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Abstract: Multilevel (including bi-level and tri-level) programming aims to solve decentralized 

decision-making problems that feature interactive decision entities distributed throughout a 

hierarchical organization. Since the multilevel programming problem is strongly NP-hard and 

traditional exact algorithmic approaches lack efficiency, heuristics-based particle swarm 

optimization (PSO) algorithms have been used to generate an alternative for solving such problems. 

However, the existing PSO algorithms are limited to solving linear or small-scale bi-level 

programming problems. This paper first develops a novel bi-level PSO algorithm to solve general 

bi-level programs involving nonlinear and large-scale problems. It then proposes a tri-level PSO 

algorithm for handling tri-level programming problems that are more challenging than bi-level 

programs and have not been well solved by existing algorithms. For the sake of exploring the 

algorithms' performance, the proposed bi/tri-level PSO algorithms are applied to solve 62 

benchmark problems and 810 large-scale problems which are randomly constructed. The 

computational results and comparison with other algorithms clearly illustrate the effectiveness of 

the proposed PSO algorithms in solving bi-level and tri-level programming problems. 

Keywords: Bi-level programming, tri-level programming, multilevel decision-making, particle 

swarm optimization, computational intelligence. 
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1. Introduction 

Multilevel programming (also known as multilevel decision-making) attempts to address 

compromises between interactive decision entities that are distributed throughout a hierarchy[1]. 

Decision entities at the upper level and the lower level of a multilevel programming problem are 

respectively termed the leader and the follower [8, 26]. The leader and follower make their 

individual decisions in sequence with the aim of optimizing their respective objectives, which 

means that the follower reacts after and in full knowledge of the leader's decision. However, the 

leader's decision is implicitly affected by the follower's reaction. Bi-level and tri-level programming 

problems are two special, typical and popular situations of multilevel programming, which have 

motivated a number of significant efforts in decision models, solution approaches and applications 

in areas of mathematics, computer science and business [13, 25, 44]. 

To achieve a quick understanding of multilevel programming, a tri-level programming case in 

relation to three-echelon supply chain management can be taken as an example. The three-stage 

supply chain is composed of a manufacturer, a distributor and a vendor, which are distributed 

throughout three hierarchical levels. Within a stable sales cycle, they have to hold a certain amount 

of inventory to fully satisfy market demand, which indicates that one decision entity has to increase 

its holding inventory if the others reduce their inventories; all of them however seek to minimize 

their individual inventory holding costs. When inventory decision-making, the manufacturer (the 

top-level leader) take the lead in developing an optimal inventory plan which considers the current 

market demand and implicit reactions of other decision entities. According to the decision given by 

the manufacturer, the distributor (the middle-level follower) then makes an optimal inventory plan; 

likewise, it references the implicit reaction of the vendor. Lastly, the vendor (the bottom-level 

follower) determines its inventory to minimize its own cost in light of the fixed inventory plans by 

the manufacturer and distributor. The decision process will not stop until each decision entity is 

unwilling to change its decision. This example describes a tri-level programming problem, in which 

decision entities make decisions in sequence from the manufacturer to the distributor and then to the 

vendor, but the upper-level decision is affected by implicit reactions of the lower level. 

Although multilevel programming problems have been proved to be strongly NP-hard by 

Ben-Aved and Blair [10] and Bard [7], a number of methodologies have been developed to solve 

bi-level and tri-level programming problems. In terms of bi-level programming problems, various 

exact algorithmic approaches have been developed that can be mainly classified into three 
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categories: the vertex enumeration approach [8, 11, 31, 46], the Kuhn-Tucker approach [8, 9, 20, 

32], and the penalty function approach [8, 41]. In addition, many certain algorithms have been 

developed to solve some special kinds of bi-level problems, such as exact penalty method [3], 

disjunctive cuts method [5] and parametric programming algorithm [16]. While the majority of 

studies on multilevel programming have focused on bi-level versions, tri-level programming has 

increasingly attracted investigations into solution approaches since it can be applied to handle many 

real-world problems [19, 27]. In line with related discussion on the optimality conditions and 

related geometric properties [6, 29, 42], a range of solution approaches have been developed for 

solving tri-level programming problems, e.g. cutting plane algorithm [6], penalty function approach 

[42], Kuhn-Tucker transformation methods [2, 35], multi-parametric programming approach [17], 

tri-level Kth-Best algorithm [45] and a category of fuzzy programming approaches [4, 24, 28, 33, 

36, 37]. It is notable that readers can refer to the latest survey papers [25, 43] for systematically 

reviews of up-to-date bi-level and tri-level programming research. 

In general, a number of approaches have been proposed to solve bi-level and tri-level 

programming problems, but these existing approaches are limited to solving linear problems or very 

time consuming for solving nonlinear and large-scale problems. Nowadays, large-scale and 

nonlinear features have increasingly appear in multilevel programming problems. For example, 

business firms usually work in a decentralized manner in a complex supply chain network, then 

high-dimensional decision variables and nonlinear objectives/constraints are often involved when 

handling related multilevel programming problems. Consequently, further investigation into solving 

nonlinear and large-scale multilevel programming problems is necessary. 

Particle swarm optimization (PSO) is a population-based heuristic algorithm first proposed by 

Kennedy and Eberhart [22], which is inspired by the social behavior of organisms such as fish 

schooling and bird flocking. As PSO is computationally inexpensive in terms of both memory 

requirements and speed [15], it has a good convergence performance and has been successfully 

applied in many fields. In relation to solving multilevel programs, Kuo and Huang [23] developed a 

PSO algorithm for solving linear bi-level programming problems in which decision entities from 

different decision levels share constraint conditions. Wan et al. [39] proposed a hybrid intelligent 

algorithm by combining the PSO with chaos searching technique (CST) for solving nonlinear 

bi-level programming problems. Gao et al. [18] and Zhang et al. [47] respectively applied PSO 

algorithms to solve bi-level programming models in relation to the pricing problem in supply chain 
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and competitive strategic bidding optimization in electricity markets. Although PSO-based 

algorithms have been developed to solve multilevel programs, it is only limited to some special (e.g. 

linear formulations and certain applications) and small-scale bi-level programming problems. 

The main contributions of this paper are twofold. First, this paper develops a novel bi-level PSO 

algorithm to solve general bi-level programs involving nonlinear and large-scale problems. Second, 

it proposes a tri-level PSO algorithm for solving complicated tri-level programming problems. For 

the sake of exploring the algorithms' performance, the proposed bi/tri-level PSO algorithms are 

applied to solve 62 benchmark problems and 810 randomly constructed large-scale problems. 

Moreover, we compare the computational results with those obtained by the existing heuristic 

algorithms, such as the existing PSO-CST algorithm [39], evolutionary algorithms [34, 38, 40] and 

genetic algorithm [12]. 

This paper is organized as follows. Following the introduction, we present a general bi-level 

programming problem and develop a bi-level PSO algorithm in Section 2. In Section 3, we present 

a tri-level PSO algorithm to solve tri-level programming problems. In Section 4, the proposed 

bi/tri-level PSO algorithms are applied to solve 62 benchmark problems and 810 large-scale 

problems. Lastly, concluding remarks and further avenues of study are given in Section 5. 

2. Bi-level PSO algorithm 

In this section, we first propose a general bi-level programming problem and related solution 

concepts. Second, we develop a bi-level PSO algorithm for solving the proposed bi-level 

programming problem. 

2.1. General bi-level programming problem and solution concepts 

The general bi-level programming problem presented by Bard [8] is defined as follows. 

Definition 1 [8] For pRXx  ,
qRYy  , a general bi-level programming problem is 

defined as: 

),(min yxF
Xx

                  (1st level, leader)                                (1a) 

s.t. 0),( yxG ,                                                            (1b) 

     where, for each x given by the leader, y solves the follower's problem (1c-1d) 

),(min yxf
Yy

              (2nd level, follower)                             (1c) 

s.t. 0),( yxg ,                                                        (1d) 

where x, y are the decision variables of the first level and the second level respectively; 
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1:, RRRfF qp   are the objective functions of the first level and the second level respectively; 

mqp RRRG : ,
nqp RRRg :  are the constraint conditions of the first level and the second 

level respectively. 

To find an optimal solution for the bi-level programming problem (1), relevant solution 

concepts are presented as follows. 

Definition 2 [8] 

(1) The constraint region of the bi-level programming problem: 

  }0),(,0),(:),{(  yxgyxGYXyxS . 

(2) The feasible set of the second level for each fixed x: 

  }0),(:{)(  yxgYyxS . 

(3) The rational reaction set of the second level: 

  ) ] }(:),(m i n [a r g:{)( xSyyxfyYyxP  . 

(4) The inducible region of the bi-level programming problem: 

  )}(,),(:),{( xPySyxyxIR  . 

(5) The optimal solution set of the bi-level programming problem: 

  ]}),(:),(min[arg),(:),{( IRyxyxFyxyxOS  . 

It is clear from Definition 2 that the constraint domain associated with a bi-level programming 

problem is implicitly determined by two optimization problems which must be solved in a 

predetermined sequence from the first level to the second level [21]. To ensure the bi-level 

programming problem is well posed, the following assumptions based on Definition 2 are 

commonly made. 

Assumption 1. F, f, G and g are continuous functions, while f and g are continuously 

differentiable. 

Assumption 2. f is strictly convex in y for )(xSy  where S(x) is a compact convex set. 

Assumption 3. F is continuous convex in x and y. 

Under Assumptions 1 and 2, the rational reaction set of the second level P(x) is a point-to-point 

map and closed. This implies that the IR is compact. Thus, under the assumption 3 solving the 

bi-level programming problem (1) is equivalent to optimizing the leader's continuous function F 
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over the compact set IR. It is well known that the solution to such a problem is guaranteed to exist. 

