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Abstract

What if a successful company starts to receive a torrent of low-valued (one or two
stars) recommendations in its mobile apps from multiple users within a short (say one
month) period of time? Is it legitimate evidence that the apps have lost in quality, or
an intentional plan (via lockstep behavior) to steal market share through defamation?
In the case of a systematic attack to one’s reputation, it might not be possible to man-
ually discern between legitimate and fraudulent interaction within the huge universe
of possibilities of user-product recommendation. Previous works have focused on this
issue, but none of them took into account the context, modeling, and scale that we
consider in this paper. Here, we propose the novel method Online-Recommendation
Fraud ExcLuder (ORFEL) to detect defamation and/or illegitimate promotion of online
products by using vertex-centric asynchronous parallel processing of bipartite (users-
products) graphs. With an innovative algorithm, our results demonstrate both efficacy
and efficiency – over 95% of potential attacks were detected, and ORFEL was at least
two orders of magnitude faster than the state-of-the-art. Over a novel methodology, our
main contributions are: (1) a new algorithmic solution; (2) one scalable approach; and
(3) a novel context and modeling of the problem, which now addresses both defama-
tion and illegitimate promotion. Our work deals with relevant issues of the Web 2.0,
potentially augmenting the credibility of online recommendation to prevent losses to
both customers and vendors.

Keywords: graphs, fraud detection, defamation, recommendation, Web

2.0, data analysis

1. Introduction

In the Web 2.0, it is up to the users to provide content, like photos, text, recommen-
dations and many other types of user-generated information. The more interaction,
e.g., likes, recommendation, comments, etc., a product page (or a user profile) gets, the
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better are the potential profits that a company (or an individual) may achieve with au-
tomatic recommendation, advertisement, and/or priority in automatic search engines.
In Google Play, for example, mobile apps heavily depend on high-valued (4 or 5 stars)
recommendations to get more important and to expand their pool of customers; on
Amazon, users are offered the most recommended products, that is, those that were
better rated; and in TripAdvisor, users rely on other’s feedback to pick their next trav-
els. The same holds for defamation, which is the act of lowering the rank of a product
by creating artificial, low-valued recommendations. Sadly, fraudulent interaction has
come up in the Web 2.0 – fraudulent likes, recommendations, and evaluations define
artificial interests that may illegitimately induce the importance of online competitors.

Attackers create illegitimate interaction by means of fake users, malware credential
stealing, Web robots, and/or social engineering. The identification of such behavior has
great importance to companies, not only because of the potential losses due to fraud,
but also because their customers tend to consider the reliability of a given website
as an indicator of trustfulness and quality. According to Facebook [11], fraudulent
interaction is harmful to all users and to the Internet as a whole, so it is important that
users have a true engagement around brands and content.

However, catching up with such attacks is a challenging task, especially when there
are millions of users and millions of products being evaluated in a system that deals
with billions of interactions per day. In such attacks, multiple fake users interact with
multiple products at random moments [1] in a way that their behavior is camouflaged
among millions of legitimate interactions per second. The core of the problem is: how
to track the temporal evolution of fraudulent user-product activity since the number of
possible interactions is factorial?

We want to identify the so-called lockstep behavior, i.e., groups of users acting to-
gether, generally interacting with the same products at around the same time. As an
example, imagine that an attacker creates a set of fake users to artificially promote his
e-commerce website; then, he would like to comment and/or recommend his own Web
pages, posts, or advertisements to gain publicity that, fairly, should come from real cus-
tomers. Here, an attacker may refer to employees related to a given company, profes-
sionals (spammers) hired for this specific kind of job, Web robots, or even anonymous
users. The weak point in all these possibilities is that the attacker must substantially
interact with the attacked system within limited time windows; also, the attacker must
optimize his efforts by using each fake user account to interact with multiple products.
This behavior agrees with the lockstep definition. Note that this pattern is well-defined
in online recommendation and in many other domains, such as academic co-citation,
social network interaction, and search-engine optimization. Provided that this is not a
new problem, we use in this paper the definition of lockstep behavior given by Beutel
et al. [4]. See the upcoming Section 3.3 for details.

The task of identifying locksteps is commonly modeled as a graph problem – nodes
are either users or products; weighted edges represent recommendations – in which we
want to detect near-bipartite cores considering a given time constraint. The bipartite
cores correspond to groups of users that interacted with groups of products within lim-
ited time intervals. One lockstep may be defamation, when the interactions are negative
(low-valued) recommendations; or illegitimate promotion, when the recommendations
are positive. Therefore, the problem generalizes to finding near-bipartite cores with
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edges whose weights correspond to the rank of the recommendations. Note that we
want to tackle the problem without any previous knowledge about suspicious users,
products, nor the moments when frauds occurred in the past.

This work extends the state-of-the-art solutions for the problem of lockstep identi-
fication. Our main contributions are threefold:

1. Novel algorithmic paradigm: we introduce the first vertex-centric algorithm
able to spot lockstep behavior in Web-scale graphs using asynchronous parallel
processing; vertex-centric processing is a promising paradigm that still lacks
algorithms specifically tailored to its modus operandi;

2. Scalability and accuracy: we tackle the problem for billion-scale graphs in
one single commodity machine, achieving efficiency that is comparable to that
achieved by state-of-the-art works on large clusters of computers, whilst obtain-
ing the same efficacy;

3. Generality of scope: we tackle the problem for real weighted graphs ranging
from social networks to e-commerce recommendation, expanding the state-of-
the-art of lockstep semantics to discriminate defamation and illegitimate promo-
tion.

This paper follows a traditional organization. Section 2 presents background con-
cepts, while Section 3 reviews the related works. Our proposal is described in Section
4. In Section 5, we report experimental results, including real data analyses. Finally,
Section 6 concludes the paper and presents ideas for future work.

