

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

Newcastle University ePrints - eprint.ncl.ac.uk

Gutierrez PD, Lastra M, Bacardit J, Benitez JM, Herrera F. GPU-SME-kNN:

Scalable and Memory Efficient kNN and Lazy Learning using GPUs.

Information Sciences 2016. DOI: 10.1016/j.ins.2016.08.089

Copyright:

©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

DOI link to article:

http://dx.doi.org/10.1016/j.ins.2016.08.089

Date deposited:

05/09/2016

Embargo release date:

28 August 2017

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://eprint.ncl.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ins.2016.08.089

GPU-SME-kNN: Scalable and Memory Efficient kNN
and Lazy Learning using GPUs

Pablo D. Gutiérreza,∗, Miguel Lastrab, Jaume Bacarditc, José M. Beńıteza,
Francisco Herreraa

aDepto de Ciencias de la Computación e Inteligencia Artificial. E.T.S. Ingenieŕıa
Informática y Telecomunicación. CITIC-UGR. Universidad de Granada. Granada. Spain

bDepto. Lenguajes y Sistemas Informáticos. E.T.S. Ingenieŕıa Informática y
Telecomunicación. CITIC-UGR. Universidad de Granada. Granada. Spain

cInterdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of
Computing Science , Newcastle University, Newcastle upon Tyne, Tyne and Wear, United

Kingdom

Abstract

The k nearest neighbor (kNN) rule is one of the most used techniques in data

mining and pattern recognition due to its simplicity and low identification er-

ror. However, the computational effort it requires is directly related to the

dataset sizes, hence delivering a poor performance on large datasets.
:::
The

::::
use

::
of

::::::::
graphics processing units (GPU)

:::
has

::::::::
improved

::::
the

::::::::
run-time

:
performance of

the kNN rule but the computational requirements of current
:::::::::
approaches

:::::
limit

:::
this

:
performance as the dataset size increases.

In this paper
:
,
:
we propose a new scalable and memory efficient design for a

GPU-based kNN rule, called GPU-SME-kNN, that
:::::
breaks

::::
the

:::::::::::
dependency be-

tween dataset size and memory footprint while delivering high performance. An

experimental study of GPU-SME-kNN is presented showing a high performance,

even in cases that other
::::::::
methods

:
cannot address,

:::::
while

:::
the

::::::::::::::
computational

:::::::::::
requirements

::::
are

:
suitable for most commercial GPU devices. Our design has

also been applied to kNN-based lazy learning algorithms reducing run-times in

a significant way.

Keywords: kNN, GPU, CUDA.

∗Corresponding author
Email address: pdgp@decsai.ugr.es (Pablo D. Gutiérrez)

Preprint submitted to Information Sciences May 13, 2016

1. Introduction

The k nearest neighbor rule (kNN) [9] [28] is one of the most used data mining

and pattern recognition techniques. The simplicity and low identification error

of this rule makes it the reference tool to test classifiers and datasets [11]. It

has been considered one of the top 10 algorithms of data mining [33]. The kNN5

rule is also the base of several classifiers that belong to the lazy learning family

of classifiers [3].

The kNN rule is based on the idea that an unknown instance will be similar

to other instances that are close to it in the space of characteristics. Although

this idea is simple its computation requires a large amount of operations that10

increases with the dataset sizes, in terms of both attributes and instances. When

addressing large problems,
:
the time required to compute the results makes the

kNN rule virtually unusable. The lazy learning algorithms that are based on

the kNN rule suffer the same issues.

Currently, several real-world applications introduce scalability challenges15

which must be overcome by data mining techniques [26]. Given that many real

world applications routinely produce massive amounts of data it is absolutely

necessary to tackle the scalability challenges of the kNN rule, if this technique

is going to be applied to such datasets.

Graphics processing units (GPU) have proven to be useful in managing20

large amounts of data efficiently in different situations like fingerprint identifica-

tion [21], continuous optimization [22] bioinformatics [27] and data mining [8].

Moreover, the kNN rule has been successfully adapted to run on GPU devices

to improve its
:::::::
run-time

:
performance [14] [5] [19].

GPU devices provide massive parallelism that
:::
can

:::::::::::
potentially

::::::
reduce

::::
the25

::::::::
run-time

::
of

:::::::::::::::
computationally

::::::::
intensive

::::::
tasks.

::::
On

:::
the

:::::
other

::::::
hand,

:::::
these

:::::::
devices

have a limited amount of memory. Most
::::::::::
approaches

:
that tackle large datasets

reduce their performance when there is not enough memory to allocate the

complete datasets and kNN structures on the GPU device. Furthermore, some

2

of these
::::::::
methods

:
just do not work if the dataset is too large.

:::::
Most

::::::::::
approaches30

:::
also

:::::::
require

:::::::
sorting

:::
all

:::
the

::::::::
distance

::::::
values

::
or

::::
use

::::::::::
suboptimal

::::::::
methods

:::
in

:::::
order

::
to

::::::
locate

:::
the

::::::::::::::
neighborhood,

:::
not

::::::
taking

:::::::::::
advantages

::
of

:::
all

::::
the

:::::::::::
possibilities

::::
that

:::
the

:::::
GPU

:::::::
devices

:::::
offer.

:

::
In

::::
the

:::::::::
literature,

::::::
some

:::::::
authors

:::::
have

:::::
tried

:::
to

:::::::::
overcome

:::::
these

:::::::::::
limitations.

:::::
Arefin

:::
et

:::
al.

::::::::::
[5] reduce

::::
the

::::::
usage

::
of

::::::::
memory

:::::::::
dividing

:::
the

:::::::::::::
computations

:::
in35

::::::::::::
square-shaped

:::::::::
portions,

:::
but

::::
the

::::
data

:::::::::
structures

::::::::
required

::::
still

:::::
limit

:::
the

::::::::
run-time

:::::::::::
performance.

::::::::::
Komarov

::
et

:::
al.

:::::::::::
[19] propose

::
a
::::::::::::::
quicksort-based

:::::::::
selection

:::::::
method

::
in

:::::
order

:::
to

::::::::
improve

:::
the

::::::::::::
performance

::
of

:::::
that

::::
part

:::
of

:::
the

:::::
kNN

:::::
rule,

::::
but

:::::
their

:::::
design

::::::::
requires

::
a
:::::
high

:::::::
amount

::
of

:::::::::::::::
synchronization

::::::::::
operations

::::
that

:::::::
hinders

::::
the

::::::::
run-time

:::::::::::
performance

:::::::::
obtained.

:
40

In this paper, we propose a design of the kNN rule, called GPU-based scal-

able and memory efficient kNN (GPU-SME-kNN),
:::::
which

:
addresses the afore-

mentioned issues.
::
To

:::
do

:::
so,

:::
we

:::::::::
introduce

::::
two

:::::
novel

:::::::::::
approaches:

:

• An incremental neighborhood computation scheme
:::
that

::::::::::
eliminates

:
the

dependencies between dataset size and memory footprint. This
::::::
scheme45

:::::
allows

:::::
fully

::::::::::::
customization

::
of

:::
its

::::::::::
parameters

::::
and

:::::
takes

:::::::::
advantage

::
of

::::::::::::
asynchronous

:::::::
memory

:::::::::
transfers,

:::::::
making

::::
the

::::::::
required

::::::::::
structures

:::
fit

::::
into

::::
the

::::::::
available

:::::::
memory

:::
for

::
a

:::::
broad

::::::
range

::
of

:::::
GPU

:::::::
devices

:::::
while

:::::::::
delivering

:::::
high

::::::::
run-time

:::::::::::
performance

:::::::::::::
independently

::
of

:::
the

:::::::
number

::
of

:::::::::
instances

::
of

:::
the

:::::::
dataset.

:::::
This

:
is
::::::::
detailed

::
in

::::::::
Sections

:::
4.1

::::
and

:::::
4.2.1.

