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 We develop a probabilistic variant of 𝑘𝑘-anonymous microaggregation, which we term 𝑝𝑝-
probabilistic, resorting to a statistical model of respondent participation in order to ag-
gregate quasi-identifiers in such a manner that 𝑘𝑘-anonymity is concordantly enforced with 
a parametric probabilistic guarantee. Succinctly, owing the possibility that some respond-
ents may not finally participate, sufficiently larger cells are created striving to satisfy 𝑘𝑘-
anonymity with probability at least 𝑝𝑝. The microaggregation function is designed before 
the respondents submit their confidential data. More precisely, a specification of the func-
tion is sent to them, which they may verify and apply to their quasi-identifying demo-
graphic variables, prior to submitting the microaggregated data along with the confidential 
attributes to an authorized repository. 

We propose a number of metrics to assess the performance of our probabilistic ap-
proach in terms of anonymity and distortion, which we proceed to investigate theoretically 
in depth, and empirically with synthetic and standardized data. We stress that in addition 
to constituting a functional extension of traditional microaggregation, thereby broadening 
its applicability to the anonymization of statistical databases in a wide variety of contexts, 
the relaxation of trust assumptions is arguably expected to have a considerable impact on 
user acceptance, and ultimately, on data utility, through mere availability. 
©  The Authors. Preprint submitted to Elsevier, Inc. 
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I. Introduction 
IG data is better data. Abundant quantities of precise, frequent information may provide qualitatively superior 
insight into challenges and opportunities that may otherwise remain unseen amidst the intricacies of any suffi-
ciently complex system. Peter Norvig, director of research at Google, in his brilliant paper “The unreasonable 

effectiveness of data” [], insightfully acknowledges that a massive wealth of data may radically improve the effective-
ness of a machine-learning algorithm, to the point of turning a hopeless computer model into an expert system exceeding 
human performance. Certainly, the availability of large quantities of data to modern information systems of ever-
increasing power and sophistication may offer extraordinary potential. 

But for every auspicious opportunity that modern information technologies offer, a daunting challenge to protect 
the privacy of their users arises, as the inclusion of rich quantities of sensitive data poses privacy risks that cannot 
simply remain overlooked. Personal information, explicitly submitted or implicitly inferable from observed behavior, 
poses evident privacy risks, especially when combined across several information services, and when enriched with 
metadata indicating size, location, time, frequency, and other contextual information. 

Fortunately, privacy-enhancing technologies have today reached far beyond the more traditional approaches of en-
cryption and granular access-control policies envisioned in days of yore. When the intended recipients of sensitive 
information are themselves untrusted, modern privacy mechanisms may resort to advanced data-perturbative strategies 
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in order to attain a desired measure of privacy, at the expense of an acceptable loss in data utility. Some of these 
leading-edge privacy technologies draw upon mathematical formalisms originally intended for information-theoretic and 
operational data compression, as well as convex optimization, in an attempt to systematically measure and attain the 
optimal trade-off between a potentially sizeable gain in privacy and a calculated loss in data utility [, , ]. 

While researchers strive to reduce the information loss of our privacy-enhancing algorithms by introducing complex 
mathematics and ingenious heuristics —and those improvements are certainly most welcome— we often neglect the 
crucial aspect of data availability. By relaxing the trust assumptions imposed on the users of a system, the consequent 
increase in users willing to provide additional data may very well represent a far greater gain in utility than that from 
algorithmic improvements alone. Not entirely unlike the way massive amounts of data may far outweigh the efforts to 
programmatically improve a machine-learning algorithm, pointed out earlier. 

A. Contribution and Organization 
The technical contents of this paper fall within the area of statistical disclosure control and 𝑘𝑘-anonymous microaggre-
gation, the fundamentals of which are succinctly reviewed in §II. Although we opted to explain the object of our work 
without further ado, readers less familiar with the subject, or more immediately interested in the illustrative medical 
example provided there, may prefer to skip over to the referred section. 

Bearing in mind the profound impact of the trust model on the utility of privacy-enhancing mechanisms, in this 
work, we formulate a functional extension of the method of 𝑘𝑘-anonymous microaggregation for anonymization of da-
tasets containing confidential data linked to quasi-identifying demographic variables that may be exploited to reidentify 
the individuals involved. Traditionally, users are required to provide their information in full to a party responsible for 
such microaggregation, thereby fully entrusting it with the data-anonymization process. In our functional extension, we 
conceive a variant of 𝑘𝑘-anonymous microaggregation that enables users to anonymize their own quasi-identifiers, thus 
considerably relaxing the trust assumptions demanded from the participating respondents. 

Concisely, we develop a probabilistic variant, which we term 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation, resort-
ing to a statistical model of respondent participation in order to aggregate quasi-identifiers in such a manner that 𝑘𝑘-
anonymity is concordantly enforced with a parametric probabilistic guarantee. The microaggregation function is de-
signed before the respondents submit their confidential data. More precisely, a specification of the function is sent to 
them, which they may verify and apply to their quasi-identifying demographic variables, prior to submitting the micro-
aggregated data along with the confidential attributes to an authorized repository. In addition to constituting a func-
tional extension of traditional microaggregation, thereby broadening its applicability to the anonymization of statistical 
databases in a wide variety of contexts, the relaxation of trust assumptions is arguably expected to have a considerable 
impact on user acceptance, and ultimately, on data utility, through mere availability. 

The remainder of this paper is organized as follows. A succinct introduction to 𝑘𝑘-anonymous microaggregation is 
offered in §II. Next, §III reviews the state of art in anonymity metrics and microaggregation algorithms for statistical 
disclosure control. We present a conceptual formulation of 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation in §IV, for-
malized in §V. We proceed with a theoretical analysis in §VI, while §VII numerically illustrates the main results. 

II. Background on 𝑘𝑘-Anonymous Microaggregation 
with an Example of Application to the Medical Sciences 

We have remarked that, in general, the most extensively studied aspects of privacy for any information system deal 
with unauthorized access to sensitive data, by means of authentication, policies for data-access control and confidenti-
ality, implemented as cryptographic protocols. However, the provision of confidentiality against unintended observers 
fails to address the practical dilemma when the intended recipient of the information is not fully trusted. Even more so 
when the database collected is to be made accessible to external parties, or openly published for scientific correlating 
sensitive information with demographics. 

It was famously shown in [] that % of the population in the United States might be unequivocally identified 
solely on the basis of the triple consisting of their date of birth, gender and -digit ZIP code, according to  census 
data. This is in spite of the fact that in that year, the U.S. had a population of over  million. This notorious fact 
illustrates the discriminative potential of the simultaneous combination of a few demographic attributes, which, con-
sidered individually, would hardly pose a real anonymity risk. Ultimately, this simple observation means that the mere 
elimination of identifiers such as first and last name, or social security number (SSN), is grossly insufficient when it 
comes to effectively protecting the anonymity of the participants of published statistical studies containing confidential 
data linked to demographic information. 

Statistical disclosure control (SDC) concerns the postprocessing of the demographic portion of the statistical results 
of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating 
respondents. In the SDC terminology, a microdata set is a database table whose records carry information concerning 
individual respondents, either people or companies. This database commonly contains a set of attributes that may be 
classified into identifiers, quasi-identifiers and confidential attributes. Firstly, identifiers allow the unequivocal identifi-
cation of individuals. This is the case of full names, SSNs or medical record numbers, which would be removed before 
the publication of the microdata set, in order to preserve the anonymity of its respondents. Secondly, quasi-identifiers, 
also called key attributes, are those attributes that, in combination, may be linked with external, usually publicly 
available information to reidentify the respondents to whom the records in the microdata set refer. Examples include 
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age, address, gender, job, and physical features such as height and weight. Finally, the dataset contains confidential 
attributes with sensitive information on the respondent, such as salary, political affiliation, religion, and health condition. 
The classification of attributes as key or confidential may ultimately rely on the specific application and the privacy 
requirements the microdata set is intended for. 

A primary field of application, in which confidential information linkable to demographic variables may provide 
enormous data utility and at the same time require special privacy measures, is that of medical sciences. We illustrate 
some fundamental aspects of SDC with an example on Hashimoto’s thyroiditis, one of the first diseases to be recognized 
as an autoimmune disorder, in which the immune system causes antibodies to mistakenly attack normal tissue. 

Hashimoto’s thyroiditis, or chronic lymphocytic thyroiditis, is an autoimmune disease in which the thyroid gland is 
attacked by a variety of cell- and antibody-mediated immune processes, causing primary hypothyroidism. Thyroperox-
idase (TPO) is an enzyme involved in thyroid hormone synthesis. The determination of anti-TPO antibodies levels in 
blood is the most sensitive test for detecting autoimmune thyroid disease, and detectable concentrations of anti-TPO 
antibodies are observed in roughly % of patients with Hashimoto’s. Another common indicator of Hashimoto’s is an 
increased level of thyroid-stimulating hormone (TSH), as the pituitary tries to compensate for decreased thyroxine. 
Because of the association between hypothyroidism and weight gain, another variable that might alert of the presence 
of the disease is the body-mass index (BMI). The BMI serves as a rough estimate of the amount of body fat in an 
individual, a metric routinely employed by the WHO as the standard means for estimating adiposity and recording 
obesity statistics since the early s, now commonplace to categorize a person as underweight, normal, or overweight. 

Owing to the relevance of anti-TPO and TSH levels in the diagnosis of thyroid disorders, and the potential impact 
on the patient’s health and general wellbeing, they undoubtedly constitute prime examples of confidential attributes. 
Because BMI is immediately derived from readily observable quantities, it may be rightfully construed as a quasi-
identifier, just as weight or height would. Gender and age also play an important role in the diagnosis of Hashimoto’s 
thyroiditis, being far more common in women, with onset typically at  to  years of age. 

Intuitively, the perturbation of numerical or categorical quasi-identifiers enables us to preserve privacy to a certain 
extent, at the cost of losing some of the data utility, in the sense of accuracy with respect to the unperturbed version. 
𝑘𝑘-Anonymity is the requirement that each tuple of key-attribute values be identically shared by at least 𝑘𝑘 records in 
the dataset. This may be achieved through the microaggregation approach illustrated by the synthetic example depicted 
in Fig. . Rather than making the original table available, we publish a 𝑘𝑘-anonymous version containing aggregated 

records, in the sense that all quasi-identifying values within each group are replaced by a common representative tuple. 
As a result, a record cannot be unambiguously linked to the corresponding record in any external sources assigning 
identifiers to quasi-identifiers. In principle, this prevents a privacy attacker from ascertaining the identity of an individ-
ual for a given record in the microaggregated database, which contains confidential information. 

Ideally, microaggregation algorithms strive to introduce the smallest perturbation possible in the quasi-identifiers, 
in order to preserve the statistical quality of the published data. More technically speaking, these algorithms are 
designed to find a partition of the sequence of quasi-identifying tuples in 𝑘𝑘-anonymous cells, while reducing as much as 
possible the distortion incurred when replacing each original tuple by the representative value of the corresponding cell. 
For numerical key attributes representable as points in the Euclidean space, the mean-squared error (MSE) is the usual 
criterion to quantify said distortion. Data utility is measured inversely as the distortion resulting from the perturbation 
of quasi-identifiers. 

III. Brief Review of the State of the Art on 𝑘𝑘-Anonymous Microaggregation 
Our study of the probabilistic generalization of 𝑘𝑘-anonymous microaggregation for large-scale demographic surveys, in 
which respondent participation is uncertain, is, to the best of our knowledge, entirely novel. Rather unsurprisingly, the 
term “probabilistic 𝑘𝑘-anonymity” has been used in the literature [] although with a different meaning from that 

Name Sex Age BMI Anti-TPO TSH

Alice Adams ♀ 32 29.3 ++ 8.01

Bob Brown ♂ 34 26.9 − 2.56

Chloe Carter ♀ 33 32.1 +++ 14.41

Dave Diaz ♂ 43 25.7 ++ 11.32

Eve Ellis ♀ 47 21.4 + 0.94

Frank Fisher ♂ 45 22.0 − 3.29

Sex Age BMI Anti-TPO TSH

♀ 33 29.4 ++ 8.01

♀ 33 29.4 − 2.56

♀ 33 29.4 +++ 14.41

♂ 45 23.0 ++ 11.32

♂ 45 23.0 + 0.94

♂ 45 23.0 − 3.29
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Fig. . Example of 𝑘𝑘-anonymous microaggregation of published data with 𝑘𝑘 = 3, showing indicators of Hashimoto’s thyroiditis (anti-
TPO antibodies and TSH levels) as confidential attributes, in relation to demographic variables (gender, age and body-mass index) 
as quasi-identifiers. 
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intended here. Precisely, the cited work slightly relaxes the definition of the term 𝑘𝑘-anonymity to require only that the 
probability of reidentification be 1/𝑘𝑘. In any event, we deem it relevant to briefly review the state of the art on 
traditional, deterministic microaggregation, with regard to its use and limitations as a measurement of the degree of 
privacy attained, and the methods and algorithms to construct 𝑘𝑘-anonymous aggregations with reduced distortion. 

A. Shortcomings of 𝑘𝑘-Anonymity as Privacy Criterion 
We mentioned in the introductory section that a specific piece of data on a particular group of respondents is said to 
satisfy the 𝑘𝑘-anonymity requirement if the origin of any of its components cannot be ascertained beyond a subgroup of 
at least 𝑘𝑘 individuals. We also said that the concept of 𝑘𝑘-anonymity, originally proposed by the SDC community [, 
], is a widely popular privacy criterion, partly due to its mathematical and algorithmic tractability. 

Despite the popularity of 𝑘𝑘-anonymity as a measure of privacy, it is not without shortcomings [, , ]. Indeed, 
while this criterion prevents identity disclosure, it may fail against the full disclosure of the confidential attribute. 
Strictly speaking, the criterion is defined exclusively on the basis of the quasi-identifiers, completely disregarding the 
specific values that the confidential attributes take on, consequently neglecting the possibility of groups where the 
confidential values are accidentally repeated. Even if such repetition could be discarded, several deficiencies remain. 

More specifically, the homogeneity or similarity attack exploits the possibility that values of a confidential attribute 
within a group may turn out to be quantitatively or qualitatively similar. From a more general, probabilistic perspective, 
the skewness attack exploits the difference between the prior distribution of confidential data in the entire population, 
and the posterior conditional distribution of the confidential data within a group given the observed, perturbed key 
attributes in the table. Further, the background-knowledge attack resorts to any deterministic or statistical background 
knowledge or side information available to the attacker, in addition to the published records. 

B. Use of 𝑘𝑘-Anonymity in Database Publication and Other Domains 
The original formulation of 𝑘𝑘-anonymity as a privacy criterion, based on generalization and suppression of key attributes, 
was modified into the microaggregation-based approach already commented on, in [, , , ]. Both formulations 
may be regarded as special cases of one utilizing an abstract distortion measure between the unperturbed and the 
perturbed data, possibly taking on values in rather different alphabets. Rapidly since its conception, this anonymity 
criterion has gained widespread adoption in the SDC literature, in spite of the shortcomings already described. 

Indeed, the application of the 𝑘𝑘-anonymity criterion and of the microaggregation methodology goes beyond the 
publication of databases. Further recent investigation has also been conducted on the scenario of online data collection, 
where a data miner queries a set of users, each of whom responds with a piece of data. For example, [] proposes a 
cryptographic method that allows users to submit their data anonymously. Namely, the authors present a protocol that 
eliminates the restriction of using unidentified communication channels and allows users to include identifying infor-
mation in their responses. Still in this context, [] presents a set of protocols and methods aimed to protect the privacy 
of users that query Web search engines. Lastly, in the scenario of streaming data, [] proposes a cluster-based approach 
that 𝑘𝑘-anonymizes data streams and, in addition, guarantees the freshness of the anonymized data by imposing a 
restriction on the delay. 

C. Refinements of 𝑘𝑘-Anonymity, and Alternative Criteria and Metrics 
The vulnerabilities of 𝑘𝑘-anonymity already explained motivated the proposal of enhanced privacy criteria, some of which 
we proceed to sketch briefly, along with modifications in algorithms based on these criteria. A restriction of 𝑘𝑘-anonymity 
called 𝑝𝑝-sensitive 𝑘𝑘-anonymity was presented in [, ]. In addition to the 𝑘𝑘-anonymity requirement, it is required 
that there be at least 𝑝𝑝 different values for each confidential attribute within the group of records sharing the same 
tuple of perturbed key attributes. Clearly, large values of 𝑝𝑝 may lead to huge data utility loss. A slight generalization 
called 𝑙𝑙-diversity [, ] was defined with the same purpose of enhancing 𝑘𝑘-anonymity. The difference with respect to 
𝑝𝑝-sensitivity is that group of records must contain at least 𝑙𝑙 “well-represented” values for each confidential attribute. 
Depending on the definition of well-represented, 𝑙𝑙-diversity can reduce to 𝑝𝑝-sensitive 𝑘𝑘-anonymity or be more restrictive. 
We would like to stress that neither of these enhancements succeeds in completely removing the vulnerability of 𝑘𝑘-
anonymity against skewness attacks. Furthermore, both are still susceptible to similarity attacks, in the sense that while 
confidential attribute values within a cluster of aggregated records might be 𝑝𝑝-sensitive or 𝑙𝑙-diverse, they might also 
very well be semantically similar for the practical purposes of the attacker. Consider for example confidential attributes 
indicating similar salaries, political affiliations or diseases. 

