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Abstract

We study influence of ordinal transformations on results of queries in rank-aware databases

which derive their operations with ranked relations from totally ordered structures of scores

with infima acting as aggregation functions. We introduce notions of ordinal containment and

equivalence of ranked relations and prove that infima-based algebraic operations with ranked

relations are invariant to ordinal transformations: Queries applied to original and transformed

data yield results which are equivalent in terms of the order given by scores, meaning that

top-k results of queries remain the same. We show this important property is preserved in

alternative query systems based of relational calculi developed in context of Gödel logic. We

comment on relationship to monotone query evaluation and show that the results can be

attained in alternative rank-aware approaches.

1 Introduction

In this paper, we describe invariance to ordinal transformations in query systems which incorporate

ranking of query results and allow to compare the importance or relevance of query results based

on their scores. We present general observations which may be applied in various rank-aware

approaches, see [25] for an extensive and systematic survey of existing approaches. In particular,

we present detailed analysis in a particular relational query system where queries are expressed

by arbitrary complex algebraic expressions and answered by relations with tuples annotated by

scores (so-called ranked relations or ranked data tables). While we analyze the issues of ordinal

transformations in one particular rank-aware model, the presented technique is indeed general and

can be applied to other models which we demonstrate by showing analogous results for RankSQL

proposed by [28].

The practical contribution of the results presented in our paper is in exposing transformations

of input ranking criteria which do not alter results of queries. Typically, rank-aware queries may be

understood as classic queries which in addition incorporate ranking criteria like “low price”, “high

availability”, “close distance”, etc. Such criteria may be defined in many ways and/or may depend
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on various parameters. For instance a “distance of locations” of houses in a city may be based on a

geographical distance, a road traveling distance, or it may be based on socio-economic parameters

such as criminality rate and rating of schools, etc. Therefore, there is a natural question whether

results of queries change if the ranking criteria are altered.

To further explain the issues studied in this paper, we can consider the motivation presented

in the classic paper by Fagin [15]: We assume a query system which admits queries that can be

answered by relations with tuples annotated by scores. We assume that the scores have comparative

meaning (higher scores mean better matches) and users are interested in listing query results sorted

by scores with highest scores coming first. Recall that in [15], scores of results of queries which

are expressed as conjunctions of subqueries are computed using monotone and strict aggregation

functions, typically triangular norms [27] on the real unit interval. For instance, consider an

expression

notExceeding (PRICE, $800,000) AND near (LOCATION, "Old Palo Alto") (1)

which may be regarded as query for houses sold at $800,000 (or a similar price which does

not exceed the value too much) in Old Palo Alto (or near that general area). The subqueries

notExceeding (PRICE, $800,000) and near (LOCATION, "Old Palo Alto") may be understood as

restrictions using ranking criteria notExceeding and near which we further call general restriction

conditions. The result of evaluating (1) may be seen as a ranked relation which results by first eval-

uating the subqueries notExceeding (PRICE, $800,000) and near (LOCATION, "Old Palo Alto")

which produce ranked relations as the results of subqueries and then aggregating the scores by a

conjunctive aggregation function ⊗. If the scores come from the real unit interval, it is natural to

assume that

a⊗ 1 = a, (2)

a⊗ b = b⊗ a, (3)

a⊗ (b⊗ c) = (a⊗ b)⊗ c (4)

are satisfied for all a, b, c ∈ [0, 1] and ⊗ is monotone (isotone) with respect to the usual ordering

of reals:

if a ≤ b, then a⊗ c ≤ b⊗ c (5)

for all a, b, c ∈ [0, 1]. Functions satisfying such conditions are called triangular norms [27] and may

be understood as generalizations of (truth functions of) the classic conjunction [17].

The main concern of [15] are algorithms for efficient computation of top-k results of queries

like (1). Interestingly, the paper shows a simplification of the main algorithm for returning the top-

k answers of monotone queries in case the utilized aggregation function ⊗ coincides with min(x, y).

In this paper, we show that the choice of minimum as the basic conjunctive aggregation function

has another important (and desirable) consequence:

Consequence 1. Top-k results of queries do not change if ordinal transformations are applied to

the input data and all restriction conditions which appear in queries.
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By an ordinal transformation we mean a transformation which modifies scores but preserves

the order of tuples given by the scores (a precise definition follows in the paper). We call Conse-

quence 1 the invariance to ordinal transformations. It can be shown that the consequence does not

hold in case of general aggregation functions. Therefore, Consequence 1 describes an important

property of a particular query system supporting top-k queries. Systems supporting top-k queries

are recently gaining interest [29, 32, 36] and investigations in this direction may be exploited as

optimization techniques. For instance, in case of reiterated queries executed with different param-

eters, observations like Consequence 1 may help identify that certain changes in input parameters

will have no influence on the results of top-k queries. Such observations are beneficial especially

in case of processing large data collections [6].

We investigate the invariance to ordinal transformations independently on the chosen structure

of scores. Instead of assuming a subset of reals with its natural ordering as the set of scores, we

assume that the set of scores forms a totally ordered set where infima (greatest lower bounds)

exist for arbitrary subsets of scores. Note that in this setting, an infimum of a finite non-empty

set of scores is its minimum element with respect to the total order of scores. Considering such

general structures of scores, we introduce algebraic operations on ranked relations. The operations

include the join, restriction, projection, union, difference, residuum, and division and they can

be seen as particularizations of operations used in [4] considering the operation of infimum as

the aggregation function. Such a set of operations is adequate for formulating complex queries,

including non-monotone ones. Using the proposed operations, queries like (1) may be regarded as

particular joins (or intersections) of general restrictions. The results elaborated in Section 4 and

Section 5 show properties of ordinal transformations and the invariance theorems.

Let us stress one practical aspect about the consequences of the invariance theorems:

Consequence 2. When using infima-based algebraic operations with ranked relations, the scores

in ranked tables have no quantitative meaning.

In other words, the meaning of scores is purely comparative. For instance, if a ranked relation

consists of exactly two tuples with ranks a and b such that a < b, then any kind of distance

or closeness of a and b is irrelevant; a = 0.3 and b = 0.9 represent the same relationship as

a = 0.89 and b = 0.9 because in both cases a < b. In fact, considering the generality of our

structures of scores, we may replace the numerical scores by symbolic ones as long as the order of

the corresponding scores preserves (and reflects) the order of the numerical scores. For instance,

instead of numerical values 0, 0.8, and 1, one can use symbolic names “not at all”, “more or less”,

and “fully” provided that the order < is defined as “not at all” < “more or less” < “fully”. As

an immediate consequence for users of a database system implementing infima-based operations is

that the scores can be completely hidden from users since their values (and their mutual similarity)

do not represent any quantitative information.

Our paper presents an order-theoretic treatment of invariance issues in ranked-aware databases

which are traditionally studied form the point of view of query execution. Let us note that

according to a taxonomy introduced in [25], in this paper we work with a model which uses

exact methods over certain data. Indeed, we would like to stress that unlike the approaches to
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probabilistic databases [9] which also contain explicit scores, we are concerned with certain data.

Possible extensions of our observations to models for uncertain data should prove interesting but

it is not the objective of our paper.

The present paper is related to our previous analysis of preservation of similarity of query

results for similar input data [3] where the similarity is formalized as closeness of scores without

considering the issues of order preservation. Indeed, [3] introduces formulas for expressing lower

bounds of similarity of query results performed with pairwise similar input data. The notion of

similarity (of input data and results of queries) in [3] is based on residuated implications [20]

and captures the fact that ranked relations consist of tuples with similar scores in terms of their

closeness. As such, the notion does not express the fact that the order of tuples is preserved. In

Section 5, we present notes on how this approach can be combined with the present one. Also

note that issues related to ordinal transformations of object-attribute data were studied from the

point of view of formal concept analysis [18] in [2] where the author shows that ordinally equivalent

input data induce almost isomorphic concept lattices.

Our paper is organized as follows. Section 2 presents preliminaries from partially ordered sets

and lattices which are used in our paper as the basic structures of scores. Section 3 describes the

rank-aware model for which we make the analysis of the invariance to ordinal transformations.

Section 4 is devoted to the properties of order equivalence of ranked relations which plays an im-

portant role in the analysis. Section 5 contains the invariance and additional discussion. Section 6

shows how our results relate to a relational calculus developed in the context of Gödel logic. Sec-

tion 7 discusses issues of efficient query evaluation which arise in the model and comments on the

relationship to other approaches.

2 Preliminaries

In this section, we recall preliminary notions of partially ordered sets and lattices. The notions are

used in further sections to formalize structures of scores which are used in the considered model

of data. More details on the notions presented in this section can be found in [5].

A partial order on a non-empty set L is a binary relation ≤ on L which is reflexive (a ≤ a),

antisymmetric (a ≤ b and b ≤ a yield a = b), and transitive (a ≤ b and b ≤ c yield a ≤ c). A pair

L = 〈L,≤〉 where ≤ is a partial order on L is called a partially ordered set (shortly, a poset). A

partial order ≤ on L is called a total (or a linear) order whenever for any a, b ∈ L, we have a ≤ b

or b ≤ a in which case L = 〈L,≤〉 is called a totally ordered set or a chain.

An element a ∈ L is called the least element of K ⊆ L in L = 〈L,≤〉 whenever a ≤ b for all

b ∈ K. Dually, we consider the notion of a greatest element. If both the least and the greatest

elements exist for the whole L, we say that L is bounded and denote the fact by L = 〈L,≤, 0, 1〉
where 0 and 1 stand for the least and the greatest element in L, respectively.

For subsets of a partially ordered set L = 〈L,≤〉, we consider their greatest lower bounds and
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least upper bounds as follows: For K ⊆ L, we put

lcK = {a ∈ L; a ≤ b for all b ∈ K}, (6)

ucK = {b ∈ L; a ≤ b for all a ∈ K}, (7)

and call lcK and ucK the lower and upper cones of K in L, respectively. If lcK has the greatest

element, it is called the infimum (the greatest lower bound) of K in L and denoted by inf K.

Dually, if ucK has the least element, it is called the supremum (the least upper bound) of K in

L and denoted by supK. If for any a, b ∈ L, the elements inf{a, b} and sup{a, b} exist, then ≤ is

called a lattice order and L is called a lattice ordered set (shortly, a lattice). Each totally ordered

set is a lattice because if a ≤ b, then obviously inf{a, b} = a and sup{a, b} = b. In addition, if L

is totally ordered then for any non-empty and finite K, it follows that inf K and supK coincide

with the least and greatest elements in K, respectively. If for any K ⊆ L, the elements inf K and

supK exist, then ≤ is called a complete lattice order and L is called a complete lattice ordered set

(shortly, a complete lattice). Each complete lattice is a bounded lattice because inf L = sup ∅ = 0

(the least element of L) and inf ∅ = supL = 1 (thre greatest element of L). In general, a (bounded)

lattice may not be complete (consider a subset of reals L = [0, 1] \ {0.5} equipped with the usual

ordering ≤ of reals).

There is an alternative view of partially ordered sets and lattices via algebraic structures: Let

L = 〈L,u,t〉 be an algebra with two binary operations u (called a meet) and t (called a join)

such that both u and t are commutative, associative, idempotent (i.e., a u a = a t a = a for any

a ∈ L), and satisfy the laws of absorption: au (at b) = a and at (au b) = a for all a, b ∈ L, then

the algebra L is called a lattice. It can be easily shown that for a partially ordered set L = 〈L,≤〉
which is a lattice in the order-theoretic sense, we can consider an algebra on L with aub = inf{a, b}
and a t b = sup{a, b} which is a lattice in the latter sense. Conversely, for a lattice L = 〈L,u,t〉,
we may introduce a ≤ b iff a = a u b (or, equivalently, a t b = b). As a consequence, we may

understand lattices as both special partially ordered structures and special algebras. In the paper,

whenever we consider a (complete) lattice L, we automatically consider the lattice order ≤ and

treat inf and sup as operations on L.

