
Indexing Next Generation Sequencing Data

Vahid Jalilia,∗, Matteo Matteuccia, Marco Masserolia, Stefano Ceria

aDipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy

Abstract

Next-Generation Sequencing (NGS), also known as high-throughput se-
quencing, has opened the possibility of a comprehensive characterization of
the genomic and epigenomic landscapes, giving answers to fundamental ques-
tions for biological and clinical research, e.g., how DNA-protein interactions
and chromatin structure affect gene activity, how cancer develops, how much
complex diseases such as diabetes or cancer depend on personal (epi)genomic
traits, opening the road to personalized and precision medicine.

In this context, our research has focused on sense-making, e.g., discovering
how heterogeneous DNA regions concur to determine particular biological
processes or phenotypes. Towards such discovery, characteristic operations
to be performed on region data regard identifying co-occurrences of regions,
from different biological tests and/or of distinct semantic types, possibly
within a certain distance from each others and/or from DNA regions with
known structural or functional properties.

In this paper, we present Di3, a 1D Interval Inverted Index, acting as
a multi-resolution single-dimension data structure for interval-based data
queries. Di3 is defined at data access layer, independent from data layer,
business logic layer, and presentation layer; this design makes Di3 adaptable
to any underlying persistence technology based on key-value pairs, spanning
from classical B+ tree to LevelDB and Apache HBase, and makes Di3 suitable
for different business logic and presentation layer scenarios.

We demonstrate the effectiveness of Di3 as a general purpose genomic
region manipulation tool, with a console-level interface, and as a software
component used within MuSERA, a tool for comparative analysis of region

∗To whom correspondence should be addressed
Email address: vahid.jalili@polimi.it (Vahid Jalili)

Preprint submitted to Special Issue on Life Sciences Data Analysis June 29, 2016

data replicates from NGS ChIP-seq and DNase-seq tests.

Keywords:
Genomic computing; domain-specific data indexing; region-based
operations and calculus; data integration.

1. Introduction

Next-Generation Sequencing (NGS) is a family of technologies for pre-
cisely, quickly and cheaply reading the DNA or RNA of biological sam-
ples (Shendure and Ji, 2008), (Schuster, 2008), producing huge amounts
of data. Large-scale sequencing projects are spreading and very numerous
genomic features, produced by processing NGS raw data, are collected by
research centers, often organized through world-wide consortia, e.g., EN-
CODE (ENCODE Project Consortium et al., 2012), TCGA (Weinstein et al.,
2013), 1000 Genomes Project (1000 Genomes Project Consortium et al., 2010),
Epigenomics Roadmap (Romanoski et al., 2015), and others.

The availability of NGS data has opened the possibility of a compre-
hensive characterization of genomic and epigenomic landscapes. Answers to
fundamental questions for biological and clinical research are hidden in these
data, e.g., how DNA-protein interactions and chromatin structure affect gene
activity, how cancer develops, how much complex diseases such as diabetes
or cancer depend on personal (epi)genomic traits. Personalized and precision
medicine based on genomic information is becoming a reality; the potential
for data querying, analysis and sharing may be considered as the biggest and
most compelling big data problem of mankind.

NGS technologies (Schuster, 2007), (Caporaso et al., 2012) allow collect-
ing genome-wide genomic and epigenomic features, including DNA mutations
or variations (DNA-seq), transcriptome profiles (RNA-seq), DNA methyla-
tions (BS-seq), DNA-protein interactions and chromatin characterizations
(ChIP-seq and DNase-seq) (Park, 2009), (Cockerill, 2011). The processing
of raw data (i.e., NGS reads) produced by these technologies returns lists of
regions of cellular DNA, characterized by some common property; such re-
gions, often referred as peaks (of NGS reads), are defined through their linear
genomic coordinates and they are usually associated with several attribute
values, including a statistical significance score, e.g., a p-value (Zhang et al.,
2008) (Rashid et al., 2011).

2

 Fields of Study (‐omics)

Wet lab

Primary
Analysis

Secondary
Analysis

Tertiary
Analysis

Clinical
Report

 Genomics Epigenomics Transcriptomics

Sample Collection (e.g., Tumor sample)

DNA/RNA Extraction and Quantification

Whole Genome Sequencing

ChIP‐seq

RNA‐seq

Production of Sequence reads and quality scores

Sequence Alignment

Variant discovery and Genotyping, includes recalibration and filtering raw variants (SNPs, indels)

Biomedical report and clinical genomics interpretation service

Clinical report

Functional annotation/analysis and Genotype refinement

Variant Evaluation

Sequence Assembly

Gene expressionDNA‐Protein interaction

Peak Calling

Reproducibility assessment using MSPC, MuSERA, PCC, and IDR

Expression pattern analysis

Protein‐Protein interaction network analysis

Nearest feature distance distribution

Multi sample Correlation assessment

Genome browser driven exploratory analysis

FASTA, FASTQ
Nucleotide sequence and its
corresponding quality scores

SAM, BAM
Sequence/Binary Alignment/Map

BED, GTF, VCF
Interval‐based (of length
≤1) feature representation
such as ChIp‐seq peaks

and variations

Produced Data
Representation

TXT, CSV, JPEG
Results reported in textual
descriptions and plots

Di3
Application

 Focus

Figure 1: Di3 application focus.

The comparative analysis of heterogeneous genomic features produced by
NGS technologies is named tertiary analysis (see Figure 1), in contrast to
primary analysis, focused on the alignment of raw data (short reads) to ref-
erence genomes, and secondary analysis, focused on feature calling. Tertiary
analysis is responsible of sense-making, e.g., discovering how heterogeneous
regions synergically concur to determine particular biological processes or
phenotypes.

Our research is targeting tertiary analysis; we recently proposed a new
holistic approach to genomic data modeling and querying1 that takes ad-
vantage of cloud-based computing to manage heterogeneous data produced
by NGS technologies. In (Masseroli et al., 2015), we introduced the novel
GenoMetric Query Language (GMQL), built on an abstract model for ge-
nomic data; we sketched out its main operations and demonstrated its use-
fulness, expressive power and flexibility through multiple different examples

1http://www.bioinformatics.deib.polimi.it/genomic computing/

3

of biological interest (including finding ChIP-seq peaks in promoter regions,
finding distal bindings in transcription regulatory regions, associating tran-
scriptomics and epigenomics, and finding somatic mutations in exons).

We also developed methods for secondary data analysis, with a focus
on data integration. Indeed, NGS experimental protocols recommend the
production of at least two replicates for each sequenced sample, in order to
reduce the number of false-positive calls and “rescue” (i.e., call) regions with
low significance score which would probably be discarded in a single sample
evaluation, but that are supported by a sufficiently strong evidence when
combined across multiple replicate samples. To perform such task, and assess
the reproducibility in high-throughput experiments, we recently proposed a
novel method (Jalili et al., 2015) (Multiple Sample Peak Calling (MSPC)),
which has been then implemented in MuSERA (Jalili et al., 2016), an efficient
tool for locally combining evidences on replicates and interactive graphical
evaluations of results in the genomic context (see Figure 1 for MSPC and
MuSERA application focus).

1.1. Our Contribution

Both GMQL and MuSERA are grounded on the efficient execution of
operations for the composition and comparison of (epi)genomic regions, and
their associated attributes. Region-based operations to be performed towards
these goals include the identification of co-occurrences or accumulations of
regions, possibly from different biological tests and/or of distinct semantic
types, within the same area of the DNA, sometimes within a certain dis-
tance from each others and/or from DNA regions with known structural
or functional properties (e.g., describing particular DNA sequence motifs,
genes involved in certain biochemical pathways, or regulatory regions of gene
transcription activity). Nowadays, such complex operations are only par-
tially supported by existing tools, e.g., BEDTools (Quinlan and Hall, 2010),
BEDOPS (Neph et al., 2012), GROK (Ovaska et al., 2013); these tools typ-
ically support only algebraic operations based on the genomic coordinates
of the regions within a single data sample or a pair of samples at the time,
requiring the use of scripts to perform complex operations on multiple data
samples.

To cope efficiently with complex region calculus, we have developed the
1D Interval Inverted Index (Di3), a multi-resolution single-dimension index-
ing framework (see Figure 1). Di3 is defined at the data access layer, and it
is independent from data layer, business logic layer, and presentation layer

4

Data Layer

Presentation Layer

Data Access Layer

Business Logic Layer

Di3

Di3B

Di3BCLI

MuSERA Genome Model

MuSERA GUI

In-RAM & Persisted B+tree

Figure 2: Two applications’ design of Di3.