A privacy criterion aimed at overcoming similarity and skewness attacks is 𝑡𝑡-closeness []. An aggregated microdata 
set satisfies 𝑡𝑡-closeness if for each group, a predefined measure of discrepancy between the posterior distribution of the 
confidential attributes within the group, and the prior distribution of the overall population, does not exceed a thresh-
old 𝑡𝑡. This effectively measures the maximum of the discrepancies for each aggregated group. A particularly useful, 
information-theoretic metric of discrepancy between probability distributions is the Kullback-Leibler divergence (KL), 
also called relative entropy for its relationship with Shannon's entropy. Both Shannon's entropy and the KL divergence 
are also tightly related to the information-theoretic quantity known as mutual information, a measure of the uncertainty 
in one random event unveiled by the outcome of a second, related event []. 

As argued in [], to the extent to which the within-group distribution of confidential attributes resembles the 
distribution of those attributes for the entire dataset, skewness attacks will be thwarted. In addition, since the within-
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group distribution of confidential attributes mimics the distribution of those attributes over the entire dataset, no 
semantic similarity can occur within a group that does not occur in the entire dataset. The main limitation of the 
original 𝑡𝑡-closeness work [] is that no general computational procedure was specified, with the exceptions of its ready 
applicability to the Incognito algorithm [], and the very recent microaggregation procedure proposed in []. 

An information-theoretic privacy criterion, inspired by 𝑡𝑡-closeness, was proposed in [, ]. In the latter work, 
privacy risk is defined as the conditional KL divergence between the aforementioned posterior and prior distributions, 
and shown to be equivalent to the mutual information between the confidential attributes and the perturbed quasi-
identifiers. This criterion is also tightly related to the concept of equivocation introduced by Shannon in  [], 
namely the conditional entropy of a private message given an observed cryptogram. Conceptually, the privacy risk thus 
defined may be regarded as an averaged version of the 𝑡𝑡-closeness requirement, over all aggregated groups. It is im-
portant to notice as well that this average privacy risk, in spite of its convenient mathematical tractability, as any 
criterion based on averages, may not be adequate in all applications []. A related albeit more conservative criterion, 
named 𝛿𝛿-disclosure, is proposed in [], and measures the maximum discrepancy between the prior and the posterior 
distributions. These three criteria, namely average privacy risk, 𝑡𝑡-closeness, and 𝛿𝛿-disclosure, may all be formally defined 
in terms of averages and maxima of KL divergences, as explained in []. 

D. Algorithms for 𝑘𝑘-Anonymous Microaggregation 
A number of algorithms for microaggregation have been developed, with the goal of minimizing the perturbation of the 
key attributes with accordance to a variety of distortion measures, while meeting a given 𝑘𝑘-anonymity constraint. As 
multivariate microaggregation is known to be NP-hard [], several heuristic methods have been proposed, which can 
be categorized into fixed-size and variable-size methods, according to whether all aggregated groups but one have 
exactly 𝑘𝑘 elements. The maximum distance (MD) algorithm [] and its less computationally demanding variation, the 
maximum distance to average vector (MDAV) algorithm [, ], are fixed-size algorithms that perform particularly well 
in terms of the distortion they introduce, for many data distributions. Popular variable-size algorithms include the 𝜇𝜇-
Approx [], the minimum spanning tree (MST) [], the variable MDAV (VMDAV) [] and the two fixed reference 
points (TFRP) [] algorithms. Efforts to circumvent the complexity of multivariate microaggregation exploit projections 
onto one dimension, but are reported to yield a much higher disclosure risk []. 

Research on microaggregation algorithms has continued recently. In particular, an approach recommends creating 
clusters of 𝑘𝑘 records according to their densities []. Still in the case of perturbative algorithms, [] contemplates 
the partition of the original dataset into several projections such that each projection satisfies the 𝑘𝑘-anonymity require-
ment, with the help of genetic algorithms. A well-known alternative to perturbative algorithms is the generation of 
synthetic data that preserves some pre-established statistics of the original dataset. A combination of perturbed and 
synthetic data is followed by []. 

More recently, an analysis of theoretical optimality in 𝑘𝑘-anonymous microaggregation [] extends the necessary 
(not sufficient) optimality conditions that gave rise to the celebrated Lloyd-Max algorithm [, ], a celebrated quan-
tization method for lossy data compression, also known as the 𝑘𝑘-means method in the areas of statistics and computer 
science. The properties of theoretical optimality and the excellent behavior of the Lloyd-Max algorithm in practice 
motivated the conception of the probability-constrained Lloyd (PCL) algorithm [, , ], which additionally incor-
porates a variation of the Levenberg-Marquardt algorithm [], in order to adjust cell sizes. PCL is capable of outper-
forming even the popular MDAV in terms of distortion, typically by a reduction in MSE of roughly –% []. 
Unfortunately, the distortion improvement offered by PCL comes at the expense of increased mathematical sophistica-
tion, which translates into a significantly costlier implementation and a substantially longer running time. 

IV. Conceptual Formulation of 𝑝𝑝-Probabilistic 𝑘𝑘-Anonymous Microaggregation 
Next, we address the generalization of the notion of 𝑘𝑘-anonymous microaggregation to account for statistical models of 
respondent participation, in which anonymity is concordantly enforced with a probabilistic guarantee. 

A. The Notion of 𝑝𝑝-Probabilistic 𝑘𝑘-Anonymity 
The fundamental notion is that along with the quasi-identifiers, we are in possession of a statistical model of respondent 
participation, and are given a desired probability with which 𝑘𝑘-anonymity is to be enforced. We must stress that in this 
type of probabilistic microaggregation, the partition of the quasi-identifiers into microcells must be carried out before 
knowing which respondents will in fact participate in the corresponding survey, on the basis of a statistical participation 
model. Traditional, deterministic microaggregation would correspond to the special case in which probabilities of par-
ticipation are all equal to , or from a conceptually equivalent perspective, microaggregation is carried out after knowing 
which respondents are finally included in the published dataset. 

In this type of microaggregation, 𝑘𝑘-anonymity might conceivably be violated for some cells depending on the actual 
respondent participation and the accuracy of the underlying statistical model, but the micropartition is carefully de-
signed to make such event highly unlikely. However, the larger size of the microcells required in this approach will 
undoubtedly translate into higher distortion. The notion of 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation is conceptu-
ally represented in Fig. . 
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B. Modes of Operation of Probabilistic Microdata Anonymization, in Practice 
In the context of real applicability, we would like to propose several trust models, with varying modes of operation in 
the anonymization of microdata sets. Their adequacy will of course depend on the specific application at hand, but all 
three should represent valid alternatives, and present exciting business opportunities. 

• Remotely trusted anonymization. In this case, all respondents trust a common party responsible for collecting 
and microaggregating the data set. Raw data is simply sent over and traditional 𝑘𝑘-anonymous microaggregation 
remains a perfectly suitable approach. Among all the approaches discussed here, this imposes the most stringent 
constraints on trust, but offers the lowest distortion and therefore the highest data utility. 

• Locally trusted anonymization. On the basis of potential quasi-identifier values and a statistical model of re-
spondent participation, a common party computes a microaggregation that can only guarantee 𝑘𝑘-anonymity 
with a desired target probability. The partition function, that is, the assignment of possible quasi-identifiers to 
cells or centroids is made available to all respondents. The respondent may verify that the microaggregation is 
sound, makes the actual assignment, and merely sends back the resulting cell index or centroid, in lieu of his 
original, unperturbed quasi-identifier, accompanied with the confidential data. The response is transmitted 
through a confidential, anonymized channel [, ]. It is assumed that the assignment specified by the micro-
aggregation function is carried out by open-source software running locally. Hence, a reasonable degree of trust 
of the respondent on his local computer and on the network is required. To accommodate the improbability of 
𝑘𝑘-anonymity violations, cells are effectively larger than those in traditional microaggregation, with a consequent 
impact on distortion. 

• Untrusted anonymization. The operation is similar to that of locally trusted anonymization, with the caveat that 
the respondent does not wish to place his trust on the client software or hardware, and is only willing to 
implement the assignment specified by the microaggregation function manually. This means that the microaggre-
gation function must be extremely simple. Concretely, we limit it to the specification of ranges and categories 
for each individual quasi-identifier. The respondent is asked to select the matching ranges and categories for the 
demographic data of interest, along with the confidential information required by the application at hand. The 
extreme simplicity in the specification of the microaggregation function would allow its inclusion in surveys in 
physical paper. In the case of numerical data in the 𝑑𝑑-dimensional Euclidean space, this translates into the 
specification of 𝑑𝑑-dimensional orthotopes (hyperrectangles), significantly constraining the type of microaggrega-
tion allowed. It is reasonable to expect that the lack of trust requirements of this mode of operation come at a 
considerable cost in terms of distortion. 

Fig.  represents these three modes of operation. 
In this context, the object of this work is the modification of existing microaggregation algorithms, primarily MDAV, 

to enforce 𝑝𝑝-probabilistic 𝑘𝑘-anonymity in the special case of locally trusting respondents. This case, defined above, does 
not impose any constraints on the shapes of the cells constructed, merely on their size. The design of microaggregation 
algorithms to enforce 𝑝𝑝-probabilistic 𝑘𝑘-anonymity in the special case of untrusted respondents is left for future investi-
gation. As explained above, the severe constraints imposed on the shapes of the microcells, and not just their sizes, 
preclude the strategy of directly adapting an existing microaggregation algorithm. 

We must stress that the gradual relaxation of trust requirements in these approaches will naturally come at an 
increasingly high price in distortion. We already commented in the introductory section the nearly ubiquitous existence 
of an inherent trade-off between privacy and utility in modern information systems. It is important to consider that 
under some circumstances, even with privacy-enhancing technologies designed for the most conservative degree of data 
sensitivity, and with severe impact on data utility, the absence of such technology or its replacement by more lenient 
ones may constitute a far worse alternative. The reason is that such lack of adequate protection would discourage the 
use of the underlying information system by those rightfully wary of their privacy. In other words, respondents that do 
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Fig. . Fundamental notion of 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation. Based on a statistical model of respondent participa-
tion, microaggregation is carried out with larger microcells, and 𝑘𝑘-anonymity is concordantly enforced with a probabilistic guarantee. 
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not accept the trust model assumed or imposed may choose not share their data, and in that case, the data utility 
would be, by any reasonable measure, zero. 

V. Formal Problem Statement 
This section formally presents the proposed 𝑝𝑝-probabilistic extension of 𝑘𝑘-anonymous microaggregation conceptually 
introduced earlier, for the mode of operation involving locally trusting respondents. 

A. Mathematical Preliminaries and Quantization Model for Traditional 𝑘𝑘-Anonymous Microaggregation 
The work presented here builds upon a formulation of the problem of 𝑘𝑘-anonymous microaggregation in [, ], which 
formally regards microaggregation as a quantization problem with constraints on the cell probabilities. Throughout this 
paper, the measurable space in which a random variable (r.v.) takes on values will be called an alphabet. We shall follow 
the convention of using uppercase letters for r.v.’s, lowercase letters for particular values they take on, and script letters 
for sets of such values. Probability mass functions (PMFs) are denoted by lowercase 𝑝𝑝, and cumulative mass functions 
(CMFs), by a capital 𝑃𝑃 . An upright P denotes a general probability measure. For example, in this notation, the prob-
ability that a discrete r.v. 𝑋𝑋  takes on the value 𝑥𝑥  in an alphabet X  is 𝑝𝑝𝑋𝑋(𝑥𝑥) = P{𝑋𝑋 = 𝑥𝑥} . Similarly, 𝑃𝑃𝑋𝑋(𝑥𝑥) =
P{𝑋𝑋 ⩽ 𝑥𝑥}. The expectation operator is denoted by E. Expectation can model the special case of averages over a finite 
set of data points {𝑥𝑥1, … ,𝑥𝑥𝑛𝑛}, simply by defining an r.v. 𝑋𝑋 uniformly distributed over this set, so that, for instance, 
E 𝑋𝑋 = 1

𝑛𝑛∑ 𝑥𝑥𝑗𝑗
𝑛𝑛
𝑗𝑗=1 . 

We shall limit our analysis to the special case of numerical data, that is, we shall assume that the quasi-identifiers 
to be aggregated are represented by 𝑛𝑛 points 𝑥𝑥1, … ,𝑥𝑥𝑛𝑛 in the Euclidean space ℝ𝑚𝑚 of dimension 𝑚𝑚, indexed by the 
corresponding record 𝑗𝑗. For convenience, we define an r.v. 𝐽𝐽  representing the record index, uniformly distributed on 
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Fig. . Modes of operation for microdata anonymization, in practice, with varying degrees of trust. Remotely trusting respondents 
merely require traditional, deterministic microaggregation. Locally trusted respondents require probabilistic microaggregation, but 
without any constraints on the cell shape, which may be effectively reduced to traditional methods. Untrusting respondents demand 
probabilistic microaggregation with constraints on the cell shapes, and therefore attain the strongest level of privacy, but at the 
expense of the highest loss in data utility. 
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the set of indices {1,… ,𝑛𝑛}. Note that 𝐽𝐽  may also be regarded as the identity of the respondent. In addition, we intro-
duce an r.v. 𝑋𝑋 representing the quasi-identifiers, whose alphabet consists in the set of 𝑚𝑚-dimensional points �𝑥𝑥𝑗𝑗�𝑗𝑗=1,…,𝑛𝑛, 
formally definable as a function 𝑋𝑋 = 𝑥𝑥𝐽𝐽  of 𝐽𝐽 . The r.v. 𝑋𝑋 models tuples of quasi-identifiers of a table 𝑥𝑥1,… ,𝑥𝑥𝑛𝑛 of 𝑛𝑛 
records. The notation in terms of r.v.’s will enable us to write averages more compactly as expectations, for instance 
1
𝑛𝑛∑ 𝜑𝜑(𝑥𝑥𝑗𝑗)

𝑛𝑛
𝑗𝑗=1 = E 𝜑𝜑(𝑋𝑋), for any functional 𝜑𝜑:ℝ𝑚𝑚 → ℝ of the tuple of quasi-identifiers. 
The 𝑘𝑘-anonymous microaggregation algorithm will partition the set of records into microcells of size at least 𝑘𝑘. In 

the most traditional form of 𝑘𝑘-anonymous microaggregation, this partition only takes into account the values of the 
quasi-identifiers, as the published table will only effectively perturb the quasi-identifiers and keep the confidential 
attributes intact. The resulting microcells will be labeled with a quantization or microcell index 𝑐𝑐. An important 
subtlety is that the microaggregation process must be formally construed as a quantization function 𝑐𝑐(𝑗𝑗) of the record 
index 𝑗𝑗, rather than on the quasi-identifier 𝑥𝑥. The reason is that even though 𝑐𝑐(𝑗𝑗) also induces a partition on the set 
of quasi-identifiers and confidential attributes, one cannot discard the possibility that some tuples 𝑥𝑥 might be repeated, 
and that those repeated values might be assigned to different microcells. Although this could be technically handled 
with probabilistic microcell assignments, it is simpler and completely general to define a (deterministic) quantization 
function on the record indices. In our more compact representation with r.v.’s, we define 𝐶𝐶 = 𝑐𝑐(𝐽𝐽), with finite alphabet 
{1, … , |C|}. The 𝑘𝑘-anonymity constraint is contemplated by imposing a constraint on cell sizes or, more generally, on 
the probabilities of the quantization indices 𝑝𝑝𝐶𝐶(𝑐𝑐) ⩾ 𝑘𝑘 𝑛𝑛⁄ . 

In traditional numerical microaggregation, it is an almost universal convention to measure the distortion introduced 
in the quasi-identifiers by means of the MSE, and to employ the term distance to refer to its Euclidean definition. 
Accordingly, unless otherwise stated, the term distance refers to its Euclidean definition. Accordingly, recall that the 
centroid 𝑥𝑥(̂𝑐𝑐) of a subset of 𝑛𝑛𝑐𝑐 points of 𝑥𝑥1,… ,𝑥𝑥𝑛𝑛 ∈ ℝ𝑚𝑚 assigned to the 𝑐𝑐th microcell, is defined as the point that mini-
mizes the MSE with respect to that subset, and that it is, quite simply, the conditional expectation E[𝑋𝑋|𝑐𝑐] of 𝑋𝑋 given 
𝐶𝐶 = 𝑐𝑐, which boils down to a vector average, formally, 

𝑥𝑥(̂𝑐𝑐) = arg min
𝑥̂𝑥

E[‖𝑋𝑋 − 𝑥𝑥‖̂2|𝑐𝑐] = E[𝑋𝑋|𝑐𝑐] =
1
𝑛𝑛𝑐𝑐

� 𝑥𝑥𝑗𝑗
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

. 

