
Cryptography-Based Secure Data Storage and Sharing
Using HEVC and Public Clouds

Muhammad Usmana, Mian Ahmad Janb, Xiangjian Hea,∗

aSchool of Computing and Communications, University of Technology Sydney, Australia
bDepartment of Computer Science, Abdul Wali Khan University Mardan, Pakistan

Abstract

Mobile devices are widely used for uploading/downloading media files such as

audio, video and images to/from the remote servers. These devices have limited

resources and are required to offload resource-consuming media processing tasks

to the clouds for further processing. Migration of these tasks means that the

media services provided by the clouds need to be authentic and trusted by the

mobile users. The existing schemes for secure exchange of media files between

the mobile devices and the clouds have limitations in terms of memory support,

processing load, battery power, and data size. These schemes lack the support

for large-sized video files and are not suitable for resource-constrained mobile de-

vices. This paper proposes a secure, lightweight, robust, and efficient scheme for

data exchange between the mobile users and the media clouds. The proposed

scheme considers High Efficiency Video Coding (HEVC) Intra-encoded video

streams in unsliced mode as a source for data hiding. Our proposed scheme

aims to support real-time processing with power-saving constraint in mind. Ad-

vanced Encryption Standard (AES) is used as a base encryption technique by

our proposed scheme. The simulation results clearly show that the proposed

scheme outperforms AES-256 by decreasing the processing time up to 4.76%

and increasing the data size up to 0.72% approximately. The proposed scheme

can readily be applied to real-time cloud media streaming.

∗Corresponding author
Email address: Xiangjian.He@uts.edu.au (Xiangjian He)

Preprint submitted to Elsevier August 9, 2016

Keywords: Media Clouds, HEVC, Intra, Unsliced Mode, AES, Media

Streaming

1. Introduction

Mobile communication plays a vital role in our daily lives and has seen an

unprecedented technological growth over the past two decades. Apart from using

mobile devices for basic telecommunication services such as messaging and voice,

an increasing number of customers is using their phones for sharing multimedia

data by taking pictures and capturing videos. As a result, a huge amount of data

is generated by mobile users all the time. According to the latest Cisco report,

the data generated by mobile users grew up to 69% in 2014 with 2.5 exabytes

per month at the end of 2014. During this period, 4G connections produced

10 times more data traffic as compared to non-4G connections. The expected

growth of data traffic in 4G connections is shown in Figure 11. The vertical

axis represents data in units of exabytes whereas horizontal axis represents the

years.

Figure 1: Cisco Forecast for Mobile Data Traffic

Although, the storage capacity of mobile devices has improved significantly,

it still cannot meet the ever-increasing demands of mobile users. Cloud plat-

1C. V. N. I. Cisco, Global mobile data traffic forecast up date, 2014-2019, white paper.

2

forms facilitate mobile users by storing their data remotely in media clouds and

retrieving later at any point of time. Therefore, they provide an ease for mobile

users with an option to enhance their virtual storage [36] as shown in Figure

2. Accessing the data over wireless channels from media clouds has gained pop-

ularity among the mobile users, primarily due to the development of various

multimedia applications [42]. However, transmission of private data over wire-

less links is prone to various security breaches. As a result, security provisioning

has become a major concern for data residing over the media clouds [35]. As

the data can be transferred and stored on a cloud system through wireless links,

it is vulnerable to alteration, unauthorized disclosure, and replay attacks [32].

Trust of the users need to be guaranteed while they upload their multimedia and

secret data to different clouds. Although, there are existing approaches which

provide a facility to share secret information among a number of authorized

users, such approaches are applied on simple form of data [6, 13]. In case of

videos, especially the large-sized videos, such approaches have limitations pri-

marily due to the data size and the processing capability of end-user’s devices.

As a result, lightweight but secured schemes need to be designed.

The growing popularity of High Definition (HD) videos and the emergence

of HD and beyond-HD formats such as 4k×2k or 8k×4k resolutions are creating

a benchmark for visual quality [30]. The High Efficiency Video Coding (HEVC)

is an emerging standard to deal with such high resolution multimedia contents

[4]. This standard provides three basic modes for encoding multimedia contents,

i.e., Intra, low-delay and random. The intra mode treats each video frame as

an independent image and focuses on quality rather than compression. This

mode contains only I-frames and is suitable for the applications including video

surveillance and live high-quality video conferences, where no compromise on

visual quality can be made. The low-delay mode provides more compression

with a compromise on visual quality and provides approximately 33% reduction

in bit rate. This mode is a combination of I and P-frames and is suitable for

those online applications where compromise on visual quality can be made. An

application of the low-delay mode is online gaming, which is usually played on

3

Figure 2: Mobile Data Storage

mobile devices with low resolutions. The random mode is a combination of I,

P and B-frames with a facility to access any part of a frame. This mode offers

better compression as compared to the low-delay mode and is mainly used for

contents storage with almost 31% reduction in bit rate [33].

As a result of the above distinguishing features of HEVC standard, re-

searchers are focusing on developing security techniques which may utilize the

encoded contents produced by HEVC standard. Such techniques not only re-

quire an analysis of HEVC-produced contents for data protection but also de-

mand authorization by exchanging a key as shown in Figure 3. Security is of

utmost importance especially when videos are uploaded to public clouds and

later on retrieved by the users. Various encryption algorithms are proposed

to protect the video sequences against unauthorized attacks by malicious users

who use third-party tools and methods to steal the transmitted video sequences

[41, 40]. However, these algorithms focus only on restricting the video access

but do not provide any facility to secure secret data hidden in those videos.

4

Furthermore, the specific requirements of mobile users such as processing ca-

pability, hardware resources, and power backup are ignored while downloading

and uploading their multimedia data to the public clouds.

Figure 3: Traditional Security Scheme

Our research has the following major contributions.

1. The HD videos always contain redundant information. If these videos

are encoded in Intra domain, the compression is too low for maintaining

the visual quality. As a result of low compression, there is always an

abundant space available for hiding secret information. We propose a

cryptographic algorithm by using Intra-encoded HD video sequences in

public clouds. Although it introduces a slight overhead of executing the

proposed cryptographic algorithm on the input video sequence, it is still

implementable on latest mobile devices.