2. Background

2.1. Vertex-centric graph processing

We use in this paper the well-known concept of vertex-centric processing [23].
Given a graph G = (V,E) with vertices labeled from 1 to |V |, we associate a value to
each vertice and to each edge – for a given edge e = (u,v), u is the source and v is the
target. With values associated to vertices and edges, vertex-centric processing corre-
sponds to the graph scan approach depicted in Algorithm 1. The values are determined
according to the computation that is desired, e.g., Pagerank or belief propagation; we
illustrate this fact with hypothetical functions f and g in the algorithm. Evidently, a sin-
gle scan is not enough for most useful computations, therefore, the graph is commonly
scanned many times until a criterion of convergence is satisfied. Graph processing,
then, becomes what is defined in Algorithm 2.

The vertex-centric processing paradigm contrasts with usual graph traversal algo-
rithms, like breadth-first or depth-first searches. While traversal-based algorithms sup-
port any kind of graph processing, they are made to work with the entire graph in main
memory, otherwise, they would be prohibitively costly due to repeatedly random disk
accesses. On the other hand, the vertex-centric processing is limited to problems that
can be solved along the direct neighbors of the vertices (or with clever adaptations to
such constraint); the good point is that it is well-suited to disk-based processing since
it can suitably rely on sequential disk accesses. This kind of processing is not only
prone to disk-based processing, but also to parallel processing according to which,
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Algorithm 1 Vertex-centric graph processing

procedure GRAPH SCAN(GRAPH G)
for i = 1 to |V | do

sete← set of edges adjacent to V [i]
V [i].value← f (sete)
for each edge e in sete do

e.value← g(V [i].value,e.value)

Algorithm 2 Graph processing

procedure GRAPH PROCESSING
while convergence criterion is not satisfied do

Graph scan(G)

each thread can be responsible for a different share of the vertices. This possibility
yields to quite effective algorithms.

2.2. Asynchronous parallel processing

Many researchers have developed systems to process graphs in large-scale, ei-
ther using vertex-centric or edge-centric processing; this is the case of systems Pregel
[23], Pegasus [17], PowerGraph [12], and GraphLab [22]. However, such systems
are parallel-distributed, and thus, they demand knowledge, availability, and manage-
ment of costly clusters of computers. More recently, a novel paradigm emerged in the
form of frameworks that rely on asynchronous parallel processing, including systems
GraphChi [19], TurboGraph [16], X-Stream [33] and MMap [21]. Such systems use
disk I/O optimizations and the neighborhood information of nodes/edges in order to set
up algorithms that can work in asynchronous parallel mode; that is, it is not required
that their threads advance synchronously along the graph in order to reach useful com-
putation. This approach has demonstrated success to tackle many problems, such as
Pagerank, connected components, shortest path, and belief propagation, to name a few.
In this paper, we use vertex-centric graph processing over framework GraphChi; how-
ever, our algorithm can be adapted to any of the frameworks available in the literature.

3. Related works

3.1. Clustering

The identification of lockstep behavior refers to the problem of partitioning both
the rows and the columns of a matrix – known in the literature as co-clustering or bi-
clustering. Some authors have worked on similar variations of the bi-clustering prob-
lem. For example, Papalexakis and Sidiropoulos used PARAFAC decomposition over
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the ENRON e-mail corpus [29]; Dhillon et al. used information theory over word-
document matrices [9], and Banerjee et al. used Bregman divergence for predicting
missing values and for compression [3]. Other applications include gene-microarray
analysis, intrusion detection [28], natural language processing [35], collaborative fil-
tering [19], and image [8], speech and video analysis [13]. Note that, in this problem
setting, whenever time is considered in the form of time windows to be detected, we
have a Non-deterministic Polynomial-time (NP-hard) problem [2] that prevents the
identification of the best solution even for small datasets. In fact, we deal with is-
sues fundamentally different from the problems proposed so far, which, according to
Kriegel et al. [18], are not straightly comparable due to their specificities.

Theoretically, our work resembles the works of Gupta and Ghosh [14] and of Cram-
mer and Chechik [7]; similarly, we use local clustering principles, but, differently, we
are not dealing with one-class problems. Besides, the core of our technique is a variant
of mean-shift clustering [5], now considering temporal and multi-dimensional aspects.
As we mentioned before, our contribution relates not only to performance, but also to
a novel algorithmic approach.

3.2. Detection of suspicious behavior on the Web
One of the first algorithms tailored to detect suspicious behavior on the Web was

designed by Douceur [10] in 2002. The author coins the term sybil attack, in the
specific context of peer-to-peer networks. Sybil attacks are attacks in which a single
entity can provide multiple identities, that is, a single node in the network can create
or steal several other identities and use them to gain advantages, thus, undermining the
security of the whole system. Latter, Newsome et al. [25] showed that sybil attacks can
also occur in sensor networks where the attacker wants to bypass security measures,
such as voting mechanisms and resource allocation policies.

One similar type of attack was studied by Chirita et al. [6] – the shilling attack;
in shilling attacks, fake profiles are used to rate items in a recommendation system.
Chirita et al. [6] proposed a technique to analyze profiles and to determine whether or
not they are suspicious. Later, Su et al. [34] developed an algorithm to detect groups of
shilling attacks, in which several profiles act in conjunction to alter the ratings of items
in the system.

While both sybil and shilling attacks are similar to the concepts that we propose
in this paper, as in defamation and illegitimate promotion, none of the aforementioned
works consider the temporal dimension to detect the attacks. Time, in such setting,
leads to a different problem with NP-Hard complexity [30]. Also, none of these works
took into account the performance and scale that we consider in this paper.