(see Figure 2). This design decision has two significant advantages; firstly,
being independent from the data layer, Di3 is adaptable to any key-value
pair persistence technology. These may range from Apache Cassandra, Lev-
elDB, Kyoto Cabinet, and Berkeley DB for persisted large scale data (NoSQL
databases are surveyed in (Han et al., 2011) and (Tudorica and Bucur, 2011)),
to simple in-memory key-value collections implemented by most of modern
programming languages (e.g., “Dictionary” in C# and “map” in C++)2.
Secondly, Di3 design can support different business logic and presentation
layer scenarios, which are complemented by user-defined functions (UDF)
provided via behavioral design patterns such as strategy pattern (Vlissides
et al., 1995). To best of our knowledge, Di3 is the first comprehensive index-
ing framework for interval-based NGS data.

In this paper, we describe two contexts of Di3 application:

• General-purpose, self-contained use of Di3 from the Di3B command-
line interface (Di3BCLI) that provides console-level accessibility to
Di3B (Di3 Bioinformatics) operations (see Figure 2). This is also used
for performance evaluation.

• Use of Di3 as a component within the MuSERA tool (Jalili et al., 2016),
showing how Di3 adapts to the general requirements of secondary and
tertiary data analysis (see Figure 2).

2In this manuscript, we use an implementation of Di3 which relies on classical B+ tree
and runs both in-memory and persistent.

5

1.2. Outline

This paper is organized as follows. Section 2 presents the state of the
art. Section 3 is dedicated to the Di3 method, further sub-structured in its
model, data structure, and supported operations. Section 4 reports experi-
ments which assess the effectiveness of Di3 with big data sets and compare
to BEDOPS and BEDTools, which are currently used in the state of the art
for region-based operations. In Section 5 we demonstrate how Di3 is used
within MuSERA, a recently developed tool for multiple sample peak calling.

2. Related Work

The sequence data, mainly produced by the pipelines of primary and
secondary analysis, are relatively well-studied; efficient algorithms and tech-
niques for inference and querying on such data are developed. For instance,
(Cooper et al., 2004) developed iBlast, and indexed version of BLAST (Altschul
et al., 1997), or a vectorization-based method (Wu, 2016) (benefits SIMD
(single instruction, multiple data) operations; widely used features of mod-
ern CPUs), or (Kowalski et al., 2015), all with the objective of improv-
ing performance and accuracy of sequencing matching. However, genomics
interval-based data, mainly produced by the pipelines of secondary and ter-
tiary analysis, has recently drawn attention. In general, the cornerstone of
interval-based data manipulation in genomics is interval intersection, ‘given
a query interval, find all reference intervals that overlap it’ (Birney et al.,
2006) (Giardine et al., 2003). Interval intersection is fundamental for retrieval
on annotation data and alignment databases, and integration of diverse bi-
ological information using a reference genome (Alekseyenko and Lee, 2007).
Queries to retrieve features overlapping specific regions are frequently used
when examining genomic features (e.g., on a genome browser). Such queries
might be executed by linearly scanning entire file, that might be reasonable
for few retrieval. However, reading the entire file is an inefficient strategy
in long run. A trivial solution would be adopting database systems (Kent
et al., 2002) (Stein et al., 2002); however, the limited functionality and poor
performance practices (Alekseyenko and Lee, 2007) of generic database sys-
tem, in addition to the complexity of setting up and designing schemas of
the database for an average end user, discourage adoption of such systems.
Therefore, a wide range of research is focused on efficient algorithms for in-
terval intersection, and an extensive set of applications implement it. In
general, interval intersection algorithms are trinary, described as follows.

6

i. Tree-based, e.g., BITS (Layer et al., 2013) (binary tree), and Segtor (Re-
naud et al., 2011) (segment tree). Previous work for Di3 can be traced
to classical search trees, such as interval-tree (Cormen et al., 2009),
segment-tree (Bentley, 1977), range-tree (Bentley, 1979), or Fenwick
tree (Fenwick, 1994); these are optimal solutions, each for particular
interval-based retrieval, and some are used in common bioinformat-
ics tools as underlying data structure. For instance, UCSC Genome
Browser, BEDTools, and SAMTOOLS (Li et al., 2009) use R-trees (Guttman,
1984); such that intervals of a sample are partitioned into hierarchical
‘bins’, and query intervals are compared with ‘bins’ to narrow the search
for interval intersection to a focused portion of the genome. The algo-
rithm is inefficient, as it necessitates a linear-sweep on all the intervals
in each candidate bin for those overlapping the reference. Addition-
ally, such algorithms are poor candidates for parallelism, because non-
uniformly distributed intervals (which is common for ChIP-seq, RNA-
seq, and exome sequencing) unbalance bin loads; consequently, some
bins takes considerably longer time to be processed than others. Ad-
ditionally, individually such data structures do not provide a compre-
hensive solution for tertiary analysis challenges. For instance, retrieval
queries such as ‘find all the intervals (i.e., regions) intersecting with a
given interval ’ can be determined in O(log2 n) using interval-tree; while
queries such as ‘find the n-th closest interval ’ require re-mastering the
very same data structure, which becomes inefficient. Moreover, some
of such data structures are mainly designed as in-memory data struc-
tures; and when persisted, they cause a severe overhead in terms of
Input/Output operations.

ii. Plane-sweep-based on pre-sorted samples, e.g., FJoint (Richardson, 2006)
which concurrently scans pre-sorted query sample and reference inter-
vals to find overlaps. Some tools use plane-sweep-based algorithms
on pre-sorted samples; for instance, recent versions of BEDTools and
BEDOPS use plane-sweep as complement to tree data structure. The-
oretically, plane-sweep-based algorithms are optimal; except for paral-
lelization considering ‘sweep invariant’ challenge (McKenney and McGuire,
2009): ‘given a sweep line and its associated split, all intersections and
event points are known between the sweep line and the beginning of
the split’. Plane-sweep algorithms are parallelized by partitioning the
input statically or dynamically, such that each partition can be swept
without violating ‘sweep invariant’ (McKenney and McGuire, 2009).

7

However, parallelization degree of this method is limited to the number
of partitions, and execution load of partitions is prone to non-uniformly
distributed data.

iii. Index-based, e.g., NC-lists (Alekseyenko and Lee, 2007). Efficient re-
trieval requires a dedicated data structure. For instance indexed flat
file such as BAM file (Li et al., 2009), or Tabix (Li, 2011) that adapts
BAM indexing techniques for generic tab-delimited files, convert a file
of sequential access to its equivalent random access file. Such data
structures are commonly built during preprocessing steps, and are per-
sisted for further references. Building such data structures may take a
considerably long time; however, as the processing time is significantly
reduced, the pre-processing and processing balance is encouraging. The
observation leads to the conception of BAM format. A common method
is Nested Containment lists (NC-lists) (Alekseyenko and Lee, 2007) (an
extension to NC-lists (Zytnicki et al., 2013)) which is mainly designed
for: ‘given a query interval, find all reference intervals that overlap it’.
Commonly algorithms and tools offered by bioinformatics community
are for pairwise intersection of genomic intervals. Extension to beyond
pairwise is commonly provide by custom scripts and algorithms do not
offer such extensibility. Hence, custom scripts suffer scalability and
orthogonality, which makes it difficult to perform a comparative anal-
ysis on a collection of homogeneous sample. Identifying intersecting
intervals of multiple samples is an important aspect to study variety of
biological characteristics. To address the challenge, ‘slice-then-sweep’
algorithm (Layer and Quinlan, 2015) for N-Way interval intersection is
developed.

Temporal databases and spatial data structures provide solutions for in-
terval manipulation, from efficient storage and retrieval to manifold opera-
tions on top of that. Generally, in the temporal databases the challenge is
formalized as object/tuple versioning, e.g., (Snodgrass and Ahn, 1985) (Tan
et al., 2012) (a big data spatio-temporal storage applied to geographical
informations); in such methods, objects have different versions at various
timespans, and can be valid or invalid at a given period, see also (Elmasri
et al., 1990). Other works have shown temporal indexing schemes which
handle the different notions of time, as well as non-temporal attributes, by
using classical B+ tree (Goh et al., 1996) or by exploiting the built-in func-
tionalities of relational database systems (Stantic et al., 2010). Such systems

8

hold the concept of time; hence, they render past (history), now, and fu-
ture. Consequently, the storage technology is commonly ’append-only’, and
removing an object is generally defined as invalidating the object at a given
timespan. Additionally, temporal operations commonly target recent events;
hence, events prior to a certain time point are usually archived to reduce the
amount of information to be processed for regular queries (which generally
target recent events only).

A common prerequisite in temporal databases design is that the update,
insertion, and deletion operations target now and history is intact (e.g.,
John’s paid salary at last year does not change), however, few works exist
concerning bi-temporal data where updating past is possible through addi-
tional dimension (Kaufmann et al., 2015). Compared to temporal databases,
genomic databases have a fundamental difference: they do not hold any syn-
onym for temporal model concerning past, now, and future concepts, as all
events on the genomics domain are of equal importance from the location
perspective; manipulation functions can target any position on the genome,
and thus storage, indexing, and operations should be targeted at this aim.