In the follows sections, we assume that scores we use to annotate tuples in relations come from

a bounded totally ordered set L = 〈L,≤, 0, 1〉 and, optionally, we assume that L is in addition a

complete lattice. The operations inf and sup are used to obtain greatest lower and least upper

bounds of finite (or arbitrary if L is complete) subsets of scores. For instance, if one considers

conjunctive (or disjunctive) queries consisting of several subqueries, inf (or sup) is used to aggregate

scores from the subqueries to obtain a score for the composed query. Details are discussed in

Section 3.

Remark 1. As a borderline case of complete totally ordered lattices we may take the two-element

Boolean algebra which is uniquely given up to isomorphism. That is, for L = {0, 1} where 0

denotes the truth value “false” and 1 denotes the truth value “true” and putting 0 ≤ 1, we

obain a complete totally ordered lattice where inf and sup coincide with the truth functions of

the classic logical connectives “conjunction” and “disjunction”. In addition, a truth function of
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negation may be introduced as a complement, i.e., 0′ = 1 and 1′ = 0 and the resulting structure

L = 〈L, inf, sup,′ , 0, 1〉 is a two-element Boolean algebra. From the point of view of the ranked

approach used in this paper, 0 and 1 may be seen as two borderline scores—0 represents a mismatch

while 1 represents a match. Because of the well-known property of functional completeness of

Boolean algebras, every n-ary truth function may be expressed by means of terms consisting of

variables and inf, sup, and ′. For instance, a truth function for implication (logical conditional)

can be introduced as a→ b = sup{a′, b}.

Considering Remark 1 and the fact that general bounded totally ordered sets serve as structures

of ranks, inf and sup may be seen as generalizations of truth functions of logical connectives

“conjunction” and “disjunction”. A natural question is whether we can obtain analogies of truth

functions of other important locical connectives like the negation and implication. This question is

important because in the classic relational model such connectives as crucial for expressing many

relational operations like the difference, semidifference, and division which cannot be expressed

just using inf and sup. We therefore consider additional binary connectives which are adjoint to

inf and sup and serve as generalizations of truth functions of logical connectives “implication” and

“non-implication” (so-called abjunction): For a bounded lattice L = 〈L,≤, 0, 1〉, consider a binary

operaton → such that

inf{a, b} ≤ c iff a ≤ b→ c (8)

holds true for all a, b, c ∈ L. Note that → may not exist but if it exists for given L, then it is

given uniquely. In the terminology or ordered sets, → is called a relative pseudo-complement or

a residuum. Alternatively, → may be introduced as a binary operation on L which satisfies the

following conditions

a→ a = 1, (9)

inf{a, a→ b} = inf{a, b}, (10)

inf{a→ b, b} = b, (11)

a→ inf{b, c} = inf{a→ b, a→ c}, (12)

for every a, b, c ∈ L. The resulting structure L = 〈L, inf, sup,→, 0, 1〉 is called a Heyting algebra.

Note that Heyting algebras are used as semantic structures of the intuitionistic logic [24]. That is,

in the intuitionistic logic, they play an analogous role as the Boolean algebras in the classic logic.

If L satisfies the following additional condition

sup{a→ b, b→ a} = 1 (13)

for all a, b ∈ L, then it is called a Gödel algebra. Analogously as the Heyting algebras are the

semantic structures of the intuitionistic logic, Gödel algebras are semantic structures of Gödel logic

which is a stronger logic than the intuitionistic logic but it is not as strong as the Boolean logic.

According to [23], Gödel logic may be seen as a schematic extension of the Basic logic.
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Condition (8) is called the adjointness property of inf and →. It ensures that → is a faithful

truth function of a general implication. In particular, if L is totally ordered, we get that

a→ b =

1, if a ≤ b,
b, otherwise,

(14)

for all a, b ∈ L. Therefore, if we restrict ourselves just to {0, 1} ⊆ L, we get 1 → 0 = 0 and

0→ 0 = 0→ 1 = 1→ 1 = 1, i.e., on {0, 1}, → acts as a truth function of the classic implication.

In general, we have a → b = 1 iff a ≤ b. Now, a generalization of the classic negation and

equivalence (logical biconditional) can be introduced by

¬a = a→ 0, (15)

a↔ b = inf{a→ b, b→ a}, (16)

for all a, b ∈ L. Taking (14) into account, we have

¬a =

1, for a = 0,

0, otherwise,
(17)

a↔ b =

1, for a = b,

inf{a, b}, otherwise,
(18)

where the inf{a, b} in (18) is in fact a minimum of a and b since all elements in a totally ordered

L are comparable.

Analogously as → is adjoint to inf in sense of (8), we may apply the duality principle and

introduce a generalization of logical non-implication which is adjoint to sup. Namely, following the

ideas of [34], see also [33], we may consider a binary operation 	 such that

a	 b ≤ c iff a ≤ sup{b, c} (19)

for all a, b, c ∈ L. Alternatively, we may postulate the following equalities:

a	 a = 0, (20)

sup{a	 b, b} = sup{a, b}, (21)

sup{a, a	 b} = a, (22)

sup{a, b} 	 c = sup{a	 c, b	 c}, (23)

for every a, b, c ∈ L. Analogously as in the case of →, if L is totally ordered, it follows that

a	 b =

0, if a ≤ b,
a, otherwise,

(24)

for all a, b ∈ L. Therefore, 	 is indeed a generalization of a non-implication (a logical difference

bounded by 0 and 1) because on {0, 1} ⊆ L, we have 0 	 0 = 0 	 1 = 1 	 1 = 0 and 1 	 0 = 1.
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In the following sections, we utilize → in the definitions of rank-aware relational containment and

division and 	 is utilized in a rank-aware relational difference.

If L is a totally ordered Gödel algebra which is defined on the real unit interval (with ≤ being

the usual ordering of reals), then we call L the standard Gödel algebra [23] and denote it by [0, 1]G.

3 Rank-Aware Relational Model of Data

In this section, we introduce a relational rank-aware model of data. Namely, we describe structures

formalizing data tables which appear in the model and relational operations which constitute

the core of relational queries that take scores into account. The model may be viewed as a

particularization of a model based on complete residuated lattices which has been outlined in [4]

which results by a choice of special structures of scores based on Gödel algebras described in

Section 2.

First, we recall the basic notions which appear in the (classic) relational model of data. In the

paper we consider relation schemes as finite sets of attributes. We tacitly identify attributes with

their names, i.e., attributes are considered as “names of columns” in data tables. As usual, we

assume that each attribute in a relation scheme has its type which defines a (possibly infinite but

at most denumerable) set of admissible values for the attribute. We write u = v whenever two

value u, v of a particular type are indistinguishable and u 6= v otherwise. Tuples, which formalize

“rows in data tables” are considered as maps assigning to each attribute from relation schemes a

value of its type; we denote by r(y) the y-value of tuple r. Furthermore, we denote by Tupl(R)

the set of all tuples on the relation scheme R. Again, note that Tupl(R) may be infinite. For

r1, r2 ∈ Tupl(R), we put r1 = r2 whenever r1(y) = r2(y) for all y ∈ R and r1 6= r2 otherwise.

Tuples r ∈ Tupl(R) and s ∈ Tupl(S) are called joinable whenever r(y) = s(y) for all y ∈ R ∩ S.

If r ∈ Tupl(R) and s ∈ Tupl(S) are joinable, then rs, called the join of r and s, is a tuple in

Tupl(R ∪ S) such that (rs)(y) = r(y) for y ∈ R and (rs)(y) = s(y) for y ∈ S.

Remark 2. Note that the join of tuples is also called a concatenation and it may be seen as a

set-theoretic union of tuples since tuples are considered as sets of attribute-value pairs, see [30].

In a special case for R = ∅ (the empty relation scheme), Tupl(R) consists of a single tuple—the

empty tuple which, according to the set-theoretic representation of tuples, may be identified with

the empty set. Thus, we write Tupl(∅) = {∅}.

Let L = 〈L,≤, 0, 1〉 be a totally ordered complete lattice. The elements in L are called scores.

The scores have a comparative meaning. That is, if a < b for a, b ∈ L, then b is a score of a better

match than a. As a consequence, 1 is the score of a best match (a full match) and 0 is the score of

a worst match (no match). Considering L as the structure of scores, a ranked data table (shortly,

an RDT) D on relation scheme R which uses scores in L is understood as a map

D : Tupl(R)→ L (25)

such that {r ∈ Tupl(R);D(r) > 0}, called the answer set of D, is finite. That is, only finitely many

tuples in Tupl(R) are assigned non-zero scores by an RDT D on R; D(r) is the score of tuple r
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# ID BDRM SQFT

1.000 85 5 4580

0.971 56 3 3400

0.937 71 3 3280

0.643 82 4 2350

0.426 58 4 1760

0.148 93 2 1130

# ID AGENT PRICE

0.997 71 Black 798,000

0.964 58 Black 829,000

0.940 71 Adams 849,000

0.798 45 Adams 654,000

0.789 82 Adams 648,000

0.778 85 Black 998,000

0.708 45 Black 598,000

0.708 93 Black 598,000

Figure 1: Examples of ranked tables: Houses with area roughly greater than 3,500 sq. ft. (left),

houses offered by agents for about $800,000 (right).

in RDT D. RDTs defined on non-empty relation schemes may be represented by two-dimensional

tables with rows corresponding to tuples from the answer set, columns corresponding to attributes,

and an extra column (denoted by #) containing the scores. For illustration, if L = [0, 1] and ≤ is

the usual order of reals, the tables in Fig. 1 may be viewed as ranked data tables with scores in

L = [0, 1]. In the figure, the tuples from the answer set are sorted according to their scores.

In the borderline case of R = ∅, the answer set of D on R contains at most the empty tuple ∅.
If the answer set is empty then clearly D(∅) = 0. Otherwise, D is uniquely given by the non-zero

score D(∅) ∈ L. Note that this naturally generalizes the two borderline relations on the empty

relation scheme R which appear in the classic model: the empty relation on R and the relation on

R containing the empty tuple.

Furthermore, we consider equality of RDTs as follows: For RDTs D1 and D2 on R we put

D1 = D2 whenever D1(r) = D2(r) for all r ∈ Tupl(R), i.e., whenever D1 and D2 are equal as maps.

The range (or scores) of RDT D on relation scheme R, denoted L(D), is a subset of L defined by

L(D) = {D(r); r ∈ Tupl(R)}. (26)

That is, L(D) is the set of all scores from L which appear in D. Thus, L(D) is finite for any

D. Let us note here that if L(D) ⊆ {0, 1}, then D may be viewed as a ranked representation

of a classic relation on a relation scheme. Indeed, for an ordinary (finite) R ⊆ Tupl(R), we can

introduce a corresponding RDT DR by putting DR(r) = 1 whenever r ∈ R and DR(r) = 0

otherwise. Conversely, for RDT D on R, we may consider a corresponding RD ⊆ Tupl(R) as

RD = {r; D(r) = 1}. Taking into account just RDTs with ranges being subsets of {0, 1}, the

two transformations are mutually inverse. As a consequence, in the same spirit as in the Codd

model [8], RDTs may represent both the results of queries and base data, i.e., our approach uses

only a single type of structures. As a consequence, we do not mix the classic relations and the

ranked data tables.

