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Abstract 

As generalizations of algebraic and Einstein t-norms and t-conorms, Hamacher 

t-norm and t-conorm have been widely applied in fuzzy multiple attribute decision 

making (MADM) to combine assessments on each attribute, which are generally 

expressed by Atanassov‟s intuitionistic fuzzy (AIF) numbers, interval-valued 

intuitionistic fuzzy (IVIF) numbers, hesitant fuzzy (HF) elements, and dual hesitant 

fuzzy (DHF) elements. Due to the fact that AIF numbers and HF elements are special 

cases of IVIF numbers and DHF elements, respectively, two propositions can be 

established from analyzing numerical examples and real cases concerning MADM 

with IVIF and DHF assessments in the literature: (1) the monotonicity of alternative 

scores derived from Hamacher arithmetic and geometric aggregation operators with 

respect to the parameter r in Hamacher t-norm and t-conorm; and (2) the relationship 

between alternative scores generated by Hamacher arithmetic and geometric 

aggregation operators, given the same r. Here, we provide the theoretical proof of 

these two propositions in the context of MADM with IVIF and DHF assessments. 

With the theoretical support of these propositions, the meaning of r in MADM is 

explained, and a new method is proposed to compare alternatives in MADM with 

consideration of all possible values of r. Two numerical examples are solved by the 

proposed method and the other two existing methods to demonstrate the applicability 

and validity of the proposed method and highlight its advantages. 

Keywords:  Hamacher t-norm and t-conorm; Interval-valued intuitionistic fuzzy set; 

Dual hesitant fuzzy set; Arithmetic and geometric aggregation operators; 

Monotonicity  
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1. Introduction 

Decision making can be considered a mental process in which human beings make 

a choice among several alternatives. However, with the increasing complexity of real 

decision problems, decision makers frequently face the challenge of characterizing 

their preferences in an uncertain context. This opens an important application field of 

fuzzy set theory and granular computing techniques: fuzzy decision making 

[2,8,10,14,23,33,39,41,47]. As stated by Pedrycz and Chen [25], fuzzy decision 

making including its underlying methodology, the plethora of algorithmic 

developments, and a rich and diversified slew of application studies form a 

cornerstone of fuzzy sets. More importantly, it plays a key role in fuzzy decision 

making to combine multiple pieces of uncertain information represented by the 

extensions of fuzzy set [46] such as Atanassov‟s intuitionistic fuzzy (AIF) set [3], 

interval-valued intuitionistic fuzzy (IVIF) set [4], hesitant fuzzy (HF) set [32], and 

dual hesitant fuzzy (DHF) set [49]. To address such combination, various aggregation 

functions or operators have been designed and applied in multiple attribute decision 

making (MADM) [5,7,13,16,19,20,22,30,34,35,37,38,43,48].  

Firstly, many efforts have been made concerning the combination of AIF or IVIF 

assessments. Beliakov et al. [5] developed the median aggregation operators for AIF 

sets and interval-valued fuzzy sets. Garg [13] constructed a number of generalized 

intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm 

and t-conorm. Xia et al. [38] designed intuitionistic fuzzy weighted averaging and 

geometric operators based on Archimedean t-norm and t-conorm [11]. Liao and Xu 

[21] proposed a family of intuitionistic fuzzy hybrid weighted aggregation operators 

in which the properties of idempotency and boundedness are satisfied. As an 

important style of the Archimedean t-norm and t-conorm, Hamacher t-norm and 

t-conorm [15] were used to construct a number of intuitionistic fuzzy Hamacher 

aggregation operators based on the unordered and ordered weighted averaging 

operators (OWA) [16]. Chen et al. [9] presented the IVIF aggregation operators for 

group decision making. Many Hamacher aggregation operators of IVIF information 

were also developed using the ordered weighted geometric operator [22,39]. 

Secondly, the combination of HF or DHF assessments has also been investigated 

widely in the literature. Xia and Xu [37] proposed many aggregation operators for HF 

information based on weighted averaging and geometric operators. Liao and Xu [20] 

constructed a series of new HF hybrid arithmetic aggregation operators satisfying 

idempotency and keeping the advantages of HF hybrid averaging and geometric 

operators developed by Xia and Xu [37]. In particular, Hamacher t-norm and 

t-conorm were used to develop a family of HF aggregation operators [30,48]. With 

regard to the aggregation for DHF information, several aggregation operators and 
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power aggregation operators were constructed based on Archimedean t-norm and 

t-conorm [34,35]. Ju et al. [19] used Hamacher t-norm and t-conorm to develop some 

aggregation operators for DHF information.  

It is worth mentioning that Hamacher t-norm and t-conorm can reduce to algebraic 

and Einstein t-norms and t-conorms when the parameter r in Hamacher t-norm and 

t-conorm is set as 1 and 2, respectively [38]. For this reason, the aggregation operators 

based on algebraic and Einstein t-norms and t-conorms of the above four kinds of 

fuzzy assessments are not reviewed individually. This also indicates why fuzzy 

Hamacher aggregation operators are addressed in this paper.  

Existing studies concerning fuzzy Hamacher aggregation operators 

[16,19,22,30,38,39,48] reveal that they are generally divided into arithmetic and 

geometric aggregation operators. It can be found from numerical examples or real 

cases in existing studies that there are two important rules which govern the two types 

of aggregation operators in the context of fuzzy MADM: (1) the scores of the decision 

alternatives under consideration decrease and increase with the increase of the 

parameter r in the Hamacher t-norm and t-conorm when the arithmetic and geometric 

aggregation operators are applied, respectively; and (2) the scores of the decision 

alternatives generated by the arithmetic aggregation operator are always larger than 

those generated by the geometric aggregation operator, regardless of what the 

parameter r is equal to. To the best of our knowledge, existing studies have only 

shown the results of calculations in numerical examples or case studies which indicate 

these two rules, but have not provided a theoretical analysis of such results. Although 

a small number of researchers (e.g., [20,21]) have discussed the relationship between 

arithmetic and geometric averaging operators in the AIF or HF environment, it cannot 

be directly extended to the situation of the arithmetic and geometric averaging 

operators developed based on Hamacher t-norm and t-conorm. The above analysis 

shows that it is necessary to theoretically discuss the relationship between arithmetic 

and geometric averaging operators developed based on Hamacher t-norm and 

t-conorm in various fuzzy contexts. This is the first motivation of this paper. 

Except the above, previous studies [16,19,22,26,30,39,48] of Hamacher 

aggregation operators in the context of fuzzy MADM have shown the influence of the 

parameter r in Hamacher t-norm and t-conorm on decision results by a sensitivity 

analysis of r only. However, two key points have been omitted in these studies: (1) 

what is the meaning of the parameter r; and (2) how is this parameter determined in 

MADM. The meaning of the parameter r in these studies is typically unclear, and its 

determination is generally arbitrary and subjective [19,22,48], which may negatively 

influence the rationality of decision results. To guarantee the rationality of decisions 

made with consideration of the parameter r, the two key points about r in MADM 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

4 

need to be addressed, which forms the second motivation of this paper. As a whole, it 

is necessary and important to analyze the two above-mentioned rules of Hamacher 

arithmetic and geometric averaging operators in various fuzzy contexts from a 

theoretical point of view, and to address the two key points concerning the parameter 

r in MADM. 