2. The encrypted videos are shared on a public cloud, which is semi-trusted.

If an intruder downloads the video and steals the Private Key (PRK) and

Public Key (PUK), it will only be able to decrypt the videos rather than

the encrypted secret data. The decryption process can only be performed

by an authentic user having a Secret Key (SK). Moreover, the targeted

5

users are always mobile users, located at different geographic locations

across the globe. Our proposed approach supports mobility of the users

by authenticating them remotely.

3. Our proposed approach is a combination of PRK, PUK, and SK and does

not require continuous synchronization among the users as shown in Figure

4. The responsibilities of an uploading user is to encrypt and upload the

data and the video on the cloud along with broadcasting an announcement

to all authorized users that a new data has been uploaded. Afterwards,

it is the choice of the other authorized users whether they want to down-

load and decrypt the secret data, embedded in the uploaded videos. By

possessing the same SK, they can download and fully decrypt the hidden

data at any time.

4. The proposed approach works efficiently in public clouds by providing the

required security level and at the same time eliminating the cost of having

private clouds. Our proposed approach efficiently utilizes the computa-

tional power of cloud resources by partially completing the decryption

process. As a result, the delay occurring in the decryption process can

be minimized at the receiver’s side. Since, our proposed scheme targets

mobile users, it is not necessary for the receivers to have enough compu-

tational resources.

The main purpose of the public clouds is to provide enough storage and

computational power to the users. Therefore, cloud environments are ideal for

processing and storing HD videos. Our proposed scheme increases the com-

pressed video size up to 0.72% on average, as compared to the other state-of-

the-art techniques which increase the size up to 9% or higher in some cases [23].

Although our approach affects the size of the transmitted binary video data,

the variation of size is relatively small and can easily be ignored as compared

to the existing techniques. This variation mainly depends on the quantity of

encrypted data. If the quantity is not too large, the increase in size will not

be noticeable. This is contrary to the existing approaches, where the increase

6

Figure 4: Updated Security Scheme

in size is relatively higher. Although we target HD videos in this paper, our

proposed approach is equally applicable to any other resolution of the videos.

The rest of the paper is organized as follows. In Section 2, related work

from literature is presented. In Section 3, our proposed approach is explained

in detail, followed by simulation setup and results in Section 4. Finally, the

paper is concluded in Section 5.

2. Related Work

Mobile devices such as smartphones and tablets are becoming an indispens-

able part of our lives for entertainment and convenient communication. With the

increasing popularity of various mobile devices, there is a phenomenal growth

in the development of mobile applications such as email, web browsing, mo-

bile games, terrestrial navigation, mobile health care, and social networking.

These applications indicate that mobile devices are quickly becoming the dom-

inant computing platforms for the provisioning of seamless connectivity and

entertainment regardless of the user’s mobility. Mobile devices, on the other

hand, are still restricted in terms of their resources such as computational ca-

pabilities, storage, and battery life time. Furthermore, they have limited com-

7

munication resources such as available bandwidth and connectivity [5]. The

resource-constrained nature of these devices limits the support for developing

various mobile applications. Mobile Cloud Computing (MCC) has resolved the

problem associated with the resource availability of these devices. The MCC

allows mobile devices to offload computationally-complex and space-demanding

tasks to the clouds [44, 45]. Clouds, on the other hand, have ample resources

and provide an ideal platform for resource-consuming mobile applications such

as speech recognition and video encoding/decoding [9, 37]. Many other similar

applications need to be offloaded to the clouds for processing and utilizing the

huge amount of resources available with these clouds. Computational offloading

of these applications saves energy and improves the performance of mobile ap-

plications [8, 11]. Moreover, the MCC enables the mobile users to store/access

major portion of their data on the cloud using wireless networks. This feature

of MCC enables mobile devices to utilize their storage and processing power

efficiently [7].

The on-demand nature of cloud computing faces various security threats

such as data loss, data leakage, Denial-of-Service (DoS), account or service traf-

fic hijacking, and malicious insiders. A malevolent hacker may modify critical

data due to a careless cloud service provider. To tackle such risk, the important

data needs to be encrypted and the encryption keys must be protected [20, 1].

If an intruder gains access to a customer credentials stored on a cloud, it may

eavesdrop on transactions and activities, maliciously manipulates the data, re-

turns falsified information, and may redirect the customer to illicit sites. DoS

attack is another major concern for cloud platforms because most of the orga-

nizations are dependent on 24/7 availability of one or more services [20]. Denial

of one or more services may be costly to the customers especially, when they

are billed based on disk-space consumption and computation cycles. Account

or service hijacking is another major threat faced by cloud platforms. Hijacking

a service allows a malicious person to sneak into crucial and sensitive areas of

a deployed service which may lead to breaching the integrity, availability, and

confidentiality of that service. A malicious insider, e.g., a current or former em-

8

ployee, a business partner, or a contractor, may gain access to the data, network

or system for malicious purposes [1]. The situation gets worse when the cloud

service provider is solely responsible for data security.

Cloud platforms attract more attacks due to their distributed nature. It is

desirable that the data (video contents in this context) is protected and may

only be accessed in encrypted form. Directly hiding the data in encrypted

HEVC video streams to intact its quality can avoid the leakage of video con-

tents. This feature of data hiding can address the security and privacy concerns

associated with the cloud computing [19, 24]. A cloud server has the ability

to embed the additional information about a video such as video notation and

data authentication, into an encrypted version of HEVC format. Once the data

is hidden, the server can verify the integrity without knowing the original con-

tents. As a result, security and privacy of the encrypted data is preserved. In

literature, various studies exist on encrypting the data in videos. A novel en-

cryption method for Intra and Inter frames in MPEG videos is presented in [38].