Remark 3. (a) The fundamental notion of a ranked data table may seem like a digression from

the relational model of data and in particular from its modern understanding as it is described in

The Third Manifesto (TTM, see [10]) because tuples in relations are annotated by an additional
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information which is the score. If one wishes the approach to adhere to TTM, he can consider

the score as an additional attribute (named #) which is present in the relation scheme. The type

of the attribute # is score. In other words, RDTs may be seen as ordinary relations on relation

schemes with a special designated attribute # the values of which come from the universe of L.

(b) As we have mentioned in the introduction, our model is not related to probabilistic databases

which are currently extensively studied. In particular, the scores cannot be interpreted as proba-

bilities. Let us note that the scores need not come from a real unit interval, so in general it does

not make sense to consider the scores as probability values. Even if the scores do come from a

unit interval, their values are not related to probabilities assigned to any events because there is

no uncertainty involved in the data or in query evaluation as we shall se later.

(c) Note that various approaches where tuples in relations are annotated by values coming from

general algebraic structures exist. Most notably, the authors of [26] consider conditional tables

which may be understood as relations with tuples annotated by Boolean formulas, i.e., annotated

by values coming from particular free Boolean algebras. A general approach to relations annotated

by element from semi-rings is presented in [22], see also [16], [21], and [1].

We now describe a set of relational operations which are used to express queries over ranked

data tables. Important types of monotone as well as non-monotone queries in rank-aware databases

may be expressed by a combination of the following operations with RDTs which generalize their

classic relational operations in the original relational model of data. For the introduced operations,

we adopt the widely used Codd-style notation.

Let D1 and D2 be RDTs on R ∪ S and S ∪ T with R ∩ S = ∅, R ∩ T = ∅, and S ∩ T = ∅. The

(natural) join of D1 and D2, denoted D1 ./ D2, is defined by

(D1 ./ D2)(rst) = inf{D1(rs),D2(st)}, (27)

for all r ∈ Tupl(R), s ∈ Tupl(S), and t ∈ Tupl(T ). Recall that rs, st and rst in (27) denote the

results of joins of tuples which are in this case trivially joinable. Since L is totally ordered, the

score (D1 ./ D2)(rst) in (27) is in fact taken as the minimum of the scores D1(rs) and D2(st).

Also note that the commutativity, associativity, and idempotency of inf implies that ./ has these

properties as well. In addition, any D (over any R) with an empty answer set is an annihilator

with respect to ./ and D on ∅ such that D(∅) = 1 is a neutral element with respect to ./. The join

of the illustrative RDTs in Fig. 1 is shown in Fig. 2.

Remark 4. As we have noted in the introduction, the operations with RDTs we use in this paper

may be viewed as particular cases of those used in [4]. In [4], the basic structures of scores are

complete residuated lattices [17] which may be viewed as generalization of the structures of scores

defined on the real unit interval by left-continuous triangular norms [14]. The general counterpart

to (27) in [4] is ./⊗ defined by

(D1 ./⊗ D2)(rst) = D1(rs)⊗D2(st) (28)

for all r ∈ Tupl(R), s ∈ Tupl(S), and t ∈ Tupl(T ). Obviously, (27) is a particular case of (28) with

⊗ being inf, i.e., a⊗ b = inf{a, b} for all a, b ∈ L. Further in the paper we show that joins defined
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# ID BDRM SQFT AGENT PRICE

0.937 71 3 3280 Adams 849,000

0.937 71 3 3280 Black 798,000

0.778 85 5 4580 Black 998,000

0.643 82 4 2350 Adams 648,000

0.426 58 4 1760 Black 829,000

0.148 93 2 1130 Black 598,000

Figure 2: Join of ranked tables from Figure 1.

# ID BDRM SQFT AGENT PRICE

0.939 71 3 3280 Black 798,000

0.938 71 3 3280 Adams 849,000

0.778 85 5 4580 Black 998,000

0.643 82 4 2350 Adams 648,000

0.426 58 4 1760 Black 829,000

0.148 93 2 1130 Black 598,000

Figure 3: RDT “similar” to that in Figure 2.

by (27) are invariant to ordinal transformations provided that totally ordered Gödel algebras are

used as structures of scores. We also show that the property does not hold in the general setting

of complete residuated lattices. A similar remark can be made for all the operations introduced

below.

We introduce restrictions (selections) of RDTs utilizing general maps serving as restriction

conditions: By a restriction condition on R we mean any map θ : Tupl(R) → L with each θ(r)

interpreted as the score expressing whether (and to what degree) tuple r matches θ. Note that the

ordinary restriction conditions based on classic comparators of domain values are covered by this

general notion. For instance, if θ : Tupl(R)→ L is defined so that θ(r) = 1 whenever r(y1) = r(y2)

and θ(r) = 0 otherwise, then θ may be seen as representing a classic restriction condition based

on equality of the values of attributes y1 and y2.

Given RDT D on R, we define the restriction of D using θ on R by

(σθ(D))(r) = inf{D(r), θ(r)} (29)

for all r ∈ Tupl(R). Obviously, the score of r in σθ(D) at most as high as its score in D which is a

natural property of a restriction. Note that the ranked tables in Fig. 1 may be seen as results of

particular restrictions of base data tables with all scores (of tuples present in the tables) set to 1.

For D on R and S ⊆ R, the projection πS(D) of D onto S is defined by

(πS(D))(s) = sup{D(st); t ∈ Tupl(R \ S)} (30)

for all s ∈ Tupl(S). Here, notice the use of sup instead of inf which corresponds to the close

relationship of projections and existentially quantified queries. Recall that in the classic setting,

11



the fact that s belongs to a projection of a relation onto S means that there exists t such that st

is in the relation. In a similar sense, the score of s in πS(D) is defined by (30) as the highest score

of st over all t (note that two different tuples in the answer set of D may be projected onto the

same tuple on S).

For D1 and D2 on the same relation scheme R, we introduce the union of D1 and D2 which is

defined componentwise using sup as

(D1 ∪ D2)(r) = sup{D1(r),D2(r)}, (31)

for all r ∈ Tupl(R). In addition, we may consider an intersection based on inf but this operation is

superfluous because it can be understood as a join (27) of two RDTs on the same relation scheme.

Since L is linearly ordered, 	 which is adjoint to sup as in (19) exists and it is given by (24).

Therefore, for D1 and D2 on the same relation scheme R, we may introduce the difference of D1

and D2 by

(D1 −D2)(r) = D1(r)	D2(r), (32)

for all r ∈ Tupl(R), i.e., using (24) and the total ordering of L,

(D1 −D2)(r) =

{
0, if D1(r) ≤ D2(r),

D1(r), otherwise,
(33)

for all r ∈ Tupl(R).

Finally, we consider operations with RDTs which are related to universally quantified queries.

In the classic model, queries of the form of categorical propositions “every ϕ is ψ” may be expressed

by divisions (or more general constructs such as the imaging operator considered in [11]) which are

in the classic model expressible by means of other operations (joins, projections, and difference).

From the logical point of view this is a consequence of the fact that the universal quantifier is

definable using negations and the existential quantifier. As we shall see in Section 6, this property

does not hold in a weaker logic which is closely related to the rank-aware model. Therefore, in our

case, we have to introduce an operation in order to be able to properly express queries of the form

of categorical propositions “every ϕ is ψ”. In our case, such an operation will be a variant of the

Small Divide as it is considered in [12].

Note that analogously as in the case of 	, the residuum → satisfying (8) always exists and is

uniquely given by (14) owing to the linearity of L. Let D1 (so-called mediator) be an RDT on

R∪S such that R∩S = ∅, D2 (so-called divisor) be an RDT on S, and let D3 (so-called dividend)

be an RDT on R. In this setting, we introduce a division D1 ÷D3 D2 as an RDT on R such that(
D1 ÷D3 D2

)
(r) = inf{D2(s)→ D1(rs); s ∈ Tupl(S)} ∪ {D3(r)}, (34)

for all r ∈ Tupl(R). Directly from (34), the answer set of D1 ÷D3 D2 is finite since it is a subset of

the answer set of D3. By moment’s reflection, we can see that (34) can equivalently be written as(
D1 ÷D3 D2

)
(r) = inf{inf{D3(r),D2(s)→ D1(rs)}; s ∈ Tupl(S)}. (35)

12



Observe that according to (35) and (14),
(
D1 ÷D3 D2

)
(r) = D3(r) iff

for all s ∈ Tupl(S) : D2(s) > D1(rs) implies D3(r) ≤ D1(rs). (36)

Therefore, we can distinguish two cases as follows:

(
D1 ÷D3 D2

)
(r) =

{
D3(r), if (36) holds,

inf{D2(s)→ D1(rs); s ∈ Tupl(S)}, otherwise.
(37)

Using (14) again, we have

(
D1 ÷D3 D2

)
(r) =

{
D3(r), if (36) holds,

inf{D1(rs); D2(s) > D1(rs), s ∈ Tupl(S)}, otherwise.
(38)

As a consequence, the rank of a tuple in the result of a division can always be computed in finitely

many steps because each divisor has a finite answer set.

Closely related to the division is the notion of a subsethood (inclusion of RDTs) which, in our

case, can also be expressed by a score. Namely, for RDTs D1 and D2 on the same relation scheme

R, we put

S(D1,D2) = inf{D1(r)→ D2(r); r ∈ Tupl(R)} (39)

= inf{D2(r); D1(r) > D2(r) and r ∈ Tupl(R)} (40)

and call S(D1,D2) the subsethood score of D1 in D2. That is, S is not a relational operation

because its result is a score in L (and not an RDT). The subsethood scores generalize the concept

of containment of relations. Indeed, if ranked tables D1 and D2 are considered as results of queries

Q1 and Q2, then S(D1,D2) is the score expressing the degree to which “if a tuple satisfies Q1,

then it satisfies Q2” is satisfied by all tuples. In particular, it is easily seen that D1 = D2 iff

S(D1,D2) = S(D2,D1) = 1. Subsethood scores are related to division as follows: For R = ∅ and

D1 and D2 being RDTs on S, we get that S(D1,D2) = (D2 ÷D D1)(∅), where D is the RDT on ∅
such that D(∅) = 1.

Example 1. If we consider the RDTs in Fig. 2 and Fig. 3 and denote them as D1 and D2, respec-

tively, then S(D1,D2) = 1 because all scores in D1 are lower than or equal to the scores of the

corresponding tuples in D2 (note that here we use the fact that inf ∅ = 1), i.e., we may say that,

taking the scores into account, D1 is fully included in D2. On the contrary, S(D2,D1) < 1. Namely,

S(D2,D1) = inf{0.937} = 0.937. Analogously as the subsethood scores, we may consider a related

notion of a similarity score E(D1,D2) of D1 and D2 defined as

E(D1,D2) = inf{S(D1,D2),S(D2,D1)}. (41)

In this case, E(D2,D1) = 0.937.

Let us note that we can introduce a ternary operation with RDTs which is defined componen-

twise using → in a similar way as the union of RDTs which is defined componentwise using sup:

For D1, D2, and D3 on the same relation scheme R, we put(
D1 →D3 D2

)
(r) = inf{D3(r),D1(r)→ D2(r)} (42)

13



for all r ∈ Tupl(R) and call D1 →D3 D2 the D3-residuum of D1 with respect to D2. Note that the

operation is correct in that the result is always an RDT, i.e., there are only finitely many tuples

for which (42) is non-zero. Analogously as in the case of ÷, we get

(
D1 →D3 D2

)
(r) =

{
D3(r), if D1(r) ≤ D2(r) or D3(r) ≤ D2(r),

D2(r), otherwise,
(43)

which follows easily by (14). Since → acts in a similar way as the truth function of the classic

implication, (43) may be seen as expressing the score of a condition “r belongs to D3 and if it

belongs to D1, then it belongs to D2”.