Analogously define the r.v. 𝑋̂𝑋 = 𝑥𝑥(̂𝐶𝐶), modeling the reconstructed quasi-identifier. 
The entire microaggregation process, which transforms the record index 𝐽𝐽  into the perturbed quasi-identifier 𝑋̂𝑋, can 

be represented as the composition of two functions, namely the microcell assignment 𝑐𝑐(𝑗𝑗) and the centroid assignment 
𝑥𝑥(̂𝑞𝑞), as depicted in Fig. . We have mentioned that the problem of microaggregation, may be formally understood as 

a constrained quantization problem, as explained in [, ]. This interpretation is particularly intuitive in the special 
case of traditional microaggregation with numerical quasi-identifiers that do not appear repeatedly. In this special case, 
the function representing the microcell assignment can be defined directly on the quasi-identifiers, as 𝑐𝑐(𝑥𝑥). 

We must recall that it is customary in traditional microaggregation to conduct a columnwise, unit-variance normal-
ization of all numerical quasi-identifiers, prior to any manipulation of the data, because it is inherent in the conventional 
definition of distortion error in SDC. This means that the total variance of the data points, that is, the sum of the 
columnwise variances, will amount to the dimension 𝑚𝑚 of the quasi-identifiers. A zero-mean normalization is also cus-
tomary, but it bears no theoretical difference in terms of the performance of the microaggregation algorithm, as it 
merely represents a translation of the data points. In practice, a random permutation of the records would help prevent 
reidentification attacks attempting to exploit the default order. 

Let us denote the perturbed version of the 𝑗𝑗th quasi-identifier 𝑥𝑥𝑗𝑗, that is, its corresponding centroid, by 𝑥𝑥𝑗̂𝑗. The 
SDC literature conventionally speaks of the sum of squared errors (SSE) and the sum of squares total (SST). Precisely, 
SSE = ∑  �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗�2

𝑛𝑛
𝑗𝑗=1 , and since the total variance of the data is the dimension 𝑚𝑚, its unnormalized version becomes 

SST = 𝑚𝑚𝑚𝑚. In this work, we formally define the distortion 𝒟𝒟 introduced by the microaggregation algorithm by means 
of the MSE, implicitly normalized by the number 𝑛𝑛 of samples, and also normalized by the number 𝑚𝑚 of dimensions: 
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Fig. . Traditional microaggregation interpreted as a quantization problem on the record indices 𝑗𝑗 represented by the microcell 
assignment function 𝑐𝑐(𝑗𝑗), and a centroid assignment function 𝑥𝑥(̂𝑐𝑐) that reconstructs the perturbed version 𝑥𝑥𝑗̂𝑗 of the original quasi-
identifier 𝑥𝑥𝑗𝑗. In the analogous r.v. representation, 𝐶𝐶 = 𝑐𝑐(𝐽𝐽) and 𝑋̂𝑋 = 𝑥𝑥(̂𝐶𝐶). 
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𝒟𝒟 ≝
1
𝑚𝑚

E �𝑋𝑋 − 𝑋̂𝑋�2 =
1
𝑚𝑚𝑚𝑚

�  �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗̂𝑗�2
𝑛𝑛

𝑗𝑗=1
=

SSE
SST

. 

The performance indicator commonly evaluated in the SDC literature is the quotient between the SSE and the SST, 
always in the range [0,1], provided that the reconstructions are indeed centroids. This quotient matches our definition 
of distortion as MSE per dimension. 

B. Mathematical Formulation of the Problem of 𝑝𝑝-Probabilistic 𝑘𝑘-Anonymous Microaggregation 
We are now ready to proceed with the more general case of 𝑘𝑘-anonymous microaggregation with a probabilistic guar-
antee for locally trusting respondents, the object of this paper. Suppose that along with a collection of quasi-identifiers 
𝑥𝑥1,… ,𝑥𝑥𝑁𝑁  in a predefined order, we are given probabilities 𝜋𝜋1,… ,𝜋𝜋𝑁𝑁  of respondent participation, and a desired proba-
bility 𝑝𝑝 ∈ (0,1) with which 𝑘𝑘-anonymity is to be enforced. Precisely, we are to microaggregate the data, merely knowing 
that a record 𝑗𝑗 = 1, … ,𝑁𝑁  will be active, and count towards the 𝑘𝑘-anonymity requirement, with probability 𝜋𝜋𝑗𝑗, inde-
pendently of the participation of others. Intuitively, we shall create cells of size 𝑛𝑛 larger than the minimum 𝑘𝑘, in order 
to provide the guarantee, with at least probability 𝑝𝑝, that any given cell will be in fact 𝑘𝑘-anonymous. We shall refer to 
this type of 𝑘𝑘-anonymous microaggregation as 𝑝𝑝-probabilistic. 

Precisely, our participation model consists of a collection of Bernoulli (binary) r.v.’s 𝐼𝐼𝑗𝑗 with parameter 𝜋𝜋𝑗𝑗 represent-
ing the probability of participation of an individual, that is, 𝐼𝐼𝑗𝑗 ∼ Ber�𝜋𝜋𝑗𝑗�, assumed for simplicity to be statistically 
independent, for 𝑗𝑗 = 1, … ,𝑁𝑁 , from which we may select 𝑛𝑛 candidate respondents up to a maximum of 𝑁𝑁  available. We 
also define 𝐾𝐾𝑛𝑛 = ∑ 𝐼𝐼𝑗𝑗

𝑛𝑛
𝑗𝑗=1  as the sum of the participation indicators of a cell containing 𝑗𝑗 = 1, … ,𝑛𝑛 ⩽ 𝑁𝑁 , for which the 

selection order in general matters. In the special case of identical participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, the collection of indicators 𝐼𝐼𝑗𝑗 is 
independent and identically distributed (i.i.d.), and 𝐾𝐾𝑛𝑛 becomes a binomial r.v. with parameters 𝑛𝑛 and 𝜋𝜋, which we may 
denote by 𝐾𝐾𝑛𝑛 ∼ Bin(𝑛𝑛,𝜋𝜋). When the participation parameters are not identical, the associated distribution is often 
called Poisson binomial. Formally, a cell with probabilistically active records will be considered 𝑘𝑘-anonymous if 𝑘𝑘 records 
or more are active, but also if no records at all are active. The latter condition owes to the fact that if no records are 
active, no anonymity leak is possible. Conversely, 𝑘𝑘-anonymity will be considered violated if, and only if, the number of 
active records 𝐾𝐾𝑛𝑛 is between 1 and 𝑘𝑘 − 1. 

For any probability expression 𝑎𝑎, we often write 1− 𝑎𝑎 more conveniently as 𝑎𝑎,̅ a notation reminiscent of set com-
plementation; indeed, for any event 𝐴𝐴, P�𝐴𝐴�̅ = P(𝐴𝐴)�������������. Concordantly, the probabilistic parameter 𝑝𝑝 may be conversely 
regarded as the acceptable (cell) failure probability 𝑝𝑝̅ = 1− 𝑝𝑝, and the probability that 𝑘𝑘-anonymity is violated, as the 
attained (cell) failure probability 𝑞𝑞 ̅= 1− 𝑞𝑞, formally defined as 𝑞𝑞 ̅≝ P{0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘}. For a specific participation model 
represented by �𝜋𝜋𝑗𝑗�𝑗𝑗, we define a given cell to be 𝑝𝑝-probabilistically 𝑘𝑘-anonymous when the probability 𝑞𝑞 that 𝑘𝑘-ano-
nymity is satisfied is at least 𝑝𝑝, that is, if, and only if, 𝑞𝑞 ̅⩽ 𝑝𝑝̅. 

For a predefined order of the respondents, we may define the effective anonymity 𝑛𝑛min as the smallest integer, greater 
than or equal to 𝑘𝑘, for which a cell of at least that size will be 𝑝𝑝-probabilistically 𝑘𝑘-anonymous, that is, 

𝑛𝑛min ≝ min{𝑛𝑛 ⩾ 𝑘𝑘 | 𝑞𝑞 ̅ ⩽ 𝑝𝑝̅} , 
where we may additionally impose 𝑛𝑛 ⩽ 𝑁𝑁 , when convenient, understanding that the additional constraint may cause 
𝑞𝑞 ̅> 𝑝𝑝̅. Under this model, traditional microaggregation becomes the special case 𝜋𝜋𝑗𝑗 = 𝜋𝜋 = 1, for which 𝑛𝑛min = 𝑘𝑘. 

The constraint 𝑛𝑛min ⩾ 𝑘𝑘 in this definition is a technicality to circumvent the pathological case in which impractical 
values of 𝜋𝜋𝑗𝑗 and 𝑝𝑝 would make the event in which no records are active in the cell sufficiently likely. Assume for example 
that 𝜋𝜋𝑗𝑗 = 𝜋𝜋 and that 𝜋𝜋̅ = 1− 𝜋𝜋 > 𝑝𝑝, and consider a cell with just a single record. The probability that such cell is 
empty, and therefore formally anonymous, would exceed 𝑝𝑝. Practical values of 𝜋𝜋 and 𝑝𝑝 should never be a concern, 
particularly because 𝜋𝜋 will rarely approach , and 𝑝𝑝 will typically be nearly . The main concepts just defined are 
summarized in Table I. 

In the case of locally trusting recipients defined in §IV.B, no additional constraints to the problem exist, and cell 
shapes are arbitrary. Assuming further identical participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, once the effective anonymity 𝑛𝑛min is determined, 
the 𝑝𝑝-probabilistic problem is reduced to the traditional, deterministic version, with 𝑛𝑛min in lieu of 𝑘𝑘. As represented 
in Fig. , in essence, our work identifies the possibility of procedurally reducing 𝑝𝑝-probabilistic 𝑘𝑘-anonymous micro-
aggregation to traditional microaggregation, for certain practical purposes, and sets its main theoretical focus on the 
relationship between the target anonymity 𝑘𝑘 and its effective counterpart 𝑛𝑛min. The theoretical analysis of such rela-
tionship is carried out for a given participation 𝜋𝜋 and acceptable cell failure 𝑝𝑝̅, in terms of additional failure rates 
presented later in §VI. How the effective anonymity 𝑛𝑛min will translate into an increased distortion 𝒟𝒟 will ultimately 
depend on the dataset and on the choice of microaggregation algorithm, which will create cells of size 𝑛𝑛min ⩾ 𝑘𝑘. In order 
to demonstrate the practical applicability of our work, in the referred section, we propose a natural modification of the 
traditional MSE-based distortion metric, suitable for 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation, and in the exper-
imental section §VII, we evaluate the entire dependence chain, encompassing 𝑘𝑘, 𝑛𝑛min, and 𝒟𝒟. 

In the general case of (possibly) uneven participation, informally denoted as 𝜋𝜋𝑗𝑗 ≠ 𝜋𝜋, the order in which we aggregate 
the available records will in general be a relevant issue. The simplest approach may consist in sorting records in ascend-
ing distance from a given reference. In any event, in the determination of the effective anonymity parameter for uneven 
participation, the remainder of this work assumes that a predefined order exists, and leaves for further investigation 
the possibility of optimizing the order for minimum overall distortion subject to the probabilistic anonymity constraint. 
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C. Reference Microaggregation Algorithm and Specification of the Microaggregation Function 
Although the formulation in this work is readily extensible to any 𝑘𝑘-anonymous microaggregation algorithm, we take 
as reference, and make extensive use of, one of the algorithms that constitute the standard the facto in numerical 
microaggregation, known as MDAV [, ]. In any event, in the mode of operation assumed in this work, locally trusting 
respondents are assumed to be supplied with a specification of a potentially complex microaggregation function, map-
ping quasi-identifiers to microcells. Such specification will necessarily depend on the underlying 𝑘𝑘-anonymous micro-
aggregation algorithm. 

• For microaggregation algorithms without a simple clustering geometry, we may still define a table of assignments 
of quasi-identifiers in the statistical model, indexed by a record number 𝑗𝑗, to a microcell, indexed by 𝑐𝑐, thereby 
giving an extensional specification of 𝑐𝑐: 𝑗𝑗 ↦ 𝑐𝑐(𝑗𝑗). If the actual records are not exactly those in the statistical 
model, the local aggregation function may simply chose the nearest neighbor. In fact, it may be possible to 
reduce this exhaustive specification by exploiting the geometry of the induced Voronoi partition. 

• An intensional specification, that is, a definition based on the geometrical properties of the microcell clusters, 
may be possible for certain algorithms. For the MDAV algorithm, one may give a list of the reference points to 
which other 𝑘𝑘 − 1 points are adjoined, in the same order they were selected, along with the distance to the last 
point added. For the PCL algorithm, cited in §III.D, a list of centroids 𝑥𝑥(̂𝑐𝑐) and their corresponding weights 
could be employed. In either example, particularly for categorical data, it might be necessary to introduce an 
ordering rule for samples at the same exact distance from a given reference. 

VI. Theoretical Analysis 
We analyze the problem of 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation from the perspective of the anonymity at-
tained, and the distortion introduced. Specifically, for anonymity, we analyze the effective anonymity constraint and 
the required cell size, along with several measures of failure related to the acceptable and attained rates 𝑝𝑝̅ and 𝑞𝑞.̅ 

Concepts Symbols Definitions 
Participation 
Model �𝜋𝜋𝑗𝑗�𝑗𝑗=1𝑁𝑁  

• Individual 𝑗𝑗 = 1,… ,𝑁𝑁  participates in the survey with probability 𝜋𝜋𝑗𝑗. 
• The unindexed symbol 𝜋𝜋 is used for the simpler case of constant participation 

probability. 
Number of 
Active Records 𝐾𝐾𝑛𝑛 

• For a given cell containing a subset of 𝑛𝑛 ⩽ 𝑁𝑁  records, a total of 𝐾𝐾𝑛𝑛 are active, 
representing the number of individuals that actually participate in the survey. 

• 𝑘𝑘-Anonymity is violated whenever 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘 (but not when 𝐾𝐾𝑛𝑛 = 0). 
Cell-Failure 
Probabilities 𝑝𝑝̅, 𝑞𝑞 ̅

• For a given cell containing 𝑛𝑛 records, the attained (cell) failure probability is 
1− 𝑞𝑞 ≝ 𝑞𝑞 ̅≝ P{0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘}. 

• The acceptable (cell) failure probability is 1− 𝑝𝑝 ≝ 𝑝𝑝̅. We wish that 𝑞𝑞 ̅⩽ 𝑝𝑝̅. 
𝒑𝒑-Probabilistic 
𝒌𝒌-Anonymity 𝑝𝑝, 𝑘𝑘 

• For a specific participation model represented by �𝜋𝜋𝑗𝑗�𝑗𝑗, we define a given cell to 
be 𝑝𝑝-probabilistically 𝑘𝑘-anonymous when the probability that 𝑘𝑘-anonymity is 
satisfied is 𝑞𝑞 ⩾ 𝑝𝑝, that is, if, and only if, 𝑞𝑞 ̅⩽ 𝑝𝑝̅. 

Effective 
Anonymity 𝑛𝑛min 

• The effective anonymity 𝑛𝑛min is defined as the smallest integer (greater than or 
equal to 𝑘𝑘) for which a cell of at least that size will be 𝑝𝑝-probabilistically 
𝑘𝑘-anonymous, that is, 𝑛𝑛min ≝ min{𝑛𝑛 ⩾ 𝑘𝑘 | 𝑞𝑞 ̅ ⩽ 𝑝𝑝̅}. 