Other related works use the graph theory to detect suspicious behavior on the Web.
This is the case of algorithm Crochet [31] that aims at identifying quasi-cliques based
on an innovative heuristic; it is also the case of MultiAspectForensics [24] that uses
tensor decomposition to detect patterns within communities, including bipartite cores.
In another work, Eigenspokes [32] uses singular-value decomposition to detect unex-
pected patterns in phone call data; also, Netprobe [27] uses belief propagation to find
near bipartite cores in e-commerce graphs. Note, however, that: in spite of the many
qualities of these related works, none of them focuses on performance at the same scale
that we do; furthermore, they do not study the same problem that we do here, that is,
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the detection of a set of users fraudulently interacting with the same set of products
at around the same time. In fact, the closest approach to our work is the CopyCatch
algorithm [4], which focuses on the unweighted version of the problem in a parallel,
distributed setting – its experimental results reported used one thousand machines. In
our work, we introduce a vertex-centric asynchronous parallel algorithm that runs in
one single commodity machine, whose performance rivals to that reported in this for-
mer work, still achieving similar accuracy rates.

3.3. Lockstep formulation
In this section we provide a mathematical description of the lockstep detection

problem. As it was mentioned in the introductory Section 1, we generalize the problem
by amplifying its scope to defamation and illegitimate promotion. But before doing
so, we present in the following the original formulation for the concept of a lockstep,
which was formally defined by Beutel et al. [4] as a temporally-coherent near bipartite
core. Along this section, please refer to Table 1 for a list of symbols and definitions.

Definition 1. A set of products P and a set of users U comprise an [n,m,∆t,ρ]-
temporally-coherent near bipartite core if and only if there exists Pi ⊂ P for all i ∈U
such that:

|P| ≥ m (1)
|U | ≥ n (2)
|Pi| ≥ ρ|P| ∀i ∈U (3)

(i, j) ∈ E ∀i ∈U, j ∈ Pi (4)
∃t j ∈ R s.t. |t j−Li, j| ≤ ∆t ∀i ∈U, j ∈ Pi (5)

In other words, we have a lockstep if we find a set of products P that was recom-
mended by a set of users U within a ∆t time window; we relax this definition with
parameter ρ , which states that we also have a lockstep if we partially (ρ percentage)
satisfy this definition. Note that what makes the problem even more challenging is the
temporal factor; also, note that the problem refers to reducing the search space of frauds
by pointing out suspicious behaviors, which can turn out to be actually fraudulent, or
not. Figure 1 illustrates the concept of a lockstep. It shows how bipartite cores are
formed and it also highlights the independence of the time-windows that are exclusive
to each product.

While we are considering the aforementioned definition of suspiciousness, it is also
important to discuss how effective it is in preventing malicious agents from manipulat-
ing recommendations. In other words, we are interested in finding how much damage
agents could inflict without being detected. The core fact in the definition of an attack
is that: the smaller the attack, the smaller its harm; in consequence, while it is hard to
detect very small attacks, they tend to have no use unless they occur in extremely high
cardinality. The boundaries of this relation for a non-temporal version of the problem
are an open problem, as it is discussed in previous works [4, 36]. The challenge be-
comes even harder when time is considered, as we do in this paper, which sets up an
extension of the problem.
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Figure 1: Lockstep illustration: A group of users (1,2 and 3) recommends a group of
products (A and B), within limited time-windows for each product, forming a bipartite
core.

In this context, it is possible to conclude that, while we may miss very small at-
tacks and trying to detect them might raise the number of false positives, given the
controlled conditions, an adversary can only do a limited amount of damage without
getting caught. Finding an optimal strategy of attack is also related to the same open
problem discussed before, and since we consider individual temporal centers for each
lockstep, one cannot merely use common strategies, such as to wait for a given amount
of time before attacking other products with the same users as he/she would be caught
anyway. Additionally, the fine tuning of our algorithm’s parameters allows the user to
detect different types of attacks, further diminishing the possibilities of an adversary to
bypassing the system.

4. Methodology

4.1. The generalized lockstep problem

This section shows how to enhance the potential semantics of the lockstep-detection
problem by taking into account the weights of edges (e.g., recommendations’ scores).

Given the formulation presented in Section 3.3, we propose new semantics to the
problem by considering weights of edges to define the concepts of defamation – Equa-
tion 6 – and illegitimate promotion – Equation 7. These weights correspond, for in-
stance, to the numeric evaluation (score) given by a user to a product in a recommen-
dation website. Our formulation considers the weights to be positive integers, and we
use a threshold κ to distinguish between defamation and promotion.

Wi, j ≤ κ , i ∈U, j ∈ Pi (6)
Wi, j ≥ κ , i ∈U, j ∈ Pi (7)

We consider the problem as an optimization problem, whose objective is to catch
as many suspect users as possible, while only growing P until parameter m is satisfied.
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Symbol Definition

M and N Number of nodes in each side of the bipartite graph.
C Set of locksteps.
I M×N adjacency matrix.
L M×N matrix holding the timestamp of each edge.
W M×N matrix holding the weight of each edge.

U [c] and P[c] Set of users or products in lockstep c.
m and n Minimum number of products and users in the lockstep to

be considered valid.
∆t Size of the timespan.
ρ Threshold percentage that the cardinality of the sets of

products and users must satisfy to be in a lockstep.
nSeed Number of starting seeds for the algorithm to begin search-

ing for locksteps.
λ and κ Function and threshold used to define defamation and pro-

motion.
ν j Current average time of suspicious recommendations to

product j.

Table 1: Symbols and Definitions.

Our objective function is in Equation 8. The goal is to find U [c] and P[c] to maximize
the number of users and their interactions for a given cluster c.

argmax
U [c],P[c]

∑
i

q(Li,∗|c,Wi,∗|c,P[c]) (8)

where

q(u,w,P[c]) =

{
σ if σ = ∑ j∈P[c] Ii, jφ(ν j,u j)λ (w j)≥ ρm
0 otherwise

(9)

φ(tν , tu) =

{
1 if |tν − tu| ≤ ∆t
0 otherwise

(10)

λ (g j) =

{
1 if g j ≥ κ

0 otherwise
for promotion (11)

λ (g j) =

{
1 if g j ≤ κ

0 otherwise
for defamation (12)

Equations 11 and 12 refer to our definitions of illegitimate promotion and defama-
tion, respectively, while Equation 9 shows how we incorporate these weight constraints
in the original problem, through the definition of a threshold function λ . That is, we
expand the formulation by including new information relative to the weight of these re-
lationships, as well as incorporate such definitions in the objective function, effectively
broadening the scope of the problem and its potential applications.