:
50

•
:::
An

:::::::
efficient

::::::::::::::
quicksort-based

:::::::::
selection

::::::
design

::::
that

:::::::
avoids

::::::::::::::
synchronization

:::::::::
operations

::::
and

:::
has

:::
an

:::::::::
enhanced

:::::::::::::
pivot-selection

:::::::
method

:
to provide a high

performance and scalable solution.
::::
This

::
is

::::::::
detailed

::
in

:::::::
Section

:::::
4.2.2.

:

GPU-SME-kNN has been tested with
:::
two

:::::
large

:
datasets from the UCI 1

repository [6]
:
:
::::::
Poker,

:::::
with

:
1

:::
025

:::
009

::::::::
instances

::::
and

:::::::::
KDDCup

::::
1999

:
with

:
4

:::
898

:::
43155

::::::::
instances.

::::::::::
Increasing

::::::::
datasets

:::::
sizes

::::
(up

::
to

::::
the

:::
full

:::::
size) and different values of

the k parameter
::::
have

:::::
been

:::::
used in order to thoroughly study the behavior of

1
::::::::::::::::::::::
http://archive.ics.uci.edu/ml

3

the GPU-based kNN rule in terms of scalability. The results focus on the run-

time performance and the memory requirements of the
:::::::
method.

::::::
Given

:::::
that

:::
our

::::::::
algorithm

::
is
:::::::::
designed

::
to

::::::::
improve

:::
the

:::::::::
efficiency

::
of

:::
the

:::::
kNN

::::
rule,

::::
but

::
it

::::
does

::::
not60

::::::
change

:::
its

::::::::
behavior,

::
it

::
is

:::
not

:::::::::
necessary

::
to

::::::::
evaluate

:::
its

:::::::::
predictive

::::::::
capacity. GPU-

SME-kNN is compared with well-known GPU-based kNN approaches showing

a good performance.

The rest of the paper is organized as follows: Section 2 presents the kNN

rule and the lazy learning family algorithms. Section 3 introduces how GPU65

devices work and summarizes the previous
::::::::::
approaches

:
of GPU-based kNN rule.

Section 4 explains our design for the kNN rule. Section 5 shows the results

obtained on the experiments performed. Section 6 studies design modifications

that our
:::::::::
algorithm requires to be applied to lazy learning algorithms and the

results obtained. Finally, Section 7 presents the conclusions.70

2. The k Nearest Neighbor rule and Lazy Learning

This section summarizes the main aspects of the k Nearest Neighbor rule

and family of lazy learning algorithms that will be referred to in the design

of the GPU-based
::::::
method. Section 2.1 explains the kNN rule and Section 2.2

presents the lazy learning algorithms characteristics.75

2.1. The k Nearest Neighbor rule

The k Nearest Neighbor rule (kNN) [9] predicts the class of a test instance

as the majority class of the k training instances that have the smallest distances

to that test instance
::::
[10] . This means that each test instance is compared with

every training instance, measuring the distance between them. These distances80

are checked in order to find the k smallest values and the training instances

that correspond to the selected distances are used to predict the class of the

test instance.

Although different distance measures can be used [32]
::::
[24]

:::::
[30] , the well-

4

known Euclidean distance is typically used:85

d(x, y) =

√√√√ D∑
i=1

(xi − yi)2 (1)

where d(x, y) is the distance between instances x and y and D is the number of

attributes of the problem.

The kNN rule is usually applied to a set of test instances. If M is the number

of test instances and N the number of training instances, the algorithm requires

M×N distance computations andM selections of k instances from an array ofN90

elements. When training and test set sizes increase, the distance computations

increase quadratically. The number of selection operations increases linearly

with the value of M and the computational cost of each operation increases

with the size of N in a way that depends on the specific selection method used

but which is, at least, linear. This increase of the number of operations makes95

the application of this rule really difficult for large datasets.

2.2. Lazy learning

Typically, the process of learning from data involves the generation of some

kind of model, from the training data. This model is used to classify the in-

stances of the test set. The family of lazy learners [3] skips this general model100

creation. When a test instance is evaluated, these algorithms compute a specific

model that relates that test instance with the training set and use that model

to classify it.

Lazy learning algorithms usually have greater storage requirements and high

computational cost when evaluating a test instance than other algorithms. Al-105

gorithms that build a model can discard the training instances once the model

is built reducing the memory requirements. Moreover, the evaluation of a model

is almost inexpensive compared to the cost of building that model, reducing the

computational cost for non lazy learning algorithms. The impact of these two

issues increases with the dataset size.110

This behavior can be observed on the kNN rule because it belongs to the

5

family of lazy learners [13]. There are several lazy learning algorithms that are

based on the kNN rule and have the same computational issues.

3. Graphics Processing Units and NVIDIA CUDA

Graphics processing units (GPU) were originally created to offload the com-115

putations related to 3D graphics on games and design applications from the

CPU device into specialized hardware. Modern GPU devices provide a specific

processor with a Single Instruction Multiple Data (SIMD) architecture to han-

dle these computations efficiently. NVIDIA CUDA [1] is a hardware/software

architecture that allows the use of NVIDIA [2] GPU devices for general purpose120

programming.

CUDA presents GPU devices as parallel coprocessors with their own memory,

caches and registers that can cooperate with one or several CPU cores. In or-

der to take advantage of the characteristics of GPU devices, it is required to

redesign the algorithms, determine which operations of the algorithm match the125

characteristics of each device and the amount of data required to be transferred

between devices. To produce efficient GPU based programs or systems, it is

mandatory to know some technical aspects of GPU devices (Section 3.1). Once

these aspects have been studied we will briefly review the approaches to the

kNN rule that can be found in the literature (Section 3.2).130

3.1. Technical aspects of GPU devices

Functions are run on GPU devices dividing the workload into a set of threads

which share the same code but operate on different data. These functions are

called kernels and the set of threads of each kernel is called grid. Threads within

a grid are grouped into blocks of threads.135

At the hardware level, a GPU device has a set of computing cores that are

grouped into stream multiprocessors (SMX). When a grid is run on the GPU,

each block is assigned to one SMX, as shown in Figure 1. It is possible to

synchronize all threads that belong to a block. However, there is no efficient

synchronization method for threads in different blocks.140

6

Figure 1: Threads, blocks and multiprocessors. Each block is run on the same multiprocessor.

Each block is divided into groups of 32 threads called warps,
:::::
which

:
are run

synchronously on a SMX. All threads within a warp execute the same instruction

(in a parallel way) at the same moment. In case of code divergence within

the warp, like a conditional instruction with different results, the execution is

serialized penalizing the
:::::::
run-time

:
performance.145

Regarding data storage and access, as in CPU devices, a GPU device has a

memory hierarchy from large and slow memory banks to small and fast registers

including several cache levels. The fastest cache (L1) is available to developers

on demand. Each SMX has its own L1 cache but its size is limited. The L1

cache is commonly known as shared memory.150

Global memory is the last level of the hierarchy, and it is the largest memory

area of a GPU device but also the slowest. The most efficient way for a large

number of threads to simultaneously request data from global memory is to

perform these parallel requests in a coalescent way: consecutive threads in a

block have to request consecutive memory positions at the same time.155

In order to start the computation, the input data used by the kernels needs to

be copied from the computer main memory to the GPU device global memory.

This memory transfer can be done either synchronously or asynchronously. By

using asynchronous copies it is possible to run a kernel while
::::::
copying

:
data that

will be required in subsequent kernel calls.160

When a kernel function is called, the programmer has to set the number of

7

threads per block, blocks per grid and shared memory required by the kernel.

The maximum number of simultaneous blocks per SMX and warps per SMX

is device dependent. The resources required by each block limit the number

blocks that can be run in parallel.165

3.2. GPU-based approaches to kNN

This section presents a brief summary of the most relevant proposed GPU-

based
:::::::
methods

:
that tackle the computational issues of the kNN rule. All these

::::::::::
approaches divide the kNN rule into two parts: the computation of the distances

and the identification of the nearest neighbors. The differences
::::::
among

:::::
them

:
rely170

on how these steps are solved.