The authors argued that highly sensitive and private videos require encrypting

the whole video. Therefore, not only the Intra frames, but the Inter frames

were also required to be encrypted. In [39], an encryption scheme for MPEG

videos is proposed. The proposed scheme was based on Advanced Encryption

Standard-128 bit (AES-128) algorithm. Only Intra frames of a particular video

were encrypted because the Inter frames are useless without knowing the corre-

sponding Intra frames associated with them. In [25], a novel scheme based on

selective encryption for H.264 data is presented. The proposed scheme ensured

a transparent encryption and protection against various attacks. The proposed

encryption and decryption was relatively faster at the time of preserving the

formation and length of the video streams.

Various clouds such as Google App Engine and Amazon web services have

experienced security threats during recent years. These security flaws are ex-

ploited by illegal users to steal either secret information or disturb the normal

operation of Internet. As a result, robust and lightweight authentication and

authorization schemes are required for the devices interacting with the cloud

9

platforms. Cloud computing is a variant of client-server architecture model,

where, thousands of clients use the same infrastructure at a lot larger scales.

Identity and access control management is a core requirement for cloud com-

puting [14, 18]. Therefore, stronger authentication is required as compared to

conventional client-server interaction model. In [46], the authors proposed a

cloud-assisted privacy preserving key management scheme for mobile attacks.

Their proposed scheme protected patient’s identity and location information.

Moreover, the proposed scheme did not take into account the key privacy and

updating. Hence, their scheme was not suitable for a real-time cloud computing

platform. Bilinear pairing in an elliptic curve has recently gained attention in

developing an ID-based cryptosystem [12, 31]. This cryptosystem solved the

high cost issue of authentication and public key management derived from tra-

ditional public key cryptosystems. The identity of each user was used as a public

key. Therefore, a user did not require extra computational cost for verifying the

public keys of the other users. Moreover, no extra storage space at the user’s

device was required to store public keys and corresponding certificates of the

other users.

Recently, several studies have applied ID-based cryptosystems in various

cloud environments. In [43], a new ID-based authentication scheme is de-

signed for cloud environment. Although the proposed scheme was suitable for

a distributed mobile cloud service environment, it lacked the support for user

anonymity and untraceability. Most of the authentication schemes which are

based on elliptic curve or bilinear pairing [12, 31] are designed for client-server

environment. They are not feasible for direct application to distributed service

environments, where multiple service providers compete with each other for

provisioning of various services. The user needs to manage multiple secret keys

learned from each service provider. To resolve this issue, all service providers

need to share the same secret key. However, if an adversary acquires the secret

key, it may pose as a legitimate service provider to deceive the users. Moreover,

an intruder who captures the secret key may acquire the session keys as well. Af-

ter acquiring one or more session keys, the attacker may eavesdrop on sensitive

10

information transmitted between the user and another service provider.

3. Proposed Approach

In this section, we present our proposed data hiding scheme, which is a

combination of PRK, PUK and SK. The underlying encryption algorithms used

by our proposed scheme are modified AES-256 bit and RSA [10, 16]. The

modified AES-256 executes at the user’s side while the RSA executes at the

cloud’s side. The cloud generates a pair of PRK and PUK. The PRK remains

at the cloud’s side while the PUK is sent to the user for encryption purpose.

Our proposed scheme is applied directly to HEVC-encoded video stream. In

general, this scheme has three major phases, i.e., HEVC video encoding, video

and secret data encryption, half decryption and full decryption with the secret

data extraction. The uploading user, also known as data owner, first encodes

the video, encrypts the secret data using SK, adjusts the encrypted data into

encoded video, and then encrypts the video using PUK to generate an encrypted

HEVC Encoded Video Stream (HEVS). Next, the owner uploads the encrypted

HEVS over the public cloud, where the cloud sources decrypt the video using

the PRK, a technique known as half decryption. The cloud sources have no

knowledge about the data hidden in the video stream. The receiver downloads

the video, decrypts it using SK, extracts the required data and then either

keeps or discards the video stream. The overall process of the proposed scheme

is shown in Figures 5a and 5b.

3.1. Video Encoding and Data Encryption

An HD video usually contains N frames, where N is a positive integer. It

is to be noted here that, for real-time processing, it is not possible to process

and encode an entire video sequence in one go. Moreover, HEVC codec and

HD videos require enough hardware resources and computing power. As our

targeted users are mobile users, the above limitations need to be considered

before starting an encoding process. A simple solution to deal these limitations

11

(a) Encoding and Encryption (b) Decryption and/or Decoding

Figure 5: Encryption and Decryption Process

is to reduce the total number of frames for encoding. Apart from encoding

limitations, it is not compulsory to encrypt entire HEVS. The encryption of

an entire HEVS increases the computations and time cost which also affect

the format of the HEVS. One simple solution for these later limitations is to

nominate a part of HEVS for encryption in order to enhance the security level.

To keep the format of the HEVS undisturbed, it is safe to encrypt the secret

data in Spatial Information (SI). The Motion Vectors (MVs) information can

also be utilized for this purpose.

In this paper, HEVS-based encryption scheme is proposed which is time-

efficient, less complex in terms of computations, and does not disturb the format

of HEVS. After encoding the HD video using the standard settings in HEVC

codec, three main parts in HEVS can easily be utilized to encrypt the secret

data, i.e., the SI, the MVs, and Intra Prediction Modes Information (IPMI). As

compared to [34], our proposed scheme encrypts the secret data in compressed

domain, not in the encoding domain. This feature makes it easy to apply our

scheme directly to modify the HEVS. Modified versions of AES have already

been applied on H.264/AVC codec-based encoded video streams [26]. The simi-

larity among our proposed scheme and those presented in [26, 34] is the usage of

modified AES for data encryption purpose. Our proposed scheme differs from

12

[26, 34] in the sense that we are using HEVC/H.265 codec while they have used

H.264. The former codec is the latest one while the latter is the previous ver-

sion. We are using the HD videos, which have high resolution and difficult to

deal with, while they have used low resolution videos. In this paper, we have

used modified AES-256 bit algorithm along with PUK and cloud computing to

make it more secure and computationally less complex. The entire computa-

tional process of our modified AES is same as the original one, except one main

change. In the original implementation of AES, there are four processes involve

in the transformation phase, i.e. SubBytes(), ShiftRows(), MixColumns(), and

AddRoundKey(). In all these four processes, the MixColumns() is the highly

computational one. In our modified AES version, we have replaced the Mix-

Columns() with Permutations() process. The Permutations() process does not

affect the entire structure of the AES but reduces its computational time sig-

nificantly. As our target is mobile users, we cannot expect high computational

power, especially the capacity to perform long matrix multiplications, from their