In this paper, following the above motivations, we first present two propositions to 

cover the two rules, and then prove them theoretically when handling MADM 

problems with IVIF or DHF assessments. The situations of MADM with AIF or HF 

assessments are covered because IVIF and DHF assessments can reduce to AIF and 

HF assessments, respectively. Based on the two propositions, we associate the 

meaning of the parameter r in Hamacher t-norm and t-conorm with the risk attitude of 

a decision maker and give relevant explanations. Specifically, to avoid the negative 

influence of arbitrary or subjective r values on decision results in MADM, a new 

method to compare alternatives is proposed by using the mean scores of alternatives 

with consideration of all possible values of r. 

In short, the main contributions of this paper include the following: (1) the 

construction of two propositions concerning the two types of Hamacher aggregation 

operators in the context of fuzzy MADM; (2) the theoretical proof of the two 

propositions in MADM with IVIF and DHF assessments; (3) the analysis of the 

meaning of the parameter r in Hamacher aggregation operators; and (4) the 

development of a new method for ranking alternatives in MADM problems with DHF 

assessments, by following the two propositions. 

The rest of this paper is organized as follows. The necessary preliminaries are 

briefly reviewed in Section 2. Section 3 conducts an analysis of MADM with IVIF 

and DHF assessments in the literature, before presenting propositions concerning the 

two rules found. In Section 4, these propositions are proven theoretically in the 

context of MADM with IVIF and DHF assessments. In Section 5, the meaning of the 

parameter r in the Hamacher t-norm and t-conorm is explained by the found two rules, 

and a new method is developed to compare alternatives with complete coverage of all 

possible r, which is demonstrated by two numerical examples and compared with two 

existing methods. Finally, Section 6 concludes this paper. 

2. Preliminaries 

In this section, we briefly review basic concepts of AIF, IVIF, HF, and DHF sets, 

and Hamacher t-norm and t-conorm. 

2.1 AIF and IVIF sets 

Atanassov [3] generalized the concept of fuzzy set [46], and defined the concept of 
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AIF set as follows. 

Definition 1 ([3]). Let X = {x1, x2, . . . , xn} be a set, then an AIF set A  on X is 

defined as 

A  = { , ( ), ( )
A A

x u x v x , x X },                                     (1) 

where  : 0,1
A

u X  ,  : 0,1
A

X  , and 0 ( ) ( ) 1
A A

u x x   , x X  . For each 

x X , ( )
A

u x  and ( )
A

x  represent the degrees of membership and 

non-membership of x to A , respectively. 

As an extension of AIF set, IVIF set was developed by Atanassov and Gargov [4]. 

Definition 2 ([4,24]). Let X = {x1, x2, . . . , xn} be a universe of discourse. Then an 

IVIF set A  on X is given by 

A  = { , ( ), ( )
A A

x u x v x , x X },                                     (2) 

where ( )
A

u x  and ( )
A

v x  denote interval-valued membership and non-membership 

degrees of x to A  such that ( ) [0,1]
A

u x  , ( ) [0,1]
A

v x  , and 0 ≤ sup( ( )
A

u x ) + 

sup( ( )
A

v x ) ≤ 1, x X  .  

For convenience, let ( )iA
u x  = [a,b], ( )iA

v x  = [c,d], then a  = ([ , ],[ , ]a b c d ) is 

called an IVIF number [22]. The comparison between two IVIF numbers is defined as 

follows. 

Definition 3 ([17]). Let a  = ( [ , ],[ , ]a b c d ) be an IVIF number, then the score 

function of a  is ( )
2

a b c d
S a

  
 , and the accuracy function of a  is 

( )
2

a b c d
H a

  
 . For two IVIF numbers 1a  and 2a , if 1( )S a  > 2( )S a , then 

1a  > 2a ; if 1( )S a = 2( )S a , 1a  > 2a  and 1a  = 2a  can be deduced respectively 

from 1( )H a  > 2( )H a  and 1( )H a = 2( )H a . 

2.2 HF and DHF sets 

Torra [32] first proposed the concept of HF set, which is defined as follows. 

Definition 4 ([32]). Given a universe of discourse X, an HF set on X is defined as 
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A = , ( )
A

x h x x X ,                                              (3) 

where ( )
A

h x  symbolizes possible membership degrees of x to A , each of which is 

limited to [0,1]. 

On the basis of HF set and AIF set, DHF set was developed by Zhu et al. [49]. 

Definition 5 ([49]). Given a universe of discourse X, a DHF set on X is defined as 

A = , ( ), ( )
A A

x h x g x x X ,                                        (4) 

where ( )
A

h x  and ( )
A

g x  denote possible membership and non-membership sets of x 

to A  such that : [0,1]
A

h X  , : [0,1]
A

g X  , and 0≤ max{ ( )} max{ ( )}
A A

h x g x ≤1 

for all x X . 

Given ( )
A

h x  and ( )
A

g x , ( )
A

f x  =  
( ) ( ), ( ) ( )

1 ( ) ( )
A A A A

A A
x h x x g x

x x
 

 
 

   is used 

to symbolize a possible indeterminacy (uncertain) set of x to A , where 

( ) ( )
A A

x h x   and ( ) ( )
A A

x g x   represent possible membership and 

non-membership degrees of x to A . For a specific x, a  = { h , g } is called a DHF 

element. Two DHF elements are compared by the following definition. 

Definition 6 ([34,49]). Let a  = { h , g } be a DHF element, then the score function of 

a  is 

( )( )

11( )
( )( )

gh

ji jiS a
gh






 


, and the accuracy function of a  is 

( )( )

11( )
( )( )

gh

ji jiH a
gh






 


, where ( )h  and ( )g  symbolize the numbers of the 

elements in h  and g , respectively. For two DHF elements 1a  and 2a , if 

1( )S a > 2( )S a , then 1a  > 2a ; if 1( )S a = 2( )S a , 1a  > 2a  and 1a  = 2a  can be 

deduced respectively from 1( )H a  > 2( )H a  and 1( )H a = 2( )H a . 

2.3 Hamacher t-norm and t-conorm 

T-norm and t-conorm are widely applied in fuzzy context to define the generalized 

intersection and union operations of fuzzy sets [11]. 

Definition 7 ([11]). A given function :[0,1] [0,1] [0,1]T    is called a t-norm when 
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it satisfies the following four constraints: 

(1) T(1, x) = x, for all x; 

(2) T(x, y) = T(y, x), for all x and y; 

(3) T(x, T(y, z)) = T(T(x, y), z), for all x, y, and z; and  

(4) If x ≤ x1 and y ≤ y1, then T(x, y) ≤ T(x1, y1). 