As the distances are computed in a separate stage from the selection, a

distance matrix is built grouping the distance array related to each test instance.

In the second step, several selections are performed in parallel on the different

rows of the matrix.175

Kuang et al.[20] propose to compute one distance per thread for the distance

matrix calculation and sort the distances array of each test instance to get the

k nearest neighbors. The distance matrix is split into blocks of a predefined

number of threads that compute a distance operation. Each matrix row is

sorted using a radix sort method that is computed by a block of threads.180

Garcia et al.[14] use the previous distance matrix calculation scheme but

they use an insertion sort method instead of radix sort. Both
::::::::::
approaches

:
also

differ in the way the sorting is done. Garcia et al. compute one sort operation

per thread instead of one per block. The code of this implementation of the

kNN rule is available on-line and is used as reference for comparisons in other185

work [17] [29].

Kato et al.[18] propose a design that is also suitable for several GPU devices.

The distance matrix is split into blocks of rows where each thread computes the

distances for a matrix row. The selection method is performed with one block

per test instance
:
.
::::
The neighborhood is built in shared memory using an insertion190

approach.

8

GPU-FS-kNN, presented by Arefin et al.[5], divides the computation of the

distance matrix into squared chunks in both dimensions. Each chunk is com-

puted using a different kernel call, reusing the allocated GPU-memory. The

distance computation kernel divides the chunk into smaller square subsets, one195

per block. Training and test data of each square subset are copied to shared

memory and then each thread computes a Pearson distance. A selection step is

performed after each chunk is processed with a modified version of the insertion

sort technique. This process is performed using one thread per chunk row. The

neighborhood computed in a previous chunk is reused for the next chunks that200

correspond to the same test instances. The code of this
::::::::
algorithm

:
of the kNN

rule is available on-line.

Jian et al.[17] use the same approach as Kuang et al. and Garcia et al. to

compute the distance matrix. For the selection step, they propose a method

that uses several blocks per test instance. Each block selects k distances and205

then the results of all blocks are combined iteratively.

Komarov et al.[19] modify the selection step with a quicksort-based selection.

Each block performs a selection operation with a large number of threads per

block. The matrix computation uses the Kuang et al. and Garcia et al. scheme.

The authors of this method have not made its code available. In order to210

compare our
::::::
method

:
to it, we have re-implemented this approach. The source

code is available with the rest of the code related to this work at: http://

sci2s.ugr.es/GPU-SME-kNN/

There are other
::::::::::
approaches

:
in the literature related to the kNN rule issues.

Some of them use FPGA devices [25] but they do not outperform GPU-based215

:::::::::
techniques

:
in run-time. Only when power consumption is considered these de-

vices become an interesting option. There are also
::::
kNN

::::::::
versions for specific

problems, like text classification [16], but the optimizations performed are fo-

cused and dependent on the specific problem or the distance measure used and

cannot be applied to other situations. Some
:::::
pieces

:::
of

:::::
work consider the reso-220

lution of only one test query at a time[7] but this approach is not suitable for

cases where a large number of test queries is available, like in Lazy Learning

9

http://sci2s.ugr.es/GPU-SME-kNN/
http://sci2s.ugr.es/GPU-SME-kNN/
http://sci2s.ugr.es/GPU-SME-kNN/

algorithms.

The majority of these
:::::::::
approaches

:
assume that the distance matrix and the

rest of the data structures fit on GPU memory but this is not possible for large225

datasets, like the KDDCup 1999 dataset. The solution provided by Garcia et

al. for this issue is to divide the test set into parts and compute these parts

iteratively but without considering the use of asynchronous memory copies to

avoid idle times. Furthermore, this approach affects the
:::::::
run-time

:
performance

of the different steps of the kNN rule and it is not suitable for the constantly230

increasing sizes of the datasets.

Arefin et al.’s
::::::::
algorithm

:
is the exception in terms of memory requirements

assumptions, as the computation is performed chunk-wise. As the authors ex-

pose in their paper, the memory footprint is reduced because some structures

are reused during the computation of the algorithm. However, this
:::::::
method

:
is235

still limited by the memory requirements because the complete dataset (training

and test sets) is copied to GPU memory. In that case, a smaller chunk size can

be used but this reduces the
::::::::
run-time

:
performance.

Our
::::::
design (Section 4) tackles the memory related issues present in the lit-

erature, overcoming the dependence between dataset size and memory required.240

Nevertheless, efficient kernels have been designed for each step of the computa-

tion which improves the run-time performance.

4. A GPU-based kNN rule for large datasets

There are two main issues inherent to large datasets processing: the compu-

tational complexity, in terms of amount of operations, and the memory required245

to store the structures of the algorithm. Our
:::::::
method

:
introduces an incremental

neighborhood scheme to reduce the memory requirements. This scheme has to

be combined with an efficient memory transfer design between devices. These

points are addressed in Section 4.1.

The design of the kernel functions, Section 4.2, has a high impact on the250

::::::::
run-time performance achieved. We split the distance computation into two

10

different kernel functions: the first one computes the square of the distance and

the second one performs the square root operation, but only on the selected

neighbors. For the selection step, we propose a quicksort [15] based selection

that takes advantage of the iterative neighborhood computation characteristics.255

Section 4.3 presents how memory requirements of GPU-SME-kNN are de-

termined by the different algorithm parameters regardless of the dataset size.

4.1. CPU-GPU interaction model

The main steps of the kNN rule are the ones related to the computation of

the distance matrix and the selection of the k nearest neighbors.260

GPU devices have a small amount of memory compared to desktop and

server computers. Some structures, like the distance matrix, do not fit into

device memory. The solution to this problem is to split the computations in

steps and take advantage of the asynchronous memory copy operations to avoid

idle times.265

:::
Our

::::::::
method

:::::
splits

:::
the

::::::::::::
computations

::
of

:::
the

::::::::
distance

::::::
matrix

::::
and

:::::::::::::
neighborhood.

:::
The

::::::::
method

::
of
:::::::

Arefin
::
et

:::
al.

:::::::
[5] also

::::::
splits

:::::
these

:::::::::::::
computations,

:::::::::
however,

::::
this

::::::::
technique

::::::::
requires

:::
to

::::::::
compute

::::::::::::::
square-shaped

::::::::
portions

::
of
::::

the
:::::::

matrix
::::
and

:::
to

::::
copy

:::
the

:::::::::
complete

::::::::
training

::::
and

::::
test

:::
sets

:::
to

::::::
device

::::::::
memory.

:::::::::::
Depending

:::
on

:::
the

::::
GPU

:::::::
device

::::
and

:::
the

:::::::
dataset

:::::
used,

::::
the

::::
size

::
of

::::
the

::::::
matrix

:::::::
portion

:::::
may

::::
need

:::
to270

::
be

::::::::
reduced,

:::::::
leading

:::
to

:
a
::::
loss

::
of

:::::::::
run-time

::::::::::::
performance.

::::
Our

:::::::
method

::::::::::
overcomes

::::
these

::::::::::
limitations

:::::::::
providing

::
a
:::::
more

::::::::::::
customizable

::::::
scheme

:::::
that

:::
can

:::
be

::::::::
adapted

::
to

::::::
almost

:::::
every

:::::
GPU

:::::::
device.

::::
The

::::::
details

::::
are

::::::::
discussed

:::
in

:::
the

:::::
next

:::::::
section.

:

4.1.1. Incremental neighborhood computation

The distance matrix is the most memory demanding data structure needed275

in the kNN rule. The size of this matrix is M ×N , where M is the number of

test instances and N the number of training instances.

The most common solution in order to make the distance matrix fit into

memory is to divide it into strips. The distance matrix is split into M/m

matrices of size m × N , where m is a portion of the test set small enough to280

11

Figure 2: The distance matrix of size M ×N is partitioned in pieces of m× n elements.

make the matrix fit into device memory. The algorithm iterates through the

test set to complete the computation. This is the solution used by Garcia et al.

[14].