We thereby develop a bi-level PSO algorithm for the purpose of finding a solution for the bi-level 

programming problem (1). 

2.2. The bi-level PSO algorithm description 

PSO is a category of the population-based heuristic algorithm that is motivated by the social 

behavior of organisms such as fish schooling and bird flocking. The population of PSO is known as 

a swarm, while each element in the swarm is termed a particle. In a swarm with the size N, the 

position vector of each particle with index i ),,2,1( Ni  is denoted as ),( t
i

t
i

t
i yxX   at iteration t, 

which represents a potential solution to the problem (1). For the sake of convenient discussion, we 

let ),(),( 21
t
i

t
i

t
i

t
i

t
i xxyxX  . At iteration t, each particle i moves from 

t
iX  to 

1t
iX  in the search 

space at a velocity ),( 1
2

1
1

1   t
i

t
i

t
i vvV  along each dimension. Each particle keeps track of its 

coordinates in hyperspace which are associated with the best solution (fitness), called pbest 

( ),( 21 iii ppp  ), it has achieved so far; while the PSO algorithm is divided into two versions, 

respectively known as the GBEST version and the LBEST version, due to different definitions of 

the best solution [15]. In the GBEST version, the particle swarm optimizer keeps track of the 

overall best value, called gbest ( ),( 21 ggg ppp  ), and its location obtained thus far by any particle 

in the population, known as the global neighborhood. For the LBEST version, particles only contain 

their own and their nearest array neighbors’ best information within a local topological 

neighborhood, rather than that of the entire group. However, in either PSO version, the PSO 

concept , at each iteration, always consists of an aggregated acceleration of each particle towards its 

pbest and gbest position. In this paper, the GBEST version of PSO is followed, and in this section, 

detailed procedures for solving the problem (1) are developed based on Definition 2. 

(1) Initial population 

In an initial population of particles with the number N, each particle i ),,2,1( Ni   can be 

represented as ),(),( 0
2

0
1

000
iiiii xxyxX  . As an initial population is randomly constructed for the 

PSO algorithm, we propose a random method to construct an initial population with the size N. 

First, we randomly generate the required number of the first level decision variables 
0
ix

),,2,1( Ni  . Second, we adopt the existing simplex method or interior point method to solve the 
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second level problem }0),(:),({min 


yxgyxf
Yy

 under 
0
ixx   and obtain the corresponding 

solution 
0
iy . In this way, we complete the construction of the initial population and 

),(),( 0
2

0
1

000
iiiii xxyxX  . 

Nevertheless, a number of particles of the initial population may occur outside the constraint 

region S particularly in relation to solving large-scale problems with complex constraints. To ensure 

many more particles of the initial population occur over the constraint region, we propose another 

construction method to supplement part particles to the initial population. 

First, we obtain two solutions ),( minminmin yxX   and ),( maxmaxmax yxX   respectively for 

solving the problems }),(:),(min{ SyxyxF   and }),(:),(max{ SyxyxF  . 

Second, a formula is defined to construct the initial population: 

])(,)[(),(),( 2
minmax

1
minmaxminmin00 ryyrxxyxyx ii  , where Ni ,,2,1  , r1 and r2 are 

random numbers uniformly distributed between 0 and 1. 

The second method provides more particles occurring over the constraint region, even though 

the particles may be not uniformly distributed throughout the constraint region. Consequently, when 

the PSO algorithm is performed for solving small-scale problems, we can only use the first method 

to construct the initial population; whereas both methods mentioned are able to be combined to 

construct the initial population for solving large-scale problems. Moreover, the percentage of the 

population generated by the second method should goes up with the increase in the problem size. 

Although some particles of the initial population still occur outside the constraint region S using 

these above construction methods, the particles will be tugged to return towards the constraint 

region S at the following iterations if there exist better solutions in S [15]; this is an advantage of the 

PSO algorithm in constructing the initial population. 

(2) The updating rules of particles 

In the PSO algorithm, each particle i moves toward ),(),( 1
2

1
1

111   t
i

t
i

t
i

t
i

t
i xxyxX  in the 

search space at a velocity ),( 1
2

1
1

1   t
i

t
i

t
i vvV at each iteration t. In this paper, the velocity and 

position of each particle i are updated as follows for Nij ,,2,1,2,1   based on related 

definitions proposed by Shi and Eberhart [30]: 

)()( 2211
1 t

ij
t
gj

t
ij

t
ij

t
ij

t
ij xprcxprcwvv  ,                         (2) 
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11   t
ij

t
ij

t
ij vxx .                                              (3) 

We now determine the selection of parameters involved in the formula (2). For the updating 

velocity, there are usually maximum and minimum velocity levels maxv  and minv . If the current 

velocity max
1 vvt

ij  , we set max
1 vvt

ij  ; while min
1 vvt

ij 
 if min

1 vvt
ij 

. In the beginning, we set 

max
0 vvij  . 

w  is the inertia weight, which controls the impact of the previous velocities on the current 

velocity. The inclusion of the inertia weight involves two definitions proposed by Shi and Eberhart 

[30]: a fixed constant and a decreasing function with time. In our PSO algorithm, we use the latter 

to define the inertia weight, because large inertial weight can be used to possess more exploitation 

ability at the beginning to find a good seed while it is reduced for better local exploitation later on 

in the search [30]. The inertia weight is represented as: 

t
Iter

ww
ww 




max_

minmax
max ,                                  (4) 

where maxw and minw  are the upper and lower bounds on the inertia weight, which are determined 

by the practical problem; Iter_max is the maximum number of PSO iterations while t represents the 

current iteration number. 

1c  and 2c  are known as learning factors or acceleration coefficients, which control the 

maximum step size that the particle can do. A recommended choice for constant 1c  and 2c  is 

integer 2 as proposed by Kennedy and Eberhart [22]. 

1r  and 2r  are uniform random numbers between 0 and 1. 

(3) Fitness evaluation 

For each particle i at the iteration t ),( t
i

t
i

t
i yxX  , adopt the existing simplex method or interior 

point method to solve the problem }0),(:),({min 


yxgyxf
Yy

 under 
t
ixx   and obtain the 

solution ),( yxt
i  where )( t

ixPy  . If the solution Syxt
i ),( , update ),(),(  yxyxX t

i
t
i

t
i

t
i . 

Note that )( t
ixPy   and Syxt

i ),(  mean IRyxt
i ),(  by Definition 2, that is, ),( yxt

i  is a 

feasible solution for the bi-level problem (1). The pbest solution is  ),( 21 iii ppp ),( t
i

t
i yx  if 

),(),( 21 ii
t
i

t
i ppFyxF 

 
or ),(),( 21 ii

t
i

t
i ppfyxf 

 
under ),(),( 21 ii

t
i

t
i ppFyxF   where we set 
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),(),( 00
21 iiiii yxppp   and ),( 00

ii yxF  at the beginning. The global best solution gbest of 

the swarm at the iteration t is ),( 21 ggg ppp   where },,2,1),,(min{),( 2121 NippFppF iigg  . 

(4) Termination criterion 

The PSO algorithm will be terminated after a maximum number of iterations Iter_max or when 

it achieves a maximum CPU time. 

(5) Computational procedures of the bi-level PSO algorithm 

Based on the theoretical basis proposed above, we will present the complete computational 

procedures of the bi-level PSO algorithm for solving the bi-level programming problem (1). 

[Begin] 

Step 1: Initialization. 

(a) Construct the population size N and generate the initial population of particles 

NiyxX iii ,,2,1),,( 000  ; 

(b) Initialize the pbest solution as ),(),( 00
21 iiiii yxppp   and the fitness ),( 00

ii yxF ; 

(c) Set the maximum and minimum velocity levels maxv  and minv , and initialize max
0 vvij  ; 

(d) Set the upper and lower bounds on the inertia weight maxw and minw , acceleration 

coefficients 1c  and 2c , and the maximum iteration number Iter_max; 

(e) Set the current iteration number t=0 and go to Step 2. 

Step 2: Compute the fitness value and update the pbest solution for each particle. Set i=1 and go to 

Step 2.1. 

Step 2.1: Under 
t
ixx  , solve the problem }0),(:),({min 


yxgyxf

Yy
 and obtain the solution 

),( yxt
i . Go to Step 2.2. 

Step 2.2: If the solution Syxt
i ),( , update ),(),(  yxyxX t

i
t
i

t
i

t
i ; otherwise, set 

),( t
i

t
i yxF . Go to Step 2.3. 

Step 2.3: If ),(),( 21 ii
t
i

t
i ppFyxF 

 
or ),(),( 21 ii

t
i

t
i ppfyxf 

 
under ),(),( 21 ii

t
i

t
i ppFyxF  , 

),(),( 21
t
i

t
iiii yxppp  . If i<N, set i=i+1 and go to Step 2.1; otherwise, go to Step 3. 

Step 3: Update the gbest solution. Set ),( 21 ggg ppp   where 
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},,2,1),,(min{),( 2121 NippFppF iigg  . Go to Step 4. 

Step 4: Termination criterion. If t<Iter_max, go to Step 5; otherwise, stop and ),( 21 ggg ppp   is a 

solution for the bi-level programming problem (1). 

Step 5: Update the inertia weight, and the velocity and the position of each particle by the formulas 

(2), (3) and (4). If the current velocity max
1 vvt

ij  , set max
1 vvt

ij  ; while min
1 vvt

ij 
 if 

min
1 vvt

ij 
. Set t=t+1 and go to Step 2. 