Remark 5. (a) The operations of join, projection, union, difference, and division behave the same

way as their ordinary counterparts when the scores in the input RDTs are only 0 and 1 (i.e., their

range is a subset of {0, 1}). In addition, the restriction also behaves as the ordinary restriction

provided that the input RDT has only scores 0 and 1 and that the range of the restriction condition

is also a subset of {0, 1}. In general, restrictions produce RDTs with general scores: The tables in

Fig. 1 may be seen as such examples.

(b) Form the point of view of the representation of RDTs as ordinary relations with a special

attribute #, see Remark 3 (a), we may think of the operations introduced in this section as derived

operations which always produce a relation with # (representing the output RDT) from other

relations with # (representing the input RDTs). From the perspective of TTM and in particular

the relational query language Tutorial D, the operations may be implemented as user defined

operators in a similar fashion as the operators supporting operations with temporal data described

in [13].

4 Ordinal Equivalence of Tables

We introduce notions of ordinal inclusion and equivalence of ranked data tables based on positions

of tuples in tables given by scores. In the next section, we utilize the notion in a characterization

of important order-related properties of the relational operations with RDTs. Intuitively, we may

consider D1 and D2 (on the same relation scheme) ordinally equivalent if the sequences of tuples

in D1 and D2 sorted by scores are identical. Formally, we introduce the notion as follows.

Definition 1. For any D on R and r ∈ Tupl(R), we put

U(D, r) = {r′ ∈ Tupl(R); D(r′) ≥ D(r)}. (44)

For any D1 and D2 on R we say that D1 is ordinally included in D2, written D1 v D2, whenever

U(D1, r) ⊆ U(D2, r) (45)

for all r ∈ Tupl(R). Moreover, we call D1 and D2 ordinally equivalent, written D1 ≡ D2, whenever

D1 v D2 and D2 v D1. (46)
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# FOO

0.600 77

# FOO

0.500 77

Figure 4: Two distinct RDTs such that D1 v D2 and D2 v D1.

Remark 6. We can immediately observe properties of U , v, and ≡ which follow directly by the

definition: First, r ∈ U(D, r) follows by the reflexivity of ≤. Second, if D(r) = 0, then U(D, r) =

Tupl(R) and it is infinite if R contains an attribute of an infinite type. If D(r) > 0, then U(D, r)
is always finite and it is a subset of the answer set of D which follows directly by (44). Third, v
is reflexive (a consequence of the reflexivity of ⊆) and transitive (a consequence of the transitivity

of ⊆) and thus v is a preorder (also called a quasi order [5]). In general, v is not a partial

order because it is not antisymmetric. Indeed, consider the RDTs D1 and D2 on R = {FOO}
in Fig. 4. For the only tuple r which appears in the answer set of both the RDTs, we have

U(D1, r) = {r} = U(D2, r) which from it readily follows that D1 v D2 and D2 v D1. Fourth, in

general, v has no relationship to the inclusion of answer sets. For instance, if D2 has an empty

answer set (i.e., D2(r) = 0 for all r ∈ Tupl(R)), then trivially D1 v D2 for any D1 on R. Fifth,

by definition, ≡ is the symmetric interior of v (i.e., the greatest symmetric relation contained in

both v and its inverse) and therefore it is an equivalence relation.

Dually to U(D, r), we may introduce L(D, r) by

L(D, r) = {r′ ∈ Tupl(R); D(r′) ≤ D(r)} (47)

for any r ∈ Tupl(R). Therefore, in contrast to U(D, r) which represents the set of tuples in D
which have scores at least as high as D(r), L(D, r) is the set of tuples with scores at most as high

as D(r). It is easy to see that v and ≡ can equivalently be defined using (47) instead of (44) which

is justified by the following assertion.

Theorem 2. D1 v D2 iff for all r ∈ Tupl(R), we have L(D1, r) ⊆ L(D2, r).

Proof. Let D1 v D2 and consider any r ∈ Tupl(R). Furthermore, let r′ ∈ L(D1, r), i.e., D(r′) ≤
D(r) by (47). Using (44), the last inequality gives r ∈ U(D1, r

′) and thus r ∈ U(D2, r
′) because

D1 v D2. Now, from r ∈ U(D2, r
′) it follows that r′ ∈ L(D2, r). As a consequence, L(D1, r) ⊆

L(D2, r). The converse implication can be shown by analogous arguments utilizing the fact that

for any D on R and arbitrary tuples r, r′ ∈ Tupl(R), we have r′ ∈ U(D, r) iff r ∈ L(D, r′).

Example 2. Recall the RDTs D1 and D2 given by the tables in Fig. 2 and Fig. 3, respectively. As

one can check, we have D2 v D1, i.e., D2 is ordinally included in D1. On the other hand, D1 6v D2

because for r ∈ Tupl(R) such that r(PRICE) = $798,000, we have

U(D1, r) = {r, r′} * {r} = U(D2, r),

where r′(PRICE) = $849,000. As a consequence, D1 and D2 are not ordinally equivalent.
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The relations of ordinal inclusion and equivalence of ranked tables are closely related to order-

preserving maps and isomorphisms on the structure of scores. The following definition recalls

standard notions of maps between ordered sets which we use to get insight into the notions of

ordinal inclusion and equivalence.

Definition 3. Let f : L1 → L2 be a map such that L1, L2 ⊆ L. Then,

f is called order preserving whenever, for all a, b ∈ L1,

a ≤ b implies f(a) ≤ f(b); (48)

f is called order reflecting whenever, for all a, b ∈ L1,

f(a) ≤ f(b) implies a ≤ b; (49)

f is called order embedding whenever it is both order preserving and order reflecting;

f is called order isomorphism whenever it is a surjective order embedding.

For D on R and f : L1 → L2 such that L1, L2 ⊆ L, we may consider the usual composition

D ◦ f (written in the diagrammatic notation) defined by

(D ◦ f)(r) = f(D(r)) (50)

for all r ∈ Tupl(R); D ◦ f is a correctly defined map since both D and f are considered as maps,

see (25). Observe that if f(0) > 0, then D ◦ f may not be a ranked table since infinitely many

tuples in D ◦ f may get a non-zero score when R contains an attribute of an infinite type (we

tacitly ignore the fact in the rest of the paper because it is not relevant to our investigation). On

the other hand, if f(0) = 0, then there are only finitely many r ∈ Tupl(R) such that (D◦f)(r) > 0,

i.e., D ◦ f is always an RDT. In fact, in this case the answer set of D ◦ f is a subset of the answer

set of D. In addition, if f is order reflecting then it is easily seen that the answer sets of D ◦ f and

D coincide: f(D(r)) = 0 yields f(D(r)) ≤ f(0), i.e., D(r) ≤ 0 by (49), meaning that if r is in the

answer set of D, then it is in the answer set of D ◦ f .

The basic relationship of ordinal inclusion and equivalence relations and particular order-

preserving maps is described by the following two assertions.

Theorem 4. Let D1 and D2 be RDTs on R. Then, D1 v D2 iff there is an order-preserving map

f : L→ L such that D1 ◦ f = D2.

Proof. In order to prove the only-if part of the assertion, assume that D1 v D2 and consider

f : L→ L defined by

f(a) = inf{D2(r); r ∈ Tupl(R) and D1(r) ≥ a} (51)

for all a ∈ L. Observe that f depends on both D1 and D2 and it is order preserving. Indeed, if

a ≤ b, then D1(r) ≥ b implies D1(r) ≥ a, and so

{D2(r); r ∈ Tupl(R) and D1(r) ≥ a} ⊇ {D2(r); r ∈ Tupl(R) and D1(r) ≥ b}

16



from which it follows that

inf{D2(r); r ∈ Tupl(R) and D1(r) ≥ a} ≤ inf{D2(r); r ∈ Tupl(R) and D1(r) ≥ b},

i.e., f(a) ≤ f(b). Moreover, using (50) and (51), we have

(D1 ◦ f)(r) = f(D1(r)) = inf{D2(r′); r′ ∈ Tupl(R) and D1(r′) ≥ D1(r)},

i.e., in order to prove D1 ◦ f = D2, it suffices to show that D2(r) is the least element of

K = {D2(r′); r′ ∈ Tupl(R) and D1(r′) ≥ D1(r)}.

Clearly, D2(r) ∈ K owing to the reflexivity of ≥ in the special case of r = r′. Now, consider a

general D2(r′) ∈ K, i.e., r′ ∈ Tupl(R) such that D1(r′) ≥ D1(r). Using (44), it means r′ ∈ U(D1, r)

and so r′ ∈ U(D2, r) using the assumption D1 v D2. As a consequence, D2(r′) ≥ D2(r), proving

that D2(r) is the least element of K which further gives D1 ◦ f = D2.

The if-part is easy to see: Let f : L → L be a map satisfying (48) and D1 ◦ f = D2. Take

r′ ∈ U(D1, r). Then, D1(r′) ≥ D1(r) and so f(D1(r′)) ≥ f(D1(r)) because f is order preserving.

Using D1 ◦ f = D2, we obtain

D2(r′) = f(D1(r′)) ≥ f(D1(r)) = D2(r),

meaning r′ ∈ U(D2, r). Hence, U(D1, r) ⊆ U(D2, r) which proves D1 v D2.

Example 3. Consider RDTs D1 and D2 as in Example 2. Since D2 v D1, Theorem 4 yields there

is a map f : L→ L such that D1 = D2 ◦ f . A map f satisfying this property is not given uniquely.

The map given by (51) described in the proof of Theorem 4 is given by

f(a) =



0, if a = 0,

0.148, if 0 < a ≤ 0.148,

0.426, if 0.148 < a ≤ 0.426,

0.643, if 0.426 < a ≤ 0.643,

0.778, if 0.643 < a ≤ 0.778,

0.937, if 0.778 < a ≤ 0.939,

1, if a > 0.939,

for all a ∈ L.

For the next theorem, recall that L(D), called the range of D, represents the set of scores which

appear in D and in general it includes 0, see (26).

Theorem 5. Let D1 and D2 be RDTs on R. Then, D1 ≡ D2 iff there is an order isomorphism

f : L(D1)→ L(D2) such that D1 ◦ f = D2.

Proof. Let D1 ≡ D2, i.e., D1 v D2 and D2 v D1. By Theorem 4, there are order-preserving

maps f : L → L and g : L → L such that D1 ◦ f = D2 and D1 = D2 ◦ g. Furthermore, consider
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the restrictions f |L(D1) and g|L(D2) of f and g to L(D1) and L(D2), respectively. Under this

notation, f |L(D1) and g|L(D2) are order preserving maps of the form f |L(D1) : L(D1)→ L(D2) and

g|L(D2) : L(D2)→ L(D1) which satisfy

D1 ◦ f |L(D1) = D2 and D1 = D2 ◦ g|L(D2).