Definition 8 ([11]). A given function :[0,1] [0,1] [0,1]S    is called a t-conorm 

when it satisfies the following four constraints: 

(1) S(0, x) = x, for all x; 

(2) S(x, y) = S(y, x), for all x and y; 

(3) S(x, S(y, z)) = S(S(x, y), z), for all x, y, and z; 

(4) If x ≤ x1 and y ≤ y1, then S(x, y) ≤ S(x1, y1). 

A continuous t-norm T(x, y) such that T(x, x) < x for all x(0,1) is called an 

Archimedean t-norm. Similarly, an Archimedean t-conorm S(x, y) satisfies that S(x, x) 

> x for all x(0,1). Strict Archimedean t-norm and t-conorm are strictly increasing for 

all x, y(0,1) [11]. A strict Archimedean t-norm T(x, y) = p
-1

(p(x) + p(y)) can be 

created from a strictly decreasing function : [0,1] [0, ]p    such that p(1) = 0, 

whose dual function q(x) = p(1-x) can be used to construct a strict Archimedean 

t-conorm S(x, y) = q
-1

(q(x) + q(y)), as stated by Xia et al. [38]. 

Given a specific p(x), i.e., 

p(x) = 
(1 )

log
r r x

x

  
 
 

, r > 0,                                     (5) 

it is clear that  

q(x) = p(1-x) = 
(1 ) (1 )

log
1

r r x

x

    
 

 
.                              (6) 

Under this condition, strict Archimedean t-norm and t-conorm are called Hamacher 

t-norm Tr(x, y) and t-conorm Sr(x, y) [15], which are calculated by 

( , )
( 1) ( )

r

xy
T x y

r r x y xy


    
 and                                 (7) 

( 2)
( , )

1 ( 1)
r

x y r xy
S x y

r xy

  


 
, r >0.                                     (8) 

Tr(x, y) and Sr(x, y) are also called Hamacher product   and Hamacher sum   

[15]. Specifically, Tr(x, y) and Sr(x, y) reduce to algebraic t-norm and t-conorm when r 

= 1; while they become Einstein t-norm and t-conorm when r = 2 [6,13]. 
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3. Propositions about Hamacher aggregation operators in MADM 

As analyzed in Introduction, Hamacher t-norm and t-conorm are applied in MADM 

problems with AIF, IVIF, HF, and DHF assessments to create aggregation operators so 

as to combine assessments of alternatives on each attribute. From presenting an 

analysis of numerical examples or real cases in existing studies concerning MADM 

with AIF, IVIF, HF, and DHF assessments, we find two common rules of Hamacher 

aggregation operators in the four types of MADM. As AIF and HF are special cases of 

IVIF and DHF, respectively, the following representative examples or cases regarding 

MADM with IVIF and DHF assessments will be examined to elicit the two rules. 

3.1 Analysis of Hamacher aggregation operators in MADM with IVIF assessments 

To evaluate the air quality of Guangzhou for the 16
th

 Asian Olympic Games, the air 

quality in Guangzhou for the Novembers of 2006, 2007, 2008, and 2009 were 

evaluated to find out the trends in 2010. Liu [22] used Hamacher arithmetic hybrid 

weighted averaging operator and Hamacher geometric hybrid weighted averaging 

operator of IVIF information to combine IVIF assessments of each alternative on each 

attribute, from which evaluation scores of the air quality of Guangzhou for the 

Novembers of the four years were generated (see Table IV in [22] for details). 

The evaluation results in [22] indicate the following: (1) evaluation scores of the air 

quality of Guangzhou for the Novembers of the four years decreased and increased 

with the increase of the parameter r in the Hamacher arithmetic hybrid weighted 

averaging operator and Hamacher geometric hybrid weighted averaging operator of 

IVIF information; and (2) evaluation scores of the air quality of Guangzhou for the 

Novembers of the four years generated by the Hamacher arithmetic hybrid weighted 

averaging operator are always larger than those generated by the Hamacher geometric 

hybrid weighted averaging operator given different values of r.  

3.2 Analysis of Hamacher aggregation operators in MADM with DHF assessments 

To address MADM with DHF assessments, Ju et al. [19] developed a variety of 

DHF aggregation operators by combining Hamacher operations with averaging 

operator, weighted geometric operator and OWA operator. To handle a project 

evaluation problem, Hamacher arithmetic and geometric hybrid weighted averaging 

operators for DHF assessments under different r are applied to aggregate the DHF 

assessments of four projects under consideration (see Table 2 in [19] for details).  

The results generated in [19] reveal the following: (1) scores of the four projects 

decreased and increased with the increase of the parameter r when the Hamacher 

arithmetic and geometric hybrid weighted averaging operators of DHF infromation 

are respectively applied; (2) scores of the four projects generated by the Hamacher 
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arithmetic hybrid weighted averaging operator are always larger than those generated 

by the Hamacher geometric hybrid weighted averaging operator when r is set as 

different values; and (3) the ranking order of the four projects have become different 

when r in Hamacher geometric hybrid weighted averaging operator is changed from 

0.5 to 1. The third observation emphasizes the important influence of r in Hamacher 

geometric hybrid weighted averaging operator on solutions to the project evaluation 

problem. 

3.3 Propositions 

Suppose that different arithmetic and geometric aggregation operators based on 

Hamacher operations are called Hamacher arithmetic and geometric aggregation 

operators, respectively. Two common rules can be extracted from the representative 

analysis of the movement of alternative scores in MADM with IVIF and DHF 

assessments with variation in the parameter r in Hamacher arithmetic and geometric 

aggregation operators. They are formally presented below. 

Proposition 1. Alternative scores decrease and increase with the increase of the 

parameter r in Hamacher arithmetic and geometric aggregation 

operators respectively, when the operators are applied in MADM with 

IVIF and DHF assessments. 

Proposition 2. Alternative scores generated by Hamacher arithmetic operator are 

always larger than those generated by Hamacher geometric operator 

given the same r when the two operators are applied in MADM with 

IVIF and DHF assessments. 

In the next section, the above two propositions will be theoretically proven in 

MADM with IVIF and DHF assessments. 

4. Theoretical proof of two propositions 

In this section, we prove the two propositions presented in Section 3.3 when 

Hamacher arithmetic and geometric aggregation operators are applied in MADM with 

IVIF and DHF assessments. 

4.1 Proof of two propositions in MADM with IVIF assessments 

4.1.1 Description of MADM problems with IVIF assessments 

Suppose that a MADM problem has m alternatives Ai (i = 1, ..., m) and n attributes 

Cj (j = 1, ..., n). The relative weights of the n attributes are represented by ω = (ω1, 

ω2, ..., ωn)
T
 such that 0 ≤ ωj ≤ 1 and 

1
1

n

ji



 , where the notation „T‟ denotes 

„transpose‟. Let ijA  = ( iju , ijv ) = ([ , ],[ , ]ij ij ij ija b c d ) signify the IVIF assessment of 
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alternative Ai on attribute Cj. Then, an IVIF decision matrix for the problem can be 

profiled by 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

, , ,

, , ,

, , ,

n n

n n

m n

m m m m mn mn

u v u v u v

u v u v u v
A

u v u v u v



      
 
     
  
 
 
      

,                   (9) 

where each element represents an IVIF number. 