[End] 

3. Tri-level PSO algorithm 

In this section, based on the proposed bi-level PSO algorithm, we propose a tri-level PSO 

algorithm for solving tri-level programming problems. 

3.1. General tri-level programming problem and related theoretical properties 

The general tri-level programming problem presented by Faísca et al. [17] is defined as follows. 

Definition 3 [17] For pRXx  , 
qRYy  , 

rRZz  , a general tri-level programming 

problem is defined as: 

),,(min 1 zyxf
Xx

                  (1st level, leader)                              (5a) 

s.t. 0),,(1 zyxg ,                                                          (5b) 

where, for each x given by the 1st level, (y, z) solves the problems (5c-5f): 

),,(min 2 zyxf
Yy

              (2nd level, middle-level follower)                (5c) 

s.t. 0),,(2 zyxg ,                                                     (5d) 

 where, for each (x, y) given by the 1st and 2nd levels, z solves the problem (5e-5f) : 

),,(min 3 zyxf
Zz

           (3rd level, bottom-level follower)                (5e) 

s.t. 0),,(3 zyxg ,                                                  (5f) 

where x, y, z are the decision variables of the three levels respectively; RRRRfff rqp :,, 321  

are the objective functions of the three levels respectively; 3,2,1,:  iRRRRg ikrqp
i  are the 

constraint conditions of the three levels respectively. 

To find an optimal solution for the tri-level programming problem (5), relevant solution 

concepts are proposed as follows based on the nested hierarchical structure of multilevel 

programming and the existing research on bi-level programming. 
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Definition 4 [17] 

(1) The constraint region of the tri-level programming problem: 

  }3,2,1,0),,(:),,{(  izyxgZYXzyxS i . 

(2) The feasible set of the second level for each fixed x: 

  }0),,(,0),,(:),{()( 32  zyxgzyxgZYzyxS . 

(3) The feasible set of the third level for each fixed (x, y): 

  }0),,(:{),( 3  zyxgZzyxS . 

(4) The rational reaction set of the third level: 

  ) ] },(:),,(m i n [a r g:{),( 3 yxSzzyxfzZzyxP  . 

(5) The rational reaction set of the second level: 

  ) ] },(),(),(:),,(min[arg),(:),{()( 2 yxPzxSzyzyxfzyZYzyxP  . 

(6) The inducible region of the tri-level programming problem: 

  )}(),(,),,(:),,{( xPzySzyxzyxIR  . 

(7) The optimal solution set of the tri-level programming problem: 

  ]}),,(:),,(min[arg),,(:),,{( 1 IRzyxzyxfzyxzyxOS  . 

For the sake of developing an efficient algorithm to solve the tri-level programming problem (5), 

we now turn our attention to the geometry of the solution space and related theoretical properties. 

To ensure the problem (5) is well posed, it is common to make the following assumptions based on 

Definition 4. 

Assumption 4. f1, f2, f3, g1, g2 and g3 are continuous functions, whereas f2, f3, g2 and g3 are 

continuously differentiable. 

Assumption 5. f3 is strictly convex in z for ),( yxSz  where S(x, y) is a compact convex set, 

while f2 is strictly convex in (y, z) for )(),( xSzy   where S(x) is a compact convex set. 

Assumption 6. f1 is continuous convex in x, y, and z. 

Under the assumptions 4 and 5, the rational reaction sets of the third level and the second level 

P(x, y) and P(x) are point-to-point maps and closed, which implies that IR is compact. Thus, under 

the assumption 6 solving the tri-level programming problem (5) is equivalent to optimizing the 

leader's continuous function f1 over the compact set IR. It is well known that the solution to such a 
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problem is guaranteed to exist. 

It is noticeable that, if the third-level problem is a convex parametric programming problem that 

satisfies the Manasarian-Fromowitz constraint qualification (MFCQ) for each fixed (x, y) [8, 14], 

the third-level problem is equivalent to the following Kuhn-Tucker conditions (6-9): 

),,,(),,(),,,( 33 zyxguzyxfuzyxL zzz                          (6) 

,0),,(3 zyxug                                                 (7) 

,0),,(3 zyxg                                                  (8) 

,0u                                                         (9) 

where ),,(),,(),,,( 33 zyxugzyxfuzyxL  is the Lagrangian function of the third level, 

),,,( uzyxLz  denotes the gradient of the function ),,,( uzyxL  with respect to z, and u is the 

vector of Lagrangian multipliers. 

Theorem 1 [14] A necessary and sufficient condition that )(),( xPzy   is that the row vector 

u  exists such that (x, y, z, u) satisfies the Kuhn-Tucker conditions (6-9). 

Theorem 2 (x, y, z) solves the tri-level programming problem (5) if and only if (x, y, z, u) solves 

the bi-level programming problem (10). 

Proof. Based on Theorem 1, the tri-level programming problem (5) is equivalent to solving the 

bi-level programming problem (10) by replacing the third-level problem with the Kuhn-Tucker 

conditions (6-9). 

),,(min 1 zyxf
x

                   (1st level, leader)                            (10a) 

s.t. ,0),,(1 zyxg                                                          (10b) 

    where, for each given x, (y, z, u) solves (10c-10h) 

),,(min 2
,,

zyxf
uzy

               (2nd level, follower)                         (10c) 

s.t. ,0),,(2 zyxg                                                     (10d) 

,0),,(),,( 33  zyxguzyxf zz                                      (10e) 

,0),,(3 zyxug                                                     (10f) 

,0),,(3 zyxg                                                     (10g) 

.0u                                                            (10h) 

Clearly, if (y, z, u) solves (10c-10h) for each given x, )(),( xPzy   is obtained in line with 

Theorem 1. Therefore, solving the tri-level programming problem (5) is equivalent to finding a 
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solution (x, y, z, u) to the bi-level programming problem (10) that (x, y, z) is a solution to problem 

(5). The proof is completed. □ 

In this study, we extend the bi-level PSO algorithm to a tri-level PSO algorithm for finding a 

solution (x, y, z) for the tri-level programming problem (5) based on Theorems 1 and 2. 

3.2. The tri-level PSO algorithm description 

In a swarm with the size N, the position vector of each particle with index i ),,2,1( Ni  is 

denoted as ),,( t
i

t
i

t
i

t
i zyxX   at iteration t, which represents a potential solution to the problem (5). 

For the sake of accessibility, we let ),,(),,( 321
t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX  . At iteration t, each particle i 

moves from 
t
iX  to 

1t
iX  in the search space at a velocity ),,( 1

3
1

2
1

1
1   t

i
t
i

t
i

t
i vvvV  along each 

dimension. Also, we set the pbest solution ),,( 321 iiii pppp   and gbest solution 

),,( 321 gggg pppp  . Based on Theorems 1 and 2, the tri-level PSO algorithm for solving the 

tri-level programming problem (5) is developed in this section. 

(1) Initial population 

The method of constructing the initial population is similar to the bi-level PSO algorithm. First, 

we randomly generate the required number of the first level decision variables 
0
ix ),,2,1( Ni  . 

Second, we solve the following problem (11) under 
0
ixx   using the branch and bound algorithm 

[8] or interior point method and obtain the corresponding solution ),,( 000
iii uzy . In this way, we 

complete the construction of the initial population and ),,(),,( 0
3

0
2

0
1

0000
iiiiiii xxxzyxX  ,

Ni ,,2,1  . 

),,(min 2
,,

zyxf
uzy

                                                             (11a) 

s.t. ,0),,(2 zyxg                                                          (11b) 

,0),,(),,( 33  zyxguzyxf zz                                           (11c) 

,0),,(3 zyxug                                                         (11d) 

,0),,(3 zyxg                                                          (11e) 

.0u                                                                 (11f) 
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(2) The updating rules of particles 

Within the tri-level PSO algorithm, each particle i moves toward 

),,(),,( 1
3

1
2

1
1

1111   t
i

t
i

t
i

t
i

t
i

t
i

t
i xxxzyxX  in the search space at a velocity ),,( 1

3
1

2
1

1
1   t

i
t
i

t
i

t
i vvvV  

at each iteration t. The velocity and position of each particle i are updated as well as the bi-level 

PSO algorithm developed in Section 2 by the formulas (2), (3) and (4). 

(3) Fitness evaluation 

For each particle i at the iteration t ),,( t
i

t
i

t
i

t
i zyxX  , solve the problem (11) under 

t
ixx   

using the branch and bound algorithm [8] or interior point method and obtain the solution 

),,,(  uzyxt
i . If the solution Szyxt

i  ),,( , update ),,(),,(  zyxzyxX t
i

t
i

t
i

t
i

t
i . The pbest 

solution is ),,(),,( 321
t
i

t
i

t
iiiii zyxpppp  , if ),,(),,( 32111 iii

t
i

t
i

t
i pppfzyxf   where we set 

),,(),,( 000
321 iiiiiii zyxpppp   and ),,( 000

1 iii zyxf  at the beginning. The global best solution 

gbest of the swarm at the iteration t is ),,( 321 gggg pppp   where 

},,2,1),,,(min{),,( 32113211 Nipppfpppf iiiggg  . 

(4) Termination criterion 

The tri-level PSO algorithm will be terminated after a maximum number of iterations Iter_max 

or when it achieves a maximum CPU time. 

(5) Computational procedures of the tri-level PSO algorithm 

Based on the bi-level PSO algorithm and the theoretical basis proposed above, we will present 

the complete computational procedures of the tri-level PSO algorithm for solving the tri-level 

programming problem (5). 

[Begin] 

Step 1: Initialization. 