Similarly to what we propose here, several works have proposed the em-
bedding of region query processing functions within libraries that can be
integrated within programs (Cereda et al., 2011), (Ovaska et al., 2013). In
particular, GROK (Ovaska et al., 2013) presents a rather elegant mathemat-
ical formalism based on set algebra; its authors propose a genomic region
abstraction (that may represents reads, genomic variants, mutations, and so
on), and then define a set of region operations, delivered as the Genomic Re-
gion Operation Kit (GROK) library. In comparison, GROK supports lower-
level abstractions than Di3 and some low-level operations (e.g., flipping re-
gions) that Di3 does not directly support, but they must be embedded into
C++ programming language code. Furthermore, high-level declarative op-
erations, such as COVER and MAP (see Section 3.1), can be encoded in GROK,
but they must be invoked from line editors or C++ programs.

BEDTools (Quinlan and Hall, 2010) and BEDOPS (Neph et al., 2012)
are customarily used by biologists for processing region data in BED format;
they can be used from within software environments for bioinformatics (e.g.,
BioPerl, BioPython, R and Bioconductor), and support algebraic operations
based on the genomic coordinates of regions, but only within a single or a
pair of data samples at the time, requiring the use of scripts to evaluate
multiple data samples. A thorough comparison of Di3 with BEDTools and
BEDOPS is presented in Section 4.

9

Alternative approaches exist to efficiently process intervals in the Apache
Hadoop ecosystem (Buck et al., 2011), (Eldawy and Mokbel, 2013) by im-
plementing algorithms which partition the operands in order to speed up
their evaluation. In (Chawda et al., 2014) the authors propose an algo-
rithm based on data binning; recently, (Afrati et al., 2015) further analyze
binning-based algorithms in order to assess their computation bounds. For
Apache Spark (Zaharia et al., 2012), similar problems have been addressed
by projects such as GeoSpark (Yu et al., 2015) and (Sriharsha, 2015). Be-
sides cloud-based systems, scientific databases can also be used to support
genomic computing, including Vertica3 (used by the Broad Institute and NY
Genome Center), and SciDB4 (further enhanced by Paradigm4 5 a company
whose products include genomics adds-on to SciDB and access to NGS data
from TCGA and 1000 Genomes Project).

Several organizations are considering genomics at a global level. For
instance, Global Alliance for Genomics and Health (GA4GH)6 is a large con-
sortium of over 200 research institutions with the goal of supporting volun-
tary and secure sharing of genomic and clinical data; their work on data
interoperability is producing a conversion technology for the sharing of data
on DNA sequences and genomic variations (GA4GH Data Working Group,
2015). Also Google recently provided an API to store, process, explore, and
share DNA sequence reads, alignments and variant calls, using Google’s cloud
infrastructure7.

3. Di3 Design

Di3 is a general-purpose indexing framework which provides fast access
to intervals; therefore, it applies to several domains, including genomics (any
genomic region is a linear interval defined by the genomic coordinates of
the region ends). Di3 main strengths are its ability to adapt to domain
needs, thanks to the native support for user-defined functions (UDFs), and
its portability to several implementation technologies, thanks to its high-
level, layered design that abstracts from implementation details.

3https://www.vertica.com/
4http://www.scidb.org/
5http://www.paradigm4.com/
6http://genomicsandhealth.org/
7https://cloud.google.com/genomics/

10

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
p

u
t

D
i3

Figure 3: Di3 data structure. Sj : sample j; Ii: interval i; Bb: snapshot b.

Di3 models homogeneous and heterogeneous intervals on a domain; re-
lated events are collected in sets, which collectively constitute a sample. For
instance, a genomic data sample may contain regions (i.e., intervals) of DNA-
protein interactions occurring on a genome under an experimental setup; each
interval can be associated with values, e.g., a significance score.

In general, let S = {S1, . . . Sj, . . . SJ} denote the available samples, where
each sample is a set of intervals Sj = {Ij1 , . . . I

j
i , . . . I

j
|Sj |}; each interval I =

[
¯
I, Ī) is included within its lower (left) and upper (right) bounds (ends).

Di3 organizes intervals by means of snapshots (see Figure 3); each snapshot
corresponds to a point on the domain, and is associated with all the intervals
overlapping that point. More precisely, each snapshot Bb is a key-value pair
element, where the key (eb) is the coordinate of the snapshot on the domain,
and the value (λb) is a set of pointers to descriptive metadata of all the
intervals overlapping the coordinate eb.

3.1. Di3 Operations

The coordinate-oriented model of Di3 facilitates region calculus. Data
retrieval is defined in three levels: Physical, Logical, and Semantic (see Fig-
ure 4). The former bridges the Di3 data model to the data layer, using
some key-value pair persistence technology. Operations at the physical layer
include Create, Read, Update, Deleted (CRUD), and Enumerate. These oper-

11

Data Layer

Presentation
Layer

Data Access
Layer

Business Logic
Layer

Di3B

Di3BCLI

Create Read Update Delete Enumerate

MuSERA Graphical User Interface

MuSERA Genome Model

Persistence
Technology

 Physical
 Level

Create Read Update Delete Enumerate

 Logical
 Level

Batch Index Cover Summit Map Merge

Acc. Histogram Acc. Distribution Complement

 Semantic
 Level

Similarity search Co-occurrence patterns

Dependency detection Deviation detection

Figure 4: The Layered design and operations of Di3.

ations create and manipulate the snapshots and organize them in a key-value
pair persistence technology, by translating input intervals to snapshots and
retrieving intervals from snapshots. They are internal to Di3 and accordingly
do not incorporate UDFs.

Logical level functions leverage on physical level operations, and provide
the essential elements for region calculus (see Figure 4). These functions
cover classical region calculus that benefits from the information of a sin-
gle snapshot, e.g., ’given a point on the domain, find intervals overlapping
with it’ (similar to queries on segment-tree), or that leverage on information
provided by a set of consecutive snapshots, e.g., ’given an interval, find all
intervals overlapping with it’ (similar to queries on interval-tree). Logical
level functions leverage on snapshots to optimally retrieve co-occurrences of
intervals, or co-occurrence histograms and distributions; some of them de-
fine the Di3 public application programming interface (API), whereas other
functions can be user-defined.

Upon physical level operations and logical level functions, Di3 builds se-
mantic level functions (see Figure 4). The goal of these functions is to facili-
tate both high-level reasoning on data that include coordinate-attribute cri-
teria, and UDFs creation for extensibility to application requirements. These

12

functions are: similarity search, which finds samples that best match the cri-
teria defined in a query; co-occurrence patterns, which searches for density-
based co-occurrence patterns; dependency detection, which determines the
positions on the domain where query regions co-occur; and deviation detec-
tion, which finds positions on the domain where the regions of a given set do
not commonly co-occur, based on the information stored in the Di3 model.

In this paper we focus on the logical layer, being this the de-facto Di3
API, whereas the physical layer operations are strictly related to the spe-
cific persistence technology used for the Di3 application scenario, and the
semantic layer functions are application dependent (some of them are used
by MuSERA and are described in Section 5). Concerning the logical layer,
we have the following operations natively supported by Di3:

Cover. The COVER function applies to snapshots and computes a single sam-
ple from intervals constituting the snapshots, by taking into account interval
intersections and a UDF. Each resulting interval I is the contiguous inter-
section of at least minAcc (minimum accumulation) and at most maxAcc

(maximum accumulation) of intervals. See Figure 5 as an example of the
COVER function, and Algorithm 1 for COVER pseudocode. For each result-
ing interval I, the COVER function determines contributing intervals, which
then are passed to the UDF for further evaluation. A UDF may assign to
a resulting region I any user-defined value type, spanning from ’list of all
contributing intervals’ or ’cardinality of contributing intervals’, to analytical
evaluations such as ’custom aggregation of significance values’. In COVER, the
use of UDFs is thus supported, being count the default aggregation function.

Summit. The SUMMIT function is a variation of the COVER function; similarly
it takes minAcc, maxAcc and a UDF, and reports the local intersections of
COVER. In other words, SUMMIT returns regions that start from a position
where the number of intersecting regions is between minAcc and maxAcc and
does not increase afterwards, and stop at a position where either the number
of intersecting regions decreases, or it violates the maxAcc parameter (see
Figure 6). Similar to COVER, SUMMIT determines contributing intervals and
pass them to the UDF, which can aggregate any property of intervals and
return any user-defined aggregated value type.

Map. Given a reference interval I, the MAP function determines all the in-
tervals indexed in Di3 that overlap with I (similar to classical interval-tree
operation). In addition to a reference, the function takes a UDF and passes

13

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Cover Result

Figure 5: An example of COVER function with minAcc=2 and maxAcc=4 on 5 samples.