4.1.2 Monotonicity of alternative scores with respect to r in Hamacher arithmetic and 

geometric aggregation operators for MADM with IVIF assessments 

For MADM with IVIF assessments, we address Proposition 1 to identify the 

monotonicity of alternative scores with respect to the parameter r in Hamacher 

arithmetic and geometric aggregation operators. 

To solve a MADM problem with IVIF assessments, the assessments of alternatives 

on each attribute are first combined using Hamacher aggregation operators to generate 

the aggregated assessments of alternatives. The aggregated assessments are used to 

calculate the scores of alternatives, and then to create a ranking order of alternatives. 

In most MADM methods, assessment ijA  is only weighted by attribute weight ωj (j = 

1, ..., n) in the process of attribute combination, while the ordered position of ijA  is 

usually omitted. Differently, both the attribute weight and the ordered position of ijA  

are involved in the Hamacher arithmetic and geometric hybrid weighted averaging 

operators developed by Liu [22]. It is clear that the aggregation of ijA  only by ωj in 

most MADM methods can be seen as a special case of the aggregation in Liu‟s 

method. Without loss of generality, in the following we focus on the two Hamacher 

aggregation operators created by Liu [22] to verify Proposition 1. 

Definition 9 ([22]). Let the IVIF number ijA  = ( iju , ijv ) = ([ , ],[ , ]ij ij ij ija b c d ) (i = 1, 

2, …, m, j = 1, …, n) be the assessment of alternative Ai on attribute Cj for a MADM 

problem, ω = (ω1, ω2, ..., ωn)
T
 be the relative weights of the n attributes, and wi = 

(wi1, …, win)
T
 be the OWA operator weights with respect to ijA . Then, the Hamacher 

arithmetic and geometric hybrid weighted averaging operators are defined below. 

a) The aggregated assessment iA  = ( iu , iv ) (i = 1, 2, …, m) using the Hamacher 

arithmetic hybrid weighted averaging operator is defined as  
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iA  = 1 (1)i iw B … ( )in i nw B  =  

( 1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
q w q a q w q b 

 

   , 

1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
p w p c p w p d 

 

   ) =  

( ) ( )

1 1

( ) ( )

1 1

(1 ( 1) ) (1 )

,

(1 ( 1) ) ( 1) (1 )

ij ij

ij ij

n n
w w

i j i j

j j

n n
w w

i j i j

j j

r a a

r a r a

 

 

 

 

 
    

 
 

     


 

 
 

( ) ( )

1 1

( ) ( )

1 1

(1 ( 1) ) (1 )

,

(1 ( 1) ) ( 1) (1 )

ij ij

ij ij

n n
w w

i j i j

j j

n n
w w

i j i j

j j

r b b

r b r b

 

 

 

 


    




     


 

 
 

( )

1

( ) ( )

1 1

( )

,

(1 ( 1)(1 )) ( 1) ( )

ij

ij ij

n
w

i j

j

n n
w w

i j i j

j j

r c

r c r c



 



 






    




 
 

( )

1

( ) ( )

1 1

( )

(1 ( 1)(1 )) ( 1) ( )

ij

ij ij

n
w

i j

j

n n
w w

i j i j

j j

r d

r d r d



 



 






     
 



 
,                       (10) 

where ( )i jB  stands for the jth largest of ijB  = ij ijn A  = ([ , ],[ , ]ij ij ij ija b c d ), and 

(σ(1), σ(2) , …, σ(n)) for a permutation of (1, 2, …, n) such that ( )( )i jS B ≥ ( 1)( )i jS B   

(j = 1, …, n-1).  

b) The aggregated assessment iA  = ( iu , iv ) (i = 1, 2, …, m) using the Hamacher 

geometric hybrid weighted averaging operator is defined as 

iA  = 1

(1)
iw

iB … ( )
inw

i nB  =  

( 1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
p w p a p w p b 

 

   , 

1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
q w q c q w q d 

 

   ) =  
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( )

1

( ) ( )

1 1

,

(1 ( 1)(1 )) ( 1) (1 )

ij

ij ij

n
w

i j

j

n n
w w

i j i j

j j

r a

r a r a



 



 

 
 
 
 

      




 
 

( )

1

( ) ( )

1 1

,

(1 ( 1)(1 )) ( 1) (1 )

ij

ij ij

n
w

i j

j

n n
w w

i j i j

j j

r b

r b r b



 



 






      




 
 

( ) ( )

1 1

( ) ( )

1 1

(1 ( 1) ) (1 )

,

(1 ( 1) ) ( 1) (1 )

ij ij

ij ij

n n
w w

i j i j

j j

n n
w w

i j i j

j j

r c c

r c r c

 

 

 

 


   




    


 

 
 

( ) ( )

1 1

( ) ( )

1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

ij ij

ij ij

n n
w w

i j i j

j j

n n
w w

i j i j

j j

r d d

r d r d

 

 

 

 


    




     
 

 

 
,                          (11) 

where ( )i jB  stands for the jth largest of ijB  = ijn

ijA


 = ([ , ],[ , ]ij ij ij ija b c d ), and (σ(1), 

σ(2) , …, σ(n)) for a permutation of (1, 2, …, n) such that ( )( )i jS B ≥ ( 1)( )i jS B   (j = 

1, …, n-1). 

The aggregated assessments of alternatives are then used to calculate the scores of 

alternatives in terms of Definition 3. 

(1) Given the aggregated assessment iA  = ( iu , iv ) =  

( 1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
q w q a q w q b 

 

   , 

1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
p w p c p w p d 

 

   ) generated by the Hamacher 

arithmetic hybrid weighted averaging operator, the score of iA  denoted by S
a
( iA ) is 

calculated by 

S
a
( iA ) = 

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
q w q a q w q b 

 

 
 

 -  

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
p w p c p w p d 

 

 
 

.                         (12) 

(2) Given the aggregated assessment iA  = ( iu , iv ) =  
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( 1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
p w p a p w p b 

 

   , 

1 1

(j) (j)1 1
[ ( ( )), ( ( ))]

n n

ij i ij ij j
q w q c q w q d 

 

   ) generated by the Hamacher geometric 

hybrid weighted averaging operator, the score of iA  denoted by S
g
( iA ) is calculated 

by 

S
g
( iA ) = 

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
p w p a p w p b 

 

 
 

 -  

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
q w q c q w q d 

 

 
 

.                          (13) 

From Eqs. (12) and (13) we find that S
a
( iA ) (or S

g
( iA )) comprises two parts, which 

are 

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
q w q a q w q b 

 

 
 

  

(or 

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
p w p a p w p b 

 

 
 

) and  

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
p w p c p w p d 

 

 
 

  

(or 

1 1

(j) (j)1 1
[ ( ( )) ( ( ))]

2

n n

ij i ij ij j
q w q c q w q d 

 

 
 

).  