(a) Construct the population size N and generate the initial population of particles 

NizyxX iiii ,,2,1),,,( 0000   by solving the problem (11); 

(b) Initialize the pbest solution as ),,(),,( 000
321 iiiiiii zyxpppp   and the fitness 

),,( 000
1 iii zyxf ; 

(c) Set the maximum and minimum velocity levels maxv  and minv , and initialize max
0 vvij  ; 
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(d) Set the upper and lower bounds on the inertia weight maxw and minw , acceleration 

coefficients 1c  and 2c , and the maximum iteration number Iter_max; 

(e) Set the current iteration number t=0 and go to Step 2. 

Step 2: Compute the fitness value and update the pbest solution for each particle. Set i=1 and go to 

Step 2.1. 

Step 2.1: Under 
t
ixx  , solve the problem (11) using the branch and bound algorithm or 

interior point method and obtain the solution ),,,(  uzyxt
i . Go to Step 2.2. 

Step 2.2: If the solution Szyxt
i  ),,( , update ),,(),,(  zyxzyxX t

i
t
i

t
i

t
i

t
i ; otherwise, set 

),,(1
t
i

t
i

t
i zyxf . Go to Step 2.3. 

Step 2.3: If ),,(),,( 32111 iii
t
i

t
i

t
i pppfzyxf  , update ),,(),,( 321

t
i

t
i

t
iiiii zyxpppp  . If i<N, set 

i=i+1 and go to Step 2.1; otherwise, go to Step 3. 

Step 3: Update the gbest solution. Set ),,( 321 gggg pppp   where 

},,2,1),,,(min{),,( 32113211 Nipppfpppf iiiggg  . Go to Step 4. 

Step 4: Termination criterion. If t<Iter_max, go to Step 5; otherwise, stop and 

),,( 321 gggg pppp   is a solution for the tri-level programming problem (5). 

Step 5: Update the inertia weight, and the velocity and the position of each particle by the formulas 

(2), (3) and (4) for Nij ,,2,1,3,2,1  . If the current velocity max
1 vvt

ij  , set max
1 vvt

ij  ; while 

min
1 vvt

ij 
 if min

1 vvt
ij 

. Set t=t+1 and go to Step 2. 

[End] 

In view of the procedures of bi/tri-level PSO algorithms, the differences and improvements of 

the proposed PSO algorithms compared with existing heuristic algorithms can be summarized as 

follows. 

(1) In regard to a nonlinear and large-scale bi-level problem, either of the problems at both 

levels often appears very difficult to be solved. Whereas the existing bi-level heuristic algorithms 

[12, 23, 38-40] transform the bi-level problem into a much more complex single-level problem, it 

will be much easier and more convenient to solve the bi-level problem using the proposed bi-level 
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PSO algorithm in which the leader's problem and the follower's problem are separated and 

respectively solved in sequence. 

(2) In contrast to the existing bi-level heuristic algorithms [12, 18, 23, 34, 38-40, 47] that cannot 

be used to solve tri-level problems, the proposed bi-level PSO algorithm can be extended to a 

tri-level PSO algorithm for solving tri-level problems. 

(3) To handle the complexity of the constraint region of nonlinear and large-scale problems, two 

construction methods of the initial population are given, which can effectively ensure many more 

particles of the initial population occur over the constraint region and improve the convergence 

speed of the bi/tri-level PSO algorithms compared with the existing bi-level heuristic algorithms [12, 

18, 23, 34, 38-40, 47]. 

(4) Different from the existing bi-level PSO algorithms [18, 23, 39, 47] using the constant 

inertia weight, the decreasing inertia weight with time is used to control the velocity of particles in 

the search space at different stages, which aims to improve both search and convergence abilities of 

the bi/tri-level PSO algorithms. 

We will explore the performance of the proposed bi/tri-level PSO algorithms and demonstrate 

these aforementioned improvements in the following Section. 

4. Computational analysis 

A completed computational study is conducted to analyze the performance of the proposed 

bi/tri-level PSO algorithms. First, we apply the bi/tri-level PSO algorithms to solve 25 bi-level and 

8 tri-level benchmark problems involving linear and nonlinear versions. Second, the bi-level PSO 

algorithm is applied to solve 29 large-scale nonlinear bi-level benchmark problems. Lastly, for the 

sake of exploring the algorithm performance in depth, we generate 810 large-scale bi-level 

programming problems using the random method proposed by Calvete et al. [12]. These 

computational experiments are operated in MATLAB(2014a) programs performed on a 3.47GHz 

Inter Xeon W3690 CPU with 12G of RAM under a Red Hat Enterprise Linux Workstation. Also, 

these large-scale problems are randomly generated using the MATLAB(2014a) environment. 

4.1. Small-scale benchmark problems 

In this section, the bi/tri-level PSO algorithms are applied to solve 25 bi-level and 8 tri-level 

programming problems involving linear and nonlinear versions. Moreover, we compare the 

computational results respectively obtained by the bi/tri-level PSO algorithms and other algorithms. 

The benchmark problems and their related sources are listed in Table 1. 
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To solve the benchmark problems 1-33, related parameters involved in the bi/tri-level PSO 

algorithms are chosen in Table 2. Under the parameters in Table 2, the PSO algorithms are 

performed in 20 independent runs on each of the above 33 benchmark problems. The computational 

results for bi-level programming problems 1-25 are shown in Table 3. 

Table 1. Benchmark problems and their related sources 

Problems Sources 

1-14 Problems 1-14 in [39] 

15 Ex 1. in [38] 

16 Ex 3. in [38] 

17 Ex 5. in [38] 

18 Ex 7. in [38] 

19-20 Problems 1-2 in [40] 

21-25 Problems 5-9 in [40] 

26 Example 1 in [6] 

27 The tri-level numerical illustration in [2] 

Example 1 in [35] 

The tri-level example in [24] 

Example 3 in [33] 

28 Example 2 in [35] 

Example 1 in [37] 

Example 1 in [36] 

Example 1 in [28] 

29 Example 2 in [36] 

30 Example 4.1 in [29] 

Illustrative example 1 in [17] 

31 Example 4.2 in [29] 

32 The numerical example in [45] 

33 The case study in [45] 

In Table 3, the solution and the corresponding objective values obtained by the bi-level PSO 

algorithm are respectively denoted by ),(  yx  and ),(  fF , while the values obtained by other 

algorithms are respectively denoted by ),( yx  and ),( fF . It can be seen from Table 3 that for 

problems 4, 6-8, 15-16, 18-22 and 24, the solutions obtained by our bi-level PSO algorithm are 

equal or extremely close to those found by the PSO-CST algorithm [39] and the evolutionary 

algorithm in [40]. In terms of problems 1-3, 5, 9-14, 17, 23 and 25, the solutions obtained by our 

bi-level PSO algorithm are better or much better than those found by the compared algorithms in 

[38, 40], which are highlighted in Table 3. In particular for problems 9-11, 23 and 25, the objective 

values of the first level respectively obtained by our bi-level PSO algorithm and the compared 

algorithm are extremely close to one another under different solutions, which implies that there 
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exist multiple solutions for problems 9-11, 23 and 25. Under this situation, using our bi-level PSO 

algorithm can achieve better or much better objective values for the second level than the compared 

PSO-CST algorithm and evolutionary algorithm. 

Table 2. Parameters employed in the bi/tri-level PSO algorithms for solving problems 1-33 

Problems N vmax vmin wmax wmin
 

c1 c2 Iter_max
 

1 30 1.0 -1.0 0.5 0.01 2.0 2.0 100 

2 30 1.0 -1.0 0.5 0.01 2.0 2.0 150 

3 20 1.0 -1.0 0.5 0.01 2.0 2.0 60 

4 50 1.0 -1.0 0.5 0.01 2.0 2.0 100 

5 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

6 50 1.0 -1.0 1.0 0.01 2.0 2.0 150 

7 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

8 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

9 60 0.5 -0.5 0.5 0.01 2.0 2.0 100 

10 60 1.0 -1.0 0.5 0.01 2.0 2.0 80 

11 60 1.0 -1.0 0.5 0.01 2.0 2.0 80 

12 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

13 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

14 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

15 50 1.0 -1.0 0.5 0.01 2.0 2.0 150 

16 80 1.0 -1.0 1.0 0.01 2.0 2.0 100 

17 20 1.0 -1.0 0.5 0.01 2.0 2.0 50 

18 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

19 20 1.0 -1.0 0.5 0.01 2.0 2.0 60 

20 30 1.0 -1.0 0.5 0.01 2.0 2.0 60 

21 50 1.0 -1.0 1.0 0.01 2.0 2.0 150 

22 60 0.5 -0.5 0.5 0.01 2.0 2.0 100 

23 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

24 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

25 40 1.0 -1.0 0.5 0.01 2.0 2.0 60 

26 20 1.0 -1.0 1.0 0.01 2.0 2.0 30 

27 20 1.0 -1.0 1.0 0.01 2.0 2.0 30 

28 30 1.0 -1.0 1.0 0.01 2.0 2.0 40 

29 30 1.5 -1.5 1.0 0.01 2.0 2.0 40 

30 20 1.0 -1.0 0.5 0.01 2.0 2.0 30 

31 20 1.0 -1.0 0.5 0.01 2.0 2.0 20 

32 30 2.0 -2.0 1.0 0.01 2.0 2.0 40 

33 30 3.0 -3.0 1.0 0.01 2.0 2.0 40 

In relation to problems 2 and 12, it seems in Table 3 that the solutions found by our bi-level 

PSO algorithm are worse than those obtained by the compared algorithm. With respect to problem 2, 

the second level will choose y=(y1, y2, y3)=(0, 0, 0) to achieve an optimal objective value 

4832.0f  (better than 3641.2f ) in view of x=(x1, x2)=(0.1324, 0.1754). Clearly, the solution 
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)2273.0,7327.0,6935.0(),,( 321  yyyy  given by the PSO-CST algorithm in [39] occurs outside 

the rational reaction set P(x), which implies that )3188.0,4599.1,8606.0(),( yx is not a feasible 

solution for problem 2 according to Definition 2 in Section 2.1. Similarly, the solution 

)3188.0,4599.1,8606.0(),( yx  given by the evolutionary algorithm in [40] is not a feasible 

solution for problem 12, because the second level will choose y=(y1, y2)=(1.5382, 0.2166) to 

achieve an optimal objective value 4980.2f  (better than 5621.2f ) in view of x=0.8606. 