mobile devices. The Permutations() process helps us to achieve this goal of low

processing. We encrypt the secret data by distributing it into three parts, i.e.,

first part in the SI, second part in the MVs and the third part in the IPMI,

in order to make the compressed HEVS format consistent. After encryption,

the HEVS can still be decoded perfectly with any latest version of HEVC codec

without showing any visible difference in the decoded videos. The procedure

to encrypt secret data in nominated sections of HEVS is very complicated and

requires deep knowledge of HEVC encoder. A minor mistake can disturb the

HEVS format, and ultimately alert the decoder resulting in either crashing of

the decoder or format mismatch errors.

3.1.1. Encryption in Spatial Information

To increase the security level, the secret data is divided equally into three

parts. The first part is encrypted in the Spatial Information (SI). The SI con-

siders the luminance plane information of pixels in the frames of a video. This

information is always computed for the entire video sequence [22]. The HD

13

videos are encoded in Intra domain, so plenty of spatial information is available

to utilize. This phase summarizes the embedding of secret data in the SI. In

H.264 and H.265/HEVC standards, the entropy coding is used to encode the

quantized coefficient values of the SI [2]. The main difference is that, in HEVC,

only CABAC version is used while in H.264, both CABAC and CALVC are

used. The details of CABAC and CALVC frameworks can be found in [27, 28].

The CABAC framework has three main parts, i.e., binarization, context mod-

eling, and Binary Arithmetic Coding (BAC). We skip the detailed explanation

of these three parts, as it is out of the scope of this paper. Next, we encode

the HD videos in Intra domain, where the data compression is very low. As a

result, we do not fully utilize the CABAC and our only focus is on the BAC but

at a lower level.

The BAC is based on Least Probable Symbol (LPS) and Most Probable

Symbol (MPS) rules and is adopted from Shannon-Fano coding [21]. The cal-

culations of LPS and MPS are based on a probability, i.e., by dividing the

possibility of occurrences of a symbol within a predefined interval, usually de-

noted by R. The first half of R, i.e., [0, 0.5] reserves the probability of LPS

while the second half, i.e., [0.6, 1] reserves the probability of MPS. The interval

[0.5, 0.6] is considered as neutral and the symbols occurring in this interval can

either be treated as LPS or MPS. Based on LPS and MPS, we utilize each byte

of zero video data to encrypt the secret data. The secret data is first encrypted

through modified AES-256 SK. Then, the encrypted secret data is converted

into bytes. Next, a 2’s complement operation is performed on encrypted secret

data’s bytes. Finally, the negated bytes are added with zero bytes of the video.

In that way, the format and the number of bits in video’s data bytes will remain

in the same order. Moreover, the original pattern can easily be extracted back

at the receiver end by converting those modified video’s data bytes into zeros

using a simple subtraction operation.

14

3.1.2. Encryption in Motion Vectors

The Motion Vectors (MVs) play an important role in video coding, especially

in Inter and Random access modes. They are the key elements in the motion

estimation process during video encoding/compression. In general, they are

used to represent a block of pixels in current video frame, based on the position

of same block of pixels in the reference video frame2. In the case of Intra mode,

blocks of pixels are used to reference other blocks but within the same frame.

This type of referencing is known as Intra prediction. Basically, the MVs are

used to track moving regions and objects. Based on that motion information,

compression and information discarding procedure is performed in video coding

to keep the texture information of different objects in a video frame.

The HEVC codec can encode MVs with much better precision and less resid-

ual errors. The main reason behind this accuracy is the Intra prediction direc-

tions. In our scheme, there are 35 Intra prediction directions while in H.264

standard, only 9 directions are present. As stated above, only CABAC version

of entropy coding is available in HEVC, so CABAC is used to encode calcu-

lated MVs for transmission purpose. After encoding through CABAC, the MVs

transform into codewords. Each codeword is a combination of binary 1s and 0s

and its length increases with the increasing number of MVs. The structure of

the codewords is very simple. The most significant bit in the codewords is al-

ways zero. The length of the codewords can easily be calculated using Equation

1.

CL = AZ + Bs (1)

Here, CL represents the codeword length, AZ represents the number of

appended zeros and Bs represents the total number of bits used for binary

presentation of a decimal value. The decimal value indicates the MV number.

The length of the AZ is always “1 less than the Bs” as shown in Equation 2.

2https://hevc.hhi.fraunhofer.de

15

LAZ = LBs − 1 (2)

Here, LAZ represents the total length of the appended zeros and LBs rep-

resents the length of total number of bits, respectively. For example, if a MV is

represented by decimal number 13, then its equivalent binary representation is

1101. As this binary representation contains 4 bits, 3 zeros will be appended at

the most significant place. As a result, the total number of bits will become 7,

which is length of the codeword used to represent that specific MV.

From the above discussion, it is obvious that the most significant part of a

codeword is always zero. Therefore, it can easily be utilized to hide the second

part of the encrypted data by using the same procedure, as followed in section

3.1.1. This procedure maintains the order and format of the codewords.

3.1.3. Encryption of Intra Prediction Mode Information

In H.264 standard, three types of Intra coding modes are supported, i.e.,

Intra 4 × 4, Intra 8 × 8, and Intra 16 × 16 [29]. However, in case of HEVC,

there are N Intra coding modes, ranging from Intra 2 × 2 to Intra 64 × 64 [15].