Therefore, we have

D1(r) =
(
D2 ◦ g|L(D2)

)
(r)

= g|L(D2)(D2(r))

= g|L(D2)

((
D1 ◦ f |L(D1)

)
(r)
)

= g|L(D2)

(
f |L(D1)(D1(r))

)
for all r ∈ Tupl(R) which is in the answer set of D1. As a consequence, the composed map

f |L(D1) ◦ g|L(D2) is the identity map on L(D1). Using analogous arguments, g|L(D2) ◦ f |L(D1) is the

identity map on L(D2). This shows that f |L(D1) is an order embedding: f |L(D1)(a) ≤ f |L(D1)(b)

implies g|L(D2)(f |L(D1)(a)) ≤ g|L(D2)(f |L(D1)(b)) because g|L(D2) is order preserving and as a

consequence of the fact that f |L(D1)◦g|L(D2) is the identity, we get that a ≤ b. In addition, f |L(D1) :

L(D1) → L(D2) is surjective because for each a ∈ L(D2), we have that f |L(D1)(g|L(D2)(a)) = a.

Altogether, f |L(D1) is the desired order isomorphism.

In order to prove the if-part of Theorem 5, let us consider an order isomorphism f : L(D1) →
L(D2) such that D1 ◦ f = D2. Now, f can be extended to a map f ] : L→ L by putting

f ](a) = inf{f(a′); a′ ∈ L(D1) and a′ ≥ a}

for all a ∈ L. Observe that f ] is indeed an extension of f : For a ∈ L(D1), it follows that f(a)

belongs to

K = {f(a′); a′ ∈ L(D1) and a′ ≥ a}

because of the reflexivity of ≥. Moreover, if f(a′) ∈ K, then a′ ≥ a and so f(a′) ≥ f(a) owing to

the fact that f is order preserving. Thus, f(a) is the least element of K and, as a consequence,

f ](a) = inf{f(a′); a′ ∈ L(D1) and a′ ≥ a} = f(a). Furthermore, the fact that f is order preserving

ensures that f ] is order preserving as well. Indeed, take any a, b ∈ L such that a ≤ b. Then,

analogously as in the proof of Theorem 4, we have

{f(a′); a′ ∈ L(D1) and a′ ≥ a} ⊇ {f(a′); a′ ∈ L(D1) and a′ ≥ b}

and thus

inf{f(a′); a′ ∈ L(D1) and a′ ≥ a} ≤ inf{f(a′); a′ ∈ L(D1) and a′ ≥ b}

which proves f ](a) ≤ f ](b). Therefore, D1 v D2 owing to Theorem 4. In addition, D2 v D1 follows

using the same arguments using the inverse f−1 of f . Note that f being an order isomorphism

ensures that f is a bijection, so the inverse of f exists.
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5 Invariance Theorems

In this section, we present two invariance theorems which are the main observations of this paper.

As a result of the invariance theorems, it follows that results of arbitrary complex queries composed

of (27)–(40) are invariant to ordinal transformations: If the input data are transformed by f into

ordinally equivalent data, then the results of queries performed with the original and the new data

are also ordinally equivalent. As a practical consequence, if a transformation of the input data

does not change the order in which tuples appear in tables when sorted by scores, then the same

property holds for results of arbitrary queries.

Theorem 6. Let f : L → L be order preserving. Then, for any RDTs D1,D2,D for which both

sides of the following equalities are defined, we have

(D1 ./ D2) ◦ f = (D1 ◦ f) ./ (D2 ◦ f), (52)

σθ(D) ◦ f = σθ◦f (D ◦ f), (53)

(D1 ∪ D2) ◦ f = (D1 ◦ f) ∪ (D2 ◦ f), (54)

πS(D) ◦ f = πS(D ◦ f). (55)

Proof. In order to prove (52), we check that

f(inf{D1(rs),D2(st)}) = inf{f(D1(rs)), f(D2(st))}.

Since L is linear, we may proceed by cases: First, assume that D1(rs) ≤ D2(st). Then, f(D1(rs)) ≤
f(D2(st)) because f is order preserving and thus

f(inf{D1(rs),D2(st)}) = f(D1(rs))

= inf{f(D1(rs))}

= inf{f(D1(rs)), f(D2(st))}.

Second, assume D1(rs) ≥ D2(st) and proceed as above with ≤ replaced by ≥.

Analogously, we may proceed for (53). It suffices to check that

f(inf{D(r), θ(r)}) = inf{f(D(r)), θ(r)}

during which we distinguish two cases: (i) D(r) ≤ θ(r) and thus f(D(r)) ≤ f(θ(r)); (ii) D(r) ≥ θ(r)
and f(D(r)) ≥ f(θ(r)).

Now, (54) follows by the same argument as in the case of (52) with sup in place of inf. Indeed,

we check that

f(sup{D1(r),D2(r)}) = sup{f(D1(r)), f(D2(r))}

holds by cases in which we use the fact that D1(r) ≤ D2(r) iff sup{D1(r),D2(r)} = D2(r) together

with the assumption that f is order preserving, and dually for ≥.
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In case of (55), it suffices to check that f commutes with suprema of finite subsets of L which

is indeed the case. In a more detail, let D be an RDT on R and S ⊆ R. In this setting, it suffices

to prove that

f(sup{D(st); t ∈ Tupl(R \ S)}) = sup{f(D(st)); t ∈ Tupl(R \ S)}

for any s ∈ Tupl(S). Observe that for any s ∈ Tupl(S),

K = {D(st); t ∈ Tupl(R \ S)}

is a finite set of scores which is a subset of the (finite) range of D. In addition, K is non-empty

because Tupl(R \ S) is always non-empty and s and t are trivially joinable. Therefore, owing to

the fact that L is totally ordered, there is t′ ∈ Tupl(R \S) such that D(st′) is the greatest element

of K. Since f is order preserving, it readily follows that f(D(st′)) is the greatest element of

f(K) = {f(D(st)); t ∈ Tupl(R \ S)}.

Therefore, under this notation, we have

f(sup{D(st); t ∈ Tupl(R \ S)}) = f(supK)

= f(D(st′))

= sup f(K)

= sup{f(D(st)); t ∈ Tupl(R \ S)},

which proves (55).

Under stronger assumptions than in Theorem 6, we establish the following observation of

invariance for the remaining operations with RDTs.

Theorem 7. Let f : L → L be order embedding and let D1,D2,D3 be RDTs for which both sides

of the following equalities are defined. Then,

(D1 ÷D3 D2) ◦ f = (D1 ◦ f)÷D3◦f (D2 ◦ f), (56)

(D1 →D3 D2) ◦ f = (D1 ◦ f)→D3◦f (D2 ◦ f). (57)

If f(0) = 0, then

(D1 −D2) ◦ f = (D1 ◦ f)− (D2 ◦ f). (58)

If f(1) = 1, then

S(D1,D2) ◦ f = S(D1 ◦ f,D2 ◦ f). (59)
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Proof. In case of (58), we distinguish two cases based on (33). First, if we have D1(r) ≤ D2(r),

then f(D1(r)) ≤ f(D2(r)) because f is order preserving and so

((D1 −D2) ◦ f)(r) = f(0) = 0 = ((D1 ◦ f)− (D2 ◦ f))(r),

taking into account the fact that f(0) = 0. Second, assume that D1(r) � D2(r). In this case,

D1(r) > D2(r) because L is totally ordered and so f(D1(r)) ≥ f(D2(r)) because f is order

preserving. Since f is also order reflecting, we must have f(D1(r)) > f(D2(r)) because f(D1(r)) =

f(D2(r)) would yield D1(r) ≤ D2(r), a contradiction. Therefore, we have f(D1(r)) � f(D2(r))

and so

((D1 −D2) ◦ f)(r) = f((D1 −D2)(r))

= f(D1(r))

= (f(D1)− f(D2))(r),

which proves (58).

In case of (56), we may proceed by cases considering the condition (36). In a more detail,

let D1 be an RDT on R ∪ S such that R ∩ S = ∅, D2 be an RDT on S, and D3 be an RDT

on R. Furthermore, assume that for a given r ∈ Tupl(R) and all s ∈ Tupl(S), we have that

D2(s) > D1(rs) implies D3(r) ≤ D1(rs). In this case,
(
D1 ÷D3 D2

)
(r) = D3(r). Moreover, the

fact that f is an order embedding gives that f(D2(s)) > f(D1(rs)) implies D2(s) > D1(rs) and so

D3(r) ≤ D1(rs), i.e., f(D3(r)) ≤ f(D1(rs)). As a consequence,

f
((
D1 ÷D3 D2

)
(r)
)

= f(D3(r))

=
(
(D1 ◦ f)÷D3◦f (D2 ◦ f)

)
.

It remains to prove the equality in the case when (36) does not hold. That is, assume that for

given r ∈ Tupl(R) there is s ∈ Tupl(S) such that D2(s) > D1(rs) and D3(r) > D1(rs). Therefore,

for given r ∈ Tupl(R),

K = {D1(rs); D2(s) > D1(rs), s ∈ Tupl(S)}

is non-empty and in addition it is finite because it is a subset of the range of D1. Since L is totally

ordered, there is s′ ∈ Tupl(S) such that D1(rs′) is the least element of K. The fact that f is an

order embedding further gives that f(D1(rs′)) is the least element of

f(K) = {f(D1(rs)); f(D2(s)) > f(D1(rs)), s ∈ Tupl(S)}.

Hence,

f
((
D1 ÷D3 D2

)
(r)
)

= f(D1(rs′))

=
(
(D1 ◦ f)÷D3◦f (D2 ◦ f)

)
,
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# ID PRICE

0.882 71 798,000

0.882 71 849,000

0.655 85 998,000

0.541 82 648,000

0.462 58 829,000

0.272 93 598,000

# ID PRICE

0.877 71 798,000

0.782 71 849,000

0.655 85 998,000

0.429 58 829,000

0.361 82 648,000

0.160 93 598,000

Figure 5: Join of transformed ranked data table projected onto {ID, PRICE} (left) and result of the

same query using the Goguen aggregation (right).

which concludes the proof of (56). Now, observe that (59) follows directly by (56). Indeed, for D1

and D2 on R and for an auxiliary D on ∅ such that D(∅) = 1, we have

S(D1,D2) ◦ f = f
((
D2 ÷D D1

)
(∅)
)

=
(
(D2 ◦ f)÷D◦f (D1 ◦ f)

)
(∅)

=
(
(D2 ◦ f)÷D (D1 ◦ f)

)
(∅)

= S(D1 ◦ f,D2 ◦ f)

provided that f(1) = 1 and thus D ◦ f = D. Finally, (57) can be proved analogously as (56) by

inspecting the cases in (43), the details are left to the reader.

If f : L → L is an order isomorphism, then all conditions in Theorem 6 and Theorem 7 are

satisfied including the facts that f(0) = 0 and f(1) = 1. Such f may be viewed as an ordinal

transformation function of ranked data tables. We may say that D1 is ordinally transformed into

D2 by f , written D1 7→f D2, whenever D1 ◦ f = D2. Under this notation, (52)–(59) in the

invariance theorems can be restated as follows: If D1 7→f D′1 and D2 7→f D′2, then

D1 ./ D2 ≡ D′1 ./ D′2 (60)

in case of ./ and analogously for σθ, πS , ∪, −, ÷, and S. Put in words, the results of an operation

with transformed input data and the original input data are equivalent in terms of the order of

tuples given by scores.