However, this solution is limited by the size of the training set because the N

instances of the training set and m instances of the test set need to be kept on285

device memory in order to perform the distance computation. In some scenarios,

the GPU device could not have enough memory even when setting m to 1.

Our design is based on the
::::::::
algorithm

:
of Arefin et al. [5] where the matrix

is split in both dimensions. As shown
:
in

:
Figure 2, a portion, P j

i , of the matrix

of size m × n is computed on each step, where m and n are portions of the290

test and training sets, respectively. The algorithm iterates in both dimensions

performing N/n × M/m iterations, covering the whole training set for each

test chunk before moving to the next one. On Arefin et al’s
:::::::
method

:
n and

m have the same value, in order to split the chunk easily into square-shaped

blocks. Our distance computation model, explained in detail in Section 4.2.1,295

allows arbitrary values of n and m that can be tuned to offer good
::::::::
run-time

performance and fit into the available memory
:::
for

:
a
:::::
broad

::::::
range

::
of

:::::
GPU

::::::
devices.

All the components in a strip of the matrix, P 0
i to P

N/n
i , are needed to

find the neighborhood of the chunk i of the test set. To reduce the amount

of memory needed, a local selection of the neighbors has to be performed. A300

selection operation can be computed for each chunk of the matrix, as shown in

Figure 3, and then a global selection is performed on the local solutions. This

12

Figure 3: Local neighborhood selection scheme.

Figure 4: Incremental neighborhood selection scheme.

2-step computation scheme reduces the amount of memory needed. It keeps in

memory m× k values instead of m× n, taking into account that k is typically

smaller than n. However, this strategy might not be enough for very large values305

of N .

Our
::::::::
algorithm

:
computes the neighborhood in an incremental way, combining

each chunk of the matrix with the resulting k neighbors of the previous chunks,

as Figure 4 shows. This approach does not need a global selection step because

the last local selection includes all the results obtained.310

Furthermore, the amount of memory required is fixed regardless of the sizes

of training and test sets, depending only on the values of m, n, k and the

number of attributes of the dataset. These four values define the sizes of all

data structures required for the computations and all of them are independent

of the dataset size. The size of m and n can be decided in an arbitrary way in315

order to maximize the
::::::::
run-time performance and make the data fit into device

memory. Section 4.3 details how to compute the exact memory footprint.

13

4.1.2. CPU-GPU memory transfers

CPU and GPU devices have different and exclusive memory banks. The

input data and the results have to be copied between devices. The pseudocode320

presented on Algorithm 1 includes these interactions.

Algorithm 1: Proposed algorithm pseudocode.

input : Training and test sets, k

output: k nearest neighbors of each test instance in the training set.

1 copyTestP ieceAsync1

2 copyTrainPieceAsync1

3 for i← 1 to M/m do

4 checkTestCopyi

5 for j ← 1 to N/n do

6 checkTrainCopyj

7 computeDistanceMatrixi,j

8 if j = N/n then

9 copyTestP ieceAsynci+1

10 copyTrainP ieceAsync1

11 else

12 copyTrainP ieceAsyncj+1

13 end

14 computeSelectionj

15 end

16 copyNeighborhoodi

17 checkResultCopyAsynci

18 copyResultP iecei

19 end

copyTestP ieceAsync and copyTrainP ieceAsync represent the asynchronous

copy of the instances required to compute a chunk of the matrix. When using

asynchronous copies it is required to check if the copy has finished before using

14

the data. In Algorithm 1, checkTestCopy and checkTrainCopy represent this325

check. Except for the initial copy to start the algorithm, these copies (lines 8

to 13) are made in parallel during the selection process (line 14).

checkResultCopy and copyResultP ieceAsync are, respectively, the safety

check and the asynchronous copy of the neighborhood for a certain piece of the

test set. The data structures used to keep the results in memory are the same330

for all the iterations. In order to avoid checking if the copy has finished on

every iteration of the training set related loop, the final neighborhood is copied

to a different structure, this operation is represented by copyNeighborhood in

Algorithm 1.

4.2. Kernel design335

Two different steps have been defined: the computation of a chunk of the

distance matrix and the incremental selection of the k nearest neighbors. How-

ever, the square root calculation of the distance measure is applied only to the

selected neighbors, in order to improve the
:::::::
run-time

:
performance of the algo-

rithm.340

Therefore, three different kernel functions are used: the first kernel computes

a chunk of the distance matrix, line 7 on Algorithm 1, the second kernel performs

the selection of the k nearest neighbors, line 14 on Algorithm 1, and the third

kernel computes the square root operation on the selected neighbors while the

neighborhood is copied, line 16 on Algorithm 1. The following sections explain345

each kernel details.

4.2.1. Distance matrix computation

The distance matrix kernel computes the distances of one piece of the ma-

trix of size m × n, as commented on Section 4.1.1.
:::
Our

:::::::
method

::::::::::
introduces

::
a

:::::::::
completely

::::
new

:::::::::::
distribution

::
of
::::
the

::::::
kernel

:::::::
threads

::::
that

::::::
allows

:::
the

:::::::::::::
customization350

::
of

:::
the

::::::::::
parameters

:::::
while

:::::::::
delivering

::
a

::::
high

::::::::
run-time

::::::::::::
performance.

:
The kernel grid

has m blocks, one per test instance, and d threads.
::
In Figure 2 zoomed-in area,

these d threads are represented as filled cells for the first block. Each thread of

15

Figure 5: Dataset stored on memory. Atij represents attribute i of instance j.

the kernel computes several distances between 1 instance from the test set and

n/d instances from the training set. The number of threads per block, d, is set355

to a value that delivers good performance on the GPU device regardless of the

value of n that only defines the number of distance computations per thread.

None of the existing
::::::::::
approaches uses such a thread distribution scheme. Most

of them compute one distance per thread, introducing a high level of parallelism

with extremely light threads. Kato et al.
::::::
[18] is

:::
an exception, as all distances in360

a row are computed by one thread. This approach provides a higher workload

per thread but reduces the degree of parallelism. Our
:::::
design

:
tries to find the

right balance between both strategies in order deliver a better performance.

The input data is stored in a coalescent way to provide an efficient memory

access. The distances are computed in parallel so all threads will request first365

the first attribute of the instance, then the second and so on. The dataset is

stored in memory as an array of floating numbers as shown in Figure 5. As

each block is related to one test instance, a thread computes several distances

of the same test instance. Copying the values of the attributes of the test

instance to shared memory provides a more efficient access rather than each370

thread requesting these values independently.

4.2.2. Neighborhood selection

The quicksort algorithm [15] is a well known algorithm to sort an array. The

algorithm selects one element of the array (pivot) and divides the array into

two parts: the left part stores the elements smaller than the pivot while the375

right part stores the elements greater than the pivot. Repeating the process in

16

Figure 6: Non coalescent memory writings when dividing the vector.

a recursive way for each part finally gets the array sorted.

The majority of
::::::::::
approaches in the literature use a sorting method to compute

the neighborhood of the instances. This requires a high number of operations in

order to completely sort the array. Our
:::::::::
algorithm

:
relies on a selection method380

to reduce the number of operations. The previous sorting
::::::::
technique

:
can be

adapted to select the k smallest elements of an array, repeating the process only

for one of the parts of the vector: on the left part if this part has more than k

elements or on the right part if the left part has less than k elements. In the

second case, the left part of the array and the pivot are part of the selected385

elements.

::::
This

::::::::
selection

::::::::
method

::
is

::::
also

:::::
used

::
by

:::::::::
Komarov

:::
et

::::::::
al.[19] in

:::::
their

::::::::
method.

::::::::
However,

::::
this

:::::::::::::
computational

:::::
step

::::
has

::::
been

:::::::::
improved

:::
in

::::
our

:::::::
method

:::
to

:::::
avoid

::::::::::::::
synchronization

:::::::::
operations

::::::
hence

:::::::::
providing

::::::
better

::::::::
run-time

::::::::::::
performance.