4.2. Algorithm ORFEL
In order to find locksteps, this section presents the Online-Recommendation

Fraud ExcLuder (ORFEL), a novel, iterative algorithm that leverages the idea of
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vertex-centric processing introduced in Section 2.1 to expand and improve both the
scope (weighted graphs) and the efficiency (scalability on a single computer) of current
state-of-the-art approaches. Each iteration of our algorithm executes two functions:
updateProducts and updateUsers that, respectively, will add/remove products and
users from a lockstep that is being identified. The algorithm iterates until convergence
– that is, until sets P and U stabilize for all the locksteps that were found; we consider
that a lockstep is stable when no new product or user enters or leaves the lockstep in
one iteration, compared to the previous one. The full pseudo-code of ORFEL is in
Algorithm 3.

Initialization
The algorithm relies on seeds to search the data space; the general idea is to have each
seed inspecting its surroundings looking for one local maximum. Each seed in the
algorithm corresponds to one potential lockstep, which comprises a set of products and
a set of users. The initial seeds correspond to minimum locksteps, that is, locksteps
with one single product, and a few (≥ 1) users each – the only requirement for the
initial set of users is that it cannot be an empty set.

The initialization step randomly chooses products of the dataset, each one corre-
sponding to one seed. Then, for each product (seed), ORFEL forms initial locksteps by
randomly choosing a constant, small number of users that recommended this product.
This is necessary so that the algorithm has initial elements – P[i] and U [i] for every
ith-lockstep – scattered throughout the search space. Later, the initial locksteps will
grow iteratively in number of products and users.

Product update
In procedure updateProducts – see Algorithm 4 – we only consider vertices that are
products, so modifications occur in set P[i] only. This function is called for every
product to test if it fits in one of the locksteps; the test is performed for all locksteps.
One product enters a given lockstep if at least ρ percent of the users currently in the
lockstep recommended that product within a ∆t time window. To compute this percent-
age, the algorithm only considers recommendations that fit the given weight constraint
(represented by the λ function), which characterizes either defamation or illegitimate
promotion.

For locksteps with m products, that is, those with the maximum number of
products, we test if it is worth to swap one of its products for the candidate one. This
test is similar to the one used to add a product, except that, to be swapped, now the
candidate product must contain a superset of the set of recommendations that the
current product has. This is a heuristic approach that leads to an additional coverage of
the search space because, as we look for supersets of recommendations, the locksteps
tend to increase in size.

User update
Procedure updateUsers – see Algorithm 5 – considers only vertices that are users, so
it modifies set U [i] only. Similarly to what is done in step updateProducts, we update
each lockstep separately by testing if the current user can be added to it. A candidate
user will enter a lockstep if it recommends at least ρ percent of the products in the
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cluster within a 2δ t time window of each of the products’ time centers - that is, the
average recommendation time on that product inside the lockstep - and if it fits the
desired weight constraint. If the candidate user fills the requirements, it is added to
that lockstep. Note that this step allows users outside the actual δ t time window to
enter the lockstep; this is the mechanism that drives the lockstep towards a better local
maximum, whenever there exists one. We propose to use 2δ t, following empirical
evidence obtained from both our work and the state-of-the-art Beutel’s [4] approach.

End iteration
As it can be seen in Algorithm 3, we run procedure endIteration right after step
updateUsers is complete. This additional step is described in Algorithm 6. For all
locksteps, the algorithm sorts the 2∆t recommendations by their timestamps and scans
them sequentially looking for the subset that maximizes the recommendation criterion
(number of recommendations); the target subset must fit a ∆t window. This is the core
mechanism of our algorithm; what it does is to let a 2∆t time window to take place
at first, then, from the corresponding set of recommendations, it selects a subset that
maximizes the target criterion. This mechanism is what makes the seeds “inspect” their
2∆t neighborhoods. If the recommendation set changes, a new iteration will lend new
products and users to entering/swapping into the lockstep, until convergence. Once a
seed finds a local maximum, it stops evolving and does not change anymore.

Note that some seeds may converge sooner than others, leading to locksteps smaller
than parameters m and n. These seeds are considered “dead” (no modifications between
iterations), so they are ignored by the algorithm. They can occur from the second
iteration on, after which the number of locksteps (live seeds) becomes smaller than the
initial number of seeds. The algorithm converges when all seeds are “dead”.

Algorithm 3 ORFEL Algorithm.

function ORFEL(n,m,ρ,∆t,nSeeds)
Initialize U [nSeeds],P[nSeeds] . Initial Seeding
repeat

U ′ =U
P′ = P
for each product p in |V | do

P = updateProducts(p)
for each user u in |V | do

U = updateUsers(u)
endIteration()

until U ′ =U and P′ = P
return [U,P]

4.3. Discussion about the parameters
As it can be seen in Algorithm 3, ORFEL has five parameters: m, n, ρ , ∆t and nSeeds.
The first two, m and n, respectively refer to the cardinality of products and users that
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Algorithm 4 updateProducts

procedure UPDATEPRODUCTS(vertex)
for each Lockstep c ∈C do

Recomms←U [c].edges∩ vertex.edges
timeCenter← avgtime(Recomms)
for each edge e in Recomms do

if |e.time− timeCenter|> ∆t and λ (e.weight) then
Recomms = Recomms−{e}

if |P[c]|< m then
if (|Recomms|/|U [c]|)≥ ρ then

P[c] = P[c]∪{vertex}
else

for each product p ∈ P[c] do
if p.Recomms⊂ Recomms then

swap = p
P[c] = (P[c]−{swap})∪{vertex}

Algorithm 5 updateUsers

procedure UPDATEUSERS(vertex)
for each Lockstep c ∈C do

Recomms← P[c].edges∩ vertex.edges
for each edge e in Recomms do

pCenter← avgtime((u, e.vertex), u ∈U [c])
if |e.time− pCenter|> ∆t and λ (e.weight) then