Table I. Summary of Main Definitions 

Main Focus of this Paper

Effective 
Anonymity

Target 
Anonymity Distortion

-Probabilistic -Anonymity 
Framework
• Target anonymity 
• Statistical participation model 
• Acceptable cell failure 
• Effective anonymity 
• Attained cell failure and related 

metrics ( , , , )

-Anonymous Microaggregation 
Procedure
• Microaggregation algorithm 

applied to effective anonymity 
in lieu of target anonymity 

• Dataset properties
• Application-specific requirements 

(privacy, distortion, complexity)

Fig. . In essence, our work identifies the possibility of procedurally reducing 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation to tra-
ditional microaggregation, for certain practical purposes, and sets its necessarily limited theoretical focus on the relationship between 
the target anonymity 𝑘𝑘 and its effective counterpart 𝑛𝑛min. However, in order to illustrate the practical applicability of our work, a 
suitable measure of distortion is proposed and the entire dependence chain is evaluated experimentally, in the following sections. 
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A. Anonymity Analysis 
Let 𝑝𝑝𝑛𝑛(𝑘𝑘) ≝ P{𝐾𝐾𝑛𝑛 = 𝑘𝑘} and 𝑃𝑃𝑛𝑛(𝑘𝑘) ≝ P{𝐾𝐾𝑛𝑛 ⩽ 𝑘𝑘} denote the PMF and the CMF of the number of active records 𝐾𝐾𝑛𝑛 of 
a cell with potential participants 𝑗𝑗 = 1,… ,𝑛𝑛 in a predefined order (out of a maximum of 𝑁𝑁). For convenience, we define 
𝐾𝐾0 = 0 with probability . In the general case of uneven participation, 

𝑝𝑝𝑛𝑛(𝑘𝑘) = � � 𝜋𝜋𝑗̅𝑗
𝑗𝑗∉S𝑛𝑛

𝑘𝑘

  � 𝜋𝜋𝑗𝑗
𝑗𝑗∈S𝑛𝑛

𝑘𝑘S𝑛𝑛
𝑘𝑘

, 

where S𝑛𝑛
𝑘𝑘  denotes a subset of {1, … ,𝑛𝑛} of size 𝑘𝑘, and 𝑝𝑝𝑛𝑛(0) = 𝑃𝑃𝑛𝑛(0) = ∏ 𝜋𝜋𝑗̅𝑗

𝑛𝑛
𝑗𝑗=1 . In the special case of identical partici-

pation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, 

𝑝𝑝𝑛𝑛(𝑘𝑘) = �
𝑛𝑛
𝑘𝑘
�𝜋𝜋𝑛̅𝑛−𝑘𝑘 𝜋𝜋𝑘𝑘,   𝑃𝑃𝑛𝑛(𝑘𝑘) = ��

𝑛𝑛
𝑗𝑗
�𝜋𝜋𝑛̅𝑛−𝑗𝑗 𝜋𝜋𝑗𝑗

𝑘𝑘

𝑗𝑗=0
,   𝑝𝑝𝑛𝑛(0) = 𝑃𝑃𝑛𝑛(0) = 𝜋𝜋𝑛̅𝑛. 

Again in the general case, with our convention for 𝑛𝑛 = 0, 𝑃𝑃0(𝑘𝑘 − 1) = 1. For any other 𝑛𝑛 ⩾ 1, 

𝑃𝑃𝑛̅𝑛(𝑘𝑘 − 1) = P{𝐾𝐾𝑛𝑛 ⩾ 𝑘𝑘} = P{𝐾𝐾𝑛𝑛−1 ⩾ 𝑘𝑘} + P{𝐾𝐾𝑛𝑛−1 = 𝑘𝑘 − 1} 𝜋𝜋𝑛𝑛 = 𝑃𝑃𝑛̅𝑛−1(𝑘𝑘 − 1) + 𝜋𝜋𝑛𝑛 𝑝𝑝𝑛𝑛−1(𝑘𝑘 − 1), 
𝑃𝑃𝑛𝑛(𝑘𝑘 − 1) = 𝑃𝑃𝑛𝑛−1(𝑘𝑘 − 1)− 𝜋𝜋𝑛𝑛 𝑝𝑝𝑛𝑛−1(𝑘𝑘 − 1). 

Similarly, 𝑝𝑝0(0) = 1, 𝑝𝑝0(𝑘𝑘) = 0 for 𝑘𝑘 > 0, and for 𝑛𝑛 ⩾ 1, 
𝑝𝑝𝑛𝑛(𝑘𝑘) = P{𝐾𝐾𝑛𝑛 = 𝑘𝑘} = P{𝐾𝐾𝑛𝑛−1 = 𝑘𝑘} 𝜋𝜋𝑛̅𝑛 + P{𝐾𝐾𝑛𝑛−1 = 𝑘𝑘 − 1} 𝜋𝜋𝑛𝑛 = 𝜋𝜋𝑛̅𝑛 𝑝𝑝𝑛𝑛−1(𝑘𝑘) + 𝜋𝜋𝑛𝑛 𝑝𝑝𝑛𝑛−1(𝑘𝑘 − 1). 

We may rewrite the latter recursion more compactly with the help of a few definitions. Namely, 

𝑝𝑝𝑛𝑛 ≝ �
𝑝𝑝𝑛𝑛(0)
⋮

𝑝𝑝𝑛𝑛(𝑘𝑘−1)
�,   𝑝𝑝0 =

⎝
⎜⎜⎛
1
0
⋮
0⎠
⎟⎟⎞ ∈ ℝ𝑘𝑘, 

and a ShiftDown function implementing the linear operator in ℝ𝑘𝑘 consisting in shifting down the entries of a vector, 
filling out the top with a zero, that is, 

⎝
⎜⎜⎛
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑘𝑘⎠
⎟⎟⎞ ↦

⎝
⎜⎜
⎛

0
𝑥𝑥1
⋮

𝑥𝑥𝑘𝑘−1⎠
⎟⎟
⎞,   so that   𝑝𝑝𝑛𝑛 = 𝜋𝜋𝑛̅𝑛 𝑝𝑝𝑛𝑛−1 + 𝜋𝜋𝑛𝑛 ShiftDown(𝑝𝑝𝑛𝑛−1). 

Note also that 𝑃𝑃𝑛𝑛(𝑘𝑘 − 1) = 1 and 𝑝𝑝𝑛𝑛(𝑘𝑘 − 1) = 0 for 𝑛𝑛 < 𝑘𝑘, and 
𝑞𝑞 ̅= P{0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘} = 𝑃𝑃𝑛𝑛(𝑘𝑘 − 1)− 𝑝𝑝𝑛𝑛(0). 

The two recursions introduced thus far will enable us to build an algorithm for the computation of the effective ano-
nymity 𝑛𝑛min. But first, we would like to establish a few additional metrics of anonymity failure. 

The expected number of unprotected records when 𝑘𝑘-anonymity is violated is 
𝑢𝑢 ≝ E [𝐾𝐾𝑛𝑛 | 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘] ⩽ 𝑘𝑘 − 1, 

and may be computed from 𝑝𝑝𝑛𝑛 and 𝑞𝑞,̅ simply by observing that 

𝑢𝑢𝑞𝑞 ̅= E [𝐾𝐾𝑛𝑛 | 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘] P{0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘} = �P{𝐾𝐾𝑛𝑛 = 𝑗𝑗}𝑗𝑗
𝑘𝑘−1

𝑗𝑗=0
= �𝑝𝑝𝑛𝑛(𝑗𝑗)𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0
,   or more compactly,   𝑢𝑢𝑞𝑞 ̅= 𝑝𝑝𝑛𝑛𝑇𝑇

⎝
⎜⎜⎛

0
1
⋮

𝑘𝑘−1⎠
⎟⎟⎞ . 

The case of 𝜋𝜋𝑗𝑗 = 𝜋𝜋 and 𝑘𝑘 = 2 is particularly simple, since 

{0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘} = {𝐾𝐾𝑛𝑛 = 1},   𝑞𝑞 ̅= 𝑝𝑝𝑛𝑛(1) = 𝑛𝑛𝜋𝜋̅𝑛𝑛−1𝜋𝜋,   𝑢𝑢 = E [𝐾𝐾𝑛𝑛 | 𝐾𝐾𝑛𝑛 = 1] = 1 = 𝑘𝑘 − 1. 
Yet another interesting failure metric is the probability that a record is unprotected in a cell of size 𝑛𝑛, which is the 

probability that the record is active, and that the cell is unprotected, precisely, 
𝑟𝑟𝑗̅𝑗 ≝ P�𝐼𝐼𝑗𝑗 = 1, 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘� = P�𝐼𝐼𝑗𝑗 = 1 � 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘� 𝑞𝑞.̅ 

Since 𝐾𝐾𝑛𝑛 = ∑ 𝐼𝐼𝑗𝑗
𝑛𝑛
𝑗𝑗=1 , the expectation operator is linear, and the expectation of a binary indicator is the probability of 

the event indicated, 

�P�𝐼𝐼𝑗𝑗 = 1 � 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘�
𝑛𝑛

𝑗𝑗=1
= E [𝐾𝐾𝑛𝑛 | 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘] = 𝑢𝑢. 

Therefore, the probability that a record, uniformly chosen from a cell of size 𝑛𝑛, will turn out to be (active and) unpro-
tected is, 

𝑟𝑟̅ ≝
1
𝑛𝑛
�𝑟𝑟𝑗̅𝑗
𝑛𝑛

𝑗𝑗=1
=
𝑢𝑢
𝑛𝑛
𝑞𝑞 ̅=

1
𝑛𝑛
𝑝𝑝𝑛𝑛𝑇𝑇

⎝
⎜⎜⎛

0
1
⋮

𝑘𝑘−1⎠
⎟⎟⎞ ⩽

𝑘𝑘 − 1
𝑛𝑛

𝑞𝑞,̅ 

which we may consistently call (attained) record-failure probability. In the special case of 𝜋𝜋𝑗𝑗 = 𝜋𝜋, by symmetry, 𝑟𝑟𝑗𝑗 = 𝑟𝑟. 
Clearly, the expected number of unprotected records in a table with a total of 𝑁𝑁  (potentially active) records is 𝑁𝑁𝑁𝑁. 

A twist in this record failure metric, considering the point of view of the users, is the probability that a participating 
respondent will not be successfully protected, that is, the probability that a record is unprotected given that it is active, 
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𝑟𝑟𝑗̅𝑗′ ≝ P�0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘 � 𝐼𝐼𝑗𝑗 = 1� =
𝑟𝑟𝑗̅𝑗
𝜋𝜋𝑗𝑗
⩾ 𝑟𝑟𝑗̅𝑗, 

on average, 𝑟𝑟′̅ ≝ 1
𝑛𝑛∑ 𝑟𝑟𝑗̅𝑗′

𝑛𝑛
𝑗𝑗=1 . Under constant participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, by symmetry 𝑟𝑟𝑗̅𝑗′ = 𝑟𝑟′̅, and 

𝑟𝑟′̅ =
𝑟𝑟̅
𝜋𝜋

=
𝑢𝑢
𝑛𝑛𝑛𝑛
𝑞𝑞 ̅⩽

𝑘𝑘 − 1
𝑛𝑛𝑛𝑛

𝑞𝑞.̅ 

The recursions obtained earlier permit devising an algorithm for the computation of all of the metrics established, 
along with the effective anonymity 𝑛𝑛min. We present the algorithm in question as Algorithm A. It may be worth noting 
that 𝑃𝑃𝑛𝑛(𝑘𝑘 − 1) = 1, 𝑝𝑝𝑛𝑛(𝑘𝑘 − 1) = 0 for 𝑛𝑛 < 𝑘𝑘, which suggests an alternative implementation, slightly faster, with two 
phases 𝑛𝑛 = 1, … , 𝑘𝑘 − 1, and 𝑛𝑛 ⩾ 𝑘𝑘. In the former phase, only 𝑝𝑝𝑛𝑛 would need to be recursively computed. The latter 
phase would be identical to the more compact pseudocode preferred here. 

Finally, for a table of 𝑐𝑐 = 1, … , |C| cells, and attained success 𝑞𝑞𝑐̅𝑐 ⩽ 𝑝𝑝̅, the probability that a table contains no failing 
cells is ∏ 𝑞𝑞𝑐𝑐𝑐𝑐 . Accordingly, the probability of table success is 𝑡𝑡 ≝ ∏ 𝑞𝑞𝑐𝑐

|C|
𝑐𝑐=1 ⩾ 𝑝𝑝|C|, and we consistently refer to 𝑡𝑡 ̅as the 

(attained) table-failure probability. When 𝜋𝜋𝑗𝑗 = 𝜋𝜋, |C| = �𝑁𝑁𝑛𝑛� cells in total, �𝑁𝑁𝑛𝑛� − 1 of size 𝑛𝑛 with attained cell success 𝑞𝑞 
and one last cell of size 

𝑛𝑛′ = 𝑛𝑛+𝑁𝑁  mod 𝑛𝑛 = 𝑁𝑁 − (|C|− 1)𝑛𝑛 ⩾ 𝑛𝑛, 
with attained cell success 𝑞𝑞′ ⩾ 𝑞𝑞 ⩾ 𝑝𝑝, and table success probability 𝑡𝑡 = 𝑞𝑞�𝑁𝑁𝑛𝑛�−1 𝑞𝑞′ ⩾ 𝑞𝑞�𝑁𝑁𝑛𝑛� ⩾ 𝑝𝑝�𝑁𝑁𝑛𝑛�, where 𝑞𝑞′ can be com-
puted with our recursive algorithm, Algorithm A, simply by setting 𝑁𝑁 = 𝑛𝑛′ and 𝑝𝑝̅ = 0. 

We conclude with a couple of quick considerations to bound 𝑛𝑛min. From an average-case perspective, the level of 
anonymity attained may be measured by the expected cell size E 𝐾𝐾𝑛𝑛 = ∑ 𝜋𝜋𝑗𝑗

𝑛𝑛
𝑗𝑗=1 . For constant participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, 

E 𝐾𝐾𝑛𝑛 = 𝑛𝑛𝑛𝑛. The application of Markov’s inequality enables us to conclude that 

P{𝐾𝐾𝑛𝑛 ⩾ 𝑘𝑘} ⩽
𝑛𝑛𝑛𝑛
𝑘𝑘

,   𝑝𝑝̅ ⩾ 𝑞𝑞 ̅= P{𝐾𝐾𝑛𝑛 < 𝑘𝑘}− P{𝐾𝐾𝑛𝑛 = 0} ⩾ 1−
𝑛𝑛
𝑘𝑘
𝜋𝜋 − 𝜋𝜋̅𝑛𝑛,   𝑝𝑝 ⩽ 𝑞𝑞 ⩽

𝑛𝑛
𝑘𝑘
𝜋𝜋 + 𝜋𝜋̅𝑛𝑛. 

Since 𝑛𝑛 ⩾ 𝑘𝑘, 

𝑝𝑝 ⩽
𝑛𝑛
𝑘𝑘
𝜋𝜋 + 𝜋𝜋̅𝑘𝑘,   

𝑛𝑛
𝑘𝑘
⩾
𝑝𝑝 − 𝜋𝜋𝑘̅𝑘

𝜋𝜋
, 

which gives a simple lower bound on the effective anonymity 𝑛𝑛min. On the other hand, Chebyshev’s inequality implies 

Algorithm A. Effective 𝑘𝑘-anonymity, failure indicators 

function EffectiveAnonymity 
input 𝑘𝑘, �𝜋𝜋𝑗𝑗�𝑗𝑗=1𝑁𝑁 , 𝑝𝑝̅ ▷ Anonymity parameter 𝑘𝑘, participation 𝜋𝜋𝑗𝑗 in predefined 

order 𝑗𝑗 = 1,… ,𝑁𝑁  (or constant 𝜋𝜋), acceptable cell failure 𝑝𝑝̅ 
output 𝑛𝑛min, 𝑞𝑞,̅ 𝑢𝑢, 𝑟𝑟 ̅ ▷ Effective 𝑘𝑘-anonymity 𝑛𝑛min ≝ min{𝑛𝑛 ⩾ 𝑘𝑘 | 𝑞𝑞 ̅ ⩽ 𝑝𝑝̅} (𝑁𝑁  if 

insufficient), attained cell failure 𝑞𝑞 ̅≝ P{0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘}, 
average # of unprotected records 𝑢𝑢 ≝ E [𝐾𝐾𝑛𝑛 | 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘], 
attained record failure 𝑟𝑟̅ ≝ 1

𝑛𝑛∑ P�𝐼𝐼𝑗𝑗 = 1, 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘�𝑛𝑛
𝑗𝑗=1  

. 𝑛𝑛 ← 0, 𝑝𝑝0 ←
⎝
⎜⎜⎛
1
0
⋮
0⎠
⎟⎟⎞ ∈ ℝ𝑘𝑘, 𝑃𝑃0(𝑘𝑘 − 1) ← 1 ▷ Initialize recursion 

. repeat ▷ Assume at least 𝑁𝑁 = 1 participants available 
.  𝑛𝑛 ← 𝑛𝑛+ 1 ▷ Increase cell size 
 ▷ Recursion on PMF 𝑝𝑝𝑛𝑛(𝑘𝑘) ≝ P{𝐾𝐾𝑛𝑛 = 𝑘𝑘} and CMF 𝑃𝑃𝑛𝑛(𝑘𝑘) ≝