Algorithm 1 Cover Algorithm

1: procedure Cover(minAcc, maxAcc, UDF)
2: determined intervals ← ∅
3: accumulation ← 0
4: Bmarked ← null
5: for each snapshot B in first resolution of Di3 do
6: accumulation ← accumulation at B
7: if minAcc ≤ accumulation ≤ maxAcc then
8: Bmarked ← B
9: determined intervals ← determined intervals ∪ intervals of B

10: else
11: if Bmakred 6= null AND (accumulation ¿ maxAcc OR accumu-

lation ¡ minAcc) then
12: determined intervals← determined intervals ∪ intervals of

B
13: UDF(Bmakred, B, determined intervals)
14: Bmarked ← null
15: determined intervals ← ∅

14

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Summit Result

Figure 6: An example of SUMMIT function with minAcc=2 and maxAcc=4 on 5 samples.

the determined intervals to the UDF (see Figure 7 as an example of the MAP

function, and Algorithm 2 for MAP pseudocode). The output of the UDF is
then reported back as an attribute of I. For instance, a UDF may take all
the intervals overlapping I and return their cardinality.

Algorithm 2 Map Algorithm

1: procedure Map(Ireference, UDF)
2: determined intervals ← ∅
3: for each snapshot B in first resolution of Di3 between

¯
Ireference and

Īreference do
4: determined intervals ← determined intervals ∪ intervals of B
5: UDF(determined intervals)

6: determined intervals ← ∅

Accumulation histogram/distribution. The functions Accumulation histogram

and Accumulation distribution compute the genome-wide accumulation
of intervals, and respectively report a histogram or distribution of the calcu-
lated information (see Figure 8).

Nearest neighbor. Given a reference interval I, the Nearest neighbor func-
tion determines the nearest neighbor indexed interval, that is either an over-

15

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Map Reference

Figure 7: An example of MAP function on 5 samples.

D o m a i n

 Accumulation Histogram Sample 1 Sample 2

 Sample 3 Sample 4 Sample 5

Figure 8: An example of Accumulation Histogram function on 5 samples.

16

lapping interval, or the closest up-stream or down-stream non-overlapping
interval.

3.2. Di3 Internals

The design of Di3 is motivated by giving the best possible support to
logic operations; in particular, Di3 supports MAP and Nearest neighbour

operations in logarithmic time in the number of regions, while it supports
COVER, SUMMIT and Accumulation histogram operations in linear time

(indeed, second resolution indexing supports sub-linear time search, as it
will be later explained). These aspects motivate the superior performance of
Di3 over the state-of-the-art, as discussed in Section 4.2.

Di3 adopts a single-dimension paradigm, and targets the interval’s co-
ordinates; however, it also adopts a double-resolution paradigm. The first
resolution organizes intervals based on their coordinates through snapshots
and provides logarithmic access on the coordinates; the second resolution
builds groups of snapshots based on their coordinates and computes suit-
able aggregation functions for each group, using all the attributes (and not
just the coordinates). These groups act as secondary key for improved ac-
cess based on specific attributes. In the following sections we describe each
resolution in details.

3.2.1. First Resolution

Snapshots summarize information about the coordinates where a varia-
tion occurs in intervals, i.e., when an interval starts or ends; a snapshot at
eb exists iff at least one interval introduced such variation. Hence, a finite
set of snapshots can be used to index a finite set of intervals on both discrete
and contiguous domains. Note that multiple intervals with the same starts
or ends are possible.

Each snapshot holds a list of the IDs of all the intervals overlapping with
its position; having a pointer to each interval overlapping a point on the
domain is advantageous mainly for queries that target specific or relative po-
sitions. For instance, ’given an interval, find all intervals overlapping with it’
requires O(log2 n) to find the snapshot which has a pointer to all intersecting
intervals; or ’given an interval, find all its neighbors at 200 base-pair (unit
of the genomic domain) distance’ requires O(log2 n) to find the snapshot at
overlapping position, plus few additional siblings of the determined snap-
shot, and then to union the intervals represented by the snapshots (which

17

asymptotically is still O(log2 n))8.
This organization has been shown already in Figure 3; the upper part of

the figure describes 4 input intervals; the lower part of the figure describes
the Di3 index, where each snapshot Bb includes a key-value pair, the key
is eb, and the value is the list of intervals which have an intersection with
Bb. Precisely, Bb can be at the left (L), at the right (R), or in the middle
(M) of an interval; the type of positioning (i.e., L, R or M) is included in
each entry of the interval list, which also contains a pointer to descriptive
metadata for the interval. For instance, the third snapshot, B3, intersects
with three intervals, being in the middle of the S1 and S2 intervals and at
the left of the S3 interval.

The first resolution index is created using batch indexing, a method which
includes input intervals one after the other; such method is preferred over
bulk indexing or range indexing, which require the sorting of intervals prior
to index creation. These methods are related to the physical layer being
implemented through a B+ tree and they are related to classical methods for
B+ tree data insertion (Graefe, 2003), (Ghanem et al., 2004). To perform
batch indexing, we contrasted two methods, respectively called single-pass
indexing and double-pass indexing. The former one considers each interval
in input and precisely updates the data structure in a single-pass; the latter
one at the first pass orders the snapshots of new intervals with respect to
all existing intervals, and at the second-pass updates all the snapshots with
the information about the list of the intersecting intervals. Figure 9 explains
step-by-step the single-pass indexing of the four intervals of Figure 3.

The two methods are compared in Figure 10, the comparison clearly
shows that no method dominates over the other one. In general, single-pass
indexing is superior with a small number of new intervals, while double-pass
indexing is superior for a large number of new intervals. Based on such
analysis, the initial indexing of intervals in Di3 is performed by using the
double-pass method, while updating the index is performed by single-pass
procedure.

8Computational complexities are based on a B+ tree data structure for the implemen-
tation of the physical layer operations.

18

A B

C D

Value

 Keye1

 𝐋, @𝐈𝟏
𝟏

e2

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e1 e2

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

In
p

u
t

D
i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟐

e4

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e2e1 e3 e4

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
p

u
t

D
i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

e2e1 e3 e4 e5

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Figure 9: Di3 value organization explained step-by-step. Sj : sample j; Ii: interval i; Bb:
snapshot b.

3.2.2. Second Resolution

The second resolution is built from the first resolution by grouping a
set of snapshots and aggregating the relative information. The elements of
the second resolution of Di3 are collections of consecutive snapshots grouped
together, called blocks. Each block is defined as a key-value pair; the key is
defined by a grouping function, while the value is defined by an aggregation
function. More precisely:

In Grouping, a user-defined function groups a set of adjacent snapshots;
depending on the semantic of the UDF, such groups reveal various aspects.
For instance, in the genomic domain with intervals representing a biological
activity, a group of snapshots is a region on a genome where at least one
biological activity is observed. The grouping function defines the block key,
as an interval on first resolution with start and stop being respectively the
minimum and maximum coordinates of the snapshots in the block.

With Aggregation, the information of the snapshots within each block
are then aggregated, thereby providing summary statistics on the specific
attribute(s). Storing custom aggregations for each block reduces snapshot
access demands when a particular aggregation is commonly used. The ag-
gregation function defines the block value, which is generic in type and size.

19

3.25

17.90

0.24

0 5 10 15 20

Double pass
indexing

Single pass
indexing

Elapsed Time (second) Thousands

Single vs. Double Pass Indexing Runtime
for Large Number of New Intervals

1st pass

2nd pass

0.31

0.57

6.42

0 1 2 3 4 5 6 7 8

Double pass
indexing

Single pass
indexing

Elapsed Time (second)

Single vs. Double Pass Indexing Runtime
for Small Number of New Intervals

1st pass

2nd pass

A

B

Figure 10: A comparison between single-pass and double-pass indexing in two scenarios:
insertion of (A) large number vs. (B) small number of new intervals.

For instance, ’count’ of intervals represented by grouped snapshots, or stan-
dard deviation and median of interval lengths.

Di3 already provides built-in functions for default grouping and aggrega-
tion; the default grouping function groups consecutive snapshots that point
to consecutive overlapping intervals, and the built-in aggregation function
stores the maximum accumulation of each group. These functions improve
operations such as COVER, SUMMIT and Accumulation histogram, discussed
in Section 3.1, which depend on accumulation of intervals. Indeed in a COVER

query, when the max accumulation of a block is lower than the min accu-
mulation accMin of the query, or the min accumulation of a block is higher
than the max accumulation accMax of the query, the entire group of intervals
does not have an interval that satisfies the query and can be fully skipped.
Moreover, disjoint groups can be processed in parallel with no need for syn-
chronization mechanisms.