The definitions of two functions p and q in Eqs. (5) and (6) indicate that the two 

parts in S
a
( iA ) (or S

g
( iA )) are the functions with respect to the parameter r. In this 

context the verification of Proposition 1 is equivalently transformed into the 

discussion of the monotonicity of the functions p and q with respect to r. The relevant 

conclusions are drawn and shown in the following theorems. 

Theorem 1. Suppose that M(r) = 1

1
( ( ))

n

j jj
q w q 

  is a function with the parameter 

r where 0 ≤ wj ≤ 1, 
1

1
n

jj
w


 , 0 ≤ μj ≤ 1, and (0, )r  . Then, the function is 

monotonously decreasing with respect to r. 

Theorem 2. Suppose that N(r) = 1

1
( ( ))

n

j jj
p w p 

  is a function with the 

parameter r where 0 ≤ wj ≤ 1, 
1

1
n

jj
w


 , 0 ≤ μj ≤ 1, and (0, )r  . Then, the 
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function is monotonously increasing with respect to r. 

The proofs of Theorems 1 and 2 are presented in Sections A.1 and A.2 of Appendix 

A of the supplementary material, respectively. From Eqs. (12) and (13) and Theorems 

1 and 2, we can draw the conclusion that S
a
( iA ) and S

g
( iA ) are the monotonously 

decreasing and increasing functions with respect to r, respectively. This reveals that 

Proposition 1 holds in the context of MADM with IVIF assessments when the 

Hamacher arithmetic and geometric hybrid weighted averaging operators are applied. 

4.1.3 Relationship between alternative scores derived from Hamacher arithmetic and 

geometric aggregation operators for MADM with IVIF assessments 

In the previous section, the monotonicity of S
a
( iA ) and S

g
( iA ) with respect to the 

parameter r in Hamacher aggregation operators was theoretically proven. Based on 

this monotonicity, the relationship between S
a
( iA ) and S

g
( iA ) will be discussed and 

proven in the following. In other words, Proposition 2 in MADM with IVIF 

assessments will be verified. To facilitate the analysis of the relationship between 

S
a
( iA ) and S

g
( iA ), we firstly present two relevant lemmas. 

Lemma 1 ([40]). Suppose that xj > 0, λj > 0 (j = 1, …, n), and 
1

n

jj


 =1, then we 

have 

11

j
n n

j j jjj
x x





                                               (14) 

with equality if and only if x1= x2= … = xn. 

Lemma 2. The function f(x) =
x

x b
 is monotonously increasing with respect to the 

parameter x, where x > 0 and b ≥ 0. 

Lemma 2 is proven in Section A.3 of Appendix A. Based on the two lemmas, the 

relationship between S
a
( iA ) and S

g
( iA ) is presented in the following theorem. 

Theorem 3. Suppose that S
a
( iA ) and S

g
( iA ) are the scores of the aggregated 

assessment iA  generated by using the Hamacher arithmetic and geometric 

aggregation operators presented in Eqs. (12) and (13), respectively. Then, we have 

S
a
( iA ) > S

g
( iA ), (0, )r  .                                        (15) 

Theorem 3 is proven in Section A.4 of Appendix A with the use of Proposition 1, 

Lemma 1, and Lemma 2. This indicates that Proposition 2 holds in the context of 
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MADM with IVIF assessments when the Hamacher arithmetic and geometric hybrid 

weighted averaging operators are applied.  

4.2 Proof of two propositions in MADM with DHF assessments 

4.2.1 Description of MADM problems with DHF assessments 

For the same MADM problem introduced in Section 4.1.1, let ijA  = {hij, gij} 

signify the DHF assessment of alternative Ai on attribute Cj, where 0 ≤ hij, gij ≤ 1 and 

hij + gij ≤ 1. A DHF decision matrix for the problem is then given by 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

,

,

, , ,

n n

n n

m n

m m m m mn mn

h g h g h g

h g h g h g
A

h g h g h g



        
 
       
  
 
 
      

.                   (16) 

In the following we verify Propositions 1 and 2 in MADM with DHF assessments. 

4.2.2 Monotonicity of alternative scores with respect to r in Hamacher arithmetic and 

geometric aggregation operators for MADM with DHF assessments 

Similar to the situation in Section 4.1.2, to prove Proposition 1 in a general case of 

MADM with DHF assessments, the Hamacher arithmetic and geometric hybrid 

weighted averaging operators developed by Ju et al. [19] are used to combine 

assessments of alternatives on each attribute. The combination is defined as follows. 

Definition 10 ([19]). Let the DHF element ijA  = {hij, gij} = { { }, { }
ij ij ij ij

ij ij
h g 
 

 

} (i = 

1, 2, …, m, j = 1, …, n) be the assessment of alternative Ai on attribute Cj for a 

MADM problem, ω = (ω1, ω2, ..., ωn)
T
 be the relative weights of the n attributes, and 

wi = (wi1, …, win)
T
 be the OWA operator weights with respect to ijA . The Hamacher 

arithmetic and geometric hybrid weighted averaging operators are defined below. 

a) The aggregated assessment of alternative iA  = {hi, gi} (i = 1, 2, …, m) using the 

Hamacher arithmetic hybrid weighted averaging operator is defined as 

iA  = 1 (1)i iw B … ( )in i nw B  =  

{  
( ) ( )

1

( )1
( ( ))

i j i j

n

ij i jh j
q w q

 




  ,  ( )( )

1

( )1
( ( ))

i ji j

n

g ij i jj
p w p


 



  } =  

( ) ( )

( ) ( )1 1

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

 



 

       
  

       

 

 

ij ij

i j i j ij ij

n nw w

i j i jj j

n nh w w

i j i jj j

r

r r 

 



 

 

 
, 
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( )( )

( )1

( ) ( )1 1
(1 ( 1)(1 )) ( 1)





 

 
 
 

      



 

ij

i ji j ij ij

n w

i jj

g n nw w

i j i jj j

r

r r






 



 
,             (17) 

where ( )i jB  stands for the jth largest of ijB  = ij ijn A  = { ijh , ijg } = 

{ { }, { }
ij ijij ij

ij ij
gh 

 


}, and (σ(1), σ(2) , …, σ(n)) for a permutation of (1, 2, …, n) such 

that ( )( )i jS B ≥ ( 1)( )i jS B   (j = 1, …, n-1). 

b) The aggregated assessment of alternative iA  = {hi, gi} (i = 1, 2, …, m) using the 

Hamacher geometric hybrid weighted averaging operator is defined as  

iA  = 1

(1)
iw

iB … ( )
inw

i nB  =  

{  
( )( )