P{𝐾𝐾𝑛𝑛 ⩽ 𝑘𝑘}, the former represented by 𝑝𝑝𝑛𝑛 ≝ �
𝑝𝑝𝑛𝑛(0)
⋮

𝑝𝑝𝑛𝑛(𝑘𝑘−1)
� 

.  𝑃𝑃𝑛𝑛(𝑘𝑘 − 1) ← 𝑃𝑃𝑛𝑛−1(𝑘𝑘 − 1)− 𝜋𝜋𝑛𝑛 𝑝𝑝𝑛𝑛−1(𝑘𝑘 − 1) 
.  𝑝𝑝𝑛𝑛 ← 𝜋𝜋𝑛̅𝑛 𝑝𝑝𝑛𝑛−1 + 𝜋𝜋𝑛𝑛 ShiftDown(𝑝𝑝𝑛𝑛−1) ▷ Shift 𝑝𝑝𝑛𝑛−1 down, set top entry to 0 
.  𝑞𝑞 ̅← 𝑃𝑃𝑛𝑛(𝑘𝑘 − 1)− 𝑝𝑝𝑛𝑛(0) 
. until 𝑛𝑛 ⩾ 𝑘𝑘 and 𝑞𝑞 ̅⩽ 𝑝𝑝̅ or 𝑛𝑛 = 𝑁𝑁  ▷ Ensure 𝑛𝑛 ⩾ 𝑘𝑘 and 𝑞𝑞 ̅⩽ 𝑝𝑝̅ if 𝑁𝑁  large 

. 𝑢𝑢 ← 𝑝𝑝𝑛𝑛𝑇𝑇
⎝
⎜⎜⎛

0
1
⋮

𝑘𝑘−1⎠
⎟⎟⎞ 𝑞𝑞 ̅�  , 𝑟𝑟̅ ← 𝑝𝑝𝑛𝑛𝑇𝑇

⎝
⎜⎜⎛

0
1
⋮

𝑘𝑘−1⎠
⎟⎟⎞/𝑛𝑛 

. return 𝑛𝑛, 𝑞𝑞,̅ 𝑢𝑢, 𝑟𝑟 ̅

Recursive procedure on the PMF and the CMF of the r.v. 𝐾𝐾𝑛𝑛 devised to accurately compute the effective 𝑘𝑘-anonymity parameter 
𝑛𝑛min, the attained cell-failure probability 𝑞𝑞,̅ the average number 𝑢𝑢 of unprotected records, and the attained record-failure probability 
𝑟𝑟,̅ from the level of 𝑘𝑘-anonymity required, the participation model �𝜋𝜋𝑗𝑗�𝑗𝑗=1𝑁𝑁  of up to 𝑁𝑁  available records in a predefined order, and the 
acceptable cell-failure probability 𝑝𝑝̅. The same exact procedure is to be employed even in the simpler case of constant participation 
probability 𝜋𝜋𝑗𝑗 = 𝜋𝜋. The ShiftDown function implements the linear operator (𝑥𝑥1,… ,𝑥𝑥𝑘𝑘)𝑇𝑇 ↦ (0,𝑥𝑥1,𝑥𝑥2,… ,𝑥𝑥𝑘𝑘−1)𝑇𝑇 . 
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P{𝐾𝐾𝑛𝑛 ⩾ 𝑘𝑘} ⩽ P{|𝐾𝐾𝑛𝑛 − 𝑛𝑛𝑛𝑛| ⩾ 𝑘𝑘 − 𝑛𝑛𝑛𝑛} ⩽
𝑛𝑛𝜋𝜋̅𝜋𝜋

(𝑘𝑘 − 𝑛𝑛𝑛𝑛)2
, 

a quadratic inequality that can be similarly used to obtain un upper bound on 𝑛𝑛. 

B. Distortion Analysis 
In this subsection, 𝑛𝑛 now denotes all available records, not just the cell size, and 𝑐𝑐 = 1,… , |C| indexes the cells in a 
published table. Define 𝑛𝑛𝑐𝑐 ≝ |{𝑗𝑗 | 𝑐𝑐(𝑗𝑗) = 𝑐𝑐}|, so that 𝑛𝑛 = ∑ 𝑛𝑛𝑐𝑐

|C|
𝑐𝑐=1 . We should hasten to observe that in 𝑝𝑝-probabilistic 

𝑘𝑘-anonymous microaggregation, the SSE within a microcell 

SSE𝑐𝑐 = � 𝐼𝐼𝑗𝑗 �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

 

is in fact an r.v., with expectation 

E[SSE𝑐𝑐] = � 𝜋𝜋𝑗𝑗 �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

. 

Naturally, we may select a centroid minimizing the expected SSE, that is, 

𝑥𝑥𝑐̂𝑐 = arg min
𝑥̂𝑥
 E[SSE𝑐𝑐] =

1
∑ 𝜋𝜋𝑗𝑗𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

  � 𝜋𝜋𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

. 

For constant participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, 𝑥𝑥𝑐̂𝑐 = 1
𝑛𝑛𝑐𝑐
 ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐 , as with deterministic participation. 

Alternatively, one could define centroid conditioned on the only information known to the probabilistic microaggre-
gation method at the time of publication, namely the actual number of participants in the cell, which would induce a 
probability distribution on the participants related to 𝜋𝜋𝑗𝑗. With constant participation, by symmetry, the end result is 
unchanged. In general, 

P�𝐼𝐼𝑗𝑗 = 1 � 𝐾𝐾𝑛𝑛𝑐𝑐 = 𝑘𝑘� =
P�𝐾𝐾𝑛𝑛𝑐𝑐 = 𝑘𝑘 � 𝐼𝐼𝑗𝑗 = 1�𝜋𝜋𝑗𝑗

P�𝐾𝐾𝑛𝑛𝑐𝑐 = 𝑘𝑘�
, 

where by independence, 𝐾𝐾𝑛𝑛𝑐𝑐  | 𝐼𝐼𝑗𝑗 = 1 may be regarded as a smaller case of 𝐾𝐾𝑛𝑛𝑐𝑐  for 𝑘𝑘 − 1 active records. 
In traditional, deterministic microaggregation, the distortion is normalized not only by the number 𝑛𝑛 of records, 

but also by the dimension 𝑚𝑚, that is, 

𝒟𝒟 =
1
𝑚𝑚𝑚𝑚

� � �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

|C|

𝑐𝑐=1
. 

With probabilistic participation, the analogous measure of distortion, 

1
𝑚𝑚∑ 𝐼𝐼𝑗𝑗

𝑛𝑛
𝑗𝑗=1

� � 𝐼𝐼𝑗𝑗 �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

|C|

𝑐𝑐=1
, 

is a random quantity that cannot be computed unless the actual participation is known. 
To tackle the issue, we propose a metric based on the expectation of the SSE and the normalization factor, remi-

niscent of the law of large numbers. Precisely, we replace amount of active records ∑ 𝐼𝐼𝑗𝑗𝑗𝑗  with its expectation 

E��𝐼𝐼𝑗𝑗
𝑛𝑛

𝑗𝑗=1
� = �𝜋𝜋𝑗𝑗

𝑛𝑛

𝑗𝑗=1
, 

and replace the SSE also with its expected value 

E�� � 𝐼𝐼𝑗𝑗 �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

|C|

𝑐𝑐=1
� = � � 𝜋𝜋𝑗𝑗 �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2

𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

|C|

𝑐𝑐=1
. 

Define the normalized participation 𝜋𝜋𝑗𝑗′ = 𝜋𝜋𝑗𝑗 ∑ 𝜋𝜋𝑗𝑗
𝑛𝑛
𝑗𝑗=1⁄ , a PMF proportional to 𝜋𝜋𝑗𝑗. The distortion metric proposed is then 

𝒟𝒟 =
1

𝑚𝑚∑ 𝜋𝜋𝑗𝑗
𝑛𝑛
𝑗𝑗=1

 � � 𝜋𝜋𝑗𝑗 �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

|C|

𝑐𝑐=1
=

1
𝑚𝑚
� � 𝜋𝜋𝑗𝑗′ �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2

𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

|C|

𝑐𝑐=1
= E �𝑋𝑋 − 𝑋̂𝑋�2, 

with 𝑋𝑋 an r.v. on the alphabet of quasi-identifiers X = �𝑥𝑥𝑗𝑗�𝑗𝑗=1𝑛𝑛 , with probability distribution �𝜋𝜋𝑗𝑗′�𝑗𝑗=1𝑛𝑛 . 
In the special case of constant participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, the normalized participation 𝜋𝜋𝑗𝑗′ = 1

𝑛𝑛 is uniform and 

𝒟𝒟 =
1
𝑚𝑚𝑚𝑚

� �  �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑐̂𝑐�2
𝑗𝑗 | 𝑐𝑐(𝑗𝑗)=𝑐𝑐

|C|

𝑐𝑐=1
= E �𝑋𝑋 − 𝑋̂𝑋�2, 

exactly as in the case of deterministic participation, with 𝑋𝑋 uniformly distributed on X = �𝑥𝑥𝑗𝑗�𝑗𝑗=1𝑛𝑛 , which also measures 
expected distortion normalized per sample (and dimension), even if with probabilistic participation the number of active 
records is smaller. 
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C. Approximations for Large Effective Anonymity 
In practice, we shall typically require an extremely low failure rate 𝑝𝑝̅, or we shall be interested in the asymptotic 
characterization of the problem for a large anonymity parameter 𝑘𝑘. Either situation translates into a large effective 
anonymity 𝑛𝑛min, which suggests bringing our attention to an approximation analysis under this working hypothesis. For 
simplicity, we restrict our analysis to the case of identical participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, with a fixed, common participation 
probability 𝜋𝜋. Our approximations are based on the connection of the problem of 𝑝𝑝-probabilistic 𝑘𝑘-anonymity with the 
method of types and large deviation theory. We first require a few mathematical preliminaries on approximations. 

C.. Mathematical Preliminaries on Relative, Absolute and Exponential Approximations 
A minor subtlety is that we use three different symbols denote three slightly different types of approximations. Through-
out the paper, in the context of real values 𝑥𝑥 and 𝑦𝑦, we reserve the usual notation 𝑥𝑥 ≈ 𝑦𝑦 to indicate that the relative 
error (𝑥𝑥 − 𝑦𝑦)/𝑦𝑦 is small within a given precision. In §VI.C., in the context of mathematical expressions, we shall employ 
this symbol for informal, heuristic approximations. 

Throughout §VI.C, and in the context of the limits of the functions 𝑓𝑓 and 𝑔𝑔, the notation 𝑓𝑓 ∼ 𝑔𝑔 indicates a relative 
approximation, that is, that the relative error (𝑓𝑓 − 𝑔𝑔)/𝑔𝑔 → 0, or equivalently, 𝑓𝑓 𝑔𝑔⁄ → 1, usually read as “𝑓𝑓 is of the order 
of 𝑔𝑔”. On the other hand, we enforce the notation 𝑓𝑓 ≃ 𝑔𝑔 to indicate an absolute approximation, that is, that the absolute 
error 𝑓𝑓 − 𝑔𝑔 → 0. 

Provided that 𝑓𝑓 , 𝑔𝑔 → 0, 𝑓𝑓 ≃ 𝑔𝑔 follows trivially, being 𝑓𝑓 ∼ 𝑔𝑔 the only informative option. However, when 𝑓𝑓 , 𝑔𝑔 → ∞, 
𝑓𝑓 ≃ 𝑔𝑔 entails 𝑓𝑓 ∼ 𝑔𝑔. Trivially, for any fixed value 𝛼𝛼, 𝑓𝑓 → 𝛼𝛼 may be equivalently written as 𝑓𝑓 ∼ 𝛼𝛼 or 𝑓𝑓 ≃ 𝛼𝛼. Note that 
either type of approximation induces an equivalence relation (satisfying reflexivity, symmetry and transitivity). Recall 
that the Landau little-oh notation 𝑓𝑓 = o(𝑔𝑔) indicates that 𝑓𝑓 𝑔𝑔⁄ → 0. Clearly, for any 𝑓𝑓 and 𝑔𝑔, 

𝑓𝑓 = 𝑔𝑔 + o(𝑔𝑔)   if, and only if,  𝑓𝑓 ∼ 𝑔𝑔,   𝑓𝑓 = 𝑔𝑔 + o(1)   if, and only if,  𝑓𝑓 ≃ 𝑔𝑔, 
the direct implication of which may be expressed in a slightly more compact fashion as 

𝑔𝑔 + o(𝑔𝑔) ∼ 𝑔𝑔,   𝑔𝑔 + o(1) ≃ 𝑔𝑔,   for any 𝑔𝑔. 
Linearity properties, namely additivity and homogeneity, hold with mild restrictions. Precisely, for any function ℎ, 

the assumption 𝑓𝑓 ∼ 𝑔𝑔 implies 𝑓𝑓 + ℎ ∼ 𝑔𝑔 + ℎ as long as the limit of ℎ/𝑔𝑔 exists and is different from −1, possibly infinite, 
discarding the counterexample 𝑓𝑓 = 𝑥𝑥+ 2, 𝑔𝑔 = 𝑥𝑥+ 1, ℎ = −𝑥𝑥 for 𝑥𝑥 → ∞. Provided that 𝑓𝑓 ≃ 𝑔𝑔, suppose that in addition 
the limit of ℎ exists and is not ±∞. Then, 𝑓𝑓ℎ ≃ 𝑔𝑔ℎ. 

In information theory, it is often convenient to characterize the exponential trend of a sequence. Recall [] (§, §) 
that two sequences 𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛 are said to be equal to the first order in the exponent whenever 1𝑛𝑛 log 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 → 0, as 𝑛𝑛 → ∞, 
which in the notation we have introduced may be alternatively expressed as 1𝑛𝑛 log 𝑎𝑎𝑛𝑛 ≃ 1

𝑛𝑛 log 𝑏𝑏𝑛𝑛 or as �𝑎𝑎𝑛𝑛𝑛𝑛 ∼ �𝑏𝑏𝑛𝑛𝑛𝑛 . Sup-
pose that 𝑓𝑓 ∼ 𝑔𝑔, both positive, and that 𝑔𝑔 has a limit different from 1, possibly infinite. Then, log 𝑓𝑓 ∼ log 𝑔𝑔. The addi-
tional requirement accounts for cases such as 𝑓𝑓 = 𝑒𝑒2𝑥𝑥 and 𝑔𝑔 = 𝑒𝑒𝑥𝑥 in the limit of 𝑥𝑥 → 0. The converse is not true, that 
is, 𝑓𝑓 ∼ 𝑔𝑔 does not imply 𝑒𝑒𝑓𝑓 ∼ 𝑒𝑒𝑔𝑔, as readily shown by 𝑓𝑓 = 𝑥𝑥+ 1 and 𝑔𝑔 = 𝑥𝑥 as 𝑥𝑥 → ∞. On the other hand, for positive 
functions, 𝑓𝑓 ∼ 𝑔𝑔 holds if, and only if, log 𝑓𝑓 ≃ log 𝑔𝑔. 

C.. Connection with the Method of Types and Large Deviation Theory 
We explore connection between 𝑝𝑝-probabilistic 𝑘𝑘-anonymity and the method of types, a powerful technique in large 
deviation theory lying at the heart of the intersection between information theory and statistics. Some of the results 
enumerated here are a review of [] (§), but many others were specifically derived for this work. Let 𝑝𝑝𝑘𝑘𝑛𝑛 denote the 
probability of 𝑘𝑘 successes for a binomial r.v. 𝐾𝐾𝑛𝑛 with 𝑛𝑛 trials and probability of success 𝜋𝜋, and type or empirical pa-
rameter 𝑡𝑡 = 𝑘𝑘

𝑛𝑛. In other words, the type 𝑡𝑡 is a relative representation of the empirical number 𝐾𝐾𝑛𝑛 of successful outcomes, 
in contrast with the theoretical success probability 𝜋𝜋. 

Under these definitions, 𝑝𝑝𝑘𝑘𝑛𝑛 = P{𝐾𝐾𝑛𝑛 = 𝑘𝑘}. Further, 

𝑝𝑝𝑘𝑘𝑛𝑛 = �
𝑛𝑛
𝑘𝑘
�𝜋𝜋𝑛̅𝑛−𝑘𝑘𝜋𝜋𝑘𝑘 = �

𝑛𝑛
𝑘𝑘
� 2−𝑛𝑛H(𝑡𝑡‖𝜋𝜋),   where   H(𝑡𝑡‖𝜋𝜋) = −𝑡𝑡 ̅log 𝜋𝜋̅ − 𝑡𝑡 log 𝜋𝜋 = H(𝑡𝑡) + D(𝑡𝑡‖𝜋𝜋) ⩾ H(𝑡𝑡) 

denotes the cross-entropy of the binary distribution with probability of success 𝑡𝑡, with respect to that with 𝜋𝜋, and where 
D(𝑡𝑡‖𝜋𝜋) denotes the KL divergence between the same quantities. Concordantly define 𝑇𝑇𝑛𝑛 ≝ 1

𝑛𝑛𝐾𝐾𝑛𝑛 and 𝑝𝑝𝑇𝑇 (𝑡𝑡) ≝ P{𝑇𝑇𝑛𝑛 = 𝑡𝑡}. 
Unless otherwise stated, limits are in terms of 𝑛𝑛 → ∞, but 𝑘𝑘 remains fixed (instead of fixing 𝑡𝑡), and accordingly, 

𝑡𝑡 → 0. The limit in 𝑛𝑛 is consistent with the assumption of vanishing acceptable, and therefore attained cell-failure rates, 
𝑞𝑞 ̅⩽ 𝑝𝑝̅ → 0, with fixed anonymity parameter 𝑘𝑘. Occasionally, it will be useful to think of the dual case of 𝑛𝑛 → ∞ with 
fixed 𝑡𝑡, where the limit is now caused by 𝑛𝑛 ⩾ 𝑘𝑘 → ∞ instead, and 𝑞𝑞 ̅remains fixed, but sufficiently small. 