20

4. Experiments

We start with an evaluation of Di3 enacted from a user interface, and then
we present a comparison with BEDTools and BEDOPS, the most popular
tools for genomic region calculus.

4.1. Di3 Evaluation

We customized Di3 to the genomic domain by building the Di3B com-
ponent at the business logic layer that initializes several independent Di3
instances, one for each DNA chromosome and strand; the Di3BCLI client at
presentation layer (see Figure 2) provides user interaction through a set of
commands. These include: primitives for initializing the indexes, primitives
for the operations of Section 3.1, and primitives for setting indexing modes
and parallelism.

In general, the Di3BCLI commands (listed in Table 1) have standard com-
mand argument structure, where the number of arguments varies between dif-
ferent commands. Having executed a command, its runtime is reported on
console, and also saved in a user-defined log file. The Index and BatchIndex
primitives take respectively single sample or a collection of samples (speci-
fied using wildcard characters) as argument and, based on the indexing mode,
index the intervals in single-pass or double-pass mode. Under double-pass
indexing mode, the command 2Pass (which takes no arguments) executes the
second-pass of the indexing. The second resolution of Di3 is created/updated
by the 2RI command (that takes no arguments). The Cover and Summit
commands take minAcc, maxAcc, aggregate, and output arguments, execute
the functions with the parameters and export results to the output file. The
Map command takes reference, aggregate, and output arguments, executes
the function and exports results in the output file. The Merge, Complement,
AccHis, and AccDis commands take output argument, execute the function
and report results to the output file. The GetIM reports current setting for
indexing mode, and SetIM takes a mode argument which is either emphsingle
or emphmulti, and sets indexing mode accordingly. Finally, GetDP reports
current setting for degree of parallelization, and SetDP takes two numbers
as chr-level and Di3-level degree-of-parallelization and updates the execution
environment accordingly.

We benchmarked Di3 by exploiting two levels of parallelism: chromosome-
level parallelism (i.e., executing operations on multiple chromosomes concur-
rently) and Di3-level (i.e., each chromosome is further divided into multiple

21

Table 1: Di3BCLI commands.
Command Description
Index Takes a filename and indexes all its regions.
BatchIndex Takes a set of files specified using wildcard characters.
2Pass Runs second-pass of indexing in double-pass indexing mode.
2RI Indexes second resolution.
Cover Executes COVER function and exports results.
Summit Executes SUMMIT function and exports results.
Map Executes MAP function and exports results.
Merge Executes MERGE function and exports results.
Complement Executes COMPLEMENT function and exports results.
AccHis Determines Accumulation histogram and exports results.
AccDis Determines Accumulation distribution and exports results.
GetIM Reports current setting for indexing mode.
SetIM Sets indexing mode to the specified one.
GetDP Reports current setting for degree of parallelization.
SetDP Sets degree of parallelization to the specified one.

Table 2: Datasets used for Di3 benchmarking.
Label Sample count Region count Dataset size (GB) Type
A1 500 28,392,674 1.35 Narrow peaks
A2 1,000 59,980,303 3.17 Narrow peaks
A3 1,500 94,997,460 4.87 Narrow peaks
A4 2,000 143,563,549 6.98 Narrow peaks
A5 2,970 177,903,976 10.77 Narrow and broad peaks

sections or bins, and multiple threads process the resulting sections). In all
the experiments of this section, we used an Amazon EC2 machine running
Microsoft Windows Server 2012 with an Intel R© Xeon R© E5-2670 v2 CPU, 320
GFLOPS, and 122 GB RAM. We used five datasets of ENCODE narrow
and broad peak samples, as described in Table 2; the datasets vary in size,
but are similar in interval accumulation distribution. Figure 11 shows the
accumulation distribution of datasets A1, A2, A3, and A4; statistics for the
A5 dataset follows similar distribution.

4.1.1. Benchmark of MAP

First, we assessed the performance of MAP, an operation which directly
operates upon coordinates. We considered as reference a sample from the

22

0

1

2

3

4

0 100 200 300 400 500

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A1

0

1

2

3

4

5

6

7

0 200 400 600 800 1000

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A2

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A3

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A4

Figure 11: Interval/region accumulation distribution in datasets A1, A2, A3, and A4

ENCODE repository, which includes 196,180 regions (8.9 MB in size); the
MAP was performed over the five datasets in Table 2. Figure 12 shows excellent
scalability with respect to growth in data size. Note that the reference sample
is also an ENCODE narrow peak sample; hence, its intervals are mostly co-
localized with the indexed intervals. Therefore, a very big percentage of
indexed data overlaps with the reference intervals.

4.1.2. Benchmark for Accumulation Operations

Second, we assessed Di3 performance for COVER, SUMMIT, Accumulation
histogram and Accumulation distribution operations. The function SUMMIT

is a variation of COVER and, similarly, the function Accumulation distribution

is a variation of Accumulation histogram; therefore, their performance is
at the same scale (see Figure 13). Both the Accumulation histogram and
distribution functions scan all snapshots; hence, their performance can be
evaluated as the maximum time required for a full scan of Di3, which is lin-
ear to dataset size. Likewise, the functions COVER and SUMMIT require linear
scan of snapshots for regions of specific accumulation of intervals. How-

23

2
6

.5
3

9
2

.8
9

1
4

2
.8

3

1
9

5
.0

1

1
8

8
.5

5

16

32

64

128

256

A1 A2 A3 A4 A5

R
u

n
ti

m
e

(s
ec

o
n

d
)

Dataset

Benchmarking Map Function

Figure 12: Benchmarking MAP function of Di3.

ever, the second resolution index prunes a percentage of linear scan based on
minAcc and maxAcc parameters, and on their overlap with the accumulation
distribution of data.

The less effective pruning is expected with parameters set around the
peak of accumulation distribution, the COVER and SUMMIT functions are ex-
pected to be faster than the Accumulation histogram and Accumulation

distribution with such choice of parameters. We executed COVER and
SUMMIT functions with minAcc and maxAcc at the peak of accumulation dis-
tribution (e.g., minAcc=80 and maxAcc=100 for A2); Figure 13 confirms that
even with the peak of the parameter values the functions perform faster than
full scan.

4.1.3. Effect of Accumulation Distribution

Data distribution may have a strong effect on the performance of an index.
For instance, non-uniformly distributed data may accumulate a big load of
information on some keys, while other keys may have lighter load; this is
suboptimal because some keys are very expensive to process, while others
are cheap. This affects also parallel execution, as some threads are busy for
a very long time, while others are set free very early. The first step to avoid
such draw backs is at design level, by making correct decisions, based on the
nature of the data, for the key and value of the index.

In this section, we evaluate Di3 design and performance for data with

24

1
5

8
.2

8 4
0

1
.7

4

5
9

1
.3

2

9
4

2
.3

2

8
8

4
.9

4

1
6

1
.3

4
5

3
9

4
.1

0
6

5
8

0
.9

4

9
5

1
.2

5

9
1

0
.1

1

1
.6

3

3
6

.9
3 7
2

.7
2

1
0

4
.0

0

9
3

.3
4

1
.0

2

1
2

.1
3

8
1

.3
4

9
2

.1
9

9
3

.5
4

1

2

4

8

16

32

64

128

256

512

1024

A1 A2 A3 A4 A5

R
u

n
ti

m
e

(s
ec

o
n

d
)

Dataset

Benchmarking linear scan functions

Cover Summit Accumulation Histogram Accumulation Distribution

Figure 13: Benchmarking linear scan functions of Di3.

different accumulation distribution. For this we simulated 10 datasets, each
containing 500 samples and 200,000 regions in each sample. Datasets differ
in the percentage of intersecting intervals (in the extreme case, all samples
contribute to intersection; therefore, the accumulation of the intersection
region equals to the number of samples). A dataset with no intersection is
labeled ’0%’, while a dataset with all intervals intersecting is labeled ’100%’.
We executed Di3 functions on all simulated datasets. Figure 14 shows the
results. Minor variations in function runtime throughout the datasets are
due to the randomly generated positions and overlapping on intervals in the
datasets. The figure highlights that Di3’s performance is independent from
the accumulation distribution of the input datasets.

4.2. Comparison with State of the Art Tools

In this section we compare the performance of Di3 with the one of two
tools commonly used in genomic region processing, namely, BEDTools (Quin-
lan and Hall, 2010) and BEDOPS (Neph et al., 2012). We ran the tools on
a standard laptop (Intel R© Core

TM
i3 2.10 GHz and 8 GB RAM). We ran

BEDTools and BEDOPS under Linux, and Di3 under Microsoft Windows R©

10 operating system. We prepared Python and shell scripts for the batch
execution of BEDTools and BEDOPS, and executed Di3 in-memory.