1

( )1
( ( ))

i ji j

n

ij i jh j
p w p






  ,  ( ) ( )

1

( )1
( ( ))

i j i j

n

g ij i jj
q w q

  


  } =  

( )( )

( )1

( ) ( )1 1
(1 ( 1)(1 )) ( 1)





 

  
  
  

       



 

ij

i j ij iji j

n w

i jj

n nh w w

i j i jj j

r

r r





 



 
, 

( ) ( )

( ) ( )1 1

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

 



 

     
 

      

 

 

ij ij

i j i j ij ij

n nw w

i j i jj j

g n nw w

i j i jj j

r

r r
 

 



 

 

 
,            (18) 

where ( )i jB  stands for the jth largest of ijB  = ijn

ijA


 = { ijh , ijg } = 

{ { }, { }
ij ijij ij

ij ij
gh 

 


}, and (σ(1), σ(2) , …, σ(n)) for a permutation of (1, 2, …, n) such 

that ( )( )i jS B ≥ ( 1)( )i jS B   (j = 1, …, n-1). 

Similar to the situation in Section 4.1.2, based on the aggregated assessments of 

alternative Ai in Definition 10, the corresponding scores denoted by S
a
( iA ) and S

g
( iA ), 

can be calculated using Definition 6, as shown below. 

(1) Given the aggregated assessment iA  = {hi, gi} =  

{  
( ) ( )

1

( )1
( ( ))

i j i j

n

ij i jh j
q w q

 




  ,  ( )( )

1

( )1
( ( ))

i ji j

n

g ij i jj
p w p


 



  } generated 

by the Hamacher arithmetic hybrid weighted averaging operator, the score of iA  

denoted by S
a
( iA ) is calculated by 
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S
a
( iA ) = 

1 1

( ) ( )1 1
[ ( ( ))] [ ( ( ))]

( ) ( )

n n

ij i j ij i jj j

i i

q w q p w p

h g

  

 

 

 


   
,           (19) 

where ( )ih  and ( )ig  symbolize the numbers of the elements in ih  and ig , 

respectively. 

(2) Given the aggregated assessment iA  = {hi, gi} =  

{  
( )( )

1

( )1
( ( ))

i ji j

n

ij i jh j
p w p






  ,  ( ) ( )

1

( )1
( ( ))

i j i j

n

g ij i jj
q w q

  


  }, generated 

by the Hamacher geometric hybrid weighted averaging operator, the score of iA  

denoted by S
g
( iA ) is calculated by 

S
g
( iA ) = 

1 1

( ) ( )1 1
[ ( ( ))] [ ( ( ))]

( ) ( )

n n

ij i j ij i jj j

i i

p w p q w q

h g

  

 

 

 


   
,           (20) 

where ( )ih  and ( )ig  symbolize the numbers of the elements in ih  and ig , 

respectively. 

Eqs. (19) and (20) indicate that S
a
( iA ) (or S

g
( iA )) includes two parts, which are 

1

( )1
[ ( ( ))]

( )

n

ij i jj

i

q w q

h







 
 (or 

1

( )1
[ ( ( ))]

( )

n

ij i jj

i

p w p

h







 
) and 

1

( )1
[ ( ( ))]

( )

n

ij i jj

i

p w p

g







 
 (or 

1

( )1
[ ( ( ))]

( )

n

ij i jj

i

q w q

g







 
).  

Similar to the situation in Section 4.1.2, S
a
( iA ) and S

g
( iA ) are the functions with 

respect to the parameter r in Hamacher aggregation operators. Specifically, S
a
( iA ) and 

S
g
( iA ) in Eqs. (19) and (20) include the linear combination of multiple functions q

-1
 

and of p
-1

. To facilitate analysis of the monotonicity of S
a
( iA ) and S

g
( iA ) with 

consideration of this specificity, we present the following lemma. 

Lemma 3. Suppose that there is a set H = {hi} (i = 1, ..., n) such that 0 ≤ hi ≤ 1, then 

the function F(h1, ..., hn) = 
1

1 n

ii
h

n   is monotonously increasing with respect to hi 

( ih H  ). 

Lemma 3 clearly holds and thus its proof is omitted. Owing to Lemma 3 and 
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Theorems 1 and 2, it can be concluded that S
a
( iA ) and S

g
( iA ) are the monotonously 

decreasing and increasing functions with respect to r, respectively. This indicates that 

Proposition 1 holds in the context of MADM with DHF assessments when the 

Hamacher arithmetic and geometric hybrid weighted averaging operators are applied. 

4.2.3 Relationship between alternative scores derived from Hamacher arithmetic and 

geometric aggregation operators for MADM with DHF assessments 

Similarly to Section 4.1.3, we discuss the relationship between S
a
( iA ) and S

g
( iA ) in 

MADM with DHF assessments. This relationship is presented in the following 

theorem. 

Theorem 4. Suppose that S
a
( iA ) and S

g
( iA ) are the scores of the aggregated 

assessment iA  generated by using the Hamacher arithmetic and geometric 

aggregation operators, as presented in Eqs. (19) and (20), respectively. Then, we have  

S
a
( iA ) > S

g
( iA ), (0, )r  .                                        (21) 

Theorem 4 is proven in Section A.5 of Appendix A with the use of Proposition 1 

and Lemmas 2 and 3. This shows that Proposition 2 holds in the context of MADM 

with DHF assessments when the Hamacher arithmetic and geometric hybrid weighted 

averaging operators are applied. 

It should be noted that two functions p and q in Eqs. (5) and (6) are not the unique 

choices for the Hamacher t-norm and t-conorm. For other functions p and q such that 

q
-1

 and q are monotonously increasing (or decreasing) and p
-1

 and p are monotonously 

increasing (or decreasing), Propositions 1 and 2 still hold in MADM with IVIF or 

DHF assessments. 

5. A method for ranking alternatives in MADM problems with DHF assessments 

under the two propositions 

The analysis in Section 4 indicates that the parameter r in Hamacher aggregation 

operators has a significant effect on the aggregated assessments of alternatives, and 

further on the solution to a MADM problem. With the use of Propositions 1 and 2, in 

the following, we will discuss the meaning of the parameter r and develop a new 

method to compare alternatives when handling MADM problems with DHF 

assessments. Two numerical examples are solved by the proposed method to 

demonstrate its applicability and validity. They also help to conduct a comparison 

between the developed method and two existing methods to highlight the consistency 

and validity of the developed method. 
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5.1 Meaning of the parameter r in Hamacher aggregation operators 

From previous studies [16,19,22,26,30,39,48], we can conclude that there are two 

main issues concerning the parameter r in Hamacher aggregation operators when 

handling MADM problems: (1) the meaning of r is not clear; and (2) the 

determination of r is arbitrary and subjective. 