A fundamental result of the method of types [] (Theor. .., employing a tighter version of the bound with 
|X|− 1 in lieu of |X|) asserts that 

1
𝑛𝑛+1
 2−𝑛𝑛D(𝑡𝑡‖𝜋𝜋) ⩽ 𝑝𝑝𝑇𝑇 (𝑡𝑡) ⩽ 2−𝑛𝑛D(𝑡𝑡‖𝜋𝜋),   or equivalently,   0 ⩽ −1

𝑛𝑛
log 𝑝𝑝𝑘𝑘𝑛𝑛 −D(𝑡𝑡‖𝜋𝜋) ⩽ log(𝑛𝑛+1)

𝑛𝑛
, 

which, in our notation, implies −1
𝑛𝑛 log 𝑝𝑝𝑘𝑘𝑛𝑛 ≃ D(𝑡𝑡‖𝜋𝜋) as 𝑛𝑛 → ∞. For fixed 𝑘𝑘, we have 𝑡𝑡 → 0 and 

−1
𝑛𝑛
log 𝑝𝑝𝑘𝑘𝑛𝑛 → D(0‖𝜋𝜋) = − log 𝜋𝜋̅ . 

Note however that approximating D(𝑡𝑡‖𝜋𝜋) by its value at 𝑡𝑡 = 0 may be fairly inaccurate in practice, because 𝜕𝜕D
𝜕𝜕𝜕𝜕 �𝑡𝑡=0 =

−∞, and 𝑛𝑛 may not be large enough when compared to 𝑘𝑘. 
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We show that P{𝐾𝐾𝑛𝑛 = 𝑘𝑘} dominates the event P{𝐾𝐾𝑛𝑛 ⩽ 𝑘𝑘}, when 𝑘𝑘 remains fixed. Since 
𝑝𝑝𝑘𝑘−1𝑛𝑛

𝑝𝑝𝑘𝑘𝑛𝑛
=

𝑘𝑘
𝑛𝑛 − 𝑘𝑘 + 1

 
𝜋𝜋̅
𝜋𝜋

=
𝑡𝑡

𝑡𝑡 ̅+ 1
𝑛𝑛
 
𝜋𝜋̅
𝜋𝜋

<
𝑡𝑡/𝑡𝑡 ̅
𝜋𝜋/𝜋𝜋̅

, 

𝑝𝑝𝑘𝑘−1𝑛𝑛 = o(𝑝𝑝𝑘𝑘𝑛𝑛) as 𝑛𝑛 → ∞, for fixed 𝑘𝑘, and consequently, 

P{𝐾𝐾𝑛𝑛 ⩽ 𝑘𝑘} = �𝑝𝑝𝑗𝑗𝑛𝑛
𝑘𝑘

𝑗𝑗=0
∼ 𝑝𝑝𝑘𝑘𝑛𝑛 = P{𝐾𝐾𝑛𝑛 = 𝑘𝑘}. 

In light of our definition of 𝑘𝑘-anonymity violation, the cumulative event could have excluded the case 𝐾𝐾𝑛𝑛 = 0, but the 
asymptotic dominance of 𝐾𝐾𝑛𝑛 = 𝑘𝑘 makes this distinction irrelevant. Also, to be precise, application of these preliminaries 
requires 𝑘𝑘 − 1 in lieu of 𝑘𝑘. 

At this point, it is relatively straightforward to show that the monotonicity of the probability terms under the 
assumption that 𝑡𝑡 ⩽ 𝜋𝜋 in the cumulative probability permits extending the previous bounds to 

−log(𝑘𝑘+1)
𝑛𝑛

⩽ −1
𝑛𝑛
log�𝑝𝑝𝑗𝑗𝑛𝑛

𝑘𝑘

𝑗𝑗=0
−D(𝑡𝑡‖𝜋𝜋) ⩽ log(𝑛𝑛+1)

𝑛𝑛
, 

which, in our notation, implies 

−1
𝑛𝑛
log�𝑝𝑝𝑗𝑗𝑛𝑛

𝑘𝑘

𝑗𝑗=0
≃ D(𝑡𝑡‖𝜋𝜋) ≃ −1

𝑛𝑛
log 𝑝𝑝𝑘𝑘𝑛𝑛 , 

and for fixed 𝑘𝑘, 𝑡𝑡 → 0 gives −1
𝑛𝑛 log∑ 𝑝𝑝𝑗𝑗𝑛𝑛

𝑘𝑘
𝑗𝑗=0 → − log 𝜋𝜋̅, as before. In terms of 𝑝𝑝-probabilistic 𝑘𝑘-anonymity, more specifi-

cally in terms of the attained cell-failure rate 𝑞𝑞 ̅and the participation probability 𝜋𝜋, this means that −1
𝑛𝑛 log 𝑞𝑞 ̅→ − log 𝜋𝜋̅ . 

Consider, on the other hand, a marginal increase in the number of trials, corresponding to the potential discrepancy 
between accepted and attained cell-failure rates. We have 

𝑝𝑝𝑘𝑘
𝑛𝑛+1

𝑝𝑝𝑘𝑘𝑛𝑛
=

𝑛𝑛+ 1
𝑛𝑛+ 1− 𝑘𝑘

 𝜋𝜋̅ =
1 + 1

𝑛𝑛
𝑡𝑡 ̅+ 1

𝑛𝑛
 𝜋𝜋̅, 

which leads us to observe that 

𝑝𝑝𝑘𝑘
𝑛𝑛+1

𝑝𝑝𝑘𝑘𝑛𝑛
→ 𝜋𝜋̅   and   

∑ 𝑝𝑝𝑗𝑗
𝑛𝑛+1𝑘𝑘

𝑗𝑗=0

∑ 𝑝𝑝𝑗𝑗𝑛𝑛
𝑘𝑘
𝑗𝑗=0

→ 𝜋𝜋̅ 

as 𝑛𝑛 → ∞, for fixed 𝑘𝑘, which in turn implies that 𝑞𝑞/̅𝑝𝑝̅ is asymptotically bounded from below by 𝜋𝜋̅, precisely, 

𝜋𝜋̅ = lim inf  
𝑞𝑞 ̅
𝑝𝑝̅
⩽ max  

𝑞𝑞 ̅
𝑝𝑝̅

= 1,   or   0 = min  
𝑝𝑝̅ − 𝑞𝑞 ̅
𝑝𝑝̅

⩽ lim sup  
𝑝𝑝̅ − 𝑞𝑞 ̅
𝑝𝑝̅

= 𝜋𝜋, 

in terms of the relative difference. 
However, we proved that in general, regardless of whether 𝑘𝑘 or 𝑡𝑡 is fixed, 

−1
𝑛𝑛
log�𝑝𝑝𝑗𝑗𝑛𝑛

𝑘𝑘

𝑗𝑗=0
≃ D(𝑡𝑡‖𝜋𝜋), 

so that the largest probability dominates the cumulative event at least in this logarithmic sense. This enables us to 
relate the asymptotic behavior of the acceptable and attained cell-failure probabilities, 𝑝𝑝̅ and 𝑞𝑞 ̅respectively, at least in 
their logarithm. Precisely, for either 𝑡𝑡 → 0 or 𝑡𝑡 ≠ 𝜋𝜋, observing that 𝑘𝑘

𝑛𝑛+1 = 𝑛𝑛𝑛𝑛
𝑛𝑛+1 → 𝑡𝑡 = 𝑘𝑘

𝑛𝑛, we may conclude that 

log�𝑝𝑝𝑗𝑗
𝑛𝑛+1

𝑘𝑘

𝑗𝑗=0
∼ log�𝑝𝑝𝑗𝑗𝑛𝑛

𝑘𝑘

𝑗𝑗=0
,   log 𝑝𝑝̅ ∼ log 𝑞𝑞 ̅,   − 1

𝑛𝑛
log 𝑝𝑝̅ ≃ −1

𝑛𝑛
log 𝑞𝑞 ̅≃ D(𝑡𝑡‖𝜋𝜋). 

C.. Case when 𝑘𝑘 = 2 
We apply the considerations of the previous subsection, §VI.C., to the problem of 𝑝𝑝-probabilistic microaggregation 
with identical participation 𝜋𝜋𝑗𝑗 = 𝜋𝜋, and small acceptable failure rate 𝑝𝑝̅ → 0, which requires large effective anonymity 
𝑛𝑛min →∞. We tackle for now the extreme case of the smallest possible anonymity parameter, 𝑘𝑘 = 2. In this case, 

𝑛𝑛min = {𝑛𝑛 ⩾ 2 | 𝑛𝑛𝜋𝜋𝑛̅𝑛−1𝜋𝜋 ⩽ 𝑝𝑝̅},   𝑛𝑛min𝜋𝜋𝑛̅𝑛min =
𝜋𝜋̅
𝜋𝜋
𝑞𝑞 ̅⩽

𝜋𝜋̅
𝜋𝜋
𝑝𝑝̅. 

At this point, we make a quick digression to investigate the transcendental equation 𝑥𝑥𝑏𝑏𝑥𝑥 = 𝑎𝑎 for positive real num-
bers 𝑎𝑎 and 𝑏𝑏, with 𝑏𝑏 ∈ (0,1), and 0 < 𝑎𝑎 ⩽ − 1

𝑒𝑒 ln 𝑏𝑏, which implies that at least a solution exists in the real variable 𝑥𝑥, and 
in most cases, two. In fact, the solution for 𝑥𝑥 in the above equation satisfying 𝑥𝑥 ⩾ − 1

ln𝑏𝑏 may be expressed in terms of 
the lower branch 𝑊𝑊−1 of the Lambert W function or product logarithm, defined as the solution to 𝑊𝑊−1(𝑡𝑡)𝑒𝑒𝑊𝑊−1(𝑡𝑡) = 𝑡𝑡 
restricted to 𝑊𝑊−1(𝑡𝑡) ⩽ −1. Precisely, 𝑥𝑥 = 𝑊𝑊−1(𝑎𝑎 ln 𝑏𝑏) ln 𝑏𝑏⁄ . In general, no closed-form solution exists in terms of more 
conventional functions, but we may readily obtain an approximate solution for 𝑎𝑎 ≪ 1, or equivalently, 𝑥𝑥 ≫ 1. 

In the logarithmic form of the equation at hand, ln 𝑥𝑥+ 𝑥𝑥 ln 𝑏𝑏 = ln 𝑎𝑎, the approximation 𝑥𝑥 ln 𝑏𝑏 ≫ ln 𝑥𝑥 yields the sim-
ple approximate solution 
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𝑥𝑥 ∼ 𝑥𝑥0̃ ≝
ln 𝑎𝑎
ln 𝑏𝑏

= log𝑏𝑏 𝑎𝑎 , 

with 𝑏𝑏 ∈ (0,1) a suitable logarithmic base. To see that 𝑥𝑥 ∼ 𝑥𝑥0̃ formally, recall from §VI.C. that 𝑓𝑓 + o(𝑓𝑓) ∼ 𝑓𝑓 . Direct 
application of this observation to the logarithmic form of the equation divided by ln 𝑏𝑏, 

𝑥𝑥+
ln𝑥𝑥
ln 𝑏𝑏

=
ln 𝑎𝑎
ln 𝑏𝑏

= 𝑥𝑥0̃, 

proves the claim. This form of the equation also demonstrates that the absolute version of the approximation does not 
hold, since the absolute error 𝑥𝑥 − 𝑥𝑥0̃ = − ln𝑥𝑥

ln 𝑏𝑏 diverges. 
For our practical purposes, the simple approximation 𝑥𝑥0̃ is insufficiently accurate, as it will require an extremely 

low value for 𝑎𝑎. However, we may linearize ln𝑥𝑥 in the equation around 𝑥𝑥0, which gives the more accurate solution 

𝑥𝑥 ∼ 𝑥𝑥1̃ ≝ �1−
ln ln 𝑎𝑎ln 𝑏𝑏

1 + ln 𝑎𝑎
�

ln 𝑎𝑎
ln 𝑏𝑏

= �1−
ln log𝑏𝑏 𝑎𝑎
1 + ln 𝑎𝑎

� log𝑏𝑏 𝑎𝑎 . 

A swift application of L’Hôpital’s rule confirms that �ln ln 𝑎𝑎ln 𝑏𝑏� (1 + ln 𝑎𝑎)⁄  
 𝑎𝑎↓0 
����  0, which means that 𝑥𝑥1̃ ∼ 𝑥𝑥0̃ ∼ 𝑥𝑥 as 𝑎𝑎 ↓ 0, 

as expected. Incidentally, 
𝑥𝑥1̃ ∼ (1− log𝑎𝑎 log𝑏𝑏 𝑎𝑎) log𝑏𝑏 𝑎𝑎 . 

The same method, applied now to the quadratic Taylor expansion of ln 𝑥𝑥 around 𝑥𝑥0 yields 

𝑥𝑥 ∼ 𝑥𝑥2̃ ≝ �2 + ln 𝑎𝑎+�(1 + ln 𝑎𝑎)2 + 2 ln
ln 𝑎𝑎
ln 𝑏𝑏
�

ln 𝑎𝑎
ln 𝑏𝑏

 

instead (for 𝑏𝑏 > 1 and 𝑎𝑎 ≫ 1 the approximation remains valid with a negative square root). It is routine to check that 

1 + ln 𝑎𝑎+�(1 + ln 𝑎𝑎)2 + 2 ln
ln 𝑎𝑎
ln 𝑏𝑏

=
−2 ln ln 𝑎𝑎ln 𝑏𝑏

1 + ln 𝑎𝑎 −�(1 + ln 𝑎𝑎)2 + 2 ln ln 𝑎𝑎ln 𝑏𝑏
 
 𝑎𝑎↓0 
����  0, 

thereby concluding that 𝑥𝑥2̃ ∼ 𝑥𝑥0̃ as 𝑎𝑎 ↓ 0. Back to the problem of 𝑝𝑝-probabilistic -anonymous microaggregation, in the 
preliminary results of §VI.C., we showed that log 𝑝𝑝̅ ∼ log 𝑞𝑞.̅ We approximate the solution to the equation 𝑛𝑛𝜋𝜋̅𝑛𝑛 = 𝜋̅𝜋

𝜋𝜋 𝑞𝑞 ̅in 
𝑛𝑛 observing that 

𝑛𝑛 ∼
log(𝜋̅𝜋𝜋𝜋 𝑞𝑞)̅
log 𝜋𝜋̅

,   which gives   𝑛𝑛min ∼ 𝑛̃𝑛0 ≝
log(𝜋̅𝜋𝜋𝜋 𝑝𝑝̅)
log 𝜋𝜋̅

= log𝜋̅𝜋 �
𝜋𝜋̅
𝜋𝜋
𝑝𝑝̅� = 1 + log𝜋̅𝜋

𝑝𝑝̅
𝜋𝜋

=
− log 𝑝𝑝̅+ log 𝜋𝜋𝜋̅𝜋
− log 𝜋𝜋̅

, 

where log 𝜋𝜋𝜋̅𝜋 may be readily identified as the log odds of 𝜋𝜋. The above analysis offers the more accurate solutions 

𝑛𝑛min ∼ 𝑛̃𝑛1 ≝ �1−
ln ln(𝜋𝜋�����𝜋𝜋𝑝𝑝����)

ln 𝜋̅𝜋
1 + ln(𝜋̅𝜋𝜋𝜋 𝑝𝑝̅)

�
ln(𝜋̅𝜋𝜋𝜋 𝑝𝑝̅)
ln 𝜋𝜋̅

,   𝑛𝑛min ∼ 𝑛̃𝑛2 ≝
⎝
⎜⎛2 + ln�

𝜋𝜋̅
𝜋𝜋
𝑝𝑝̅�+��1 + ln�

𝜋𝜋̅
𝜋𝜋
𝑝𝑝̅��

2
+ 2 ln

ln(𝜋̅𝜋𝜋𝜋 𝑝𝑝̅)
ln 𝜋𝜋̅ ⎠

⎟⎞
ln(𝜋̅𝜋𝜋𝜋 𝑝𝑝̅)
ln 𝜋𝜋̅

, 

with 𝑛̃𝑛2 ∼ 𝑛̃𝑛1 ∼ 𝑛̃𝑛0 ∼ 𝑛𝑛min as 𝑝𝑝̅ ↓ 0. 