Recomms = Recomms−{e}
if (|Recomms|/|P[c]|)≥ ρ then

U[c] = U [c]∪{vertex}

Algorithm 6 endIteration

procedure ENDITERATION
for each Cluster c ∈C do

for each product p ∈ P[c] do
Sort U[c] by the time of the Recomms
Scan sorted U[c] for the 2∆t-subset that maximizes the number of

Recomms
Remove the users from U[c] that are not in the subset
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the algorithm verifies when evaluating suspicious locksteps. Parameter ρ is the mini-
mum percentage (the tolerance fraction) of products ρ ∗m for the algorithm to state that
a bipartition is, in fact, suspicious. Although one can freely alter the value of ρ , based
on empirical evidence, we suggest using no less than 80%, otherwise, the locksteps
might degenerate. Note that we use a single value of ρ for both users and products,
because, intuitively, this parameter is expected to be nearly the same for the two enti-
ties; nevertheless, algorithmically, one could easily adapt our proposal to use different
values at the cost of greater computational complexity. Parameter ∆t defines the time
window within which the interactions (recommendations) should take place. Finally,
parameter nSeeds refers to the number of seeds that the algorithm will spread through
the search space, each one looking for one suspicious lockstep.

Parameters m and n define the aspects of the suspicious behaviors that we are look-
ing for. Increasing (or decreasing) the value of m or n means that we want to find
suspicious behaviors involving more (or less) products and/or users. These values
define what we call “AttackSize”, i.e., the dimensions of the attacks that we presume
to exist. In practice, parameters m and n filter out attacks that are too small and/or too
large, what may be desired depending on the domain. In the experimental Section 5, we
evaluate how distinct configurations of AttackSize impact the efficacy of our algorithm.

Parameter ρ makes the algorithm flexible about different types of attacks, including
those in which the users attack only a fraction (percentage) of the expected number of
products m in the locksteps. The value of ρ defines how tolerant we want to be with
respect to the very definition of suspiciousness. If we set ρ to 1, only perfect full
locksteps would be considered, in which every user recommended every product of
the cluster. On the other hand, if we set ρ too low, such as ρ = 0.5 for instance,
only half of the users would have to recommend each product, possibly leading to
incorrect assumptions about the concept of suspiciousness. In practice, ρ defines that
the algorithm should have a tolerance around m and n. Note that parameters ρ , m and
n depend on the semantics of the problem’s domain and ought to be different for each
application. It is also true for parameter ∆t, which we describe as follows.

Parameter ∆t is the time span to be defined by the analyst when searching for at-
tacks. For instance, let us assume the context of attacks in a social network; in this
setting, one could argue that a time span as large as a couple of hours is enough to find
ill-intended interactions. On the other hand, in the context of online reviews, the time
span of one week could be more appropriate. Note that the same reasoning can also be
used to define parameters m and n.

Finally, parameter nSeeds controls ORFEL’s potential of discovery; as we show in
the experiments (see Figure 3), the minimum number of seeds required to analyze one
given dataset follows a linear correlation with the data size.

4.4. Convergence
Our algorithm finds a set of local maxima for the objective function defined in

Equation 8. Note that this function is bounded, since the sets of users and prod-
ucts are limited. Therefore, convergence depends solely on the behavior of steps
updateProducts, updateUsers and endIteration.

In step updateProducts, the algorithm checks if a given product should be added
to any of the current locksteps, deciding to include or to swap that product only if it
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covers more recommendations than what we have so far. As a result, the objective
function may only improve or stay unaltered after this step. On the other hand, step
updateUsers attempts to add suspect users to the existing locksteps by extending the
size of the time-window, while step endIteration makes sure that only the largest set of
users fitting in the best ∆t time-window is added to each lockstep. As a consequence,
these last two steps can only improve our objective function, by including more users,
or leave it unaltered if no users are added.

These observations lead us to conclude that the locksteps grow asymptotically in
our algorithm, eventually reaching a local maximum that prevents changes between two
iterations. Therefore, ORFEL always converges despite the data given as input. Be-
sides this theoretical exercise, the convergence of our algorithm is empirically demon-
strated in Section 5.

4.5. Computational cost

To study the computational cost of our algorithm, let us assume that the graph G
received as input has size D bytes; we have M bytes available in main memory, and; the
disk blocks have b bytes each. In this setting, ORFEL splits the graph into dP = D/Me
parts. Each part contains edges that are sorted in disk according to their source vertices
so that the graph is processed by reading the parts twice, first as targets and then as
sources. Therefore, in order to read the entire graph, it is necessary to read B = D/b
disk blocks twice, or 2B times. For each part it is also necessary to read the other
P−1 parts, leading to P2 disk seeks. Therefore, the cost of disk operations is given by
P2 disk seeks +2B block reads per iteration.

ORFEL runs for I iterations. In each iteration, besides the disk operations, it runs
once for each of the S seeds (worst case) processing in memory all the |E| edges of the
graph at each time. Therefore, the processing cost of the algorithm is I ∗O(S∗ |E|).

Each iteration of the algorithm asks for a reorganization step in which the locksteps
of each seed are redefined based on the results annotated in the last iteration. For I
iterations, S seeds, n users and m products, this step runs at cost I ∗O(S ∗ n ∗ (m ∗
log(m))). Part of this cost is due to the operation of sorting in memory (logarithmic
time). This is the worst case scenario, when the algorithm processes all seeds – the
cost drops abruptly after a few iterations because the majority of the seeds does not
grow; instead, they stop evolving at a local maximum that is too small to be considered
a lockstep, being ignored in further iterations.