To perform compression and prediction in H.264 standard, the video frames are

divided into blocks of equal sizes, also known as macroblocks (MBs). To provide

better accuracy, the concept of MBs is replaced by Coding Tree Unit (CTU)

in HEVC. To make the encoding process fast and simple, Intra 32 × 32 and

Intra 64×64 block sizes are selected. The intra prediction is used to recover the

lost information of a block of pixels from its surrounding blocks. Both in H.264

and H.265, the video frames are divided into sub-blocks during the encoding

process. The intra prediction modes help the encoder to estimate which parts

of the current video frame are flat. The Intra Prediction Mode Information

(IPMI) is always available in the header of the video block. The header also

specifies the patterns, used to perform encoding process. The IPMI is encoded

through CABAC to be transformed into codewords. The codewords creation

follows the same criteria as described in sections 3.1.1 and 3.1.2. A noticeable

16

feature in these codewords is that the encoding patterns in consecutive blocks

are always same for luma and chroma components [17]. Therefore, two options

are available for hiding the third part of the encrypted data. Either, the most

significant zero bits are used or one of the coding pattern in consecutive blocks

is used. In order to keep the same pattern, we use the most significant zeros

to embed the third and last part of the encrypted data by applying the same

procedure as followed before in sections 3.1.1 and 3.1.2.

3.2. Half Decryption

As stated earlier, the data owner encrypts and uploads the data on the

cloud. The application system on the cloud provides three major services, i.e.,

Secure Storage Space (SSS), Key Generator (KG), and Half Decryption Function

(HDF). The user uploads the encrypted videos on the cloud through KG, which

stores the uploaded videos in the SSS. Before storing the encrypted videos in

the SSS, they are decrypted by HDF. In order to run such an application system

over the public clouds, few assumptions are made:

1. The main purpose behind the concept of public clouds is that they should

be used freely with a trust factor. Although it is obvious that cloud owner

may see the uploaded contents, it cannot change them. Therefore, it

becomes a responsibility of the encryption scheme to secure the data in

such environments.

2. A user plays dual roles, i.e., a user may upload and download the data.

Therefore, a user may be an owner or a requester.

3. Each user posses the same SK.

4. To protect the data transmission between the user and the cloud over

communication channels, it is assumed that it is protected by a security

protocol, such as SSH.

These assumptions need to be followed carefully. For example, in our first

assumption, if the encryption scheme is not strong enough, it is possible that the

video stream may be hijacked and infected during the transmission between the

17

user and the cloud or a malicious user may upload an infected video to get the

control of the application system, running on the cloud. The second assumption

facilitates a user, so that it can download and upload videos at the same time.

Possession of same SK synchronizes the authentic users. In case of multiple

secret keys, the user authentication process will become complicated and the

number of secret keys will increase, as more users become authenticated. To

protect the transmission channel between two end points, the security protocols

are always required. Without such protocols, the transmission channel cannot

be trusted.

Since a public cloud cannot be trusted fully, the KG running over the cloud

generates PRK and PUK. However, it cannot determine the SK of the users.

As the data owner uses PUK, generated by the KG, to encrypt the video, cloud

may only be able to decrypt the video by using the same PUK and its PRK.

This partial decryption reduces the processing load at the receiver’s end. Partial

decryption is the responsibility of HDF. For proper functioning of the system,

each user registers itself with KG by forwarding the user ID. The KG replies

back with a PUK. The user uses this PUK to encrypt its user ID and password

and sends it back to cloud’s application system to request for a login session.

The cloud’s application system replies back with the session information. After

getting the session’s information, the user uses the same PUK to encrypt the

video before uploading it.

3.3. Full Decryption with Data Extraction

When a user requests for a specific data, it sends a request to the KG for

a login session. First, it looks up the authenticated user’s list to search for

a match with the user’s ID. If the user’s ID does not match, it simply drops

the connection. If a match is found, then, first a login session is created in

the similar way, as is shown in section 3.2. In the meanwhile, the KG checks

whether the requested data is available in the SSS or not. If the requested data

is not available, it informs the requester about the unavailability of the data,

otherwise, it sends back the decrypted video to the requester. After getting the

18

decrypted video, user decrypts the secret data by using its SK. Upon extracting

the secret data, it is up to the requester to either keep the video stream for

further use or simply discard it.

There are two scenarios for secret data decryption. In the first scenario, the

user is authorized one. In such scenario, the maximum probability is that it

will first decrypt the secret data from video stream and then decide either to

keep or discard it. In the second scenario, the user is unauthorized one, but has

stolen the ID of an authorized user to access the video. In this scenario, the

unauthorized user will be able to decode the video stream but will not be able

to extract the hidden information without having the SK.

3.4. Proposed Algorithm

The step by step explanation of our proposed scheme is as follows.

Step 1: Registration Phase

1. Each MUi forwards its user ID to KG function on the nominated public

cloud.

2. KG authorizes the MUi for uploading/downloading data by forwarding

KG’s generated PUK.

3. The data owner encrypts the user ID and password using the PUK and

sends it back to cloud for login session.

4. The KG replies back with the session information.

Step 2: Encoding Phase

1. Videos are encoded using HEVC codec in Intra mode.

2. This phase results in a Binary File (BF), also known as HEVS.

Step 3: Calculation Phase

1. Total number of blocks (TBs) in the generated BF are calculated.

2. DC/zero Blocks (DCBs) and AC/non-zero blocks (ACBs) are separated

from each other.

19

Step 4: Pre-Encryption Phase

1. The AES-256 bit key, known as SK, is generated in the same way, as is

generated in the original implementation.

2. The State matrix is set up.

3. Each Mobile User (MUi) possess the same SK, where i = 1, 2, · · · , n and

MUi is either data owner or requester.

Step 5: Encryption Phase

1. Input : Video frames or Binary Packets

2. The secret data is encrypted through modified AES’s SK and converted

into byte format.

3. 2’s complement of the encrypted secret data is computed.

4. Information about the SI, MV and IPMI is extracted from the frames

header.

5. The encrypted data is added with the extracted information.

6. After adjusting the encrypted data, the HEVS is encrypted by the PUK.

Step 6: Uploading Phase

1. After authorization, data owner (MUi) alerts the KG function that data

is ready for uploading.