Example 4. To illustrate the invariance theorems on concrete data, consider the RDTs D1 and D2

as in Fig. 1. A map f : [0, 1]→ [0, 1] given by

f(x) =

{
2−0.5

√
x, if x ≤ 0.5,

2(x− 0.5)2 + 0.5, otherwise,
(61)

is an order isomorphism preserving 0 and 1. Fig. 5 (left) contains the result of

π{ID,PRICE}((D1 ◦ f) ./ (D2 ◦ f))

22



# ID BDRM PRICE

0.778 85 5 998,000

0.699 71 3 798,000

0.699 71 3 849,000

0.643 82 4 648,000

0.426 58 4 829,000

0.148 93 2 598,000

# ID BDRM PRICE

0.655 85 5 998,000

0.579 71 3 798,000

0.579 71 3 849,000

0.541 82 4 648,000

0.462 58 4 829,000

0.272 93 2 598,000

Figure 6: Result of σθ(D1 ./ D2) projected onto S = {ID, BDRM, PRICE} (left) and σθ◦f ((D1 ◦ f) ./

(D2 ◦ f)) projected onto S (right).

# ID BDRM PRICE

0.699 71 3 798,000

0.699 71 3 849,000

0.655 85 5 998,000

0.541 82 4 648,000

0.462 58 4 829,000

0.272 93 2 598,000

Figure 7: Result of πS(σθ((D1 ◦ f) ./ (D2 ◦ f))).

which is equivalent to

π{ID,PRICE}(D1 ./ D2) ◦ f

owing to (52) and (53). The tuples in the result, when sorted by scores, appear in the same order

as in Fig. 2 showing D1 ./ D2. Our assumption that the join (27) (as well as the other operations)

is defined using the infimum instead of a general aggregation function ⊗, see Remark 4, is essential.

If we replace inf in (27) by ⊗ being the multiplication of reals (so-called Goguen aggregation, see

[20]) and compute π{ID,PRICE}((D1 ◦ f) ./ (D2 ◦ f)), we get Fig. 5 (right) as the result where the

order of tuples is not preserved.

As a further example, Fig. 6 (left) shows the result of a restriction of the join using the restriction

condition θ defined by

θ(r) =

{
0.1(4 + r(BDRM)), if r(DBRM) ≤ 6,

1, otherwise,
(62)

which may be seen as a restriction on the number of bedrooms 6 and more with a tolerance for

lower numbers. Fig. 6 (right) shows the result for the tables transformed by f as above. Again,

the tuples appear in the same order. Finally, Fig. 7 shows that without transforming θ, the order

of tuples in the result would not be preserved, i.e., θ ◦ f in (53) cannot be replaced by θ.

The invariance theorems can be seen as type of description of the independence of query

results on possible changes in scores in the input data and restriction conditions in queries. An

alternative characterization which does not utilize the position of tuples in relations but uses a
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notion of similarity was proposed in [3]. We now make a comment on how the approaches can

be combined. As we have outlined in the introduction, [3] introduces lower bounds for similarity

of query results based on similarity of input data. For instance, in the case of joins of RDTs, [3]

shows that

S(D1,D2)⊗ S(D3,D4) ≤ S(D1 ./ D3,D2 ./ D4), (63)

E(D1,D2)⊗ E(D3,D4) ≤ E(D1 ./ D3,D2 ./ D4), (64)

where S is defined as in (39) and E is defined as in (41), and ⊗ is a binary aggregation function with

suitable properties (it is commutative, associative, and 1 is its neutral element). In our setting,

(63) and (64) may be restated with ⊗ replaced by inf as

inf{S(D1,D2),S(D3,D4)} ≤ S(D1 ./ D3,D2 ./ D4), (65)

inf{E(D1,D2),E(D3,D4)} ≤ E(D1 ./ D3,D2 ./ D4). (66)

Put in words, (65) says that the score to which D1 ./ D3 is contained in D2 ./ D4 as at least the

score to which D1 is contained in D2 and D3 is contained in D4. Analogously, we may interpret (66)

with “contained” replaced by “similar”.

Now, using the fact that f(inf{a, b}) = inf{f(a), f(b)} for all a, b ∈ L together with the fact

that f is order-preserving, we may conclude that

inf{S(D1 ◦ f,D2 ◦ f),S(D3 ◦ f,D4 ◦ f)} = inf{S(D1,D2) ◦ f, S(D3,D4) ◦ f}

= f(inf{S(D1,D2),S(D3,D4)})

≤ f(S(D1 ./ D3,D2 ./ D4))

= S(D1 ./ D3,D2 ./ D4) ◦ f

and analogously for E. In much the same way, we get the following inequality:

f(inf{S(D1,D2),S(D3,D4)}) = inf{S(D1,D2) ◦ f, S(D3,D4) ◦ f}

= inf{S(D1 ◦ f,D2 ◦ f),S(D3 ◦ f,D4 ◦ f)}

≤ S((D1 ◦ f) ./ (D3 ◦ f), (D2 ◦ f) ./ (D4 ◦ f)).

The inequality may be seen as an extension of the lower bound given by (65) which incorporates

an ordinal transformation. Indeed, it reads: “the score to which the join of the transformed RDTs

D1 and D3 is contained in the join of the transformed RDTs D2 and D4 is at least as high as

the transformed score of containment of D1 in D2 and D3 in D4.” Analogous combined similarity

bounds of operation with transformed data can be obtained for the other relational operations,

cf. [3].

6 Gödel logic and relational calculi

In the previous section, we have discussed the invariance to ordinal transformations for one par-

ticular query system—a system based on relational operations which may be composed to form
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complex queries. The system resembles the traditional relational algebra. In this section, we show

that the same type of results on invariance to ordinal transformations can also be established in

a query system which is based on evaluating formulas in database instances consisting of ranked

data tables and is conceptually similar to the classic relational calculi. We establish the invariance

theorems indirectly by showing that the query system based on evaluating formulas is equivalent

to the system based on relational operations. By proving the equivalences of the query systems, we

get new insights into the original query system. For instance, it turns our that Gödel logic plays

an analogous role in the rank-aware approach investigated in this paper as the Boolean logic in

the classic relational model of data. This connection allows us to derive conclusions about proper-

ties of the relational operations in our model based on provability of particular formulas in Gödel

logic—we utilize this observation in Section 7. In the beginning of this section, we recall first-order

Gödel logic in a form that is suitable for our development and then we show its relationship to our

model.

A language J of a first-order Gödel logic is given by a set of relation symbols together with

information about their arities. The relation symbols may also be called predicate symbols and in

the database terminology they may be understood as relation variables whose values are bound to

relations in database instances. Furthermore, we consider a denumerable set X of object variables.

Analogously as in the case of the classic first-order logic, formulas are defined recursively based on

atomic formulas using symbols for logical connectives and quantifiers:

(i) 0 is a formula (a constant of the truth value “false”).

(ii) If r is n-ary relation symbol and x1, . . . , xn ∈ X, then r(x1, . . . , xn) is a formula.

(iii) If ϕ and ψ are formulas, then (ϕ ∧ ψ) and (ϕ⇒ ψ) are formulas.

(iv) If ϕ is a formula and x ∈ X, then (∀x)ϕ and (∃x)ϕ are formulas.

All formulas we consider result by applications of (i)–(iv). Let us note that both (i) and (ii)

introduce atomic formulas. In the first case, 0 may be seen as a nullary logical connective (i.e.,

a connective with no arguments). In the second case, each r(x1, . . . , xn) is an atomic formula

constructed as in the first-order Boolean logic except for the fact that we do not consider more

complex terms than object variables—objects constants and general function symbols may also be

introduced but this is not necessary for our application of the logic. Also note that a special case

of (ii) are formulas of the form r() when r is a nullary relation symbol. In such a case, r() may

be denoted just r and called a propositional symbol. Furthermore, (iii) introduces more complex

formulas built using logical connectives ∧ (conjunction) and ⇒ (implication); here we adopt the

common rules for omission of outer parentheses in formulas. Finally, (iv) defines universally and

existentially quantified formulas in the same way as in the classic logic.

Remark 7. We can consider only 0, ∧, and⇒ as the basic connectives. Indeed, formulas containing

∨ (disjunction) and possibly other connectives (¬ for a negation, and ⇔ for a biconditional) can
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be seen as abbreviations as follows:

¬ϕ is ϕ⇒ 0, (67)

ϕ⇔ ψ is (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ), (68)

ϕ ∨ ψ is ((ϕ⇒ ψ)⇒ ψ) ∧ ((ψ ⇒ ϕ)⇒ ϕ). (69)

Note that in Gödel logic, ∧ is not definable based solely on ⇒ and 0 as it is in the classical logic

where ϕ∧ ψ can be seen as an abbreviation for (ϕ⇒ (ψ ⇒ 0))⇒ 0. This is due to the absence of

the law of the double negation.

The semantic of formulas is introduced based on their evaluation in general structures for a

given language J based on Gödel algebras. In the database terminology, the language defines a

database scheme and the general structures may be seen as counterparts to the classic database

instances.

Let L be a Gödel algebra. An L-structure for language J is denoted M and consists of a

non-empty universe set M and a set which contains, for each n-ary relation symbol r in the

language, a map rM : Mn → L where Mn denotes the usual n-th power of M . Under this

notation, rM(m1, . . . ,mn) is a degree in L which can be interpreted as a score of a tuple consisting

of the values m1, . . . ,mn in rM. Note that in this setting, we do not have names of attributes and

therefore the order of arguments in rM(m1, . . . ,mn) matters (as it is usual in first-order logics, one

may easily introduce “names of attributes” to keep the formalism closer to the style of relational

database calculi). An M-valuation (of object variables) is any map v : X → M , v(x) interpreted

as the value of x ∈ X under v. Now, the values of formulas (of the language J ) in L-structure M

(for J ) given an M-valuation v is defined by the following rules. In case of the atomic formulas,

we put

||0||M,v = 0, (70)

||r(x1, . . . , xn)||M,v = rM(v(x1), . . . , v(xn)). (71)

For the formulas built using the binary connectives ∧ and ⇒, we put

||ϕ ∧ ψ||M,v = inf{||ϕ||M,v, ||ψ||M,v}, (72)

||ϕ⇒ ψ||M,v = ||ϕ||M,v → ||ψ||M,v, (73)

From (69) it follows that

||ϕ ∨ ψ||M,v = sup{||ϕ||M,v, ||ψ||M,v}. (74)

Observe that if L is totally ordered, then (14) yields

||ϕ⇒ ψ||M,v =

1, if ||ϕ||M,v ≤ ||ψ||M,v,

||ψ||M,v, otherwise.
(75)
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Finally, the value of quantified formulas is defined as follows provided that the right-hand sides of

the following equalities are defined:

||(∀x)ϕ||M,v = inf{||ϕ||M,w; w =x v}, (76)

||(∃x)ϕ||M,v = sup{||ϕ||M,w; w =x v}, (77)

where w =x v means that w is an M-valuation such that w(y) = v(y) for all y ∈ X such that x 6= y.

Note that in general, (76) and (77) may not be defined because of the non-existence of infima and

suprema of {||ϕ||M,w; w =x v} ⊆ L. If for any ϕ of the language J (76) and (77) are defined

under any M-valuation, then M is called safe. If L is complete, then any L-structure is trivially

safe. More importantly, if each rM is finite, meaning there are only finitely many m1, . . . ,mn ∈M
for which rM(m1, . . . ,mn) > 0, then M is safe as well.

At this point, we can already describe how the interpretation of formulas in Gödel logic can

be used as a basis of a query system and put it with correspondence to the query system based

on relational operations. We describe the query system only to the extent to be able to derive

conclusions on the invariance to ordinal transformations because a detailed description of relational

calcluli is beyond the scope and need of this paper. Interested readers can find more details on

pseudo-tuple calculus in [35].