Clearly, the algorithms in [39, 40] cannot find an optimal solution for problems 2 and 12. Therefore, 

our bi-level PSO algorithm performance better than the compared algorithms in [39, 40] in terms of 

solving problems 2 and 12. 

Table 3. The computational results for bi-level programming problems 1-25 

Problems ),(  yx  ),(  fF  ),( yx  ),( fF  

1 (0, 2, 1.875, 0.9063) (-18.6787, -1.0156) (0.3844, 1.6124, 1.8690, 0.8041) (-14.7772, -0.2316) 

2 (0, 0.9, 0, 0.6, 0.4) (-29.2, 3.2) (0.1324, 0.1754, 0.6935, 0.7327, 0.2273) (-29.2064, 2.3641) 

3 (0, 1, 0) (1000, 1) (0.1511, 0.6256, 0.369) (640.7139, 0.9946) 

4 (9.9998, 9.9998) (99.996, 0) (10.0020, 9.9961) (100.0393, 0) 

5 (2.0345, 0.8838, 0) (-1.2312, 7.7818) (1.8602, 0.9073, 0.005) (-1.1660, 7.4441) 

6 (7.0696, 7.0696, 6.9279, 6.9278) (1.98, -1.98) (7.0321, 6.84204, 5.9071, 6.8312) (1.9816, -1.9816) 

7 (20.0282, 14.8381, 0.0282, -5.1619) (0, 0) (17.5039, 29.8906, -2.4994, 9.8894) (0.0527, 0) 

8 (17.8377, 20.1712, -2.1623, 0.1712) (0, 0) (12.4124, 19.3109, -7.5859, -0.6899) (0.0004, 0) 

9 (20, 5, 10, 5) (0, 100) (17.2024, 7.4665, 7.2189, 2.4251) (0.0075, 125.0854) 

10 (10.9317, 9.6004, 10, 9.6004) (0, 0.868) (0.1946, 14.9870, 6.1019, 7.9628) (0, 84.2367) 

11 (6.4462, 11.9941, 6.4462, 10) (0, 3.9763) (10.6084, 10.0550, 9.4545, 5.1257) (0.0001, 25.6292) 

12 (1.8888, 0.889, 0) (0, 7.6167) (0.8606, 1.4599, 0.3138) (0.0082, 2.5621) 

13 (0.6648, 1.5746, 0.0722) (0, 2.5) (0.9099, 1.5294, 0.1762) (0.0374, 2.6969) 

14 (0.6648, 1.5746, 0.0722) (0, 2.5) (0.9233, 1.5083, 0.1899) (0.0337, 2.7442) 

15 (4, 15, 9.2, 2) (41.2, -9.2) (4.000517, 14.999931, 9.199862, 2) (41.199207, -9.198828) 

16 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100) 

17 (1, 0) (1, 0) (10, 0) (82, 0) 

18 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100) 

19 (20, 5, 10, 5) (225, 100) (20, 5, 10, 5) (225, 100) 

20 (0, 30, -10, 10) (0, 100) (0, 30, -10, 10) (0, 100) 

21 (1.0312, 3.0978, 2.597, 1.7929) (-8.9172, -6.136) (1.03, 3.097, 2.59, 1.79) (-8.92, -6.14) 

22 (0.281, 0.4754, 2.3437, 1.0328) (-7.5774, -0.5777) (0.27, 0.49, 2.34, 1.036) (-7.58, -0.574) 

23 (38.0907, 60.5204, 2.9985, 2.9985) (-11.9985, -219.2618) (12.47, 67.511, 2.999, 2.999) (-11.999, -163.42) 

24 (2, 0, 2, 0) (-3.6, -2) (2, -2.84e-8, 2, 0) (-3.6, -2) 

25 (-0.4009, 0.8023, 1.9998, 0) (-3.9194, -2.0109) (-0.381, 0.8095, 2, 0) (-3.92, -2) 

Table 4 reports the computational results for tri-level programming problems 26-33. The 

solution and the corresponding objective values obtained by the tri-level PSO algorithm are 

respectively denoted by ),,(  zyx  and ),,( 321
 fff , while the values obtained by other solution 
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approaches are denoted by ),,( zyx  and ),,( 321 fff . Table 4 clearly shows that the tri-level PSO 

algorithm can find the same solutions as the compared approaches or much better solutions 

highlighted in gray color. Note ),,(  zyx  that ),(  zy  denotes the best reactions of the 2nd 

level and the 3rd level in the light of x  determined by the 1st level. According to Definition 4, 

),,(),,(  zyxzyx  under Szyx ),,(  means the solution IRzyx ),,( , which implies that 

),,( zyx  is a feasible solution for the tri-level programming problem; otherwise, ),,( zyx  is not a 

feasible solution. Thus, it can be seen from Table 4 that the solutions ),,( zyx  in [6] for problem 

26, in [24] for problem 27, in [28, 36, 37] for problem 28, in [17] for problem 30 and in [45] for 

problem 33 are not feasible solutions. In addition, although the solutions ),,( zyx  in [2, 33] for 

problem 27, in [28, 35] for problem 28 and in [36] for problem 29 occurs over IR, they can be only 

considered as local optimal solutions since our tri-level PSO algorithm can find much better 

solutions for such problems. Thus, the tri-level PSO algorithm provides a better way to solve 

tri-level programming problems. 

Table 4. The computational results for tri-level programming problems 26-33 

Problems ),,(  zyx  ),,( 321
 fff  ),,( zyx  ),,( 321 fff

 
),,(  zyx  

26 (6.6667, 8, 0) (-10.6667, -8, 0) (4.6667, 1, 0) [6] (-16.6667, -1, 0) [6] (4.6667, 6.5, 4.5) 

27 (1.5, 0, 0.5) (8.5, 0, 0.5) (0.5, 1, 0.5) [2] (4.5,1,0.5) [2] (0.5, 1, 0.5) 

(1.5, 0, 0.5) [35] (8.5, 0, 0.5) [35] (1.5, 0, 0.5) 

(1.66, 1, 0.34) [24] (13.26, 1, 0.34) [24] No solution 

(0.92, 0.58, 0.5) [33] (6.18, 0.58, 0.5) [33] (0.92, 0.58, 0.5) 

28 (2.3329, 0.0006,0.3335, 0) (14.9979, 1.0012, 

5.0) 

(0.86, 1.86, 0, 0.71) [35] (13, 4.7, 4.29) [35] (0.86, 1.86, 0, 0.71) 

(1.59,1.08,0.62,0.06) [36, 37] (12.01,3.18,4.94) [36, 37] (1.59, 1.08, 0.705, 0) 

(1.106, 1.525, 0, 0.631) [28] (13.58, 4.05, 4.37) [28] (1.106, 1.525, 0.581, 0.244) 

(0.857, 1.857, 0, 0.714) [28] (13, 4.71, 4.28) [28] (0.857, 1.857, 0, 0.714) 

29 (1, 2, 0, 2, 0) (14, 2, 8) (2, 1.99, 1.004, 0, 0.009) [36] (12.964,5.001,10.188) [36] (2, 1.99, 1.01, 0, 0.02) 

30 (0.5, 1, 1) (4.5, -2, 1) (0.5, 1, 1) [29] (4.5, -2, 1) [29] (0.5, 1, 1) 

(1, 0.5, 1) [17] (5, -2, 1) [17] (1, 1, 0.5) 

31 )0,0,2( x  (0, 0, 0) )0,0,2( x  [29] (0, 0, 0) [29] )0,0,2( x  

32 (4, 6, 0) (-20, 10, -8) (4, 6, 0) [45] (-20, 10, -8) [45] (4, 6, 0) 

33 No solution --- (10, 28.33, 11.66) [45] (146.6667,176.6,343.3) [45] Unbounded solution 

4.2. Large-scale benchmark problems 

In this section, we apply the bi-level PSO algorithm to solve the large-scale nonlinear bi-level 

programming problems 34-62. The sources of the benchmark problems 34-57 are the problems 
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SMD1-SMD12 with five and 10 dimensions constructed by Sinha et al. [34], while the problems 

58-62 with 20 dimensions are cited from the problems (Exs.12-16) solved in [38]. 

When solving the problems 34-57, the population size and iteration number are chosen as N=30, 

Iter_max=60 and N=50, Iter_max=100 respectively for solving five-dimensional and 

10-dimensional problems. The other parameters in the bi-level PSO algorithm are chosen as follows: 

vmax=1.0, vmin=-1.0, c1=c2=2, wmax=0.5, wmin=0.01. In response to solving problems 58-62, the 

related parameters are chosen as vmax=0.5, vmin=-0.5, c1=c2=2, wmax=0.5, wmin=0.01, N=30, 

Iter_max=100. 