C.. Cases of Arbitrary and Large 𝑘𝑘 
Maintaining the assumption of small cell-failure rate 𝑝𝑝̅, we do away with the restriction 𝑘𝑘 = 2, and now proceed to 
explore the general case of arbitrary anonymity parameter 𝑘𝑘. We contemplate as well the case of large 𝑘𝑘. Either small 
𝑝𝑝̅ or large 𝑘𝑘 translates into a cell size 𝑛𝑛 and an effective anonymity 𝑛𝑛min also large. In short, the analysis in this subsec-
tion assumes 𝑝𝑝̅ ≪ 1 or 𝑘𝑘 ≫ 1, 𝑛𝑛 ⩾ 𝑛𝑛min ≫ 1, and 𝜋𝜋𝑗𝑗 = 𝜋𝜋 fixed. 

Define 𝜅𝜅 ≝ (𝑘𝑘 − 1) 𝑛𝑛min⁄ . As 𝑛𝑛min →∞, 𝜋𝜋̅𝑛𝑛min ↓ 0, and the bound in §VI.A based on Markov’s inequality gives 

1 ≃ 𝑝𝑝 ⩽ 𝑞𝑞 ⩽
𝑛𝑛min
𝑘𝑘
𝜋𝜋 + 𝜋𝜋𝑛̅𝑛min ≃

𝑛𝑛min
𝑘𝑘
𝜋𝜋, 

meaning that 𝑛𝑛min (𝑘𝑘 − 1)⁄ > 𝑛𝑛min 𝑘𝑘⁄  should typically be greater than 1𝜋𝜋, and accordingly we should expect 𝜅𝜅 ⩽ 𝜋𝜋 for 
sufficiently small 𝑝𝑝̅ and sufficiently large 𝑛𝑛min. 

We established in §VI.C. that for fixed 𝑘𝑘, as 𝑛𝑛 → ∞, −1
𝑛𝑛 log 𝑞𝑞 ̅→ − log 𝜋𝜋̅, warning of the practical inaccuracy of the 

approximation due to the infinite partial derivative of the KL divergence with respect to its first argument at zero. It 
was also shown that for either fixed 𝑘𝑘 or fixed ratio 𝑘𝑘

𝑛𝑛min
, log 𝑝𝑝̅ ∼ log 𝑞𝑞,̅ which finally implies that 

𝑛𝑛min ∼
log 𝑞𝑞 ̅
log 𝜋𝜋̅

∼
log 𝑝𝑝̅
log 𝜋𝜋̅

, 

which in spite of its formal correctness, may be of questionable accuracy for practical values of 𝑛𝑛. 
Fortunately, we may resort to the more sophisticated form of the arguments made in §VI.C., drawing upon the 

method of types of information theory, to more adequately approximate 𝑛𝑛min. Indeed, we showed at the end of the 
referred subsection that, as 𝑛𝑛 → ∞, and consistently replacing 𝑘𝑘 with 𝑘𝑘 − 1 and 𝑡𝑡 with 𝜅𝜅, 

− 1
𝑛𝑛min

log 𝑝𝑝̅ ≃ − 1
𝑛𝑛min

log 𝑞𝑞 ̅≃ D(𝜅𝜅‖𝜋𝜋). 
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In order to produce an approximation to the effective anonymity 𝑛𝑛min of practical value, we shall immediately become 
less formal and propose the heuristic quantity 𝑛̃𝑛1 as the solution to the equation associated with the approximation, 
that is, 

𝑛̃𝑛1 :def  − 1
𝑛̃𝑛1

log 𝑝𝑝̅ = D�𝑘𝑘−1
𝑛̃𝑛1
� 𝜋𝜋� . 

Intuition suggests that small 𝑝𝑝̅ and large 𝑛𝑛min, leading to small KL divergence, should make 𝜅𝜅 close to 𝜋𝜋. Inspired 
by this intuition, a further twist in this proposal, which will also prove adequate in our experiments, resorts to the 
second-order Taylor approximation to the KL divergence viewed as a function of 𝜅𝜅 around 𝜋𝜋, that is, 

D(𝜅𝜅‖𝜋𝜋) =
1
2
 
(𝜅𝜅 − 𝜋𝜋)2

𝜋𝜋̅𝜋𝜋
+𝑂𝑂(|𝜅𝜅 − 𝜋𝜋|3). 

We simply replace D(𝜅𝜅‖𝜋𝜋) by 12  
(𝜅𝜅−𝜋𝜋)2
𝜋̅𝜋𝜋𝜋  in the previous approximation to 𝑛𝑛min, which immediately suggests 

𝑛̃𝑛1′ :def  −
1
𝑛̃𝑛1′

ln 𝑝𝑝̅ =
1
2
 
�𝑘𝑘−1𝑛̃𝑛1′ − 𝜋𝜋�

2

𝜋𝜋̅𝜋𝜋
, 

and finally leads to 

𝑛̃𝑛1′ =
𝑘𝑘 − 1− 𝜋𝜋̅ ln 𝑝𝑝̅+�−𝜋𝜋̅ ln 𝑝𝑝̅ (2(𝑘𝑘 − 1)− 𝜋𝜋̅ ln 𝑝𝑝̅)

𝜋𝜋
. 

Interestingly, we may rewrite this last expression in terms of the functionals A and G implementing the arithmetic and 
geometric averages 

A:�
𝑥𝑥1
𝑥𝑥2� ↦

𝑥𝑥1 + 𝑥𝑥2
2

G:�
𝑥𝑥1
𝑥𝑥2� ↦ �𝑥𝑥1𝑥𝑥2

,   as   𝑛̃𝑛1′ =
1
𝜋𝜋

(A + G)��2(𝑘𝑘 − 1)
0

� − 𝜋𝜋̅ ln 𝑝𝑝̅� . 

On account of the fact that 
√
𝑥𝑥+ 𝑎𝑎 −

√
𝑥𝑥 =

𝑎𝑎
√
𝑥𝑥+ 𝑎𝑎+

√
𝑥𝑥

 
𝑥𝑥→∞
�����  0 

this last approximation admits a slightly simpler form as a quadratic polynomial of 
√
𝑘𝑘 − 1, precisely, 

𝑛̃𝑛1′′ ≝
1
𝜋𝜋
�𝑘𝑘 − 1 +�−2𝜋𝜋̅ ln 𝑝𝑝̅  

√
𝑘𝑘 − 1− 𝜋𝜋̅ ln 𝑝𝑝̅�. 

We should hasten to point out that similar approximations may be obtained using the Gaussian approximation 
given by the de Moivre-Laplace theorem, or using Hoeffding’s inequality, among other well-known approximations and 
bounds in the context of the binomial distribution. Yet another simple quadratic approximation to D(𝜅𝜅‖𝜋𝜋) determined 
by the constraints D(0‖𝜋𝜋) = − log 𝜋𝜋̅ and D(𝜋𝜋‖𝜋𝜋) = 0 is 

D(𝜅𝜅‖𝜋𝜋) ≈ − log 𝜋𝜋̅  �1−
𝜅𝜅
𝜋𝜋
�
2
, 

where we recall that the symbol ≈ denotes an informal approximation. This suggests our final heuristic approximation 
to the effective anonymity, 

𝑛̃𝑛2 ≝
2(𝑘𝑘 − 1) log 𝜋𝜋̅+ 𝜋𝜋 log 𝑝𝑝̅ −�𝜋𝜋 log 𝑝𝑝̅ (𝜋𝜋 log 𝑝𝑝̅  + 4(𝑘𝑘 − 1) log 𝜋𝜋̅)

2𝜋𝜋 log 𝜋𝜋̅
. 

In addition to the relationship between probabilities and divergences, we explored in §VI.C. the dominance of the 
PMF P{𝐾𝐾𝑛𝑛 = 𝑘𝑘} over the CMF P{𝐾𝐾𝑛𝑛 ⩽ 𝑘𝑘}, in the limit of increasing 𝑛𝑛, for fixed 𝑘𝑘. In the problem analyzed in this 
paper, conveniently replacing 𝑘𝑘 by 𝑘𝑘 − 1, this means that for any cell size 𝑛𝑛 → ∞, and in particular for 𝑛𝑛min →∞, 

𝑞𝑞 ̅≝ P{0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘} ∼ P{𝐾𝐾𝑛𝑛 = 𝑘𝑘 − 1},   which implies   𝑢𝑢 ≝ E [𝐾𝐾𝑛𝑛 | 0 < 𝐾𝐾𝑛𝑛 < 𝑘𝑘] ≃ 𝑘𝑘 − 1, 
and, in turn, 

𝑟𝑟̅=
𝑢𝑢
𝑛𝑛min

𝑞𝑞 ̅∼
𝑘𝑘 − 1
𝑛𝑛min

𝑞𝑞 ̅= 𝜅𝜅𝑞𝑞 ̅⩽ 𝜋𝜋𝑞𝑞 ̅⩽ 𝜋𝜋𝑝𝑝̅,   𝑟𝑟′̅ =
𝑟𝑟̅
𝜋𝜋

=
𝑢𝑢

𝑛𝑛min𝜋𝜋
𝑞𝑞 ̅∼

𝜅𝜅
𝜋𝜋
𝑞𝑞 ̅⩽ 𝑞𝑞 ̅⩽ 𝑝𝑝̅. 

As far as the attained table failure, reasonably, 𝑝𝑝̅ ≪ 0, and consistently, 𝑞𝑞 ̅≪ 0. For large datasets with 𝑁𝑁𝑛𝑛min
≫ 1, we 

may informally approximate 

𝑡𝑡 ̅ ≈ 1− (1− 𝑞𝑞)̅�
𝑁𝑁
𝑛𝑛min

� ≈ 1− 𝑒𝑒−
𝑁𝑁
𝑛𝑛min

𝑞𝑞 ̅ ⩽ 1− 𝑒𝑒−
𝑁𝑁
𝑛𝑛min

𝑝𝑝����,   where   
𝑁𝑁
𝑛𝑛min

𝑞𝑞 ̅∼
𝑁𝑁
𝑘𝑘 − 1

𝑟𝑟̅ ⩽
𝑁𝑁
𝑘𝑘 − 1

 𝜋𝜋𝑝𝑝̅. 

Provided that, in addition, 𝑁𝑁𝑛𝑛min
𝑝𝑝̅ ≈ 0, for example for extremely low 𝑝𝑝̅, which will increase 𝑛𝑛min, 𝑡𝑡 ̅ ≈ 𝑁𝑁

𝑛𝑛min
𝑞𝑞.̅ 

VII. Numerical and Experimental Analysis 
We numerically verify the most important results stated theoretically in §VI, and present experimental results for 𝑝𝑝-
probabilistic 𝑘𝑘-anonymous microaggregation of synthetic and standardized data. The numerical analysis in this section 
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was carried out in its entirety with Matlab (Rb). The traditional microaggregation algorithm on which these 
experiments are based is MDAV, introduced in §III.D, in accordance with the formulation in §V.C. 

A. Numerical Stability and Functional Verification of our Recursive Algorithm 
Our first verification is the numerical stability of the recursion in Algorithm A, by recomputing the attained cell-failure 
probability 𝑞𝑞 ̅with the complex implementation of the binomial cumulative distribution function binocdf provided with 
Matlab, based on []. Specifically, 𝑛𝑛min and 𝑞𝑞 ̅were computed with our algorithm, whereas the reference value 𝑞𝑞r̅ef  was 
computed as 

𝑞𝑞r̅ef = binocdf(𝑘𝑘 − 1,𝑛𝑛min,𝜋𝜋)− 𝜋𝜋̅𝑛𝑛min , 
for 𝑘𝑘 = 20 and 𝜋𝜋 = 0.5. Fig.  indicates that the recursion in our algorithm is remarkably accurate all the way down 
to 𝑝𝑝̅ = 10−17, with a maximum relative error (𝑞𝑞 ̅− 𝑞𝑞r̅ef )/𝑞𝑞r̅ef ≈ −0.84%. 

Additionally, we carried out a simple Monte Carlo simulation to verify most of the values computed with our 
algorithm. We set 𝑘𝑘 = 20, 𝑝𝑝̅ = 0.1, 𝜋𝜋 = 0.5, which gives 𝑛𝑛min = 48, and synthesized |C| = 105 microcells with those pa-
rameters, measuring participation. The high value of the acceptable cell failure rate facilitated the simulation, whose 
mere purpose is a functional verification of Algorithm A. Table II presents the results and the relative error of the 
simulation with respect to the values computed with the recursive algorithm. 

B. Numerical Examples of Effective Anonymity and Failure Metrics 
In order to gain some quantitative understanding of the problem investigated, we employ our recursive algorithm to 
compute the effective anonymity 𝑛𝑛min, the attained cell-failure probability 𝑞𝑞,̅ the average number 𝑢𝑢 of unprotected rec-
ords in case of failure, and the record-failure metrics 𝑟𝑟 ̅and 𝑟𝑟′̅, for various synthetic combinations of anonymity 𝑘𝑘, 
participation 𝜋𝜋, and acceptable cell-failure probability 𝑝𝑝̅. The results are presented in Table III. 

Additionally, for a fixed participation of 𝜋𝜋 = 0.75 and various table sizes 𝑁𝑁 , we report the corresponding table-
failure rate 𝑡𝑡 ̅in Table IV. Recall that the table-failure metric entails a rather steep requirement, as absolutely none of 
the active records can be unprotected, in any of the |C| = � 𝑁𝑁𝑛𝑛min

� cells created, and might be considered as a rather 
pessimistic, worst-case metric. The unconditional record-failure metric 𝑟𝑟 ̅and the conditional version 𝑟𝑟′̅ given participa-
tion, far more lenient metrics, are bounded by 𝑝𝑝̅, as argued in §VI.C.. Recall that the average number of unprotected 
records is 𝑁𝑁𝑟𝑟.̅ 

C. The Price of High-Quality Design 
Undoubtedly, the most pressing question is whether demanding failure rates come at the expense of large microcells, 
which may then introduce a significant price in distortion. We give a partial answer at this point, in terms of cell size, 
and explore the distortion impact shortly. In Fig. , we plot the effective anonymity 𝑛𝑛min for acceptable cell-failure 

Variable Algorithm Simulation Relative 
Error [%] 

𝒒𝒒 ̅ 0.09671 0.09606 −0.67 
𝒖𝒖 17.85 17.83 −0.13 
𝒓𝒓 ̅ 0.03597 0.03605 0.23 

Fig. . Numerical stability of Algorithm  in the computation of 𝑞𝑞 ̅with respect to Matlab’s function binocdf, taken as the reference 
value 𝑞𝑞r̅ef , for 𝑘𝑘 = 20 and 𝜋𝜋 = 0.5. The recursion in the algorithm is remarkably accurate all the way down to 𝑝𝑝̅ = 10−17, with a 
maximum relative error of −0.84%. 

Table II. Simple Verification of Failure Metrics via Simulation 

Verification via Monte Carlo simulation of the failure parameters computed with Algorithm . Precisely, we verify the attained cell 
failure 𝑞𝑞,̅ the average number 𝑢𝑢 of unprotected records under failure, and the attained record failure 𝑟𝑟,̅ for an anonymity parameter 
of 𝑘𝑘 = 20, an acceptable cell failure 𝑝𝑝̅ = 0.1, a participation 𝜋𝜋 = 0.5, an effective anonymity 𝑛𝑛min = 48, and |C| = 105 simulated cells. 
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rates 𝑝𝑝̅ logarithmically ranging from , for which trivially 𝑛𝑛min = 𝑘𝑘, down to 10−8, with fixed participation 𝜋𝜋 = 0.5, and 
target anonymity 𝑘𝑘 = 50. 

As a reference, consider that a confidence interval of  standard deviations around the mean contains .% 
of the probability mass of a normal distribution, leaving a chance of  in . million of being on either of the two tails 
outside the interval, or a chance of  in . million of being on a given tail. The latter probability, roughly 2.87 ⋅ 10−7, 
is the 𝑝𝑝-value standardly used in physics to accept the discovery of a particle, such as the Higgs boson. The “six sigma” 
high-quality manufacturing standard —somewhat of a misnomer, as it really corresponds to . standard deviations— 
tolerates a percentage of defects of .% or 3.40 ⋅ 10−6. A striking observation is that quite conveniently, extremely 
demanding values of 𝑝𝑝̅ did not impose prohibitive values of 𝑛𝑛min. The plot suggests that 𝑛𝑛min rapidly grows from 𝑘𝑘 as 𝑝𝑝̅ 
departs from the trivial acceptance of a % of failures, and then continues to grow very slowly, even over a logarith-
mically scaled 𝑝𝑝̅. 