Now, consider any finite L-structure M (i.e., every rM is finite in the same sense as above)

and a formula ϕ with free variables x1, . . . , xn. Under this notation, M and ϕ induce a map

DM,ϕ : Tupl(R)→ L, where R = {x1, . . . , xn} and(
DM,ϕ

)
(r) = ||ϕ||M,v (78)

such that r(xi) = v(xi) for all i = 1, . . . , n. Clearly, DM,ϕ given by (78) is a ranked data table on

R (free variables in ϕ are considered as names of attributes) and it can be seen as a result of a

query given by ϕ in a database instance represented by the safe L-structure M.

Remark 8. Let us note that DM,ϕ is defined correctly by (78) because ||ϕ||M,v depends only on

M-valuation of variables which appear free in ϕ. Also note that in the definition of DM,ϕ, we have

tacitly assumed that variables in ϕ are used as attribute names and, at the same time, we have

disregarded their types. An explicit (and rigorous) treatment of types can be incorporated but

it does not bring new insight into the invariance issues and we therefore use this simplification.

The role of L-structures as database instances is basically the same as in the classic model except

for the fact that each rM represents an RDT instead of a classic relation. Indeed, a propositional

symbol r may be seen as a name and rM (the interpretation of r in M) may be seen as a current

value of r considering M.

The equality of the considered query systems can be proved by showing that for a query

formulated in one of the systems there is a corresponding equivalent query in the second one and

vice versa. The arguments are similar as in the ordinary non-ranked model and we therefore focus

only on the essential differences.
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From Relational Operations to Queries in Gödel Logic Let us assume that D is a result

of a query which uses RDTs D1, . . . ,Dn, restriction conditions θ1, . . . , θk, and operations ./, σ, π,

∪, ÷, and renaming (in the ordinary sense). Then, there is a finite M and a formula ϕ such that

D coincides with DM,ϕ. The construction of M and ϕ is straightforward and goes along the same

lines as in the ordinary case except for the fact that the division is not a derivable operation. First,

let M be an RDT where each RDT Di is represented by rM
i and each restriction condition θj is

represented by sMj . Observe that since we consider only finitely many input RDTs, the universe of

M can be considered as a finite set and all sMj ’s can be restricted to this finite universe. In case of

queries resulting by ./, σ, π, and ∪, the desired formula is constructed as in the classic case from

formulas corresponding to subqueries. For instance, let us assume that the query is of the form of

a projection onto S = {y1, . . . , yp} for p ≥ 0 and its subquery (the argument for the projection)

produces an RDT on R = {y1, . . . , yq} for q ≥ p. If we assume that a formula ψ is a counterpart

to the subquery, then the counterpart of the projection is

(∃yp+1) · · · (∃yq)ψ, (79)

i.e., the same formula as in the classic case. In case of the division, which is not a fundamental

operation, we proceed analogously. Namely, we use a formula

ϑ ∧ (∀y1) · · · (∀yp)(ψ ⇒ χ), (80)

where ψ, χ, and ϑ are formulas corresponding to subqueries, and {y1, . . . , yp} is the set of all

attributes which are common to the results of subqueries corresponding to ψ and χ, cf. (34).

Altogether, query of arbitrary complexity formulated in terms of the relational operations with

RDTs can equivalently be expressed by a formula of Gödel logic.

From Queries in Gödel Logic to Relational Operations Conversely, consider any finite

L-structure M with a universe M and a formula ϕ. Let DM denote an RDT on {y} such that

{r(y); DM (r) = 1} = M and L(DM ) = {1}. Since M is finite, such an RDT always exists. Let 0R

denote an empty RDT on R (i.e., the answer set of 0R is empty). Under this notation, one can

construct a relational expression which involves DM , finitely many RDTs 0R, RDTs corresponding

to all rM, and relational operations ./, σ, π, ∪,→, and ÷ such that DM,ϕ coincides with the value

of the expression. Again, the construction is fully analogous to the classic one except for the fact

that we consider two fundamental quantifiers and fundamental connectives 0 and ⇒ which cannot

be defined in terms of the other ones. Indeed, if ϕ is 0, the corresponding expression is 0∅, i.e.,

0R for R = ∅. If ϕ is r(x1, . . . , xn), then we can consider the RDT corresponding to rM. For ϕ

being either of ψ∧χ and ψ ⇒ χ, we utilize the relational operations ./ and→ in conjunction with

DM (and optionally the renaming of attributes); note here that as in the classic case, ψ and χ

may have different sets of variables which appear free in ψ and χ, respectively. If ϕ is (∃x)ψ, we

proceed as in the classic case using π and ./. For ϕ being (∀x)ψ, the expression is built using ÷
and DM . Namely, the expression is of the form Dψ÷DDx, where (i) Dx is DM with the attribute y

renamed to x; (ii) D is a join of finitely many Dy1 , . . . ,Dyn such that all free variables in ψ except
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for x are exactly y1, . . . , yn and each Dyi results from DM by renaming y to yi; (iii) Dψ results by

the expression corresponding to ψ.

Owing to the correspondence between the query system based on relational operations with

RDTs and the system based on evaluating formulas of Gödel logic, we conclude that every query

formulated by a formula of Gödel logic is invariant to ordinal transformations. This observation is

a direct consequence of Theorem 6 and Theorem 7 and is summarized in the following corollary.

Corollary 8. Let ϕ be a formula of language J and M be a finite L-structure for J . Furthermore,

let f be an order embedding such that f(0) = 0 and f(1) = 1. Then,

DM,ϕ ◦ f = DM◦f,ϕ, (81)

where M ◦ f is a finite L-structure for J such that rM◦f = rM ◦ f for any relation symbol r of

the language J .

We now turn our attention to the axiomatization of Gödel logic and its consequences for the

query systems. Gödel logic has a complete Henkin-style axiomatization, i.e., a special deductive

system. The axiomatization can be used to find proofs of properties of relational operations owing

to the relationship between the two query systems considered in this section. The deductive system

(for the language J ) consists of the following axioms of logical connectives:

ϕ⇒ (ϕ ∧ ϕ), (82)

(ϕ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (ϕ⇒ χ)), (83)

(ϕ ∧ ψ)⇒ ϕ, (84)

(ϕ ∧ ψ)⇒ (ψ ∧ ϕ), (85)

(ϕ⇒ (ψ ⇒ χ))⇒ ((ϕ ∧ ψ)⇒ χ), (86)

((ϕ ∧ ψ)⇒ χ)⇒ (ϕ⇒ (ψ ⇒ χ)), (87)

((ϕ⇒ ψ)⇒ χ)⇒ (((ψ ⇒ ϕ)⇒ χ)⇒ χ), (88)

0⇒ ϕ, (89)

where ϕ,ψ, χ are arbitrary formulas of J . In addition to the logical axioms, we admit the following

axioms of substitution

(∀x)ϕ⇒ ϕ(x/y), (90)

ϕ(x/y)⇒ (∃x)ϕ, (91)

where x and y are variables such that y is free for x in ϕ in the usual sense, i.e., no free occurrence

of x in ϕ lies within the scope of a quantifier which binds y, see [31]. Furthermore, we assume the

following axioms of the distribution:

(∀x)(ϕ⇒ ψ)⇒ (ϕ⇒ (∀x)ψ), (92)

(∀x)(ψ ⇒ ϕ)⇒ ((∃x)ψ ⇒ ϕ), (93)

(∀x)(ϕ ∨ ψ)⇒ (ϕ ∨ (∀x)ψ), (94)
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where ϕ is an arbitrary formula such that x is not free in ϕ. In addition to the axioms (82)–(94),

the deductive system consists of deduction rules modus ponens “from ϕ and ϕ⇒ ψ infer ψ” (i.e.,

the law of detachment) and generalization “from ϕ infer (∀x)ϕ”. As usual, a proof by a set Σ of

formulas is a finite sequence ϕ1, . . . , ϕn where each ϕi is a logical axiom or a formula in Σ or it is

derived by modus ponens or generalization from preceding formulas in the sequence; ϕ is provable

by Σ, denoted Σ ` ϕ, if there is a proof ϕ1, . . . , ϕn by Σ such that ϕ = ϕn.

The notion of provability is one paricular notion of (a syntactic) entailment in the logic. Other

notion of entailment—the semantic entailment may be defined based on the notion of an L-model.

In particular, for ϕ and a safe L-structure M, we put

||ϕ||M = inf{||ϕ||M,v; v is M-valuation}. (95)

Furthermore, a safe L-structure M is called a model of Σ whenever ||ϕ||M = 1 for all ϕ ∈ Σ. We

put Σ |= ϕ and say that ϕ is semantically entailed by Σ whenever ||ϕ||M = 1 for any L-model M

of Σ where L is any totally ordered Gödel algebra. For convenience, we write ` ϕ and |= ϕ in

case of Σ = ∅. The following completeness theorem is established (recall that [0, 1]G denotes the

standard Gödel algebra defined on the real unit interval).

Theorem 9 (Completeness of first-order Gödel logic). Let Σ be any set of formulas of J . The

following are equivalent:

(i) Σ ` ϕ;

(ii) Σ |= ϕ;

(iii) ||ϕ||M = 1 for each [0, 1]G-model of Σ;

(iv) For each [0, 1]G-structure M there is ψ ∈ Σ such that ||ψ||M ≤ ||ϕ||M;

(v) For each [0, 1]G-structure M and each a ∈ [0, 1]:

if ||ψ||M ≥ a for each ψ ∈ Σ, then ||ϕ||M ≥ a.

Proof. See [23, Theorem 5.2.9 and Corollary 5.3.4].

Remark 9. Note that the term “completeness” in Theorem 9 refers to the syntactico-semantical

completeness of the logic, cf. also [7], and not the functional completeness. In fact, the system of

connectives used in the logic cannot be functionally complete because [0, 1]G admits uncountably

many n-ary functions while the language of the logic and, therefore, the number of different

formulas that can be written in the language, is countable. In this sense, the underlying logic of

the rank-aware model depart from the classic logic where any n-ary function on {0, 1} is expressible

using (the truth functions of) the fundamental connectives (e.g., ⇒ and ¬). Also note that Gödel

logic is indeed weaker than the classic logic. For instance, ¬¬ϕ⇒ ϕ is not provable in Gödel logic.

As a consequence, the relational operations with RDTs considered in our paper do not satisfy all

laws that are satisfied in the classic relational model. For instance, there are D1 and D2 on the

same relation scheme such that D1 ∩ D2 6= D1 − (D1 −D2).
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As an application of the established connection between the relational operations with RDTs

and Gödel logic, we can introduce a derived operation of a semijoin. In the classic mode, a semijoin

of D1 and D2 on R1 and R2, respectively, may be introduced by πR1(D1 ./ D2) or, equivalently,

by D1 ./ πR1∩R2(D2). From the perspective of Gödel logic, πR1(D1 ./ D2) can be represented by

an L-stricture M with rM
1 and rM

2 corresponding to D1 and D2, respectively, and a formula

(∃z1) · · · (∃zk)(r1(x1, . . . , xi, y1, . . . , yj) ∧ r2(y1, . . . , yj , z1, . . . , zk)). (96)

In Gödel logic, the formula is equivalent to

r1(x1, . . . , xi, y1, . . . , yj) ∧ (∃z1) · · · (∃zk)r2(y1, . . . , yj , z1, . . . , zk). (97)

This is a direct consequence of the fact that

` (∃x)(ϕ ∧ ψ)⇔ (ϕ ∧ (∃x)ψ) (98)

provided that x is not free in ϕ, [23, Lemma 5.1.21]. Observe that (97) is in a correspondence with

D1 ./ πR1∩R2
(D2). Therefore, in our setting, we also have

πR1(D1 ./ D2) = D1 ./ πR1∩R2(D2) (99)

as in the classic model which allows us to define a semijoin of ranked data tables by the expression

on either side of the equality in (99). In addition, owing to the observations in Theorem 6, the

semijoin is also invariant to the ordinal scaling which follows directly by (52) and (55).