Table 5. The computational results for five-dimensional test problems 34(SMD1) - 45(SMD12) 

Problems ),(  yx  ),(  fF  ),(  fF
 

),( fF  

34 (SMD1) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000114, 0.000087) 

35 (SMD2) (-9.1024e-11, 1.3609e-10, -6.4516e-09, 1.0) (-9.3916e-17, 9.3952e-17) (9.3916e-17, 9.3952e-17) (0.000073, 0.000016) 

36 (SMD3) (0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000054, 0.000055) 

37 (SMD4) (-6.3714e-06, 2.7123e-06, -1.2107e-08, 

1.3537e-08, 4.1916e-04) 

(-1.7330e-07, 1.7339e-07) (1.7330e-07, 1.7339e-07) (0.000023, 0.000057) 

38 (SMD5) (-6.0842e-08, -3.3604e-06, 1.0, 1.0, 0.0039) (-1.2665e-10, 1.3795e-10) (1.2665e-10, 1.3795e-10) (0.000002, 0.000009) 

39 (SMD6) (-3.4925e-08, 2.5489e-05, 4.4706e-06,  

4.4706e-06, 2.5474e-05) 

(6.8968e-10, 1.4570e-15) (6.8968e-10, 1.4570e-15) (0.000108, 0.000061) 

40 (SMD7) (3.8445e-09, -1.1977e-11, -6.4516e-09, 

-6.4516e-09, 1.0) 

(-9.3943e-17, 9.3943e-17) (9.3943e-17, 9.3943e-17) (0.000016, 0.000177) 

41 (SMD8) (4.2671e-11, 2.4561e-09, 1.0, 1.0, 0.0233) (8.8549e-12, 2.0450e-10) (8.8549e-12, 2.0450e-10) (0.000174, 0.000027) 

42 (SMD9) (3.2473e-05, -2.7497e-07, -1.6235e-04, 

-1.6235e-04, 5.1978e-04) 

(-3.2198e-07, 3.2409e-07) (3.2198e-07, 3.2409e-07) (0.000017, 0.000054) 

43 (SMD10) (1.0, 1.0, 1.0, 1.0, 0.7854) (4.0, 3.0) (0, 0) (0.034759, 0.018510) 

44 (SMD11) (8.2462e-06, -6.2919e-04, 1.0379e-07, 

1.0379e-07, 2.7166) 

(-1.0, 1.0) (0, 0) (0.0131643, 0.129893) 

45 (SMD12) (1.0, 1.0, 1.0, 1.0, 0.7849) (4.9990, 3.0) (0.001, 0) (0.032372, 0.000206) 

The computational results for the problems 34-45 and problems 46-57 are respectively provided 

in Tables 5 and 6. In Tables 5 and 6, the solution and the corresponding objective values obtained 

by the bi-level PSO algorithm are respectively denoted by ),(  yx  and ),(  fF , while the 

objective values obtained by the nested bi-level evolutionary algorithm developed in [34] are 

denoted by ),( fF . Let ),( fF  be the objective values under the exact solution. 

|)||,(|),( ffFFfF    and |)||,(|),( ffFFfF   are adopted to reflect the accuracy 

of the solution respectively obtained by both of the algorithms. The smaller number of ),(  fF

and ),( fF  means the higher accuracy of the solution obtained. It can be seen from Tables 5 and 
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6 that our bi-level PSO algorithm is able to find a more accurate solution than the nested bi-level 

evolutionary algorithm. 

Table 6. The computational results for 10-dimensional test problems 46(SMD1) - 57(SMD12) 

Problems ),(  yx  ),(  fF  ),(  fF
 

),( fF  

46 (SMD1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0) (0, 0) (0.000332, 0.000018) 

47 (SMD2) (1.6899e-08, -3.0972e-08, 8.2156e-08, 

-2.1181e-07, 2.5143e-07, -6.4507e-09, 

-6.4507e-09, -6.4507e-09, 1.0, 1.0) 

(1.1593e-13, 8.1410e-15) (1.1593e-13, 8.1410e-15) (0.000066, 0.000011) 

48 (SMD3) (1.4331e-06,  -1.0599e-06, -1.4075e-06, 

-4.3816e-07, 3.8293e-06, -3.7340e-09, 

-3.7340e-09, 5.1703e-09, 1.3951e-08, 

1.3951e-08) 

(2.0014e-11, 5.1590e-12) (2.0014e-11, 5.1590e-12) (0.000359, 0.000033) 

49 (SMD4) (2.3924e-07, 4.5629e-08, 3.7434e-07, 

1.0472e-06, 1.6518e-07, -1.4097e-08, 

-1.4097e-08, -1.4097e-08, 3.1005e-04, 

3.0963e-04) 

(-1.9119e-07, 1.9119e-07) (1.9119e-07, 1.9119e-07) (0.000286, 0.000027) 

50 (SMD5) (2.4397e-05, -3.1364e-06, -5.7256e-06, 

-2.1074e-05, -4.7159e-06, 1.0, 1.0, 1.0, 

0.0040, 0.0038) 

(9.9401e-10, 7.4795e-10) (9.9401e-10, 7.4795e-10) (0.000052, 0.000009) 

51 (SMD6) (-8.7492e-06, -7.0808e-06, 7.6839e-05, 

4.9603e-05, 5.0376e-05, 1.6532e-08, 

5.3412e-05, 5.3412e-05, 4.9566e-05, 

5.0338e-05) 

(1.6735e-08, 6.0309e-09) (1.6735e-08, 6.0309e-09) (0.001435, 0.000082) 

52 (SMD7) (-1.9409e-09, 1.4642e-08, 1.4642e-08, 

-7.3262e-09, -7.1216e-09, -6.4688e-09, 

-6.4688e-09, 1.1635e-04, 1.0, 1.0) 

(-2.6032e-08, 1.0577e-16) (2.6032e-08, 1.0577e-16) (0.006263, 0.000127) 

53 (SMD8) (2.3591e-07, 4.3256e-05, 1.5413e-06, 

1.2043e-07, 2.3549e-06, 1.0, 1.0, 1.0, 

0.0320, 0.0324) 

(9.9992e-05, 4.5035e-05) (9.9992e-05, 4.5035e-05) (0.003122, 0.000157) 

54 (SMD9) (0.0012, 3.6938e-04, 3.2828e-05, 

-2.9128e-04, -3.1246e-04, -9.4424e-04, 

-9.0683e-04, -9.3510e-04, 0.0055, -0.0157) 

(-2.7495e-04, 2.7829e-04) (2.7495e-04, 2.7829e-04) --- 

55 (SMD10) (0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 

0.50, 0.4636, 0.4636) 

(12.0, 7.50) (0, 0) --- 

56 (SMD11) (-1.8430e-06, 4.6479e-08, -6.4905e-07, 

-3.6628e-07, 1.6103e-06, 6.6159e-08, 

6.6159e-08, 6.6159e-08, 2.0281, 2.0281) 

(-1.0, 1.0) (0, 0) --- 

57 (SMD12) --- --- --- --- 

Table 7 displays the computational results for problems 58-62 with 20 dimensions. As shown in 

Table 7, the solutions found by our bi-level PSO algorithm are equal to those obtained by the 

compared algorithm in [38] for problems 58-59 and 62. With regard to problems 60-61, the bi-level 

PSO algorithm can achieve little better in terms of objective values. As highlighted in Table 7, we 
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can find that problems 60-61 have multiple solutions that can achieve objective values extremely 

close to each other. To conclude, the results indicate that our bi-level PSO algorithm can find the 

same solutions as the compared algorithm or better solutions for 20-dimensional nonlinear bi-level 

problems. 

Table 7. The computational results for 20-dimensional test problems 58-62 

Problems ),(  yx  ),(  fF  ),( yx  ),( fF  

58 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) 

59 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) 

60 (-0.0859,-0.6008,0.2454,-0.1412,-1.2518, 

-0.1978,-0.9856,-0.1297,-0.7022,-5, 

0,0,0,0,0,0,0,0,0,0) 

(1.2388e-6,1) (1.149034,0.08833383,1.254797,1.182997, 

2.130051,1.742112,0.3082794, 

1.591319,1.409942,-0.2195419, 

0,0,0,0,0,0,0,0,0,0) 

(4.64e-6,1) 

61 (0.8882,0.7552,5,4.3309,-0.5017,0.8485, 

-1.2183,2.2813,-1.5316,0.6639, 

0,0,0,0,0,0,0,0,0,0) 

(1.7316e-7,1) (-1.275612,0.4240169,-1.292204,-0.57017, 

1.238698,2.83057,1.313386, 

0.65589,-2.799304,-1.467915) 

(1.12e-5,1) 

62 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) (0,1) 

4.3. Assessing the efficiency performance of the proposed bi-level PSO algorithm 

In this section, we aim to assess the efficiency performance of the proposed bi-level PSO 

algorithm in relation to solve large-scale problems. In Section 4.2, we provide the related 

parameters employed in the bi-level PSO algorithm for solving large-scale nonlinear benchmark 

problems. Much less iterations need to be executed by our bi-level PSO algorithm than the 

evolutionary algorithm [34] that needs 330 and 678 iterations at least respectively for solving 

five-dimensional and 10-dimensional problems. Clearly, our bi-level PSO algorithm has a better 

convergence and efficiency performance than the evolutionary algorithm in solving large-scale 

nonlinear bi-level programming problems. However, the increase in the number of decision 

variables (e.g. more than 20 dimensions) may result in bi-level problems having no solutions apart 

from some special versions [34]; thus, there are not sufficient benchmark nonlinear problems in the 

existing research that can be used to explore the algorithm efficiency. In this study, to explore the 

algorithm efficiency in solving much larger-scale (e.g. 20 dimensions or much more) problems, we 

will apply the bi-level PSO algorithm to solve sufficient large-scale (40, 60 and 100 dimensions) 

linear bi-level problems that can be randomly generated. 