:

The ad-hoc design of this algorithm for GPU devices is to use a kernel to390

create the left and right parts of the array in a parallel way and then call the

same kernel in a recursive way as it is done on CPU devices. This solution

would be suitable only for the latest NVIDIA devices,
:::::
which

:
allow recursive

kernel calls. However, the recursive step algorithm can be easily transformed

into an iterative solution that works for most GPU devices.395

Different structures are used for the distances array, the left part and the

right part. At the end of each iteration, the left part or the right part, depending

on their sizes, becomes the distance array and the former distance array is used

as one of the parts.

Aside from this, the creation of the left and right parts of the array does not400

17

Figure 7: Local neighborhood selection

suit the characteristics of the GPU devices because it involves non coalescent

memory accesses. With a grid configuration of m blocks (one per test instance),

several comparisons can be done in parallel but, depending on the result of the

comparison, each thread will need to write on a different part of the memory

penalizing the
::::::::
run-time performance, see Figure 6. To solve this problem, the405

results are written in two steps. The first step writes the element to a shared

memory array in a non coalescent way grouping the elements smaller than the

pivot on one side and the elements bigger on the other side. The second step

writes the element to its final position in global memory using two coalescent

memory accesses, one for the left part and another for the right part of the410

array, as shown in Figure 7. The right part memory access can be skipped once

the left part has more than k elements, improving the
:::::::
run-time

:
performance.

However, to find the position where each element has to be written is a

problem in itself. Each thread needs to know how many elements from the

threads with a lower index are greater or smaller than the pivot. CUDA provides415

functions, ballot and popc, to solve this problem but only within a warp. The

ballot function creates a 32-bit integer where each bit is the result of a predicate

evaluated by each thread of the warp, see Figure 7, while the popc function

counts the number of bits set to 1 in a 32-bit integer. Using the proper bit mask

for each thread, it is possible to get the writing position within the warp.420

18

A grid of m blocks and 32 threads per block can select the neighborhood

but it might not provide enough workload for the GPU device. Generally, a

higher number of threads per block provides a better performance. There are

two ways of increasing the number or threads: using more than 32 threads to

build the array parts or processing different arrays on each warp.425

The first solution is used by Komarov et al.[19]. It requires sharing the

values obtained with ballot on each warp and to set synchronization points to

ensure the values are correct. These requirements would penalize the
::::::::
run-time

performance so we decided to use the second solution. The neighborhood of

each test instance is computed by a single warp and each block computes several430

neighborhoods. However, if the number of test instances is small, Komarov’s

et al.
::::::::
algorithm

:
obtains better GPU occupancy ratios. Our

:::::
design

:
uses fewer

threads per selection step requiring a larger number of test instances to fully

occupy the resources of the GPU device.

The value of the pivot used in the quicksort algorithm has an impact on the435

::::::::
run-time performance. The pivot value is usually selected as the median of the

first, last and center values of the array as an approximation of the median of

the array. Using the median value of the array as pivot produces equally sized

array parts, halving the size in each iteration, but we can use a more aggressive

strategy thanks to the incremental neighborhood scheme. If a distance is larger440

than the farthest neighbor from the last chunk, that instance is not going to be a

part of the neighborhood because there are already k smaller values. Setting the

pivot to the farthest neighbor distance of the previous iteration of the algorithm

focuses the effort on the interesting values providing a better performance. For

the first matrix chunk of each test chunk, this solution cannot be applied, since445

we do not have a previous neighborhood, so the usual heuristic is used.

When the left part of the array is smaller than k, those distances and the

pivot belong to the final neighborhood of that step. However, as the selection

algorithms continues and needs to reuse that memory area, these values are

copied to a different array of m× k elements.450

19

4.2.3. Square root calculation

The square root operation is a costly operation and it is not required to

select the neighborhood of an instance. In our classification scenario, this op-

eration can be skipped. However, it is performed for two reasons: to provide

the accurate distance information in case any future application needs it and to455

be able to establish a fair comparison with other
::::::::::
approaches

:
that perform this

operation.

Other
:::::::::
algorithms, like Garcia et al. [14], also use a specific kernel for the

square root computation, although it is only briefly commented in the corre-

sponding papers, as a minor optimization. In our
:::::
design, this kernel has been460

combined with one of the required memory transfer operations, as commented

in Section 4.1.2. This provides better
:::::::
run-time

:
performance than performing

two separate operations.

All the selected distances are located on coalescent memory, it can be con-

sidered as a long array. This array has a size of m× k elements. In order to get465

the highest possible occupancy of the GPU device, we split the array to create

m
128 blocks of 128 threads. Each thread performs a square root operation on k

distances and copies their respective indexes in the training set to the separate

structures.

4.3. Total memory required470

As mentioned before, the distance matrix size can be defined in an arbitrary

way depending on the values of the parameters k, m and n. The amount of

memory required for the rest of the operations also depends on these parameters

and on the number of attributes of the dataset, D.

This way, it is possible to define an expression that represents the amount of475

elements required to keep on memory for each configuration of the parameters:

D ×m+D × n+ 6(m× (n+ k)) + 4(m× k) (2)

The exact amount of memory can be obtained weighing each part of the equation

with the size, in bytes, of the type of elements (floating point numbers, integers)

20

that are stored. The memory requirements of the experiments performed are

shown in Section 5.3.480

5. Experimental results of GPU-SME-kNN

Different experiments have been carried out and the results obtained are

presented here. Section 5.2 presents the hardware and datasets used and the

experiments performed, Section 5.3 shows the results obtained and Section 5.4

analyses the results.485

5.1. Experiments

Although the design of the algorithm for GPU and CPU devices changes sig-

nificantly, the same computations are performed in both devices. This means

that the same algorithm obtains the same results regardless of the device. Tak-

ing this into account, the experiments have been designed to highlight the effi-490

ciency differences between GPU-SME-kNN and the reference implementations.

Two large datasets have been selected for the experiments. These datasets

have been subsampled at different sizes to show how the behavior of the al-

gorithm changes as the size of the dataset increases. A 5-fold cross validation

scheme has been used with all sizes of the dataset. This scheme reduces the495

impact that the relative order of the instances within the dataset can have on

the performance. Different values of k have also been used. The results shown

in Section5.3 are computed as the average times of the values obtained.

The performance of GPU-SME-kNN has been compared with several
:::::::
existing

:::::::::
techniques:500

1. The
::::::::
technique

:
of Garcia et al. [14], denoted as GPU-Garcia-kNN, available

on Github.

2. The
::::::::
technique

:
of Arefin et al. [5], GPU-FS-kNN, is also available on-line,

but modified to use the Euclidean distance instead of the Pearson distance

in order to make a fair comparison.505

21

3. The
::::::::
technique

:
of Komarov et al. [19], denoted as GPU-Komarov-kNN, is

not available on-line, but we have implemented their design of the quick-

sort selection with our incremental neighborhood calculation scheme. Us-

ing the same scheme for the distance calculation the differences rely on

the design of the selection algorithm. In addition, our scheme allows this510

:::::::
method to scale to problem sizes that the original one cannot address.

The parameters n and m have been set to 655̇36 and 2048, respectively, in

order to provide a matrix chunk of a size similar to the one used
::
in

::::
[19] .

A website associated to this paper has been created that includes the datasets,

results and code of GPU-SME-kNN and GPU-Komarov-kNN used in this work.515

The URL for this website is: http://sci2s.ugr.es/GPU-SME-kNN/

5.2. Hardware and datasets

The experiments have been performed on a server-class computer equipped

with a high-end GPU device. This computer has an Intel Xeon E5-2630 proces-

sor at 2.30 GHz. The GPU device is a NVIDIA Tesla K20m with 5GB of RAM520

memory and 2496 CUDA cores. Nevertheless, the proposed design can be run

on a computer with lower specifications.

Two large datasets from the UCI repository [6] have been used in the exper-

iments:

• The poker dataset has 1 025 009 instances, 10 attributes and 10 classes.525

The dataset has been subsampled at sizes ranging from 50 000 to 1 000 000

instances in steps of 50000 instances.