2. The KG function acknowledges MUi and starts receiving the data.

Step 7: Half Decryption Phase

1. This step involves cloud computing resources.

2. The encrypted video is decrypted at the cloud to reduce the user’s pro-

cessing load by the HDF.

3. The PRK generated by the KG is used to perform this task.

4. After decrypting the complete data file, the KG stores it in the SSS.

Step 8: Downloading/Decryption Phase

1. The MUi is authenticated.

20

2. After authentication, the MUi downloads the required video, decrypts the

secret data, and/or decodes the video by using the SK and/or HEVC

codec, respectively.

4. Simulation Setup and Results

In this section, we present the experimental setup and results of our proposed

scheme. Our scheme is mainly based on modified version of AES-256 but we also

compare our results with other versions of AES and DES. Although AES-128,

AES-192 and DES-56 are also very popular, to assure better security, large-

sized security keys are always preferable and difficult to crack. Table 1 shows a

summarized comparison among AES, 3DES and DES techniques.

Characteristics AES 3DES DES

Length (in bits)
128, 192,

and 256
112 and 168 56

Type Symmetric Symmetric Symmetric

Resistance

Defensive

against

linear,

differential, and

interpolation

attacks

Vulnerable

against

differential

attacks

Vulnerable

against

linear and

differential

attacks

Keys Production
2128, 2192,

and 2256
2112 and 2168 256

Approximated

Cracking Time

2128: 5 × 1021 years

2192: 7.5 × 1032 years

2256: 10 × 1042 years

2112: 800 days

2168: 1200 days
256: 400 days

Table 1: Comparison between AES and DES

21

All our experiments are performed on Dell machine with processor Intel

CoreTM i5 − 3470 CPU @ 3.20 GHz and having memory 8 GB. For encod-

ing purpose, we use HEVC/H.265 reference software version HM 16.6 with

Intra configuration settings [3]. For simulation dataset, we use standard HD

videos3. We select video sequences, i.e., PeopleOnStreet, Kimono, Cactus, and

Rush Hour, having 2560 × 1600 and 1920 × 1080 resolutions, respectively. The

frame rate of the test videos varies from one video to another. In Table 2, the

details of test sequences used during the experiments are shown. As shown in

the table, the test sequences have different frame rates. Similarly, these se-

quences contain multiple objects which are moving with different velocities. For

testing purpose, we encode first 150 frames from each video sequence. Default

Quantization Parameter (QP) value, i.e. 32, is being followed while encoding

the videos. The Group of Pictures (GOP) is set to 1 because of Intra coding

mode. The proposed technique is applied to Intra-frames, i.e., I-frames, in un-

sliced mode. In case of I-frames, the compression is always low. As a result, we

have enough space available in video frames to hide the data. This techniques

can also be applied to Inter-frames (P or B-frames), both in sliced and unsliced

modes, but it increases computational time of encryption and decryption and

network latency because Inter-frames are always dependent on I-frames. An-

other major issue is that if an I-frame is lost during transmission due to any

reason, all dependent Inter-frames will also get dropped.

For secret dataset, we use standard test images4. We select color images in

bitmap format, i.e., barbara, baboon, lenna, pepper, airplane, BoatsColor, and

goldhill. The resolution of the test images varies from one image to another. In

Table 3, the details of test images used during the experiments are shown. As

shown in the table, the test images have different resolutions.

The encryption algorithm is implemented in Matlab version R2015a. For

cloud and cloud-based applications, we use the same version of Matlab for

3https://media.xiph.org/video/derf/
4http://www.hlevkin.com/TestImages/classic.htm/.

22

Test Sequence
Total

Frames

Encoded

Frames
Frame Rate Resolution

PeopleOnStreet 150 150 30 2560×1600

Kimono 240 150 24 1920×1080

Cactus 500 150 50 1920×1080

Rush Hour 500 150 25 1920×1080

Table 2: Details of Test Video Sequences

Test Image Resolution

barbara 720×576

baboon 500×480

airplane 512×512

BoatsColor 787×576

goldhill 720×576

lenna 512×512

pepper 512×512

Table 3: Details of Test Images

implementation. The current version of Matlab provides Amazon-EC2 cloud

facility with an ease for the researchers to use built-in functions to perform

cloud-based computing. As our aim is real-time processing, we mainly focus on

processing time and size of the test video sequences. The computational time

and change of size of the encoded videos are also noted down after applying our

proposed scheme, AES-256, AES-192, AES-128, and DES. In Table 4, various

test sequences are compared in terms of bit rate, size after encoding and be-

fore encryption, and encoding time. These parameters form the base for Table

5, where we have compared our proposed scheme with the existing schemes in

terms of size (in MB) for various test sequences. In Table 5, unlike the exist-

ing encryption schemes, the test sequences perform efficiently and require less

23

Test Sequence Bit Rate (Mbps)

Size after

Encoding and

Before

Encryption

(MB)

Encoding

Time (Minutes)

PeopleOnStreet 121.22 45.71 380.19

Kimono 23.41 18.29 168.56

Cactus 156.26 28.56 215

Rush Hour 64.92 30.72 203.77

Table 4: Comparison of Various Test Sequences

Test Sequence DES AES-128 AES-192 AES-256
Proposed

Scheme

PeopleOnStreet 49.36 50.14 50.15 50.24 45.86

Kimono 20.48 18.73 18.73 18.74 18.72

Cactus 31.99 36.56 36.56 36.57 28.57

Rush Hour 30.96 16.46 16.47 16.47 30.76

Table 5: Size (in MB) Comparison of various Test Sequences

memory using our proposed scheme.

The average computational time required to apply the above mentioned

encryption techniques is shown in Table 6. Each test sequence requires a specific

amount of time using these encryption techniques. All these test sequences, i.e.,

PeopleOnStreet, Kimono, Cactus, and Rush Hour require less computational

time to process, when our proposed scheme is applied. DES, on the other side,

requires ample amount of time to process. In case of AES with different key

sizes, the computational time increases with an increase in size of the key.

Performance graph of Figure 6 is based on the calculations of Tables 4 and 5.