25

164

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cover Summit AccHis AccDis

1

2

4

8

16

32

64

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
u

n
ti

m
e

(s
ec

o
n

d
)

Simulated Dataset

Performance Evaluation on
Simulated Datasets

Figure 14: Function performance on simulated data. The dotted lines are the polynomial
trend line of order 2 of each function.

Among the possible operations that are available from the Di3BCLI,
BEDTools and BEDOPS implement the MAP operator, i.e., given a reference
sample, find input intervals overlapping with the reference regions. There-
fore, we compared the MAP operator of Di3 against the ’bedtools map’ from
BEDTools and the ’bedmap’ from BEDOPS. We considered two typical us-
age scenarios in genomic region processing: (i) personal repository, and (ii)
on-the-fly processing.

4.2.1. Personal Repository

This is a common scenario for bioinformaticians, where a personal repos-
itory of in-house data, as output of the execution of a NGS data processing
pipeline, and/or data obtained from publicly available repositories is persis-
tent on their machine. Such data are stored for further processing or to be
used for comparative evaluation and cross-referencing. The repository is a
collection of properly organized files, indexed and persistent in Di3. We used
two datasets of ENCODE narrow peak samples as in Table 3, and a reference
sample including 196,180 regions (8.9 MB in size).

The data were pre-processed, i.e., filtered, and regions in samples were
sorted for BEDTools and BEDOPS, and indexed for Di3. Hence, bench-

26

Table 3: Datasets used for Di3 benchmarking versus BEDTools and BEDOPS.

Label Sample count Region count Dataset size (MB)
B1 90 1,407,493 97.4
B2 180 4,649,767 322.0

1.00

2.16

87.41

160.90143.30

335.98

1

2

4

8

16

32

64

128

256

512

B1 B2

R
u

n
ti

m
e

(s
ec

o
n

d
)

Dataset

Benchmark on MAP function

Di3 BEDOPS BEDTools

Figure 15: Benchmark: Personal repository scenario

mark started from pre-processed data, and for comparison considered only
execution time. As Figure 15 shows, Di3 performs significantly faster than
BEDTools and BEDOPS.

4.2.2. On-the-Fly Processing

Processing data on-the-fly is a bioinformaticians’ daily-based scenario,
where a relatively small dataset is obtained from the execution of a NGS
data processing pipeline and may not be archived for further evaluation. We
benchmarked the in-memory version of Di3 versus BEDTools and BEDOPS
on MAP operation using one reference, including 196,180 regions (8.9 MB in
size), and three datasets of ENCODE narrow peak samples, described as in
Table 4, as target.

The data were not pre-processed: data were not sorted for BEDTools and
BEDOPS, and not indexed for Di3. Hence, the execution time incorporated
pre-processing time in all cases. Figure 16 shows that Di3 performs faster

27

Table 4: Datasets used for Di3 benchmarking versus BEDTools and BEDOPS for on-the-
fly processing.

Label Sample count Region count Dataset size (MB)
C1 12 89,623 6.17
C2 22 258,406 17.8
C3 45 456,385 31.5

4.63
10.75

20.69

9.74

17.97

35.97

18.87

34.74

70.82

0

10

20

30

40

50

60

70

80

C1 C2 C3

R
u

n
ti

m
e

(s
ec

o
n

d
)

Dataset

Benchmark on MAP function

Di3 BEDOPS BEDTools

Figure 16: Benchmark: On-the-fly processing scenario

than BEDTools and BEDOPS on the three datasets. This highlights that
Di3 is also an agile back-end data structure for on-the-fly processing, even
by incorporating the indexing time within the processing time.

5. Use of Di3 as a Component within MuSERA

The analysis of NGS ChIP-seq samples outputs a number of enriched re-
gions (ERs) for NGS reads, each indicating a protein-DNA interaction or a
specific chromatin modification. ERs (or ’peaks’) are called when the enrich-
ment p-value is below a user-defined threshold. ERs with a p-value close to
that of the background signal are either a background signal which is slightly
enriched due to some biological or technical bias in the experiment, or indeed

28

are biologically important regions with an enrichment less significant than
expected. The NGS protocol is subject to noise; to avoid a large number of
false-positive ERs, commonly used thresholds are often very stringent, yield-
ing many false-negatives. However, the guidelines of the ENCODE project
recommend repeating a NGS experiment at least twice (Landt et al., 2012) on
replicate samples, where the information contained in replicates is expected
to be largely overlapping. We recently proposed a novel method (Jalili et al.,
2015) that, by leveraging on available replicates, differentiates between sub-
thresholded ERs and truly non-ERs, using a rigorous combination of the
significance of individual ERs that overlap in replicate samples.

The results of the method should be further assessed using common pro-
cedures, such as visualization on a genome browser, functional analysis, or
nearest-neighbor search. To this end, we recently proposed Multiple Sam-
ple Enriched Region Assessment (MuSERA) (Jalili et al., 2016), a novel
graphical tool that leverages on Di3 (On-the-Fly scenario) to implement (i)
comparative analysis of replicate samples using the method originally pro-
posed in (Jalili et al., 2015), (ii) ER functional analysis, (iii) nearest neigh-
bor search, (iv) correlation assessment, and (v) an integrated user-friendly
genome browser.

MuSERA builds the business logic layer and presentation layer above Di3
(recall Figure 2 and Figure 4). It encapsulates peaks as intervals for Di3, and
provides particular comparative analysis driven operations (e.g., methods for
combining p-values, and classification of peaks as true sub-thresholded ERs
or artifacts) via UDF. Additionally, it uses an in-memory implementation of
B+ tree to implement the physical layer (Figure 4).

5.1. Comparative analysis

MuSERA combines statistical evidence of an ER (i.e., its p-value) with
the co-localized evidence from replicates (it uses only the strongest evidence
from each replicate if more than one evidence - i.e., ER - from a replicate is
co-localized), and confirms/discards ERs based on the comparison between
their combined evidence and a user-defined threshold. For this functionality,
MuSERA benefits from Di3 MAP function with a UDF for comparative anal-
ysis; a pseudocode is given in Algorithm 3 (explained in (Jalili et al., 2015)
and (Jalili, 2016) pp93-131). In general, the procedure is as follows:

i. MuSERA provides graphical means to select and load replicates.

ii. MuSERA indexes replicates in Di3 on-the-fly.

29

iii. Through a graphical user interface (GUI), MuSERA gets user-defined
parameters for a UDF for the comparative analysis.

iv. MuSERA executes Di3 MAP with reference sample (the replicate against
which ERs are to comparatively evaluated) and a UDF that:

(a) In each replicate sample, choses the interval with the lowest p-value
from the set of intervals overlapping with a reference interval.

(b) If the number of overlapping intervals satisfies a user-defined min-
imum threshold, then combines the p-values of the overlapping in-
tervals and the reference interval using the Fisher’s method (Fisher,
1925).

(c) If the combined stringency satisfies a user-defined threshold, then
stores the intervals as confirmed, or as discarded otherwise.

Algorithm 3 Comparative Evaluation of ChIP-seq replicates in MuSERA
using Di3. γ is a user-defined threshold of significance.

1: procedure ComparativeEvaluation
2: for each reference interval I do
3: Map (I, CombineERs)

4: procedure CombineERs({I})
5: X2 ← −2

∑
r∈{I} ln(pValuer)

6: if X2 > χ2
γ,2|{I}| then

7: Confirm all overlapping ERs in {I}
8: else
9: Discard all overlapping ERs in {I}

5.2. Genome browser

MuSERA plots a given ER and all the neighbor ERs from replicates,
as well as user-uploaded known genomic features (e.g., genes or promoter
regions) at a given distance (e.g., within 100k base-pair). This function
leverages again on the MAP (i.e., ’given an interval, find intervals overlapping
with it’) and the Nearest neighbor search functions of Di3. The determined
intervals are then plotted using a dynamic plot that allows zoom in and out,
and pan, which together with optimal retrieval from Di3 and plot features
provides a high-end genome browser (see Figure 17 Panel A).

30

A

B

C

Figure 17: MuSERA at work. (A) ERs on the genome browser together with known
genomic feature annotations (i.e., promoter regions); (B) Up-stream and down-stream
distances of a given ER to the closest features; (C) Distances of a given ER to the nearest
neighbours. Distances are measured in base pairs (bp).

31

5.3. Functional analysis

Assigning an ER to the closest up-/down-stream genomic feature (e.g.,
gene Transcription Start Site (TSS), or Coding Sequence (CDS)) is a very
useful and common task to help the biological interpretation of NGS results.
MuSERA implements it optimally using Di3; it leverages on relative ordering
of intervals accessible via a consecutive set of snapshots, and on the Nearest

neighbor search, to calculate the ER-to-feature conservation rate (which is
determined as the number of ERs intersecting with genomic annotations)
and the ER-to-feature distance distribution between ERs and the closest up-
/down-stream features (see Figure 17 Panel B).