• The KDDCup 1999 dataset has
:
4
:::
898

:::
431 instances, 41 attributes and 5

classes. This dataset has been subsampled in steps of 250 000 instances

from 250 000 to 1 500 000 instances and in steps of 500 000 instances for530

larger sizes.

Different experiments have been performed with these datasets using a 5-

fold cross validation scheme for all sizes. The experiments use k values of 5, 100

22

http://sci2s.ugr.es/GPU-SME-kNN/

Figure 8: Poker dataset results with k = 5.

Figure 9: Poker dataset results with k = 100.

and 1000 for both datasets. Some k values might be too large to offer accurate

classification ranges but the objective is to assess the scalability of the evaluated535

methods in relation to k.

5.3. Empirical results

This section presents the experiments and the results obtained on the pre-

viously mentioned hardware and datasets. For all the experiments the value of

m was set to 16384 and the value of n to 2048, the number of threads per block540

for the distance matrix kernel, d is 256.

23

Figure 10: Poker dataset results with k = 1000.

Figure 11: KDDCup 1999 dataset results with k = 5.

Figures 8 to 10 present the results for the poker dataset. Three different

values of k have been used with this dataset: 5, 100 and 1000.

Figures 11 to 13 present the results for the KDDCup 1999 dataset. The

::::::::
algorithm

:
of Garcia et al. was able to complete the experiments successfully545

for this dataset only up to 1 250 000 instances. For bigger sizes the experiments

failed due to memory requirement problems. Tables 1 to 3 compare the results

of all
::::::::::
approaches for these values. GPU-FS-kNN also presents some issues with

this dataset and the largest value of k(1000). In this case, the software provided

by the authors behaves in an abnormal way for sizes larger than 1.5 million of550

24

Figure 12: KDDCup 1999 dataset results with k = 100.

Figure 13: KDDCup 1999 dataset results with k = 1000.

instances and it does not
::::::
provide

:
accurate results.

5.4. Analysis of the results

As the results of the previous section presents, GPU-SME-kNN outperforms

the results of the other
:::::::::
approaches. The strategy for dealing with large dis-

tance matrices causes high
::::::::
run-times

:
performance differences. GPU-Garcia-555

kNN stores full distance matrix strips on GPU memory to compute the neigh-

borhood. The matrix strip width becomes smaller as the size of the training set

increases and this reduces the performance of the design. GPU-SME-kNN keeps

the width of the matrix, through the incremental neighborhood computation,

25

Table 1: KDDCup 1999 dataset time results, in seconds, with k = 5

Size GPU-Garcia-kNN GPU-SME-kNN GPU-FS-kNN GPU-Komarov-kNN

250 000 29.052
::::::
25.192 45.127 60.837

500 000 121.281
::::::
90.243 180.955 196.098

750 000 284.577
:::::::
194.467 409.278 407.561

1 000 000 528.100
:::::::
338.979 732.452 719.672

1 250 000 862.306
:::::::
522.74

:
5 1170.310 1093.420

Table 2: KDDCup 1999 dataset time results, in seconds, with k = 100

Size GPU-Garcia-kNN GPU-SME-kNN GPU-FS-kNN GPU-Komarov-kNN

250 000 37.931
::::::
26.182 50.388 59.856

500 000 158.213
::::::
93.964 193.651 194.744

750 000 366.198
:::::::
202.579 432.981 405.127

1 000 000 667.465
:::::::
352.820 772.101 725.162

1 250 000 1083.842
:::::::
544.529 1233.264 1097.123

providing the desired performance regardless the training set size.560

The
::::::::
run-time performance differences with GPU-Garcia-kNN also rise when

value of k is increased. A higher value of k requires more space to store the

neighborhood, reducing the amount of memory available for the distance matrix

which produces the same effect that happens when the training set size increases.

However, the difference is also introduced by the selection method. GPU-Garcia-565

kNN uses an insertion method to select the neighborhood of a test instance on

each thread of the kernel. By increasing the value of k the probability of code

divergence also increases. The divergence happens when some threads in a

warp find a neighbor candidate at some position but not all threads find it. The

threads that did not find a neighbor have to wait until the threads that find one570

make the required computations.

The code divergence problem also affects GPU-FS-kNN. However, the mod-

ifications of the insertion scheme introduced in its selection method lower the

impact of the divergence on the
:::::::
run-time

:
performance. Increasing the value of k

26

Table 3: KDDCup 1999 dataset time results, in seconds, with k = 1000

Size GPU-Garcia-kNN GPU-SME-kNN GPU-FS-kNN GPU-Komarov-kNN

250 000 496.624
::::::
33.890 449.668 61.665

500 000 2297.120
:::::::
119.163 1150.744 199.355

750 000 5691.280
:::::::
259.552 1932.540 415.234

1 000 000 10 788.800
:::::::
448.624 2992.348 736.441

1 250 000 17 885.280
:::::::
694.892 4221.566 1125.497

Table 4: GPU-SME-kNN GPU memory usage in MB

k Poker dataset KDDCup 1999 dataset

5 1158 1162

100 1247 1251

1000 2091 2159

also reduces the performance because this
::::::
method

:
does not uses asynchronous575

memory copies. This introduces computation idle times while the results are

copied from GPU to CPU memory. The distance computation scheme of GPU-

FS-kNN, which is similar to our incremental neighborhood computation, allows

this
:::::::
method

:
to complete almost all the experiments but the performance is

affected by the issues mentioned
:::::
above.580

GPU-SME-kNN does not suffer from this kind of code divergence problems,

as a warp collaborates to select the neighborhood. Furthermore, this selection

method reduces the impact of the value of k: each iteration the same steps are

followed, the value of k only changes the number of iterations made. However,

the most important factor on the
:::::::
run-time

:
performance of the selection step is585

the incremental neighborhood computation.

Our selection method requires a large number of memory accesses to read

the array and store the left and right parts. Although these accesses are pro-

grammed on a coalescent way and are efficient, a large number of iterations could

be required depending on the quality of the pivots provided by the heuristic,590

::::::::
especially

:
when k is set to a small value. The incremental neighborhood tech-

27

nique provides the maximum distance to be considered a neighbor candidate
:
,

:::::::
reducing

:
the number of iterations.

Our implementation of GPU-Komarov-kNN also uses this idea. However, we

cannot see the effect in the results because GPU-Komarov-kNN uses 512 threads595

per selection step [19] whereas GPU-SME-kNN uses 32. As we commented in

Section 4.2.2, by using 32 threads it is possible to avoid synchronization opera-

tions, improving the
::::::::
run-time performance of GPU-SME-kNN. In addition, the

use of a small number of threads improves the use of the resources of the GPU.

If the array size is lower than the number of threads per selection some threads600

do not perform any computation, but their resources cannot be released until

the selection process is finished. This situation is reached in a faster way when

a large number of threads per selection is used, taking into account that the size

of the array is approximately halved in each iteration of the algorithm. Small

values of k highlight this fact. On the other hand, when using large values of k605

GPU-Komarov-kNN outperforms other
::::::::::
approaches. However, as we can see

::
in

Figure 13, the differences against GPU-SME-kNN are significant. The situation

is similar
::
in

:
Figure 10 but, in this case, the results of the GPU-Garcia-kNN

technique affect the scale of the plot and it cannot be observed.

For scenarios with a small number of test instances the
::::::::
run-time performance610

differences between GPU-SME-kNN and GPU-Komarov-kNN would decrease.

The higher number of threads used in the selection step makes GPU-Komarov-

kNN reach the maximum occupancy of the GPU device faster than GPU-SME-

kNN. Therefore, under some circumstances, GPU-Komarov-kNN could outper-

form GPU-SME-kNN. However, in the presented 5-fold cross validation results,615

GPU-SME-kNN exhibits a better performance,
::::::::
especially

:
as the number of test

instances increases.