Finally, the total cost of ORFEL is I ∗ (P2 disk seeks + 2B block reads+O(S ∗
|E|) +O(S ∗ n ∗m ∗ log(m))). Note that the cost of processing is irrelevant, since it
is 6 orders of magnitude smaller than that of a mechanical disk and 4 orders smaller
than that of a solid-state disk. As so, the main cost of ORFEL is I ∗ (P2 disk seeks +
2B block reads). Note, from our analysis, that the computational cost depends on the
amount of main memory available, which is used as a buffer for data coming from disk;
hence, all the runtime measurements reported in the next section could be smaller if we
had more memory to use.
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Dataset # Users #Products # Total nodes # Edges
Amazon.FineFoods 256,059 74,258 330,317 568,454
Amazon.Movies 889,176 253,059 1,142,235 7,911,684
Synthetic.C 2,000,000 8,000,000 10,000,000 100,000,000

Table 2: Datasets.

5. Experiments

5.1. Experimental setting

We implemented ORFEL using Java 1.7 over the GraphChi platform, as stated in Sec-
tion 2.2. We ran our experiments on an i7-4770 machine with 16 GB of RAM, and
2TB 7200RPM HDD; for the tests with SSD, we used a 240GB drive with I/O at
450MB/s. For full reproducibility, the complete experimental setup is publicly avail-
able at www.icmc.usp.br/pessoas/junio/ORFEL/index.htm, including source
codes and graph/lockstep generators.

We studied two real-world graphs: Amazon.FineFoods and Amazon.Movies. They
are publicly available at the Snap project [20] web page at snap.stanford.edu/.
Both datasets comprise user-product recommendation data from the Amazon website;
the first one refers to the section of fine food products and the second one contains
reviews of movies. For each review, we have the corresponding timestamp and one
numeric evaluation (score) ranging from 1 to 5. Synthetic graphs were also studied so
to generalize the scope of our tests. To generate the data, we used a bipartite graph
generator that works based on the Gnmk model available on NetworkX [15], in which
n stands for the number of nodes in the first bipartite set; m stands for the number
of nodes in the second bipartite set; and k is the number of randomly generated
edges connecting both sets. Table 2 lists the two Amazon datasets and the synthetic
dataset Synthetic.C, which was generated using n = 2,000,000, m = 8,000,000
and k = 100,000,000. Additionally, we generated benchmark datasets that are
larger versions of dataset Synthetic.C; they were used to study the scalability of our
algorithm, as it is described in Section 5.4.

Experimental goals
The main feature expected from ORFEL is the ability to detect lockstep attacks, either
those related to defamation or the ones of illegitimate promotion. As it was men-
tioned in Section 3.1, this is one NP-hard problem that we approximately solve via an
optimization approach. Considering these aspects, we verify: the correctness of our
algorithm in Section 5.2; its efficacy (i.e., the ability to find the majority > 95% of the
lockstep attacks) in Section 5.3; and; its efficiency (i.e., the ability to reach efficacy
within desired time constraints) in Section 5.4.

5.2. Preliminar tests under controlled conditions

In the first experiment, we used 4 small (thousand-edge scale) synthetic graphs to
verify if the algorithm detects locksteps only when they really exist. These are the
controlled conditions of our experimentation, that is, we wanted to make sure that the
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(b) Amazon.Movies - Parameters (50,25,0.8,1000)
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Figure 2: Experiments of efficacy: the percentage of attacks caught versus the size of the
artificially generated attacks. Parameters are described as (n,m,ρ ,nSeeds).

algorithm would not point out suspect behaviors when we had ascertained that there
were none to be detected. We generated synthetic graphs in which no product, nor set
of products would configure a given suspect behavior, such as 10 products and 25 users.
We then ran ORFEL with varying parameters, including m = 5, n = 10 and m = 10,
n = 25 and verified that, as expected, no lockstep was detected. The same results could
be inferred from the algorithm description in Section 4.2 and also from the discussion
in Section 4.4, still, we verified this feature empirically.

5.3. Efficacy

We define efficacy as the ability to identify the majority (> 95%) of the locksteps.
To test this feature, we created controlled conditions with artificial attacks appended
to our datasets that allowed us to evaluate the output of the algorithm. Algorithm 7
shows how we generated such attacks, by randomly choosing a group of products and
users and then connecting them within a limited ∆t time window. This was necessary
because, since the problem is NP-hard, we would not be able to know whether or
not the output of the algorithm is correct considering uncontrolled conditions. This
problem is a variation of subspace clustering, considering the semantic that the clusters
(locksteps) are unusual and, therefore, suspect. Note that we did not focus on the issue
of determining whether or not a given suspect lockstep is actually an attack, since this
is one distinct problem that demands extra information (i.e., identification, customer

15



profile, and so on) to be evaluated by means of false-positive and true-positive rates.

Algorithm 7 Lockstep Generator

procedure LOCKSTEPPER(Graph G, nUsers, nPages, ∆t)
users = GetRandomUsers(G, nUsers);
pages = GetRandomPages(G, nPages);
for each Page P ∈ Pages do

timestamp = getRandomTimeStamp();
rating = getRandomRating();
for each User U ∈ Users do

newTimeStamp = timestamp + getRandomVariation(∆t);
addEdge(G, U, P, newTimestamp, rating);

Attack size
In order to analyze the ability of the algorithm to find locksteps of different sizes, we
ran experiments for each of the three datasets described in Table 2. We fixed m and n
in each case while varying the sizes of the artificial attacks appended to the dataset, so
to be able to see how effective the algorithm is, depending on the size of the attacks.