As shown in these two tables and Figure 6, our proposed scheme keeps almost

24

Test Sequence DES AES-128 AES-192 AES-256
Proposed

Scheme

PeopleOnStreet 2.14 0.75 0.86 0.95 0.92

Kimono 0.86 0.299 0.34 0.38 0.34

Cactus 1.34 0.47 0.54 0.59 0.58

Rush Hour 1.44 0.51 0.58 0.64 0.62

Table 6: Average Computational Time (Sec)

the same size of encoded video stream as that before the encryption, and other

schemes produce significant increase in the size. Performance graph of Figure

7 is based on the calculations of Table 6. As our proposed scheme is based

on AES-256, it is obvious from Table 6 and Figure 7 that it produces slightly

less time as compared to AES-256 but slightly increased time as compared to

AES-128 and AES-192 due to large keys. 1

0

10

20

30

40

50

60

DES AES-128 AES-192 AES-256 Proposed

Si
ze

 in
 M

eg
a

B
yt

es

Techniques

PeopleOnStreet Kimono Cactus Rush_Hour

Figure 6: Size Comparison

25

1

0

0.5

1

1.5

2

2.5

DES AES-128 AES-192 AES-256 Proposed

T
im

e
in

 S
ec

on
ds

Technique

PeopleOnStreet

Kimono

Cactus

Rush_Hour

Figure 7: Time Comparison

5. Conclusion

Encrypting secret data in compressed video streams is a relatively new re-

search area which is attracting the attention of researchers. This is primarily

due to privacy and security issues concerned with the public clouds. In this

article, a secured scheme has been presented which hides the secret data in

HEVC encoded video stream, i.e., in compressed domain. The proposed scheme

consists of three major phases, which are video encoding, data encryption, and

decryption with/without decoding. The proposed scheme tries to maintain the

original video stream size after encryption without affecting the visual quality of

video data. Thus, it produces an ideal platform for real-time video applications.

The secret data is distributed in encoded video stream so it is difficult for

hackers to extract entire secret data. This is due to the fact that hackers do

not know the exact locations and patterns of the hiding scheme, even if they

steal the secret key. Another major advantage is that our proposed scheme

fully supports the encoding and decoding structure of HEVC standard. The

video stream with encrypted secret data can easily be decoded without getting

corrupted or showing any sign of extra hidden information. Experimental results

26

have shown that the proposed scheme maintains the visual quality with a slight

compromise on increasing the size of the encoded video stream.

References

[1] M. Ali, S. U. Khan, A. V. Vasilakos, Security in cloud computing: Oppor-

tunities and challenges, Information Sciences 305 (2015) 357–383.

[2] M. N. Asghar, M. Ghanbari, An efficient security system for CABAC bin-

strings of H. 264/SVC, IEEE Transactions on Circuits and Systems for

Video Technology 23 (3) (2013) 425–437.

[3] F. Bossen, Common HM test conditions and software reference configura-

tions. JCT-VC I1100, in: 9th meeting of Joint Collaborative Team on video

coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,

Geneva, 2012.

[4] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, T. Wiegand, High efficiency

video coding (HEVC) text specification draft 8, JCTVC-J1003, July .

[5] A. Celebi, M. Kenkel, T. T. Wong, Bandwidth Enhancement of a Com-

pact Transverse Bilateral Helical Antenna With Parasitic Element for Mo-

bile Device Applications, IEEE Transactions on Antennas and Propagation

63 (3) (2015) 937–945.

[6] V. Chang, M. Ramachandran, Towards achieving data security with the

cloud computing adoption framework, IEEE Transactions on Services Com-

puting 9 (1) (2016) 138–151.

[7] C.-A. Chen, M. Won, R. Stoleru, G. G. Xie, Energy-efficient fault-tolerant

data storage and processing in mobile cloud, IEEE Transactions on Cloud

Computing 3 (1) (2015) 28–41.

[8] X. Chen, L. Jiao, W. Li, X. Fu, Efficient Multi-User Computation Of-

floading for Mobile-Edge Cloud Computing, IEEE/ACM Transactions on

Networking .

27

[9] A. Corradi, M. Destro, L. Foschini, S. Kotoulas, V. Lopez, R. Montanari,

Mobile Cloud Support for Semantic-enriched Speech Recognition in Social

Care .

[10] J. Daemen, V. Rijmen, AES proposal: Rijndael .

[11] K. Elgazzar, P. Martin, H. Hassanein, Cloud-Assisted Computation Of-

floading to Support Mobile Services, IEEE Transactions on Cloud Com-

puting .

[12] F. Guo, Y. Mu, W. Susilo, H. Hsing, D. Wong, V. Varadharajan, Optimized

Identity-Based Encryption from Bilinear Pairing for Lightweight Devices,

IEEE Transactions on Dependable and Secure Computing .

[13] F. Han, J. Qin, J. Hu, Secure searches in the cloud: a survey, Future

Generation Computer Systems 62 (2016) 66–75.

[14] T. Jung, X.-Y. Li, Z. Wan, M. Wan, Control cloud data access privilege

and anonymity with fully anonymous attribute-based encryption, IEEE

Transactions on Information Forensics and Security 10 (1) (2015) 190–199.

[15] B. Juurlink, M. Alvarez-Mesa, C. C. Chi, A. Azevedo, C. Meenderinck,

A. Ramirez, Understanding the application: An overview of the h. 264

standard, in: Scalable Parallel Programming Applied to H. 264/AVC De-

coding, Springer, 5–15, 2012.

[16] B. Kaliski, PKCS# 1: RSA encryption version 1.5 .

[17] J. Lainema, F. Bossen, W.-J. Han, J. Min, K. Ugur, Intra coding of the

HEVC standard, IEEE Transactions on Circuits and Systems for Video

Technology 22 (12) (2012) 1792–1801.

[18] J. Liu, M. Au, X. Huang, R. Lu, J. Li, Fine-grained Two-factor Access

Control for Web-based Cloud Computing Services, IEEE Transactions on

Information Forensics and Security .