Regarding the first issue, in existing studies many researchers have associated r 

with the preference or risk attitude of a decision maker (e.g., [30,38]). However, the 

reason for such an association is not clear. Some studies explain that r can be 

characterized by the utility of a decision maker (e.g., [16,22,39,48]). However, no 

convinced explanation exists which is commonly accepted by researchers for lack of 

theoretical proof.  

Regarding the second issue, numerical examples and real cases in existing studies 

[19,22,48] have found that the precise value of r is usually specified when Hamacher 

aggregation operators are applied to solve MADM problems. However, such 

specification of r is generally ill-founded and arbitrary, and mainly depends on the 

subjectivity of the decision maker. It may become even more difficult when a variety 

of types of information are involved in determining r. 

In this paper, Proposition 1 and its theoretical proof indicate that r can be 

reasonably associated with the risk attitude, in terms of the optimism and pessimism 

of a decision maker. To elaborate, a decision maker is risk-seeking when he or she 

prefers small r, while the decision maker is risk-averse if he or she prefers large r 

when the Hamacher arithmetic aggregation operator is applied in MADM with IVIF 

or DHF assessments. The opposite conclusion can be drawn when the Hamacher 

geometric aggregation operator is applied in MADM with IVIF or DHF assessments. 

In the former situation, small r indicates a large alternative score, while it indicates a 

small alternative score in the latter. Although the meaning of r is clear, determining 

the precise value of r from the interval (0,+∞) remains a difficult task for the decision 

maker, especially when the decision maker knows various types of information 

concerning r. In response to this difficulty, in the next section we propose a new 

method to compare alternatives in MADM which considers all possible values of r 

instead of a specific value. 

5.2 Method for comparing alternatives in MADM problems with DHF assessments 

under the two propositions 

As analyzed above, although the parameter r in Hamacher aggregation operators 

can reflect the optimistic or pessimistic attitude of a decision maker according to 

Proposition 1, it may be difficult to determine the precise value of r from the interval 

(0,+∞). This is especially the case when the decision maker knows various types of 
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relevant information. To avoid the negative influence of arbitrary or subjective values 

of r upon decision results in MADM with DHF assessments, we propose a method for 

comparing alternatives with a full coverage of all possible values of r. The method in 

the context of MADM with IVIF assessments can be similarly developed, which is 

omitted here to save space. 

Given that the Hamacher arithmetic aggregation operator is applied in MADM with 

DHF assessments, the score of alternative Ai decreases monotonously with the 

increase of r according to Proposition 1, which is plotted in Figure 1. In this condition, 

the mean score index of alternative Ai with consideration of all possible values of r 

such that (0, )r   is designed to compare alternatives, which is presented below. 

Definition 11. Let ( )a

iS A  and ( )g

iS A  be the scores of alternative Ai from 

Hamacher arithmetic and geometric aggregation operators. Then, the arithmetic and 

geometric mean score indexes of alternative Ai on (0, )r   are defined as  

0

0

0

0

( )
lim

0

r
a

i

i
r

S A dr
AMI

r









 = 

0

0

0

0

( )
lim

r
a

i

r

S A dr

r






, and                     (22) 

0

0

0

0

( )
lim

0

r
g

i

i
r

S A dr
GMI

r









 = 

0

0

0

0

( )
lim

r
g

i

r

S A dr

r






.                        (23) 

Here, the elongated “  ” represents integral. 

0

S
a(  )

S

r
0

+

iA

r0

 

Figure. 1. Score movement of alternative Ai with variation in r 

To facilitate the calculation of AMIi, it should first be identified whether the integral 

0

0
( )

r
a

iS A dr
  with 0r   is divergent or convergent. As

0

0 0
lim ( )

r
a

i
r

S A dr


   = 
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0
( )a

iS A dr




 , the problem is transformed into deciding whether 
0

( )a

iS A dr




  is 

divergent or convergent. To address this problem, the Cauchy criterion for 

convergence [1,27] is introduced, as shown below. 

Theorem 5 (Cauchy criterion for convergence) ([1,27]). Let ( )x  and ( )x  be 

two functions with nonnegative terms, and ( )
a

x dx


  and ( )
a

x dx


  be the 

integrals of ( )x  and ( )x  on [ , )a  , respectively. Suppose that 0 ≤ ( )x  ≤ 

( )k x  for all x in [ , )a  , where a is a real number and 0k  . Then, 

(i) If ( )
a

x dx


  converges, ( )
a

x dx


  also converges; and 

(ii) If ( )
a

x dx


  diverges, ( )
a

x dx


  also diverges. 

Theorem 5 reveals that when the lower bound of ( )a

iS A  exists on (0, )r  , the 

divergence of 
0

( )a

iS A dr




  can be identified by the Cauchy criterion for 

convergence. To carry out the identification, the lower bound of ( )a

iS A  on 

(0, )r   is determined in the following proposition.  

Proposition 3. Let iA = {hi, gi} be the arithmetic aggregated assessment of 

alternative Ai, where {hi, gi} =  

( )

( ) ( )1 1

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

 



 

       
  

       

 

 

ij ij

i j i ij ij

n nw w

i j i jj j

h n nw w

i j i jj j

r

r r


 



 

 

 
, 

( )

( )1

( ) ( )1 1
(1 ( 1)(1 )) ( 1)





 

 
 
 

      



 

ij

ii j ij ij

n w

i jj

g n nw w

i j i jj j

r

r r





 



 
, and the score function 

of iA  be ( )a

iS A  with (0, )r  . Then, the lower bound of the score function 

( )a

iS A  with (0, )r   is ( )iS A , where iA  = {h, g} = lim i
r

A


 =  

( )

( )1

( ) ( )1 1

( )

( ) (1 )





 

  
  
  

    



 

ij

i j i ij ij

n w

i jj

h n nw w

i j i jj j







 



 
, 
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( )

( )1

( ) ( )1 1

( )

( ) (1 )





 

 
 
 

   



 

ij

i j i ij ij

n w

i jj

g n nw w

i j i jj j







 



 
, i.e. ( )a

iS A  > ( )iS A . 

The conclusions of Proposition 3 can be directly inferred from Proposition 1, the 

proof of Theorem 4 and Definition 6, so the proof is omitted here. With the use of 

Theorem 5 and Proposition 3, it is possible to identify whether or not 
0

( )a

iS A dr




  

is divergent.  

Theorem 6. Let iA  = {hi, gi} be the arithmetic aggregated assessment of alternative 

Ai, where {hi, gi} = 
( )

( ) ( )1 1

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

 



 

       
  

       

 

 

ij ij

i j i ij ij

n nw w

i j i jj j

h n nw w

i j i jj j

r

r r


 



 

 

 
, 

( )

( )1

( ) ( )1 1
(1 ( 1)(1 )) ( 1)





 

 
 
 

      



 

ij

ii j ij ij

n w

i jj

g n nw w

i j i jj j

r

r r





 



 
, and the score function of 

iA  be ( )a

iS A  with (0, )r  . Then, 
0

( )a

iS A dr




  is divergent. 