D. Verification of the Approximations for Small 𝑝𝑝̅ and Large 𝑛𝑛min 
Next, we verified the main approximations of §VI.C numerically. Our first graph, in Fig. , verifies the approximation 
to the effective anonymity 𝑛𝑛min based on the method of types and the KL divergence between 𝜅𝜅 = 𝑘𝑘−1

𝑛𝑛min
 and the proba-

bility of participation 𝜋𝜋. On the one hand, we computed 𝑛𝑛min with Algorithm A, and then numerically solved the 
equation −1

𝑛𝑛� ln 𝑝𝑝̅ = D(𝑘𝑘−1𝑛𝑛�  ‖𝜋𝜋) in the approximation variable 𝑛̃𝑛 with Brent’s method (implemented in Matlab with fzero), 
for 𝜋𝜋 = 0.5 and 𝑝𝑝̅ = 10−6. The validity of this approximation, along with the quadratic, explicit forms derived from it, 
is tested in Fig. , in the form of a relative error of each approximation with respect to the reference computed with 

𝒌𝒌 𝝅𝝅 𝒑𝒑���� 𝒏𝒏min 𝒒𝒒 ̅ 𝒖𝒖 𝒓𝒓 ̅ 𝒓𝒓′̅ 
10 0.75 10−4 25 4.31 ⋅ 10−5 8.80 1.52 ⋅ 10−5 2.02 ⋅ 10−5 
  10−5 27 6.05 ⋅ 10−6 8.82 1.98 ⋅ 10−6 2.64 ⋅ 10−6 
  10−6 29 7.95 ⋅ 10−7 8.84 2.42 ⋅ 10−7 3.23 ⋅ 10−7 
 0.5 10−4 43 8.51 ⋅ 10−5 8.69 1.72 ⋅ 10−5 3.44 ⋅ 10−5 
  10−5 48 7.61 ⋅ 10−6 8.73 1.38 ⋅ 10−6 2.77 ⋅ 10−6 
  10−6 53 6.1 ⋅ 10−7 8.77 1.01 ⋅ 10−7 2.02 ⋅ 10−7 

50 0.75 10−4 88 6.2 ⋅ 10−5 48.4 3.41 ⋅ 10−5 4.54 ⋅ 10−5 
  10−5 91 9.82 ⋅ 10−6 48.4 5.22 ⋅ 10−6 6.97 ⋅ 10−6 
  10−6 95 7.14 ⋅ 10−7 48.5 3.64 ⋅ 10−7 4.86 ⋅ 10−7 
 0.5 10−4 144 7.86 ⋅ 10−5 48.1 2.62 ⋅ 10−5 5.25 ⋅ 10−5 
  10−5 151 9.64 ⋅ 10−6 48.2 3.08 ⋅ 10−6 6.15 ⋅ 10−6 
  10−6 159 7.35 ⋅ 10−7 48.3 2.23 ⋅ 10−7 4.46 ⋅ 10−7 

𝒌𝒌 𝑵𝑵  𝒑𝒑���� 𝒓𝒓 ̅ 𝒓𝒓′̅ 𝒕𝒕 ̅
10 104 10−4 1.52 ⋅ 10−5 2.02 ⋅ 10−5 0.0171 
  10−5 1.98 ⋅ 10−6 2.64 ⋅ 10−6 0.00223 
  10−6 2.42 ⋅ 10−7 3.23 ⋅ 10−7 0.000273 
 105 10−4 1.52 ⋅ 10−5 2.02 ⋅ 10−5 0.158 
  10−5 1.98 ⋅ 10−6 2.64 ⋅ 10−6 0.0221 
  10−6 2.42 ⋅ 10−7 3.23 ⋅ 10−7 0.00274 
 106 10−4 1.52 ⋅ 10−5 2.02 ⋅ 10−5 0.822 
  10−5 1.98 ⋅ 10−6 2.64 ⋅ 10−6 0.201 
  10−6 2.42 ⋅ 10−7 3.23 ⋅ 10−7 0.027 

50 104 10−4 3.41 ⋅ 10−5 4.54 ⋅ 10−5 0.00692 
  10−5 5.22 ⋅ 10−6 6.97 ⋅ 10−6 0.00106 
  10−6 3.64 ⋅ 10−7 4.86 ⋅ 10−7 7.42 ⋅ 10−5 
 105 10−4 3.41 ⋅ 10−5 4.54 ⋅ 10−5 0.0679 
  10−5 5.22 ⋅ 10−6 6.97 ⋅ 10−6 0.0107 
  10−6 3.64 ⋅ 10−7 4.86 ⋅ 10−7 0.00075 
 106 10−4 3.41 ⋅ 10−5 4.54 ⋅ 10−5 0.505 
  10−5 5.22 ⋅ 10−6 6.97 ⋅ 10−6 0.102 
  10−6 3.64 ⋅ 10−7 4.86 ⋅ 10−7 0.00748 

Table III. Effective Anonymity 𝑛𝑛min and Failure Metrics 𝑞𝑞,̅ 𝑢𝑢, 𝑟𝑟,̅ 𝑟𝑟′̅ 

Computation of the effective anonymity 𝑛𝑛min, the attained cell-failure probability 𝑞𝑞,̅ the average number 𝑢𝑢 of unprotected records in 
case of failure, and the record-failure metrics 𝑟𝑟 ̅and 𝑟𝑟′̅, with Algorithm , for various synthetic combinations of anonymity 𝑘𝑘, partic-
ipation 𝜋𝜋, and acceptable cell-failure probability 𝑝𝑝̅. 

Table IV. Record and Table Failure Metrics 𝑟𝑟,̅ 𝑟𝑟′̅, 𝑡𝑡 ̅

For a fixed participation of 𝜋𝜋 = 0.75, and various table sizes 𝑁𝑁 , we compute the corresponding table-failure rate 𝑡𝑡,̅ and compare it to 
the record-failure rates 𝑟𝑟 ̅and 𝑟𝑟′̅. 
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our recursive algorithm. Interestingly, the approximation based on the theoretical limit D(𝑘𝑘−1𝑛𝑛  ‖𝜋𝜋) → − log 𝜋𝜋̅ required 
such small values of 𝑝𝑝̅ that it proved of little use for any practical purpose. We opted for the divergence form of the 
approximation to – 1

𝑛𝑛 ln 𝑝𝑝̅, which exhibits the dependence with 𝑘𝑘, not negligible when compared to actual values of 𝑛𝑛min. 
The logarithmic approximations for 𝑘𝑘 = 2 are verified in Fig. . According to these results, the ceiling of the 

logarithmic approximation based on a first-order Taylor expansion is an upper bound, whereas the one based on the 
second-order expansion is optimistic but more often accurate. 

E. Microaggregation of Synthetic and Standardized Datasets 
Last but not least, we microaggregated two datasets with the MDAV algorithm, setting the minimum microcell size to 
the effective anonymity parameter 𝑛𝑛min in lieu of the target anonymity 𝑘𝑘. Each dataset contains a total of 𝑁𝑁 = 104 
records. The first dataset consists of zero-mean, unit-variance, independent Gaussian vectors of dimension 𝑚𝑚 = 10. The 
second is a uniformly random subsampling without replacement of an extension of the standardized dataset “Census”, 
called “Large Census”, employed in [], originally containing   records with 𝑚𝑚 = 13 numerical attributes, taken 
here as quasi-identifiers. The subsampled standardized dataset, which we call “Census k”, was generated once and 
reused in all experiments. 

We assumed an identical participation probability of 𝜋𝜋, but considered the traditional, deterministic case of 𝜋𝜋 = 1 
as well, for the purposes of comparison. The experiments, reported in Fig.  and Fig. , respectively, were designed 
to investigate the behavior of the normalized distortion metric 𝒟𝒟 for 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation 
defined in §VI.B, which for identical participation amounts to the distortion of traditional microaggregation with 𝑛𝑛min 
in lieu of 𝑘𝑘, as a function of the target anonymity 𝑘𝑘, the participation probability 𝜋𝜋, and the acceptable cell-failure 
probability 𝑝𝑝̅. 

Fig. . Effective anonymity 𝑛𝑛min versus acceptable cell-failure probability 𝑝𝑝̅. Quite strikingly, extremely demanding (low) values of 𝑝𝑝̅, 
even by engineering standards of the highest quality such as those used in “six sigma” design (3.40 ⋅ 10−6), or in hypothesis testing 
in particle physics (2.87 ⋅ 10−7), do not impose prohibitive (high) values of 𝑛𝑛min. 

Fig. . Numerical verification of the approximation to the effective anonymity 𝑛𝑛min in terms of the target anonymity 𝑘𝑘, for a partic-
ipation probability 𝜋𝜋 = 0.5, and an acceptable cell failure 𝑝𝑝̅ = 10−6. 
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For both datasets, the introduction of uncertain participation substantially increased the resulting distortion 𝒟𝒟, as 
one might have anticipated, gradually for high participation 𝜋𝜋 at first, as we depart from certainty, but more sharply 
later for very low participation and high uncertainty. Far more surprising is the lack of sensitivity of 𝒟𝒟 with respect to 
the cell-failure rate 𝑝𝑝̅. Because in 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation 𝑛𝑛min effectively plays the role of 𝑘𝑘, the 
slow growth of 𝒟𝒟 with 𝑘𝑘 for deterministic microaggregation manifests as a slow growth of 𝒟𝒟 with 𝑛𝑛min. Additionally, 
as we saw earlier, 𝑛𝑛min also increases slowly with 𝑝𝑝̅. Putting these observations together explains the extremely conven-
ient, slow increase of distortion 𝒟𝒟 as we impose extremely low cell-failure rates 𝑝𝑝̅, even on a logarithmic scale. Of course, 
the practical significance of this observation is that we may enjoy an extremely robust probabilistic design with a 
manageable price in distortion. 

A final set of experiments are aimed to emphasize the difference between traditional 𝑘𝑘-anonymous microaggregation 
and our proposal, 𝑝𝑝 -probabilistic 𝑘𝑘 -anonymous microaggregation. Firstly, in Fig. (a) we compute the distortion 

Fig. . Relative error in the approximations, based on the KL divergence and the quadratic variants, to the effective anonymity 𝑛𝑛min 
as a function of the target anonymity 𝑘𝑘, for a participation 𝜋𝜋 = 0.5 and an acceptable cell-failure 𝑝𝑝̅ = 10−6. The jagged shape of the 
lines owes to the fact that the reference 𝑛𝑛min is a positive integer, whereas the approximations 𝑛̃𝑛 are double-precision numbers. 

Fig. . Relative error in the logarithmic approximations to 𝑛𝑛min as a function of 𝑝𝑝̅ ranging from 10−7 to 10−3, with exponent steps 
of 0.001 to highlight the pulsating shape of the error. In this case, we use the ceiling function to convert the double-precision approx-
imation 𝑛̃𝑛 into an integer. 
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𝒟𝒟(𝜋𝜋 = 0.75) for a probability of participation 𝜋𝜋 = 0.75 and an acceptable failure rate 𝑝𝑝̅ = 10−5, relative to the distortion 
in the traditional case, 𝒟𝒟(𝜋𝜋 = 1), and plot the quotient as a function of the target anonymity parameter 𝑘𝑘. We employ 
the Gaussian dataset, with zero-mean, unit-variance, independent samples, arranged as 𝑁𝑁 = 104  records, and 𝑚𝑚 =
2, 5, 10 quasi-identifiers. The most glaring effect is the price in distortion that must be paid to ensure 𝑘𝑘-anonymity, 
particularly for lower values of 𝑘𝑘. Interestingly, as either 𝑘𝑘 or the dimension 𝑚𝑚 increases, the relative increment in 
distortion is reduced. 

Secondly, also as a though experiment to emphasize the necessity of 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation 
over its traditional counterpart, suppose we employ traditional microaggregation to construct cells of size 𝑛𝑛 = 𝑘𝑘, com-
pletely disregarding that some of the records could be inactive and 𝑘𝑘-anonymity thus violated. Specifically, for 𝑛𝑛 = 𝑘𝑘, 
the attained rate of cell failure would be 𝑞𝑞 ̅= 1− P{𝐾𝐾𝑘𝑘 = 0 or 𝐾𝐾𝑘𝑘 = 𝑘𝑘} = 1− (𝜋𝜋𝑘̅𝑘 + 𝜋𝜋𝑘𝑘), plotted in Fig. (b). By sym-
metry, the worst failure rate corresponds to 𝜋𝜋 = 1

2� , namely 𝑞𝑞 ̅= 1− 21−𝑘𝑘. Even for the smallest possible 𝑘𝑘, any practical 
requirement of the form 𝑞𝑞 ̅⩽ 𝑝𝑝̅ ≪ 1 would translate into a participation rate 𝜋𝜋 ≈ 1 (or, theoretically, 𝜋𝜋 ≈ 0). 

VIII. Conclusion 
We contend that by relaxing the trust assumptions imposed on the users of a system, the consequent increase in users 
willing to provide additional data may very well represent a far greater gain in utility than that from algorithmic 
improvements alone. In this spirit, this paper develops a probabilistic variant of 𝑘𝑘-anonymous microaggregation, which 
we term 𝑝𝑝-probabilistic, resorting to a statistical model of respondent participation in order to aggregate quasi-identi-
fiers in such a manner that 𝑘𝑘-anonymity is concordantly enforced with a probabilistic guarantee. The users themselves 
may perturb their own quasi-identifiers according to a verifiable, predetermined microaggregation function, without 
imposing the requirement that they completely trust an external data anonymizer. This may vastly broaden the poten-
tial range of applications of 𝑘𝑘-anonymous microaggregation in particular, and statistical disclosure control in general. 

In our theoretical analysis, we formally view 𝑝𝑝-probabilistic 𝑘𝑘-anonymity as microaggregation with an effective an-
onymity parameter 𝑛𝑛min ⩾ 𝑘𝑘 leading to a probability 𝑝𝑝̅ of 𝑘𝑘-anonymity violation at the microcell level. For a statistical 
model of participation given by a series of participation probabilities 𝜋𝜋𝑛𝑛, we present a recursive algorithm for the 
efficient calculation of the effective anonymity 𝑛𝑛min, with great numerical precision. We also develop a number of metrics 
associated with the probabilistic violation of 𝑘𝑘-anonymity, including the expected number 𝑢𝑢 of unprotected records, the 
attained record-failure rate 𝑟𝑟,̅ the related probability 𝑟𝑟′̅ that a participating respondent will not be successfully pro-
tected, and the failure rate 𝑡𝑡 ̅at the table level, establishing a number of bounds and approximations on all of them. 

 

 

 

 

 

 

 

 

 

 

Fig. . Gaussian dataset, zero-mean, unit-variance, independent samples, 𝑁𝑁 = 104 records, 𝑚𝑚 = 10 quasi-identifiers. 
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Some of our approximate characterizations draw upon the method of types, a powerful technique in large deviation 
theory lying at the heart of the intersection between information theory and statistics, which enables to provide sub-
stantive insight into the anonymity properties of our microaggregation model. In addition, we propose a specific distor-
tion metric, naturally derived from SSE for traditional 𝑘𝑘-anonymous microaggregation. 

Extensive numerical analysis and experimentation confirms and illustrates the theoretical analysis, further revealing 
that the impact in distortion due to the cautious provision of cells larger than those required by traditional microaggre-
gation is quite manageable. The reason is the combination of two dampening effects. First, the slow increase in effective 
anonymity 𝑛𝑛min with even extremely low cell-failure rates 𝑝𝑝̅, and secondly, the slow growth of distortion 𝒟𝒟 with 𝑛𝑛min. 
This offers a convenient answer to the fundamental question of whether the gain in utility due to the availability of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Distortion 𝒟𝒟(𝜋𝜋 = 0.75) for a probability of partici-
pation 𝜋𝜋 = 0.75  and failure rate 𝑝𝑝̅ = 10−5 , relative to 
the traditional distortion 𝒟𝒟(𝜋𝜋 = 1), both computed for 
the Gaussian dataset, with i.i.d. samples, 𝑁𝑁 = 104 rec-
ords, and 𝑚𝑚 = 2, 5, 10 quasi-identifiers. 

 (b) We employ traditional microaggregation to con-
struct cells of size 𝑛𝑛 = 𝑘𝑘 , disregarding the fact that 
some records may not be active and thus 𝑘𝑘-anonymity 
violated, resulting in a cell-failure rate 𝑞𝑞 ̅prohibitively 
large. 

 

Fig. . “Census k” dataset, 𝑁𝑁 = 104 records, 𝑚𝑚 = 13 quasi-identifiers. 

Fig. . Additional experiments to emphasize the difference between 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation and its traditional 
counterpart. 
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additional data —in turn due to a relaxation of the trust model— might be diminished by the inherently larger cell 
sizes of our probabilistic microaggregation model. 

We must recognize that the necessarily limited scope of this work is but a humble portion of the theoretical and 
practical extent to which our proposal of 𝑝𝑝-probabilistic 𝑘𝑘-anonymous microaggregation may reach. The compelling 
theoretical results developed and the promising experimental outcomes observed provide ample encouragement to con-
tinue building upon the preliminary work carried out here. Concrete directions primarily include the study of the 
untrusted mode of operation, in which cells must be defined as the Cartesian product of intervals or simple collections 
of quasi-identifier values, the specification of complex microaggregation functions in the locally trusting mode of oper-
ation analyzed here, and more sophisticated statistical models of participation. 
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