28

[19] J. K. Liu, M. H. Au, W. Susilo, K. Liang, R. Lu, B. Srinivasan, Secure shar-

ing and searching for real-time video data in mobile cloud, IEEE Network

29 (2) (2015) 46–50.

[20] S. Ma, Identity-based encryption with outsourced equality test in cloud

computing, Information Sciences 328 (2016) 389–402.

[21] D. Marpe, H. Schwarz, T. Wiegand, Context-based adaptive binary arith-

metic coding in the H. 264/AVC video compression standard, IEEE Trans-

actions on Circuits and Systems for Video Technology 13 (7) (2003) 620–

636.

[22] A. Ostaszewska, R. K loda, Quantifying the amount of spatial and temporal

information in video test sequences, in: Recent Advances in Mechatronics,

Springer, 11–15, 2007.

[23] I. C. Paar, I. J. Pelzl, Introduction to Public-Key Cryptography, in: Un-

derstanding Cryptography, Springer, 149–171, 2010.

[24] U. L. Puvvadi, K. D. Benedetto, A. Patil, K.-D. Kang, Y. Park, Cost-

Effective Security Support in Real-Time Video Surveillance, IEEE Trans-

actions on Industrial Informatics 11 (6) (2015) 1457–1465.

[25] Z. Shahid, M. Chaumont, W. Puech, Fast protection of H. 264/AVC by

selective encryption of CAVLC and CABAC for I and P frames, IEEE

Transactions on Circuits and Systems for Video Technology 21 (5) (2011)

565–576.

[26] Z. Shahid, W. Puech, Visual protection of HEVC video by selective encryp-

tion of CABAC binstrings, ieee transactions on multimedia 16 (1) (2014)

24–36.

[27] G. J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high

efficiency video coding (HEVC) standard, IEEE Transactions on Circuits

and Systems for Video Technology 22 (12) (2012) 1649–1668.

29

[28] G. J. Sullivan, P. N. Topiwala, A. Luthra, The H. 264/AVC advanced

video coding standard: Overview and introduction to the fidelity range

extensions, in: SPIE 49th Annual Meeting Optical Science and Technology,

International Society for Optics and Photonics, 454–474, 2004.

[29] V. Sze, M. Budagavi, G. J. Sullivan, High Efficiency Video Coding

(HEVC), in: Integrated Circuit and Systems, Algorithms and Architec-

tures, Springer, 1–375, 2014.

[30] S. Tanwir, H. Perros, A survey of VBR video traffic models, IEEE Com-

munications Surveys & Tutorials 15 (4) (2013) 1778–1802.

[31] J.-L. Tsai, A New Efficient Certificateless Short Signature Scheme Using

Bilinear Pairings, IEEE Systems Journal, .

[32] M. Usman, X. He, K.-M. Lam, M. Xu, S. M. M. Bokhari, J. Chen, Frame

Interpolation for Cloud-Based Mobile Video Streaming, IEEE Transactions

on Multimedia 18 (5) (2016) 831–839.

[33] M. Usman, X. He, M. Xu, K. M. Lam, Survey of Error Concealment tech-

niques: Research directions and open issues, in: Picture Coding Symposium

(PCS), 2015, IEEE, 233–238, 2015.

[34] G. Van Wallendael, A. Boho, J. De Cock, A. Munteanu, R. Van de Walle,

Encryption for high efficiency video coding with video adaptation capabil-

ities, IEEE Transactions on Consumer Electronics 59 (3) (2013) 634–642.

[35] H. Wang, S. Wu, M. Chen, W. Wang, Security protection between users

and the mobile media cloud, IEEE Communications Magazine 52 (3) (2014)

73–79.

[36] Y. Wen, X. Zhu, J. J. Rodrigues, C. W. Chen, Cloud mobile media: Reflec-

tions and outlook, IEEE Transactions on Multimedia 16 (4) (2014) 885–902.

[37] J. Wu, C. Yuen, N.-M. Cheung, J. Chen, C. W. Chen, Streaming Mobile

Cloud Gaming Video over TCP with Adaptive Source-FEC Coding .

30

[38] C. Xiao, L. Wang, M. Zhu, W. Wang, A resource-efficient multimedia en-

cryption scheme for embedded video sensing system based on unmanned

aircraft, Journal of Network and Computer Applications 59 (2016) 117–125.

[39] D. Xu, R. Wang, Y. Q. Shi, Data hiding in encrypted H. 264/AVC

video streams by codeword substitution, IEEE Transactions on Information

Forensics and Security 9 (4) (2014) 596–606.

[40] D. Xu, R. Wang, Y. Q. Shi, An improved scheme for data hiding in en-

crypted H. 264/AVC videos, Journal of Visual Communication and Image

Representation 36 (2016) 229–242.

[41] Y. Yao, W. Zhang, N. Yu, Inter-frame distortion drift analysis for reversible

data hiding in encrypted H. 264/AVC video bitstreams, Signal Processing

128 (2016) 531–545.

[42] Z. Yin, F. R. Yu, S. Bu, Z. Han, Joint cloud and wireless networks opera-

tions in mobile cloud computing environments with telecom operator cloud,

IEEE Transactions on Wireless Communications 14 (7) (2015) 4020–4033.

[43] J. Zhang, Q. Dong, Efficient ID-based public auditing for the outsourced

data in cloud storage, Information Sciences 343 (2016) 1–14.

[44] Y. Zhang, X. Chen, J. Li, D. S. Wong, H. Li, I. You, Ensuring attribute pri-

vacy protection and fast decryption for outsourced data security in mobile

cloud computing, Information Sciences .

[45] Y. Zhang, D. Niyato, P. Wang, Offloading in mobile cloudlet systems with

intermittent connectivity, IEEE Transactions on Mobile Computing 14 (12)

(2015) 2516–2529.

[46] J. Zhou, Z. Cao, X. Dong, N. Xiong, A. V. Vasilakos, 4S: A secure and

privacy-preserving key management scheme for cloud-assisted wireless body

area network in m-healthcare social networks, Information Sciences 314

(2015) 255–276.

31