In the first experiment, for each dataset of Table 2, we appended artificial attacks
to the data with sizes varying from 10 users and 5 products to 1,000 users and 500
products. This allowed us to observe the percentage of attacks caught for each con-
figuration – in Figure 2(a), (n = 10,m = 5,ρ = 0.8,nSeeds = 1000); in Figure 2(b),
(n = 50,m = 25,ρ = 0.8,nSeeds = 1000); and, in Figure 2(c), (n = 50,m = 25,ρ =
0.8,nSeeds = 3000). One can see a similar behavior in all plots; that is, the percent-
age of users caught tends to grow as their sizes become larger than the size described
by the input parameters given to the algorithm. Intuitively, the larger the attacks are,
the more likely that they will be detected using a given configuration. Concomitantly,
the smaller the attacks, the less harmful they are. Lastly, notice that even the smaller
attacks could be detected with proper parameters – in this experiment, however, we
wanted to demonstrate the general behavior of the algorithm when using specific pa-
rameter settings, and not whether or not smaller attacks could be detected.

This experiment also indicates that ORFEL behaves as expected for such task in
terms of efficacy. That is, if we compare the behavior of ORFEL with that of the
state-of-the-art algorithm CopyCatch – see Figure 6b at [4] – one can see that both
approaches present a very similar curve for spotting artificial attacks according to the
attack size and the algorithm parameterization. The results in [4] maintain the same
intuition regarding which attacks are easier to detect and how important is the parame-
ter tuning, therefore, they corroborate our conclusions with regard to ORFEL’s efficacy.

Number of seeds
We also used our three datasets to study the behavior of ORFEL regarding the number
of seeds that it uses. We ran each experiment 4 times in each dataset – as the algorithm
is non-deterministic – and report the average response. It was a requirement that none
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of the 4 runs would present discrepant results, and we were able to verify this desirable
property since the variance of the results was on the order of 1%. We introduced 20
synthetic attacks (10 defamations and 10 illegitimate promotions) in each dataset and
varied the number of seeds from 1,000 to 7,000. Figure 3 reports the results obtained
in these experiments. For dataset Amazon.FineFoods – the smaller one with 550 K
edges – we were able to catch over 95% of the attacks with 4,000 seeds. Interestingly,
the average of attacks caught with 5,000 seeds was significantly lower, indicating that
the algorithm reached its peak performance with nearly 4,000 seeds and only had some
variation afterward due to its non-determinism. Figure 3 also reports that the algo-
rithm caught over 95% of the attacks with 6,000 seeds in dataset Amazon.Movies (8 M
edges), and; it caught over 95% of the attacks with 7,000 seeds in dataset Synthetic.C
(100 M edges). These results indicate that the best number of seeds follows a linear
correlation with the data size, being approximately 103 ∗ log(number o f edges). For
our 3 datasets, it is ∼ 5800, ∼ 6900 and ∼ 8000 respectively.
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Figure 3: Experiments of efficacy: the percentage of attacks caught versus the number
of seeds. Efficacy is demonstrated when over 95% of the attacks are caught. Parameters
[n,m,ρ ,AttackSize(Users,Products)] are: Synthetic.C [50,25,0.8,(750,375)]; Amazon.Movies
[50,25,0.8,(500,250)]; Amazon.FineFoods [10,5,0.8,(50,25)].

From this experiment we verified that ORFEL is effective; it identified more than
95% of the attacks in three datasets of different sizes. Also, notice that the algorithm
accurately detected attacks of distinct sizes, as it can be seen in the parameters of
Figure 3. It means that ORFEL fits the peculiarities of distinct domains.

Experiments on real data
We performed additional experiments using our real datasets Amazon.Movies and
Amazon.FineFoods, this time without including any synthetic data. In this context,
we considered that a suspect behavior would be 20 users positively recommending 6
movies or food products in less than a week, which, in this semantic context, is an in-
tense load of recommendations. We ran the algorithm and found 37 suspect locksteps;
it took 8 minutes to achieve convergence for the largest dataset, Amazon.Movies. Since
the execution time was quite small, we also tested the algorithm using variations of the
initial attack description, with 15 users and 7 movies within a week, and also 10 users
and 10 movies within three days. After manually analyzing the suspect locksteps, we
discovered that they were caused by amazon’s policy of using different identification
numbers for different flavors/sizes of the same food product, and for different versions
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of the same movie, while merging their reviews. Although the locksteps found were
not actual attacks, this simple experiment revealed a behavior that should be better an-
alyzed since the aforementioned Amazon’s policy could eventually lead customers to
misleading choices. In summary, we were able to identify, in a universe of 1,140,000
nodes and 8,000,000 edges, tiny temporal patterns that demand close attention to be
noticed. We also emphasize the reduced time required to obtain such results, which
allowed us to study different parameter settings according to the data semantics.

5.4. Efficiency and scalability

Due to the current scale of network-like data, our method must be efficient. That is,
it must handle billion-scale graphs in reasonable time. We tested this requirement
with synthetic, benchmark datasets that are larger versions of dataset Synthetic.C.
Although there are plenty of real data related to our problem (network data, including
edge weights and time stamps), such data is rarely shared by companies due to privacy
matters.

Preprocessing
Asynchronous Parallel Processing platforms like those reviewed in Section 2.2 demand
a preprocessing step in which the data is organized and formatted in accordance to
the platform’s paradigm. In our case, this step converts text to binary data, then it
sorts and writes the vertices in order, so to have them read from disk with sequential
scans, minimizing the number of seeks. We take nearly 45 minutes, wall-clock time,
to preprocess 1 billion edges on a mechanical disk, and nearly 15 min. on a solid-state
disk – for a given dataset, preprocessing is necessary only once, no matter how many
times we shall process the data later on.

Number of edges
We tested the time scalability of our algorithm regarding the number in edges of the
input graph. In the first experiment, we ran ORFEL with 100 seeds; we took 7 runtime
measurements with the number of edges varying from 50 million to 1 billion, each of
these measures were obtained as the average of 3 individual runs. Figure 4 reports
the results for the mechanical disk; clearly, the runtime scales linearly with regard to
the number of edges. For this configuration, ORFEL took 143 min. (≈2.38 hour) to
process 1 billion edges stored on a mechanical disk, and 78 min. (≈1.3 hour) using a
solid-state disk.