5.4. Nearest neighbor

MuSERA computes the ER nearest neighbour distance distribution with
functional annotations, leveraging on Nearest neighbor search function of
Di3. The distribution facilitates biological assessment of ERs; for instance,
it helps evaluating that comparatively confirmed weak ERs are relatively
closer to functional annotations than comparatively evaluated true non-ERs
(see Figure 17 Panel C).

5.5. Correlation assessment

MuSERA determines correlations, both at region-level and base-pair-
level, between replicates. They are respectively computed as the ratio be-
tween the number of overlapping regions (region-level correlation), or ge-
nomic bases (base-pair-level correlation), and the total number of regions, or
genomic bases considered, producing the respective Jaccard similarity coef-
ficients. Base-pair-level correlation is more stringent and is to be preferred
when the position of the ERs is known with certainty, while region-level cor-
relation is instead more permissive, as it scores the overlap of entire regions
rather than quantifying the magnitude of this overlap; this correlation mea-
sure is then to be preferred in presence of heterogeneous or noisy data sets.
MuSERA estimates both correlations leveraging on the SUMMIT function of
Di3, that calculates density-based co-occurrences.

6. Conclusion

We proposed Di3 (1D Interval Inverted Index), a multi-resolution single-
dimension data structure for interval-based data queries. We presented Di3’s
method by illustrating its model, data structure, and supported operations,

32

and then we demonstrated its effectiveness, both as a stand-alone tool and in
comparison with the state-of-the-art systems BEDOPS and BEDTools. Fi-
nally, we showed how Di3 was used as a software component within MuSERA,
a tool for multiple sample peak calling. We proved that Di3 is a flexible,
high-performance component, whose use as a self-standing system is much
superior to current state-of-the-art.

Previously, we implemented GMQL, the innovative region-based genomic
data querying system, by using cloud computing and specifically the Apache
Spark and Flink engines within the Apache Hadoop framework; as future
work, we plan to support an alternative implementation of the domain-
specific operations of GMQL by using Di3, so as to compare cloud-based
computing with specialized indexing on very large datasets.

Acknowledgments

We acknowledge the essential contributions of Fernando Palluzzi, who has
adviced us about the biological use of Di3, and of Roger Knapp, who pro-
vided a B+ tree implementation. Research is supported by the Data-Driven
Genomic Computing (GenData 2020) PRIN project (2013-2016), funded by
the Italian Ministry of the University and Research, and by a grant from
Amazon Web Services.

Author contributions

Concept: Jalili, Matteucci, Ceri. Software Design: Jalili, Matteucci.
Software Implementation: Jalili. Data acquisition: Jalili. Data analysis
and interpretation: Jalili, Matteucci. Manuscript drafting: Jalili, Matteucci,
Masseroli, Ceri. Critical revision: Ceri.

References

1000 Genomes Project Consortium, et al., 2010. A map of human genome
variation from population-scale sequencing. Nature 467 (7319), 1061–1073.

Afrati, F. N., Dolev, S., Sharma, S., Ullman, J. D., 2015. Bounds for over-
lapping interval join on MapReduce. In: EDBT/ICDT Workshops. pp.
3–6.

33

Alekseyenko, A. V., Lee, C. J., 2007. Nested containment list (nclist): a new
algorithm for accelerating interval query of genome alignment and interval
databases. Bioinformatics 23 (11), 1386–1393.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller,
W., Lipman, D. J., 1997. Gapped blast and psi-blast: a new generation of
protein database search programs. Nucleic acids research 25 (17), 3389–
3402.

Bentley, J. L., 1977. Solutions to Klee’s rectangle problems. Tech. rep., Tech-
nical report, Carnegie-Mellon Univ., Pittsburgh, PA.

Bentley, J. L., 1979. Decomposable searching problems. Information Process-
ing Letters 8 (5), 244–251.

Birney, E., Andrews, D., Cáccamo, M., Chen, Y., Clarke, L., Coates, G.,
Cox, T., Cunningham, F., Curwen, V., Cutts, T., et al., 2006. Ensembl
2006. Nucleic acids research 34 (suppl 1), D556–D561.

Buck, J. B., Watkins, N., LeFevre, J., Ioannidou, K., Maltzahn, C., Polyzotis,
N., Brandt, S., 2011. SciHadoop: array-based query processing in Hadoop.
In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. No. 66. ACM, pp. 1–11.

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley,
J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., et al., 2012.
Ultra-high-throughput microbial community analysis on the illumina hiseq
and miseq platforms. The ISME journal 6 (8), 1621–1624.

Cereda, M., Sironi, M., Cavalleri, M., Pozzoli, U., 2011. GeCo++: a C++
library for genomic features computation and annotation in the presence
of variants. Bioinformatics 27 (9), 1313–1315.

Chawda, B., Gupta, H., Negi, S., Faruquie, T. A., Subramaniam, L. V., Mo-
hania, M. K., 2014. Processing interval joins on Map-Reduce. In: EDBT.
pp. 463–474.

Cockerill, P. N., 2011. Structure and function of active chromatin and DNase
I hypersensitive sites. FEBS Journal 278 (13), 2182–2210.

34

Cooper, G., Raymer, M., Doom, T., Krane, D., Futamura, N., 2004. Indexing
genomic databases. In: Bioinformatics and Bioengineering, 2004. BIBE
2004. Proceedings. Fourth IEEE Symposium on. IEEE, pp. 587–591.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2009. Section 14.3:
Interval trees, third edition Edition. MIT press Cambridge, Ch. 14, pp.
348–354.

Eldawy, A., Mokbel, M. F., 2013. A demonstration of spatialhadoop: an
efficient mapreduce framework for spatial data. Proceedings of the VLDB
Endowment 6 (12), 1230–1233.

Elmasri, R., Wuu, G. T., Kim, Y.-J., 1990. The time index: An access
structure for temporal data. In: Proceedings of the 16th International
Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc.,
pp. 1–12.

ENCODE Project Consortium, et al., 2012. An integrated encyclopedia of
dna elements in the human genome. Nature 489 (7414), 57–74.

Fenwick, P. M., 1994. A new data structure for cumulative frequency tables.
Software: Practice and Experience 24 (3), 327–336.

Fisher, R. A., 1925. Statistical methods for research workers. Genesis Pub-
lishing Pvt Ltd.

GA4GH Data Working Group, 2015. GA4GH API.
URL http://ga4gh.org/#/documentation

Ghanem, T. M., Shah, R., Mokbel, M. F., Aref, W. G., Vitter, J. S., 2004.
Bulk operations for space-partitioning trees. In: Data Engineering, 2004.
Proceedings. 20th International Conference on. IEEE, pp. 29–40.

Giardine, B., Elnitski, L., Riemer, C., Makalowska, I., Schwartz, S., Miller,
W., Hardison, R. C., 2003. Gala, a database for genomic sequence align-
ments and annotations. Genome research 13 (4), 732–741.

Goh, C. H., Lu, H., Ooi, B.-C., Tan, K.-L., 1996. Indexing temporal data
using existing B+-trees. Data & Knowledge Engineering 18 (2), 147–165.

Graefe, G., 2003. Sorting and indexing with partitioned b-trees. In: CIDR.
Vol. 3. pp. 5–8.

35

Guttman, A., 1984. R-trees: a dynamic index structure for spatial searching.
Vol. 14. ACM.

Han, J., Haihong, E., Le, G., Du, J., 2011. Survey on NoSQL database. In:
Pervasive computing and applications (ICPCA), 2011 6th international
conference on. IEEE, pp. 363–366.

Jalili, V., 2016. Efficient data structures for cross-samples inferences on ge-
nomic data. Ph.D. thesis, Politecnico di Milano.

Jalili, V., Matteucci, M., Masseroli, M., Morelli, M. J., 2015. Using com-
bined evidence from replicates to evaluate ChIP-seq peaks. Bioinformatics
31 (17), 2761–2769.

Jalili, V., Matteucci, M., Morelli, M. J., Masseroli, M., 2016. MuSERA:
Multiple sample enriched region assessment. Briefings in bioinformatics,
submitted.

Kaufmann, M., Fischer, P. M., May, N., Ge, C., Goel, A. K., Kossmann, D.,
2015. Bi-temporal timeline index: A data structure for processing queries
on bi-temporal data. In: Data Engineering (ICDE), 2015 IEEE 31st Inter-
national Conference on. IEEE, pp. 471–482.

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H.,
Zahler, A. M., Haussler, D., 2002. The human genome browser at ucsc.
Genome research 12 (6), 996–1006.

Kowalski, T., Grabowski, S., Deorowicz, S., 2015. Indexing arbitrary-length
k-mers in sequencing reads. PloS one 10 (7), e0133198.