In cases with similar number of training and test instances the
::::::::
run-time per-

formance differences between GPU-SME-kNN and GPU-Komarov-kNN would

be even larger. This situation can be found in different scenarios, for instance,620

some steps of lazy learning algorithms require
::::::::::
computing the neighborhood of

the training test. Taking into account that the differences are already significant

28

in the results presented in this section, only GPU-SME-kNN can compute these

steps in a reasonable time.

Table 4 shows that the amount of memory used by GPU-SME-kNN is similar625

for both datasets regardless of the difference of more than 3 500 000 instances.

The memory requirements difference is actually caused by the different number

of attributes of both datasets. In all cases, the amount of memory required is

relatively small making GPU-SME-kNN suitable for most current GPU devices.

6. GPU-based Lazy learning630

The design patterns used on the GPU-based
::::::
method

:
for the kNN rule should

also be suitable for lazy learning algorithms. The following sections detail the

algorithms that have been adapted (Section 6.1), the design modification that

they required (Section 6.2) and the results obtained (Section 6.3).

6.1. Algorithms635

We have selected three different algorithms from the ones available on the

KEEL software tool [4] in order to test our design. These algorithms are de-

scribed in this section.

6.1.1. CenterkNN

The CenterkNN technique [12] is a lazy learning algorithm based on the640

kNN rule that modifies the distance computation. The algorithm computes the

center of each class, as the average of the instances that belong to that class

and uses this value to modify the reference point used to measure the distance.

To compute the distance between a test instance, y, and a training instance,

x, the algorithm computes first the line that passes through x and the center of645

its class, cx, then, projects y onto that line and uses the resulting point py to

measure the distance. Figure 14 shows these values graphically.

29

Figure 14: CenterkNN distance measure, the dashed line is the distance measured

6.1.2. kNN adaptive

The kNN adaptive algorithm [31] weighs the measured distance of the kNN

rule. The weight used is specific for each training instance. As a previous step650

before using the kNN rule, each training instance computes the distance to the

closest instance that does not belong to its own class within the training set.

That distance is used as weight when the kNN rule is applied. The distance

between a training and a test instance is divided by this weight. This weighting

scheme considers training instances that are close to the frontier of two classes655

less reliable as neighbors, than the ones in the center of clusters of the same

class.

6.1.3. Symmetric kNN

The Symmetric kNN algorithm [23] computes the kNN rule in both direc-

tions. In particular, the algorithm computes the kNN rule of each training in-660

stance compared to the training set, as a first step. When the distance between a

training instance and a test instance is computed, it is compared to the distance

of the farthest neighbor of the training instance. The test instance would be

part of the neighborhood of the training instance if the distance between them

is smaller than the distance from the training instance to the farthest neighbor665

of the training instance. A training instance is considered part of the symmetric

neighborhood when this happens.

This symmetric neighborhood is joined with the regular neighborhood, ob-

tained with the usual application of the kNN rule, to obtain the final neigh-

borhood that classifies the test instance. The join operation is made in a way670

that avoids double voting if there is an instance in both symmetric and regular

30

neighborhoods.

6.2. GPU design modifications

The lazy learning algorithms can use the same distance matrix and incremen-

tal neighborhood calculation scheme as the kNN rule. However, these algorithms675

require a previous step where part of the information they need is calculated.

The specific modifications for each method are presented in this section.

6.2.1. CenterkNN

The CenterkNN algorithm requires the computation of the centers of each

class as a previous step to the kNN rule. The center of a class is computed680

as the average value for each attribute on a training instance that belongs to

that class. This step can be performed on the CPU device when the dataset

is loaded into RAM memory. These center values are copied to device memory

only once, before the first piece of the matrix is computed.

The projection of the test instance is computed in the distance kernel. The685

kernel keeps the same structure but it performs more operations to compute the

projected instance.

6.2.2. kNN adaptive

The weight values of the kNN adaptive technique can be computed as the

kNN rule with k = 1 ignoring the training instances that belong to the same690

class of the instance whose weight is being computed. A modified version of the

kNN rule that introduces a void value in the matrix when both instances have

the same class is used to compute the weight for each instance as a previous

step.

The original kNN rule is also modified in order to include the weighting of695

the distance. In this algorithm, the square root of the distance needs to be

computed for every training instance because the weight is different for each

one and can modify the selected instances.

The weights of the training instances are copied chunk-wise to a dedicated

array alongside the copy of the training chunk they correspond to.700

31

6.2.3. Symmetric kNN

To apply the kNN rule in both directions, it is required to know the farthest

distance of the neighborhood of each training instance. A modified version of

the kNN rule that introduces a void value in the matrix when the training and

test instances have the same index is used to compute the neighborhood of the705

training set as a previous step.

The distance matrix kernel of the original kNN rule is modified to compare

the distance obtained with the farthest distance of the neighborhood. The sym-

metric part of the rule is satisfied when the distance computed by the kernel

is smaller than the one stored before. When that happens, the training in-710

stances vote,
:

increasing the value of its class in a voting structure specific to

this algorithm.

The voting structure has a size of m× C where C is the number of classes.

This structure is set to 0 at the beginning of each strip of the matrix and it is

copied with the final neighborhood. The process that assigns the class to the test715

instance uses these votes as base and adds the votes of the final neighborhood,

checking if these instances have already voted to avoid double voting.

6.3. Empirical Results

The lazy learning algorithms have been tested against the CPU implemen-

tation available on the KEEL software[4]. These algorithms have been tested720

with the poker dataset up to 650 000 instances using a 5-fold cross validation

scheme. Figure 15 shows the results for the CenterkNN. The implementation

available on KEEL does not allow changing the k value for this algorithm which

is set to 1.

Figures 16 and 17 present the results for the kNN adaptive and the symmetric725

kNN algorithms. In both algorithms, k can be set to different values, and for

these experiments, the value selected was 5.

The results of the lazy learning algorithms show a similar behavior on the

three cases: our
::::::::::
approaches reduce the time from hours to minutes. CenterkNN

shows the highest differences, as the computation of the projection introduces730

32

Figure 15: CenterkNN results on poker dataset.

Figure 16: kNN adaptive results on poker dataset.

more floating point computations that can be addressed efficiently by GPU

devices. On the other hand, Symmetric kNN requires more comparisons and

data accesses, which are addressed less efficiently than floating point operations

on GPU devices, making the differences smaller. The performance of kNN

adaptive is similar to the symmetric kNN.735

7. Conclusions

We have presented a new GPU-based approach for the kNN rule that outper-

forms the
::::::::::
approaches in the literature and provides a high scalability in terms

33

Figure 17: Symmetric kNN results on poker dataset.

of dataset size and k value. GPU-SME-kNN keeps a stable level of memory

usage that allows to address any dataset regardless of its size, which was not740

possible by any of the previous GPU kNN methods. Furthermore, given that (1)

the memory footprint of the method can be totally controlled by user-defined

parameters and that (2) we do not use capabilities only present in the most

recent GPU cards, our method can be efficiently used across a very broad range

of GPU devices with varying amount of card memory and CUDA capabilities.745

We have also proven that our design is suitable for lazy learning algorithms

based on the kNN rule. The
:::::::
run-time

:
performance of the three algorithms

presented, CenterkNN, kNN adaptive and Symmetric kNN, has been improved

in a significant way reducing the run-time from hours to minutes.

All own code is available as open source, along with the datasets and results,750

on the website: http://sci2s.ugr.es/GPU-SME-kNN/

Acknowledgements

This work was supported by the research Projects TIN2014-57251-P, TIN2013-

4720-P and P12-TIC-2958. P.D. Gutirrez holds an FPI scholarship from the

Spanish Ministry of Economy and Competitiveness (BES-2012-060450) and a755

short stay in foreign institutions scholarship (EEBB-I-14-08977).

34

http://sci2s.ugr.es/GPU-SME-kNN/

References

[1] CUDA, http://www.nvidia.com/object/cuda_home_new.html.

[2] NVIDIA, http://www.nvidia.com/.

[3] D. W. Aha, Lazy Learning, Springer, 1997.760

[4] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. del Jesus, S. Ventura, J. Garrell,

J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández, F. Herrera,

KEEL: A software tool to assess evolutionary algorithms for data mining

problems, Soft Computing 13 (3) (2009) 307–318.