We argue that this performance is very efficient because the previous work (see
Figure 4a in Beutel et al. [4]) took ≈0.5 hour to do a similar processing with
one thousand machines over MapReduce, while we used one single commodity
machine. Our gain in performance is considerable because the former work executes
a sequential (non-parallel) algorithm to compute one seed at a time in each machine;
therefore, performance comes at the cost of using thousands of machines, each
one executing an instance of the computation, in a distributed environment that has
heavy communication demands. Differently, our algorithm explores the fact that
the problem can be solved considering only the neighborhood of each node, thus
allowing us to process the graph in a parallel asynchronous mode with multiple seeds
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being processed simultaneously. Note that our gains in performance were not only re-
markable – they also made it possible to tackle the problem using commodity hardware.
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Figure 4: Experiments of scalability on the number of edges: linear growth of computation
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Number of seeds
We also studied the runtime of ORFEL with distinct numbers of seeds. In this exper-
iment, we used a graph with 100 million edges varying the number of seeds from 100
to 5,000. Figure 5 reports the results; as it can be seen, our proposed method scaled
linearly in time with regard to the number of seeds. The algorithm took 10 min. to
process the data using 100 seeds, while it took 298 min. with 5,000 seeds; that is a
30-times increase in runtime for a 50-times increase in the problem input.
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Figure 5: Experiments of scalability on the number of seeds: linear growth (line coefficient <
1) of computation time versus the number of seeds for mechanical disk (HDD) over 100 million
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6. Conclusions and future work

6.1. Conclusions

We conclude that, although the problem of detecting fake online interaction over
time is NP-hard, it is possible to timely detect most of the malicious activities even
with low-cost computer machinery. To do so, we designed a vertex-centric-based graph
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algorithm using the asynchronous parallel processing paradigm. The general problem
is modeled as a bipartite weighted and timestamped graph from which we want to
detect temporal near-bipartite cores. This model suits to problems of systematic attacks
aimed at defaming or promoting online entities in applications of high-impact, e.g.,
user-product recommendations, user-app evaluations and journal-journal co-citations,
which may be performed by means of fake users, malware credential stealing, Web
robots, and/or social engineering. To validate our proposal, we studied two real graphs
of e-commerce, besides synthetic data.

Finally, we emphasize the importance of detecting lockstep behavior, either for
defamation or promotion, because these frauds may harm both customers and vendors
by inducing sales of unverified products. We also note that this problem gets even more
relevant as the Web 2.0 expands, in which the habits of the users are heavily influenced
by online trading and recommendation.

6.2. Future work

First, an interesting direction would be further analyzing the boundaries of poten-
tial damage an attacker could inflict without being detected, given by the compromise
between the size of the attack and the number of attacks. Which as stated in 3.3 is an
open problem. Also, as we mentioned before in Section 1, ORFEL suits other prob-
lems that can be represented as graphs, lending support to additional applications as
detailed next.

6.2.1. Social networks
In social networks, the usual interaction is to like a given post, such as in Google+ or in
Facebook; for this configuration, locksteps characterize solely illegitimate promotion,
in which a given post (or page) gets fake likes from attackers willing to make it more
relevant than it really is. According to the model of ORFEL, this problem refers to one
unweighted bipartite graph, i.e., all edges weight the same.

6.2.2. Journal co-citations
Given the pressure for relevance and impact, some scientific journals may use a co-
citation scheme in which one journal cites the other and vice-versa, just like in the case
spotted by Nature in 2013 [26]. According to this scheme, which is one variant of the
lockstep behavior, a journal tends to favor papers that cite a specific journal; editors
may even recommend authors what to cite in their work as a condition for publication.

To identify this kind of lockstep behavior is not a trivial task because systematic co-
citation tends to “disappear” along years of publications, provided that such schemes
are usually covered by the volume of legitimate citations and by the magnitude of time.
For example, it is reasonable to have co-citation between any two journals in a period
of 10 years. The problem becomes even harder if more than two journals – e.g., three or
four journals – set up the scheme. In this case, a simple journal-to-journal interaction
may not be sufficient to detect the scheme. The temporal factor and the volume of data
make it a problem much harder than simply detecting bipartite subgraphs.

This problem is another instance of the lockstep detection problem studied in our
work. With ORFEL, it is possible to spot co-citation occurring, let us say, within
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periods of 1 or 2 years for any number of journals. For time intervals such as those,
one may suspect if a set of journals cite each other with high intensity.

In this specific case, our problem formulation changes a little. Our model assumes
users recommending products – a bipartite graph; for detecting journal co-citations
we must replicate the set of journals under investigation. That is, each journal must
be represented twice in the model: once as a citing journal and one other time as
a cited journal, thus, defining a bipartite graph as expected by our algorithm. The
output of ORFEL, then, shall present bipartite subgraphs. However, distinctly from
the user-product model, it is not enough to identify bipartite subgraphs as an indication
of fraud; we must also have a high similarity between the two sets of nodes in each
subgraph. This similarity can be straightly evaluated using the Jaccard set similarity:
Jaccard = |set1 ∩ set2|/|set1 ∪ set2|, which returns 1 if two sets are exactly the same,
and 0 if they have no intersection. For the co-citation problem, our algorithm could be
configured to return the set of bipartite subgraphs ordered by their Jaccard similarity.
Of course, ORFEL spots behaviors that are solely suspicious – not definitive frauds;
they must go through human interpretation for a definitive decision, considering, for
example, that it is expected that the journals with very high impact rates cite each other,
while the same behavior is not expected for journals with lower impact rates.

Note that our algorithm cannot only detect suspicious co-citation cases – it can do
it very efficiently. Since ORFEL is fast and scalable, it can virtually inspect all the
publication interaction ever produced in just a few hours.
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