Landt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F., Bat-
zoglou, S., Bernstein, B. E., Bickel, P., Brown, J. B., Cayting, P., et al.,
2012. ChIP-seq guidelines and practices of the ENCODE and modEN-
CODE consortia. Genome research 22 (9), 1813–1831.

Layer, R. M., Quinlan, A. R., 2015. A parallel algorithm for-way interval set
intersection.

Layer, R. M., Skadron, K., Robins, G., Hall, I. M., Quinlan, A. R., 2013.
Binary interval search: a scalable algorithm for counting interval intersec-
tions. Bioinformatics 29 (1), 1–7.

36

Li, H., 2011. Tabix: fast retrieval of sequence features from generic tab-
delimited files. Bioinformatics 27 (5), 718–719.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,
G., Abecasis, G., Durbin, R., et al., 2009. The sequence alignment/map
format and samtools. Bioinformatics 25 (16), 2078–2079.

Masseroli, M., Pinoli, P., Venco, F., Kaitoua, A., Jalili, V., Palluzzi, F.,
Muller, H., Ceri, S., 2015. GenoMetric Query Language: a novel approach
to large-scale genomic data management. Bioinformatics 31 (12), 1881–
1888.

McKenney, M., McGuire, T., 2009. A parallel plane sweep algorithm for
multi-core systems. In: Proceedings of the 17th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems.
ACM, pp. 392–395.

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., John-
son, A. K., Rynes, E., Maurano, M. T., Vierstra, J., Thomas, S., et al.,
2012. BEDOPS: high-performance genomic feature operations. Bioinfor-
matics 28 (14), 1919–1920.

Ovaska, K., Lyly, L., Sahu, B., Janne, O. A., Hautaniemi, S., 2013. Ge-
nomic region operation kit for flexible processing of deep sequencing data.
IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 10 (1), 200–206.

Park, P. J., 2009. ChIP–seq: advantages and challenges of a maturing tech-
nology. Nature Reviews Genetics 10 (10), 669–680.

Quinlan, A. R., Hall, I. M., 2010. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26 (6), 841–842.

Rashid, N. U., Giresi, P. G., Ibrahim, J. G., Sun, W., Lieb, J. D., 2011. Zinba
integrates local covariates with dna-seq data to identify broad and narrow
regions of enrichment, even within amplified genomic regions. Genome Biol
12 (7), R67.

Renaud, G., Neves, P., Folador, E. L., Ferreira, C. G., Passetti, F., 2011. Seg-
tor: rapid annotation of genomic coordinates and single nucleotide varia-
tions using segment trees. PloS one 6 (11), e26715.

37

Richardson, J. E., 2006. Fjoin: simple and efficient computation of feature
overlaps. Journal of Computational Biology 13 (8), 1457–1464.

Romanoski, C. E., Glass, C. K., Stunnenberg, H. G., Wilson, L., Almouzni,
G., 2015. Epigenomics: roadmap for regulation. Nature 518 (7539), 314–
316.

Schuster, S. C., 2007. Next-generation sequencing transforms today’s biology.
Nature 200 (8), 16–18.

Schuster, S. C., 2008. Next-generation sequencing transforms today’s biology.
Nature methods 5 (1), 16–18.

Shendure, J., Ji, H., 2008. Next-generation DNA sequencing. Nature biotech-
nology 26 (10), 1135–1145.

Snodgrass, R., Ahn, I., 1985. A taxonomy of time databases. In: ACM Sig-
mod Record. Vol. 14. ACM, pp. 236–246.

Sriharsha, R., 2015. Magellan.
URL http://spark-packages.org/package/harsha2010/magellan

Stantic, B., Topor, R., Terry, J., Sattar, A., 2010. Advanced indexing tech-
nique for temporal data. Computer Science and Information Systems 7 (4),
679–703.

Stein, L. D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A., Nick-
erson, E., Stajich, J. E., Harris, T. W., Arva, A., et al., 2002. The generic
genome browser: a building block for a model organism system database.
Genome research 12 (10), 1599–1610.

Tan, H., Luo, W., Ni, L. M., 2012. Clost: a hadoop-based storage system for
big spatio-temporal data analytics. In: Proceedings of the 21st ACM in-
ternational conference on Information and knowledge management. ACM,
pp. 2139–2143.

Tudorica, B. G., Bucur, C., 2011. A comparison between several NoSQL
databases with comments and notes. In: Roedunet International Confer-
ence (RoEduNet), 2011 10th. IEEE, pp. 1–5.

38

Vlissides, J., Helm, R., Johnson, R., Gamma, E., 1995. Design patterns:
Elements of reusable object-oriented software. Reading: Addison-Wesley
49 (120), 11.

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger,
B. A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J. M., Network, C.
G. A. R., et al., 2013. The cancer genome atlas pan-cancer analysis project.
Nature genetics 45 (10), 1113–1120.

Wu, T. D., 2016. Bitpacking techniques for indexing genomes: I. hash tables.
Algorithms for Molecular Biology 11 (1), 1–13.

Yu, J., Wu, J., Sarwat, M., 2015. GeoSpark: A cluster computing framework
for processing large-scale spatial data.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.,
Franklin, M. J., Shenker, S., Stoica, I., 2012. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In: Pro-
ceedings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, pp. 15–28.

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein,
B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., et al., 2008. Model-
based analysis of chip-seq (macs). Genome biology 9 (9), R137.

Zytnicki, M., Luo, Y., Quesneville, H., 2013. Efficient comparison of sets of
intervals with nc-lists. Bioinformatics 29 (7), 933–939.

Author biographies

Vahid Jalili is awarded his PhD degree on Information
Technology at the Politecnico di Milano in 2016. His re-
search on tertiary analysis of Next Generation Sequencing
data is focused on systematic solutions for analytical and
computational challenges. His research interest spans top-
ics in computational biology, cognitive science, and artificial
intelligence; such as information retrieval and data mining

in Genomics, cognitive inhibition and visual perception, and application of
artificial intelligence to games.

39

Matteo Matteucci is Associate Professor at the Diparti-
mento di Elettronica Informazione e Bioingegneria of Po-
litecnico di Milano. In 1999 he got a Laurea degree in Com-
puter Engineering at Politecnico di Milano, in 2002 he got
a Master of Science in Knowledge Discovery and Data Min-
ing at Carnegie Mellon University (Pittsburgh, PA), and in

2003 a PhD in Computer Engineering and Automation at Politecnico di
Milano (Milan, Italy). His main research topics are pattern recognition,
machine learning, machine perception, robotics, computer vision and sig-
nal processing. He has co-authored more than 150 scientific international
publications and he has been involved in national and international funded
research projects.

Marco Masseroli received the Laurea Degree in Electronic
Engineering in 1990 from Politecnico di Milano, Italy, and
a PhD in Biomedical Engineering in 1996, from Universidad
de Granada, Spain. He is Associate Professor at the Diparti-
mento di Elettronica, Informazione e Bioingegneria (DEIB)
of Politecnico di Milano, Italy, and lecturer of Bioinformat-
ics and BioMedical Informatics. His research activity is on

the application of information technology to the medical and biological sci-
ences in several Italian and international research centers. He has also been
Visiting Professor at the Departamento de Anatoma Patolgica, Facultad de
Medicina of the Universidad de Granada - Spain, and Visiting Faculty at
the Cognitive Science Branch of the National Library of Medicine, National
Institute of Health, Bethesda - US. His research interests are in the area
of bioinformatics and biomedical informatics, focused on distributed Inter-
net technologies, biomolecular databases, controlled biomedical terminologies
and bio-ontologies to effectively retrieve, manage, analyze, and semantically
integrate genomic information with patient clinical and high-throughout ge-
nomic data. He is the author of more than 170 scientific articles, which have
appeared in international journals, books and conference proceedings.

40

Stefano Ceri is Professor at the Dipartimento di Elettron-
ica, Informazione e Bioingegneria (DEIB) of Politecnico di
Milano. He was Visiting Professor at the Computer Science
Department of Stanford University (1983-1990), Chairman
of the Computer Science Section of DEI (1992-2004), Direc-
tor of Alta Scuola Politecnica (ASP) of Politecnico di Mi-

lano and Politecnico di Torino (2010-2013). In 2008 he has been awarded an
advanced ERC Grant on Search Computing (2008-2013). He is co-founder
(2001) of WebRatio (http://www.webratio.com/). His research work has
been generally concerned with extending database technology to incorporate
new features: distribution, object-orientation, rules, streaming data, crowd-
based and genomic computing. He is currently leading the PRIN project
GenData 2020, focused on building query and data analysis systems for ge-
nomic data as produced by fast DNA sequencing technology. He is the re-
cipient of the ACM-SIGMOD ”Edward T. Codd Innovation Award” (2013),
and an ACM Fellow and member of the Academia Europaea.

41