7 Computational Issues and Relationship to Other Approaches

The primary interest of our paper is the invariance to ordinary scaling. In this section, we make

a digression and comment on algorithms for evaluating particular monotone queries and the re-

lationship to other rank-aware approaches. We show that our observations on the connection of

the relational operations with RDTs and Gödel logic can be used to derive laws for query trans-

formations. In addition, we show that the algorithm for computing top-k query results [15] fits

well into our formal model. Finally, we show that the observations on the invariance to ordinal

transormations can also be applied in the approach by [28].

One of the crucial aspects of any model of data from the point of view of its applicability is

the possibility to transform general queries to efficient logical and then physical query plans. In

this section, we show that for a fragment of the discussed relational operations, one can consider

similar transformations of logical query plans, i.e., transformations of expressions composed of

relational operations with RDTs to equivalent expressions which are more suitable for an efficient

execution, as in the ordinary relational model of data. We focus only on issues which are specific

to our model.

First, we consider laws concerning natural join, projections, selections, and unions and show

that our operations with RTDs admit important transformation laws which are used in the ordinary

relational model.
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Theorem 10. Let D1 and D2 be RDTs on relation schemes R1 and R2, respectively. Then, the

following properties hold true.

(i) If θ : Tupl(R1 ∪ R2) → L and θ1 : Tupl(R1) → L are restriction conditions such that

θ1(r1) = θ(r1r2) for any r1 ∈ Tupl(R1) and r2 ∈ Tupl(R2) which are joinable, then σθ(D1 ./

D2) = σθ1(D1) ./ D2.

(ii) If θ1 : Tupl(R1)→ L and θ : Tupl(R)→ L are restriction conditions such that θ(r) = θ(rr′)

for all r ∈ Tupl(R) and r′ ∈ Tupl(R1 \R), then πR(σθ1(D1)) = σθ(πR(D1)).

(iii) If R1 = R2 and R ⊆ R1, then πR(D1 ∪ D2) = πR(D1) ∪ πR(D2).

(iv) If S ⊆ R ⊆ R1, then πS(πR(D1)) = πS(D1).

Proof. The assertion can be proved by observing formulas of Gödel logic corresponding to the

equalities appearing in (i)–(iv) and considering the properties of ` in Gödel logic. In case of (i),

σθ(D1 ./ D2) can be represented by a formula θ ∧ (ϕ ∧ ψ) and, analogously, σθ1(D1) ./ D2 can

be represented by a formula (θ1 ∧ ϕ) ∧ ψ (we have tacitly identified restriction conditions with

formulas). Therefore, (i) follows by the associativity of ∧, i.e.,

` (θ ∧ (ϕ ∧ ψ))⇔ ((θ ∧ ϕ) ∧ ψ),

see [23, Lemma 2.2.15], and the relationship of θ1 and θ. Analogously, (ii) is a consequence of (98);

(iii) is a consequence of

` (∃x)(ϕ ∨ ψ)⇔ (ϕ ∨ (∃x)ψ)

provided that x is not free in ϕ, see [23, Lemma 5.1.21]. Finally, (iv) follows directly by the fact

that the left-hand and right-hand sides of the equality in (iv) translate into a single formula of

Gödel logic of the form (∃x1) · · · (∃xn)ϕ.

As a consequence of Theorem 10 and (99), we may conclude that the usual optimization tech-

niques based on pushing down restrictions and projections [19] still work in the ranke-aware model

because the classic laws on which the optimizations are based are preserved in Gödel logic. There-

fore, many monotone queries in the rank-aware model can be transformed into expressions of the

form

D1 ./ D2 ./ · · · ./ Dn, (100)

where Di for i = 1, . . . , n are RDTs on Ri which result by computing projections and/or restrictions

of RDTs representing base data (i.e., RDTs bound to relation variables in a database instance).

Clearly, a tuple r1r2 · · · rn, where ri ∈ Tupl(Ri) for each i = 1, . . . , n, belongs to the answer set

of (100) iff all r1, r2, . . . , rn are joinable and its score is

inf{D1(r1),D2(r2), . . . ,Dn(rn)} > 0. (101)
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Hence, (100) may be understood as a query in a similar form as (1) with a few minor conceptual

differences: (i) Di in may not represent a result of an atomic query as in (1), (ii) we always

consider inf as the interpretation of &, and (iii) the objects which match queries are in fact tuples

constructed as joins of joinable tuples considered on general schemes R1, R2, . . . , Rn. Nevertheless,

in case one wants to compute only top k matches, i.e., if one wants to compute only a portion

of the answer set of (100) consisting only of k tuples with highest scores, we can directly adopt

the Fagin algorithm [15], namely, its improved version which consideres inf as the aggregation

function, see [15, Theorem 4.4], provided that each Di allows an efficient “sorted access” (tuples in

the answer set of Di may be listed sorted by scores in the descending order) which may be assumed

in many natural situations. Except for the technical difference in using “joinable tuples”, see (iii)

above, the Fagin algorithm does not need to be further modified. Interested readers are refered

to [15] for details and complexity analysis.

We now turn our attention to RankSQL and the extended relational algebra proposed in [28]

which is arguably one of the most influential approaches to ranking in relational databases. Similar

observation as in Section 5 can be made in the rank-relational approach described in their paper.

Recall that according to [28], the basic structure which serves as a counterpart of the classic

relations on relation schemes is a rank-relation RP which is understood as a classic relation R

equipped with scores and (strict total) tuple order <RP based on the scores. The score for each

tuple r ∈ R is computed as a result of a general (monotonic) scoring function F which is applied

to predicate scores pi[r] of the tuple r. The predicate scores represent individual ranking criteria

(like low price, high availability, close distance between locations, etc.) called predicates and

denoted by p1, . . . , pn. Note that P (called the set of evaluated predicates) is always a subset of

{p1, . . . , pn} and the rank-relational model and its implementation relies on the ranking principle

[28, page 133] based on maximal possible scores of tuples in R given P, i.e., each pi[r] for which

pi 6∈ P (pi is not evaluated) is considered to have the application-specific maximal possible value

of pi. Therefore, for general P, each tuple r ∈ R has its maximal possible score denoted FP [r]

and <RP (the tuple order in R given P) is introduced based on such scores, namely, r1 <RP r2

whenever FP [r1] < FP [r2]. Furthermore, queries in RankSQL are transformed into expressions

of rank-relational algebra which introduces operations with rank-relations including restriction,

union, intersection, difference, theta-join, and rank—a new operation which produces RP∪{p}
based on RP and p 6∈ P. Let us stress that the operations with rank-relations indeed operate on

rank-relations, i.e., based on scores and tuple orders of the input arguments, the operations define

scores and tuple order of the result. For instance, in case of the union of RP1
and SP2

, the result

is a rank-relation (R ∪ S)P1∪P2
in which r1 <(R∪S)P1∪P2

r2 whenever FP1∪P2
[r1] < FP1∪P2

[r2].

From our perspective, we may view an important special case of the rank-relational approach

in [28] as follows: We consider L (the structure of scores) as a totally ordered complete lattice and

we let F be inf. That is, the scoring function always computes the minimum of given predicate

scores and 1 represents the maximal possible score. In this setting, rank-relations may be viewed

as RDTs with the order of tuples given implicitly by the scores; predicates pi may be viewed as

general restriction conditions, and the rank operator may be seen as a general restriction (29).

Moreover, for the rank-relational querying, we may ask the same question as before: Does an
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ordinal transformation of the input ranking criteria yield the same results? The answer is positive.

In a more detail, let f : L → L be an order embedding which preserves 0 and 1. Then, for each

pi (which is in fact a map from the set of all tuples on the scheme of R to L) we may consider

the composed map pi ◦ f and put P ◦ f = {p ◦ f ; p ∈ P}. With respect to the above-mentioned

interpretation of evaluated predicates, P◦f may be seen as a set of ordinally transformed evaluated

predicates. Moreover,f is an order embedding and for ∪ defined as above, we have

r1 <(R∪S)P1∪P2
r2 iff

FP1∪P2
[r1] < FP1∪P2

[r2] iff

f
(
FP1∪P2

[r1]
)
< f

(
FP1∪P2

[r2]
)
.

Now, using the fact that F is inf, it follows that f
(
FP1∪P2 [r]

)
= F (P1◦f)∪(P2◦f)[r] for all r ∈ R.

Hence, by the definition of <(R∪S)P1∪P2
and <(R∪S)(P1◦f)∪(P2◦f)

,

r1 <(R∪S)P1∪P2
r2 iff

F (P1◦f)∪(P2◦f)[r1] < F (P1◦f)∪(P2◦f)[r2] iff

r1 <(R∪S)(P1◦f)∪(P2◦f)
r2,

proving that (R ∪ S)P1∪P2
and (R ∪ S)(P1◦f)∪(P2◦f) are ordinally equivalent. One may proceed

the same way for the other operations of the rank-relation algebra, see [28, page 134]. As a

consequence, ordinal transformations do not have any effect on the results of top-k queries—scores

of tuples may be different, however, the order in which tuples appear in the result is the same.

Finally, let us note that the approach in [28] is conceptually similar to ours in that both are

capable to answer queries by relations with tuples annotated by scores which indicate degrees of

matches of user preferences. It should be noted, however, that the approaches are technically

different (even if we consider F as inf). More detailed on the technical differences can be found

in [35].

8 Conclusion

Notions of ordinal containment and ordinal equivalence of relations consisting of tuples annotated

by scores have been proposed. The ordinal containment and equivalence have been characterized

in terms of the existence of suitable order-preserving functions and order isomorphisms between

subsets of scores. It has been shown that infima-based algebraic operations with ranked relations

are invariant to ordinal transformations: Queries applied to original and transformed data yield

results which are equivalent in terms of the order given by scores. We have demonstrated that

this property is not preserved if one considers algebraic operations with ranked relations based on

general aggregation functions like triangular norms (other than the minimum triangular norm). As

a result of our observation, we have concluded that under infima-based algebraic operations, the

scores in ranked tables have no quantitative meaning. Generality of the result has been demon-

strated by applying the observations in an alternative calculus-based query system grounded in
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Gödel logic. Furthermore, relationship to other approaches has been investigated with the inten-

tion to show the connection to existing algorithms for monotone query evaluation and conceptually

similar approaches to ranking in databases.
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[9] Nilesh Dalvi, Christopher Ré, and Dan Suciu, Probabilistic databases: diamonds in the dirt, Commun. ACM

52 (2009), 86–94.

[10] Christopher J. Date and Hugh Darwen, Databases, types, and the relational model: The third manifesto, 3rd

ed., Addison-Wesley, 2006.

[11] , Database explorations: Essays on the third manifesto and related topics, ch. 14: Image Relations,

pp. 237–272, Trafford Publishing, 2010.

[12] , Database explorations: Essays on the third manifesto and related topics, ch. 12: A Brief History of

the Relational Divide Operator, pp. 169–198, Trafford Publishing, 2010.

[13] Christopher J. Date, Hugh Darwen, and Nikos A. Lorentzos, Time and relational theory: Temporal databases

in the relational model and SQL, Morgan Kaufmann, 2014.
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