Sufficient large-scale linear bi-level programming problems are randomly generated using the 

method proposed by Calvete et al. [12]. The problems are constructed by the following formulation 

format: 
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ydxcyxF
x

11
0

),(min 


    (1st level) 

ydxcyxf
y

22
0

),(min 


    (2nd level) 

s.t. bByAx  . 

The objective functions' coefficients (c1, d1, c2, d2) of both level are randomly generated from 

the uniform distribution on [-10, 10]. For the sake of ensuring the problem is well posed, the 

coefficients of one constraint condition are chosen from uniform random numbers between 0 and 10, 

whereas the remainder elements of the coefficient matrix are uniformly distributed between -10 and 

10. The right-hand side of each constraint condition is the sum of the absolute value of the 

coefficients in the constraint condition. According to the construction method by Calvete et al. [12], 

the test problems are classified into three groups (G1, G2 and G3) by the number n of decision 

variables of the bi-level programming problem, shown in Table 8. n1 and n2 respectively denote the 

number of decision variables of the first level and the second level, while m denotes the number of 

constraint conditions of the bi-level problem. It can be seen from Table 8 that there are nine 

problem types in each test problem group by different combinations of n1, n2 and m. In this 

computational study, we randomly construct 30 test problems within each problem type; thus, there 

are 8103930   bi-level problems randomly generated in total within three test problem 

groups. 

Table 8. Test problem dimensions 

G1: n=40 G2: n=60 G3: n=100 

n1 n2 m n1 n2 m n1 n2 m 

28 12 12 42 18 18 70 30 30 

28 12 20 42 18 30 70 30 50 

28 12 32 42 18 48 70 30 80 

20 20 12 30 30 18 50 50 30 

20 20 20 30 30 30 50 50 50 

20 20 32 3 30 48 50 50 80 

 8 32 12 12 48 18 20 80 30 

 8 32 20 12 48 30 20 80 50 

 8 32 32 12 48 48 20 80 80 

 Within the bi-level PSO algorithm, the key parameters involve the inertia weight w, the 

population size N and the maximum number of iterations Iter_max. To explore the influence of the 

three parameters on the performance of the bi-level PSO algorithm, each test problem is solved 

under six kinds of parameter combinations of the bi-level PSO algorithm, which involve C1 
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(wmax=1.0, N=100, Iter_max=300), C2 (wmax=0.75, N=100, Iter_max=300), C3 (wmax=0.50, N=100, 

Iter_max=300) , C4 (wmax=1.0, N=50, Iter_max=500), C5 (wmax=0.75, N=50, Iter_max=500) and C6 

(wmax=0.50, N=50, Iter_max=500). In addition, we set other parameters within the bi-level PSO 

algorithm: vmax=5.0, vmin=-5.0, wmin=0.01, c1=c2=2. For 810 test problems, each of them is carried 

out 16 runs under each parameter combination. In terms of each test problem, we define minF  as 

the best objective value of the first level obtained from all parameter combinations; if the best 

objective value F of the first level obtained from 16 runs under each parameter combination equals 

to minF , we consider that the bi-level PSO algorithm can find a solution for the test problem under 

the parameter combination. Table 9 displays the number of test problems successfully solved under 

each parameter combination. 

Table 9. The number of test problems successfully solved under each parameter combination 

G1: n=40 G2: n=60 G3: n=100 

n1-n2-m C1 C2 C3 C4 C5 C6 n1-n2-m C1 C2 C3 C4 C5 C6 n1-n2-m C1 C2 C3 C4 C5 C6 

28-12-12 5 17 23 18 27 28 42-18-18 3 10 15 7 20 26 70-30-30 8 9 17 8 16 25 

28-12-20 3 16 20 13 27 29 42-18-30 2 7 18 6 22 26 70-30-50 10 13 22 6 18 23 

28-12-32 8 18 22 12 26 30 42-18-48 2 5 14 4 21 28 70-30-80 11 15 22 9 19 24 

20-20-12 13 22 25 21 24 29 30-30-18 5 14 19 17 26 27 50-50-30 1 7 17 7 16 26 

20-20-20 13 21 27 23 27 28 30-30-30 2 16 24 17 27 29 50-50-50 2 4 15 7 18 27 

20-20-32 16 26 29 28 30 30 30-30-48 5 20 26 15 28 30 50-50-80 6 12 17 11 25 25 

 8-32-12 19 20 23 20 21 29 12-48-18 23 25 26 22 27 30 20-80-30 10 18 22 14 21 28 

 8-32-20 26 27 29 27 28 29 12-48-30 28 28 29 28 29 30 20-80-50 10 25 28 18 26 29 

 8-32-32 29 30 30 29 30 30 12-48-48 27 29 29 30 30 30 20-80-80 13 23 29 21 28 30 

Total 132 197 228 191 240 262 Total 97 154 200 146 230 256 Total 71 126 189 101 187 237 

Table 9 clearly shows that different combinations of the inertia weight w, the population size N 

and the maximum number of iterations Iter_max have significant influences on the performance of 

the bi-level PSO algorithm. As shown in Table 9, most test problems are successfully solved under 

the parameter combination C6 within each problem group, which means that the bi-level PSO 

algorithm shows higher performance under C6 than other parameter combinations. However, the 

algorithm performance under C1 - C5 becomes more and more close to that under C6 following the 

decline of the number n1 of the first level decision variables, in particular in groups G1 and G2; Fig.1 

clearly presents these results, which display the total number of test problems that have the same 

number of the first level decision variables successfully solved under C1 - C6. Also, it is clear in Fig. 

1 that the algorithm performance under each parameter combination experiences a noticeable 

upward trend along with a decrease in the number n1 of the first level decision variables within 



26 

groups G1 and G2. In terms of problem group G3, it is noticeable that the number of test problems 

with n1=70 successfully solved exceeds that with n1=50, which implies that the increase in the 

population size of the bi-level PSO algorithm is able to improve its performance in solving these 

problems when much more decision variables of the first level are involved. 

 

 

 

Fig. 1. The performance of the bi-level PSO algorithm following different parameter combinations 
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To explore more in depth, we compare the algorithm efficiency of our bi-level PSO algorithm 

with that of the genetic algorithm based on bases (GABB) developed by Calvete et al. [12] for 

solving these test problems randomly constructed. We examine the convergent CPU time and the 

total CPU time of all iterations completed for both algorithms. Table 10 shows the average of the 

convergent CPU time (in seconds) and the total CPU time (in seconds) for each problem type using 

both algorithms. Note that the computational results of the bi-level PSO algorithm are obtained 

under the parameter combination C6, while the GABB is performed under its best related parameter 

combination presented by Calvete et al. [12]. 

  Table 10. The computational results respectively obtained by the bi-level PSO algorithm and GABB 

Test Problems PSO GABB 

Group n1-n2-m Convergent iteration number Convergent time Total time Convergent time Total time 

G1 28-12-12 356.03 45.34 74.22 4.92 27.32 

 28-12-20 376.38 49.28 64.48 10.49 33.65 

 28-12-32 344.50 59.35 84.90 13.85 41.26 

 20-20-12 360.97 47.21 66.92 7.31 39.25 

 20-20-20 365.39 52.28 72.57 11.58 51.36 

 20-20-32 353.80 60.82 87.52 20.29 67.35 

  8-32-12 265.48 72.58 136.15 13.75 72.10 

  8-32-20 240.28 68.97 137.76 19.34 82.65 

  8-32-32 237.50 80.64 169.46 38.52 110.65 

G2 42-18-18 365.38 47.54 63.58 12.68 56.38 

 42-18-30 370.81 51.27 69.68 20.96 71.84 

 42-18-48 397.96 60.49 74.36 32.29 95.43 

 30-30-18 366.52 54.18 73.87 21.03 105.57 

 30-30-30 368.03 53.69 73.09 38.35 128.64 

 30-30-48 383.47 62.36 81.26 59.31 169.91 

 12-48-18 351.53 92.03 129.38 68.62 284.05 

 12-48-30 358.03 95.11 135.48 108.24 361.54 

 12-48-48 324.50 116.66 180.28 179.35 440.72 

G3 70-30-30 318.96 48.83 76.69 54.69 115.20 

 70-30-50 328.52 51.32 78.05 83.61 159.61 

 70-30-80 337.29 67.33 99.80 145.37 231.49 

 50-50-30 368.65 56.69 77.16 134.29 331.85 

 50-50-50 340.52 75.70 107.85 221.89 428.96 

 50-50-80 344.32 71.54 103.76 410.36 630.87 

 20-80-30 339.29 86.84 128.72 771.59 1652.19 

 20-80-50 396.31 132.91 168.76 1299.76 2238.47 

 20-80-80 427.47 200.41 234.34 1684.53 2489.63 
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Fig. 2. The average of the convergent CPU time 
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Fig. 3. The average of the total CPU time of all iterations completed 
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times of our bi-level PSO algorithm become less and less than GABB following the increase in the 

number of decision variables within problem groups G2 and G3; Fig. 2 and Fig. 3 display much 

more evident results. Fig.2 and Fig.3 clearly show that both the convergent and total CPU times of 

GABB increase steeply with the increase in the size of the test problems. In particular in group G3, 

GABB takes much more CPU times than our bi-level PSO algorithm to converge to the best 

solution and complete all the iterations, which implies that our bi-level PSO algorithm has a 

significant advantage in solving larger-scale problems. 