[5] A. S. Arefin, C. Riveros, R. Berretta, P. Moscato, GPU-FS-kNN: A Soft-765

ware Tool for Fast and Scalable kNN Computation Using GPUs, PLoS

ONE 7 (8) (2012) e44000.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0044000

[6] K. Bache, M. Lichman, UCI machine learning repository (2013).

URL http://archive.ics.uci.edu/ml770

[7] G. Beliakov, G. Li, Improving the speed and stability of the k-nearest

neighbors method, Pattern Recognition Letters 33 (10) (2012) 1296 – 1301.

[8] B. Catanzaro, N. Sundaram, K. Keutzer, Fast support vector machine

training and classification on graphics processors, 2008, pp. 104–111.

[9] T. Cover, P. Hart, Nearest neighbor pattern classification, Information The-775

ory, IEEE Transactions on 13 (1) (1967) 21–27.

[10]
::
A.

:::::::::::::
Dhurandhar,

:::
A.

::::::::
Dobra,

:::::::::::::
Probabilistic

:::::::::::::::
characterization

:::
of

::::::::
nearest

::::::::
neighbor

:::::::::
classifier,

:::::::::::::
International

:::::::::
Journal

:::
of

:::::::::
Machine

:::::::::
Learning

:::::
and

::::::::::
Cybernetics

::
4
:::
(4)

::::::
(2013)

:::::::::
259–272.

[11] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification (2Nd Edition),780

Wiley-Interscience, 2000.

35

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/
http://dx.doi.org/10.1371%2Fjournal.pone.0044000
http://archive.ics.uci.edu/ml

[12] Q.-B. Gao, Z.-Z. Wang, Center-based nearest neighbor classifier, Pattern

Recognition 40 (1) (2007) 346–349.

[13] E. Garcia, S. Feldman, M. Gupta, S. Srivastava, Completely Lazy Learning,

Knowledge and Data Engineering, IEEE Transactions on 22 (9) (2010)785

1274–1285.

[14] V. Garcia, E. Debreuve, F. Nielsen, M. Barlaud, K-nearest neighbor search:

Fast GPU-based implementations and application to high-dimensional fea-

ture matching, in: Proceedings - International Conference on Image Pro-

cessing, ICIP, 2010, pp. 3757–3760.790

[15] C. A. R. Hoare, Algorithm 64: Quicksort, Commun. ACM 4 (7) (1961)

321–.

[16] L. Huang, Z. Li, A novel method of parallel gpu implementation of knn used

in text classification, in: Networking and Distributed Computing (ICNDC),

2013 Fourth International Conference on, 2013, pp. 6–8.795

[17] L. Jian, C. Wang, Y. Liu, S. Liang, W. Yi, Y. Shi, Parallel data min-

ing techniques on Graphics Processing Unit with Compute Unified Device

Architecture (
::::::
CUDA), Journal of Supercomputing 64 (3) (2013) 942–967.

[18] K. Kato, T. Hosino, Multi-GPU algorithm for k-nearest neighbor problem,

Concurrency and Computation: Practice and Experience 24 (1) (2012) 45–800

53.

[19] I. Komarov, A. Dashti, R. M. D’Souza, Fast k-NNG Construction with

GPU-Based Quick Multi-Select, PLoS ONE 9 (5) (2014) e92409.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0092409

[20] Q. Kuang, L. Zhao, A practical GPU based KNN algorithm, in: In Pro-805

ceedings of the Second Symposium on International Computer Science and

Computational Technology (ISCSCT 09), 2009.

36

http://dx.doi.org/10.1371%2Fjournal.pone.0092409

[21] M. Lastra, J. Carabao, P. D. Gutiérrez, J. M.
::::
Beńıtez, F. Herrera, Fast

fingerprint identification using
:::::
GPUs, Information Sciences 301 (0) (2015)

195 – 214.810

[22] L. Mussi, F. Daolio, S. Cagnoni, Evaluation of parallel particle swarm op-

timization algorithms within the
::::::
CUDA

:::

TM
:
architecture, Information Sci-

ences 181 (20) (2011) 4642 – 4657, special Issue on Interpretable Fuzzy

Systems.

[23] R. Nock, M. Sebban, D. Bernard, A simple locally adaptive nearest neigh-815

bor rule with application to pollution forecasting, International Journal of

Pattern Recognition and Artificial Intelligence 17 (8) (2003) 1369–1382.

[24]
::
J.

::
R.

::::::::
Prasad,

:::
U.

:::::::::
Kulkarni,

:::::::
Gujrati

:::::::::
character

:::::::::::
recognition

:::::
using

:::::::::
weighted

::::
k-nn

::::
and

::::::
mean

::
χ

::
2

::::::::
distance

::::::::
measure,

:::::::::::::
International

:::::::
Journal

:::
of

::::::::
Machine

::::::::
Learning

::::
and

:::::::::::
Cybernetics

:
6
:::
(1)

:::::::
(2015)

::::::
69–82.

:
820

[25] Y. Pu, J. Peng, L. Huang, J. Chen, An efficient knn algorithm implemented

on fpga based heterogeneous computing system using opencl, in: Field-

Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd

Annual International Symposium on, 2015, pp. 167–170.

[26] A. Rajaraman, J. Ullman, Mining of Massive Datasets, Cambridge Univer-825

sity Press, 2011.

[27] M. Schatz, C. Trapnell, A. Delcher, A. Varshney, High-throughput sequence

alignment using Graphics Processing Units, BMC Bioinformatics.

[28] G. Shakhnarovich, T. Darrell, P. Indyk, Nearest-Neighbor Methods in

Learning and Vision: Theory and Practice (Neural Information Process-830

ing), MIT Press, 2006.

[29] I. Stamoulias, E. Manolakos, Parallel architectures for the kNN classifier

- Design of soft IP cores and FPGA implementations, Transactions on

Embedded Computing Systems 13 (2)
:
.
:

37

[30]
::
N.

::::::
Tomaš

::
ev,

:::
M.

:::::::::::
Radovanović

:
,
:::
D.

::::::::
Mladenić,

:::
M.

::::::::
Ivanović,

::::::::::::::
Hubness-based835

:::::
fuzzy

:::::::::
measures

::::
for

::::::::::::::::
high-dimensional

:::::::::
k-nearest

:::::::::
neighbor

:::::::::::::
classification,

:::::::::::
International

::::::::
Journal

::
of

::::::::
Machine

:::::::::
Learning

::::
and

:::::::::::
Cybernetics

::
5
:::
(3)

:::::::
(2014)

:::::::
445–458.

[31] J. Wang, P. Neskovic, L. Cooper, Improving nearest neighbor rule with

a simple adaptive distance measure, Pattern Recognition Letters 28 (2)840

(2007) 207–213.

[32] D. Wilson, T. Martinez, Improved heterogeneous distance functions, Jour-

nal of Artificial Intelligence Research 6 (1997) 1–34.

[33] X. Wu, V. Kumar, The top ten algorithms in data mining, CRC Press,

2010.845

38

	Introduction
	The k Nearest Neighbor rule and Lazy Learning
	The k Nearest Neighbor rule
	Lazy learning

	Graphics Processing Units and NVIDIA CUDA
	Technical aspects of GPU devices
	GPU-based approaches to kNN

	A GPU-based kNN rule for large datasets
	CPU-GPU interaction model
	Incremental neighborhood computation
	CPU-GPU memory transfers

	Kernel design
	Distance matrix computation
	Neighborhood selection
	Square root calculation

	Total memory required

	Experimental results of GPU-SME-kNN
	Experiments
	Hardware and datasets
	Empirical results
	Analysis of the results

	GPU-based Lazy learning
	Algorithms
	CenterkNN
	kNN adaptive
	Symmetric kNN

	GPU design modifications
	CenterkNN
	kNN adaptive
	Symmetric kNN

	Empirical Results

	Conclusions

