, Journal of Optimization Theory and Applications,

68 (1991) 371-378.

[8] J.F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 1998.

[9] J.F. Bard, J.E. Falk, An explicit solution to the multi-level programming problem, Computers & Operations Research,

9 (1982) 77-100.

[10] O. Ben-Aved, C.E. Blair, Computational difficulties of bilevel linear programming, Operations Research, 38 (1990)

556-560.

[11] W.F. Bialas, M.H. Karwan, On two-level optimization, IEEE Transactions on Automatic Control, AC-26 (1982)

211-214.

[12] H.I. Calvete, C. Galé, P.M. Mateo, A new approach for solving linear bilevel problems using genetic algorithms,

European Journal of Operational Research, 188 (2008) 14-28.

[13] S.-W. Chiou, A bi-level programming for logistics network design with system-optimized flows, Information

Sciences, 179 (2009) 2434-2441.

[14] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

[15] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the 6th International

Symposium on Micro Machine and Human Science, 1995, pp. 39-43.

[16] N.P. Faísca, V. Dua, B. Rustem, P.M. Saraiva, E.N. Pistikopoulos, Parametric global optimisation for bilevel

programming, Journal of Global Optimization, 38 (2007) 609-623.

[17] N.P. Faísca, P.M. Saraiva, B. Rustem, E.N. Pistikopoulos, A multi-parametric programming approach for multilevel

hierarchical and decentralised optimisation problems, Computational Management Science, 6 (2007) 377-397.

[18] Y. Gao, G. Zhang, J. Lu, H.M. Wee, Particle swarm optimization for bi-level pricing problems in supply chains,

Journal of Global Optimization, 51 (2011) 245-254.

[19] J. Han, J. Lu, Y. Hu, G. Zhang, Tri-level decision-making with multiple followers: Model, algorithm and case study,

Information Sciences, 311 (2015) 182-204.

[20] P. Hansen, B. Jaumard, G. Savard, New branch-and-bound rules for linear bilevel programming, SIAM Journal on

Scientific and Statistical Computing, 13 (1992) 1194-1217.

[21] V. Kalashnikov, R. Ríos-Mercado, A natural gas cash-out problem: A bilevel programming framework and a penalty

function method, Optimization and Engineering, 7 (2006) 403-420.

[22] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of The 1995 IEEE International Conference

on Neural Networks, 1995, pp. 1942-1948.

[23] R.J. Kuo, C.C. Huang, Application of particle swarm optimization algorithm for solving bi-level linear programming

32

problem, Computers & Mathematics with Applications, 58 (2009) 678-685.

[24] Y.-J. Lai, Hierarchical optimization: A satisfactory solution, Fuzzy Sets and Systems, 77 (1996) 321-335.

[25] J. Lu, J. Han, Y. Hu, G. Zhang, Multilevel decision-making: A survey, Information Sciences, 346-347 (2016) 463-487.

[26] J. Lu, C. Shi, G. Zhang, On bilevel multi-follower decision making: General framework and solutions, Information

Sciences, 176 (2006) 1607-1627.

[27] J. Lu, G. Zhang, J. Montero, L. Garmendia, Multifollower trilevel decision making models and system, IEEE

Transactions on Industrial Informatics, 8 (2012) 974-985.

[28] S. Pramanik, T.K. Roy, Fuzzy goal programming approach to multilevel programming problems, European Journal

of Operational Research, 176 (2007) 1151-1166.

[29] G.Z. Ruan, S.Y. Wang, Y. Yamamoto, S.S. Zhu, Optimality conditions and geometric properties of a linear multilevel

programming problem with dominated objective functions, Journal of Optimization Theory and Applications, 123

(2004) 409-429.

[30] C. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of The 1998 IEEE International

Conference on Evolutionary Computation, 1998, pp. 69-73.

[31] C. Shi, H. Lu, G. Zhang, An extended Kth-best approach for linear bilevel programming, Applied Mathematics and

Computation, 164 (2005) 843-855.

[32] C. Shi, J. Lu, G. Zhang, An extended Kuhn-Tucker approach for linear bilevel programming, Applied Mathematics

and Computation, 162 (2005) 51-63.

[33] H.-S. Shih, Y.-J. Lai, E.S. Lee, Fuzzy approach for multi-level programming problems, Computers & Operations

Research, 23 (1996) 73-91.

[34] A. Sinha, P. Malo, K. Deb, Test problem construction for single-objective bilevel optimization, Evoluation

Computation, 22 (2014) 439-477.

[35] S. Sinha, A comment on Anandalingam (1988). A mathematical programming model of decentralized multi-level

systems. J Opl Res Soc 39: 1021-1033, Journal of the Operational Research Society, 52 (2001) 594-596.

[36] S. Sinha, Fuzzy mathematical programming applied to multi-level programming problems, Computers &

Operations Research, 30 (2003) 1259-1268.

[37] S. Sinha, Fuzzy programming approach to multi-level programming problems, Fuzzy Sets and Systems, 136 (2003)

189-202.

[38] Z. Wan, L. Mao, G. Wang, Estimation of distribution algorithm for a class of nonlinear bilevel programming

problems, Information Sciences, 256 (2014) 184-196.

[39] Z. Wan, G. Wang, B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos

searching technique for solving nonlinear bilevel programming problems, Swarm and Evolutionary Computation, 8

(2013) 26-32.

[40] Y. Wang, Y.-C. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new

constraint-handling scheme, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 35

(2005) 221-232.

[41] D. White, G. Anandalingam, A penalty function approach for solving bi-Level linear programs, Journal of Global

Optimization, 3 (1993) 397-419.

[42] D.J. White, Penalty function approach to linear trilevel programming, Journal of Optimization Theory and

Applications, 93 (1997) 183-197.

[43] G. Zhang, J. Han, J. Lu, Fuzzy Bi-level Decision-Making Techniques: A Survey, International Journal of

Computational Intelligence Systems, 9 (2016) 25-34.

[44] G. Zhang, J. Lu, Y. Gao, Multi-Level Decision Making: Models, Methods and Applications, Springer, Berlin, 2015.

[45] G. Zhang, J. Lu, J. Montero, Y. Zeng, Model, solution concept and the Kth-best algorithm for linear tri-level

programming, Information Sciences, 180 (2010) 481-492.

[46] G. Zhang, C. Shi, J. Lu, An extended Kth-Best approach for referential-uncooperative bilevel multi-follower decision

33

making, International Journal of Computational Intelligence Systems, 1 (2008) 205-214.

[47] G. Zhang, G. Zhang, Y. Gao, J. Lu, Competitive strategic bidding optimization in electricity markets using bilevel

programming and swarm technique, IEEE Transactions on Industrial Electronics, 58 (2011) 2138-2146.