5. Conclusions and further study 

In this paper, we sought to solve bi-level and tri-level programming problems using PSO. To 

validate and illustrate the effectiveness of the proposed bi/tri-level PSO algorithms, we applied 

them to solve 62 benchmark problems and 810 large-scale problems which were randomly 

constructed. We also compared the computational results with those obtained by the existing 

PSO-CST algorithm [39], evolutionary algorithms [34, 38, 40] and genetic algorithm [12]. On the 

one hand, the computational results of these benchmark bi-level and tri-level programming 

problems reported that our bi/tri-level PSO algorithms are able to find much better solutions than 

the compared algorithms. On the other hand, the computational results of these large-scale problems 

clearly indicated that our bi-level PSO algorithm shows much better performance in terms of 

efficiency than the compared algorithms following the problem size becoming larger and larger. In 

conclusion, the proposed bi-level PSO algorithm provides a practical way to solve nonlinear and 

large-scale bi-level programming problems; also, it can be extended to a tri-level PSO algorithm for 

solving tri-level programming problems. 

In the future, we will apply the proposed multilevel programming techniques and bi/tri-level 

PSO algorithms to model and solve decentralized decision-making problems in the real world, e.g. 

supply chain management, logistics and hierarchical production operations. Moreover, we will turn 

our attention to the generalization of the proposed bi/tri-level PSO algorithms into problem 

scenarios with uncertain issues, e.g. multilevel programming problems with fuzzy and/or random 

parameters. 

Acknowledgements 

This work is supported by the Australian Research Council (ARC) under discovery grant 

DP140101366. 



31 

References 

[1] M.A. Abo-Sinna, I.A. Baky, Interactive balance space approach for solving multi-level multi-objective programming 

problems, Information Sciences, 177 (2007) 3397-3410. 

[2] G. Anandalingam, A mathematical programming model of decentralized multi-level systems, Journal of the 

Operational Research Society, 39 (1988) 1021-1033. 

[3] Z. Ankhili, A. Mansouri, An exact penalty on bilevel programs with linear vector optimization lower level, European 

Journal of Operational Research, 197 (2009) 36-41. 

[4] S.R. Arora, R. Gupta, Interactive fuzzy goal programming approach for bilevel programming problem, European 

Journal of Operational Research, 194 (2009) 368-376. 

[5] C. Audet, J. Haddad, G. Savard, Disjunctive cuts for continuous linear bilevel programming, Optimization Letters, 1 

(2007) 259-267. 

[6] J.F. Bard, An investigation of the linear three level programming problem, IEEE Transactions on Systems, Man, and 

Cybernetics, SMC-14 (1984) 711-717. 

[7] J.F. Bard, Some properties of the bilevel programming problem, Journal of Optimization Theory and Applications, 

68 (1991) 371-378. 

[8] J.F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, The 

Netherlands, 1998. 

[9] J.F. Bard, J.E. Falk, An explicit solution to the multi-level programming problem, Computers & Operations Research, 

9 (1982) 77-100. 

[10] O. Ben-Aved, C.E. Blair, Computational difficulties of bilevel linear programming, Operations Research, 38 (1990) 

556-560. 

[11] W.F. Bialas, M.H. Karwan, On two-level optimization, IEEE Transactions on Automatic Control, AC-26 (1982) 

211-214. 

[12] H.I. Calvete, C. Galé, P.M. Mateo, A new approach for solving linear bilevel problems using genetic algorithms, 

European Journal of Operational Research, 188 (2008) 14-28. 

[13] S.-W. Chiou, A bi-level programming for logistics network design with system-optimized flows, Information 

Sciences, 179 (2009) 2434-2441. 

[14] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002. 

[15] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:  Proceedings of the 6th International 

Symposium on Micro Machine and Human Science, 1995, pp. 39-43. 

[16] N.P. Faísca, V. Dua, B. Rustem, P.M. Saraiva, E.N. Pistikopoulos, Parametric global optimisation for bilevel 

programming, Journal of Global Optimization, 38 (2007) 609-623. 

[17] N.P. Faísca, P.M. Saraiva, B. Rustem, E.N. Pistikopoulos, A multi-parametric programming approach for multilevel 

hierarchical and decentralised optimisation problems, Computational Management Science, 6 (2007) 377-397. 

[18] Y. Gao, G. Zhang, J. Lu, H.M. Wee, Particle swarm optimization for bi-level pricing problems in supply chains, 

Journal of Global Optimization, 51 (2011) 245-254. 

[19] J. Han, J. Lu, Y. Hu, G. Zhang, Tri-level decision-making with multiple followers: Model, algorithm and case study, 

Information Sciences, 311 (2015) 182-204. 

[20] P. Hansen, B. Jaumard, G. Savard, New branch-and-bound rules for linear bilevel programming, SIAM Journal on 

Scientific and Statistical Computing, 13 (1992) 1194-1217. 

[21] V. Kalashnikov, R. Ríos-Mercado, A natural gas cash-out problem: A bilevel programming framework and a penalty 

function method, Optimization and Engineering, 7 (2006) 403-420. 

[22] J. Kennedy, R. Eberhart, Particle swarm optimization, in:  Proceedings of The 1995 IEEE International Conference 

on Neural Networks, 1995, pp. 1942-1948. 

[23] R.J. Kuo, C.C. Huang, Application of particle swarm optimization algorithm for solving bi-level linear programming 



32 

problem, Computers & Mathematics with Applications, 58 (2009) 678-685. 

[24] Y.-J. Lai, Hierarchical optimization: A satisfactory solution, Fuzzy Sets and Systems, 77 (1996) 321-335. 

[25] J. Lu, J. Han, Y. Hu, G. Zhang, Multilevel decision-making: A survey, Information Sciences, 346-347 (2016) 463-487. 

[26] J. Lu, C. Shi, G. Zhang, On bilevel multi-follower decision making: General framework and solutions, Information 

Sciences, 176 (2006) 1607-1627. 

[27] J. Lu, G. Zhang, J. Montero, L. Garmendia, Multifollower trilevel decision making models and system, IEEE 

Transactions on Industrial Informatics, 8 (2012) 974-985. 

[28] S. Pramanik, T.K. Roy, Fuzzy goal programming approach to multilevel programming problems, European Journal 

of Operational Research, 176 (2007) 1151-1166. 

[29] G.Z. Ruan, S.Y. Wang, Y. Yamamoto, S.S. Zhu, Optimality conditions and geometric properties of a linear multilevel 

programming problem with dominated objective functions, Journal of Optimization Theory and Applications, 123 

(2004) 409-429. 

[30] C. Shi, R. Eberhart, A modified particle swarm optimizer, in:  Proceedings of The 1998 IEEE International 

Conference on Evolutionary Computation, 1998, pp. 69-73. 

[31] C. Shi, H. Lu, G. Zhang, An extended Kth-best approach for linear bilevel programming, Applied Mathematics and 

Computation, 164 (2005) 843-855. 

[32] C. Shi, J. Lu, G. Zhang, An extended Kuhn-Tucker approach for linear bilevel programming, Applied Mathematics 

and Computation, 162 (2005) 51-63. 

[33] H.-S. Shih, Y.-J. Lai, E.S. Lee, Fuzzy approach for multi-level programming problems, Computers & Operations 

Research, 23 (1996) 73-91. 

[34] A. Sinha, P. Malo, K. Deb, Test problem construction for single-objective bilevel optimization, Evoluation 

Computation, 22 (2014) 439-477. 

[35] S. Sinha, A comment on Anandalingam (1988). A mathematical programming model of decentralized multi-level 

systems. J Opl Res Soc 39: 1021-1033, Journal of the Operational Research Society, 52 (2001) 594-596. 

[36] S. Sinha, Fuzzy mathematical programming applied to multi-level programming problems, Computers & 

Operations Research, 30 (2003) 1259-1268. 

[37] S. Sinha, Fuzzy programming approach to multi-level programming problems, Fuzzy Sets and Systems, 136 (2003) 

189-202. 

[38] Z. Wan, L. Mao, G. Wang, Estimation of distribution algorithm for a class of nonlinear bilevel programming 

problems, Information Sciences, 256 (2014) 184-196. 

[39] Z. Wan, G. Wang, B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos 

searching technique for solving nonlinear bilevel programming problems, Swarm and Evolutionary Computation, 8 

(2013) 26-32. 

[40] Y. Wang, Y.-C. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new 

constraint-handling scheme, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 35 

(2005) 221-232. 

[41] D. White, G. Anandalingam, A penalty function approach for solving bi-Level linear programs, Journal of Global 

Optimization, 3 (1993) 397-419. 

[42] D.J. White, Penalty function approach to linear trilevel programming, Journal of Optimization Theory and 

Applications, 93 (1997) 183-197. 

[43] G. Zhang, J. Han, J. Lu, Fuzzy Bi-level Decision-Making Techniques: A Survey, International Journal of 

Computational Intelligence Systems, 9 (2016) 25-34. 

[44] G. Zhang, J. Lu, Y. Gao, Multi-Level Decision Making: Models, Methods and Applications, Springer, Berlin, 2015. 

[45] G. Zhang, J. Lu, J. Montero, Y. Zeng, Model, solution concept and the Kth-best algorithm for linear tri-level 

programming, Information Sciences, 180 (2010) 481-492. 

[46] G. Zhang, C. Shi, J. Lu, An extended Kth-Best approach for referential-uncooperative bilevel multi-follower decision 



33 

making, International Journal of Computational Intelligence Systems, 1 (2008) 205-214. 

[47] G. Zhang, G. Zhang, Y. Gao, J. Lu, Competitive strategic bidding optimization in electricity markets using bilevel 

programming and swarm technique, IEEE Transactions on Industrial Electronics, 58 (2011) 2138-2146. 

 