Theorem 6 is proved in Section A.6 of Appendix A. Similar to the discussions about 

the divergence of 
0

( )a

iS A dr




 , the divergence of 
0

( )g

iS A dr




  can also be 

identified in order to calculate GMIi. For this purpose, the lower bound of ( )g

iS A  

with (0, )r   is first determined. 

Proposition 4. Let iA  = {hi, gi} be the geometric aggregated assessment of 

alternative Ai, where {hi, gi}=  

( )( )

( )1

( ) ( )1 1
(1 ( 1)(1 )) ( 1)





 

  
  
  

       



 

ij

i j ij iji j

n w

i jj

n nh w w

i j i jj j

r

r r





 



 
, 

( ) ( )

( ) ( )1 1

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

 



 

     
 

      

 

 

ij ij

i j i j ij ij

n nw w

i j i jj j

g n nw w

i j i jj j

r

r r
 

 



 

 

 
, and the score 

function of iA  be ( )i

gS A  with (0, )r  . Then, the lower bound of the score 

function ( )g

iS A  with (0, )r   is ( )iS A , where iA  = {h, g} = 
0

lim i
r

A


 =  
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( )

( )

1
( )

1

(1 )
1





  
  
  
  


  
   


i j ih

n ij i j

j
i j

w








,
( )

( )

1
( )

( )

1
( )

(1 )

1
(1 )







  
 

 
 


 
  




i j i

n ij i j

j
i j

g
n ij i j

j
i j

w

w


















, i.e. ( )g

iS A  > 

( )iS A . 

Proposition 4 is proven in Section A.7 of Appendix A. With the use of Theorem 5 

and Proposition 4, whether 
0

( )g

iS A dr




  is divergent can be identified. 

Theorem 7. Let iA  = {hi, gi} be the geometric aggregated assessment of alternative 

Ai, where {hi, gi} = 
( )( )

( )1

( ) ( )1 1
(1 ( 1)(1 )) ( 1)





 

  
  
  

       



 

ij

i j ij iji j

n w

i jj

n nh w w

i j i jj j

r

r r





 



 
, 

( ) ( )

( ) ( )1 1

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

 



 

     
 

      

 

 

ij ij

i j i j ij ij

n nw w

i j i jj j

g n nw w

i j i jj j

r

r r
 

 



 

 

 
, and the score 

function of iA  be ( )i

gS A  with (0, )r  . Then, 
0

( )g

iS A dr




  is divergent. 

Theorem 7 is proved in Section A.8 of Appendix A. As 
0

( )a

iS A dr




  and 

0
( )g

iS A dr




  are divergent, L'Hôpital's rule (also called Bernoulli's rule) [1] can be 

used in Eqs. (22) and (23) to calculate the values of AMIi and GMIi.  

Theorem 8. Let iA  = {hi, gi} be the arithmetic aggregated assessment of alternative 

Ai, and iAMI  be the arithmetic mean score index of alternative Ai defined in 

Definition 11. Then we have iAMI  = ( )iS A  when r  , where iA  = { , }h g  

= lim i
r

A


 =  

( )

(j)1

(j) (j)1 1
(1 )





 

  
  
  

    



 

ij

ii j ij ij

n w

ij

h n nw w

i ij j







 



 
,

( )

(j)1

(j) (j)1 1
(1 )





 

 
 
 

   



 

ij

ii j ij ij

n w

ij

g n nw w

i ij j







 



 
. 

Theorem 9. Let iA  = {hi, gi} be the geometric aggregated assessment of alternative 

Ai, and iGMI  be the geometric mean score index of alternative Ai. Then we have 
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iGMI  = ( )iS A  when r  , where iA  = { , }h g  = lim i
r

A


 =  

( )

(j)1

(j) (j)1 1
(1 )





 

  
  
  

    



 

ij

ii j ij ij

n w

ij

h n nw w

i ij j







 



 
,

( )

(j)1

(j) (j)1 1
(1 )





 

 
 
 

   



 

ij

ii j ij ij

n w

ij

g n nw w

i ij j







 



 
. 

Theorems 8 and 9 are proven respectively in Sections A.9 and A.10 of Appendix A, 

respectively, with the use of Theorems 6 and 7 and L'Hôpital's rule. It is interesting to 

find from Theorems 8 and 9 that AMIi = GMIi. That is, we can use AMIi to compare 

alternatives regardless of whether or not Hamacher arithmetic or geometric 

aggregation operators are applied in MADM with DHF assessments. 

Definition 12. Suppose that AMIi (i = 1, 2) represents the arithmetic mean score index 

of alternative Ai with (0, )r  . When AMI1＞AMI2, alternative A1 is said to be 

superior to alternative A2. 

5.3 Numerical examples 

In this section, two numerical examples are solved by the method proposed in 

Section 5.2 to demonstrate its applicability and validity. The first example is 

originated from a real application where a large Chinese company in the iron and steel 

industry decides to invest abroad. The second one is also a practical example taken 

from the paper of Ju et al. [19].  

Example 1. The iron and steel industry is one of the fundamental industries which 

contribute to China‟s economy. This industry is closely related to upstream and 

downstream industries and is driven by the requirements of consumption greatly. It 

also significantly influences the development of economy and society in China. As an 

important and essential resource for producing steel, iron directly restricts the 

development of the iron and steel industry. Unfortunately, iron resources in China are 

relatively limited and their quality is below the international average. To participate in 

international competition, large Chinese companies in the iron and steel industry must 

seek high-quality iron resources globally.  

Taking a large domestic company in the iron and steel industry as an example, we 

investigate how to assist the company to invest abroad effectively and reasonably. The 

general manager of this company must decide which of the following five countries to 

invest in and source iron ores from: Australia (A1), India (A2), Brazil (A3), Canada (A4), 

or Russia (A5). Seven attributes are identified based on the annual surveys released by 

the Fraser Institute of Canada [18], and their weights are specified as ω = (0.35, 0.1, 

0.05, 0.1, 0.05, 0.15, 0.2). The seven attributes are described in Table 1.  

Table 1  
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Description of the seven attributes. 

Attribute Description 

C1 Quality and quantity of iron ore resources 

C2 Situation of the legal system, taxation regime, and trade barriers  

C3 Competition from other overseas investment in iron resources  

C4 Uncertainty about environmental regulations and availability of skilled 

labor 

C5 Infrastructure concerning overseas investments 

C6 Condition of socioeconomic agreements/community development  

C7 Political stability and security level 

To make the decision, several academics, including two co-authors of this paper 

and four experts from the Chinese Academy of Engineering (CAE) and the Ministry 

of Land and Resources (MLR) were invited to independently and anonymously 

evaluate the five countries on each attribute. The evaluation and the preference of the 

decision makers are then combined to construct a DHF decision matrix 5 7A   = ({hij, 

gij})5×7, which is shown in Section B.1 of Appendix B. For example, Australia (A1) is 

assessed on attribute C2 as {{0.6,0.7},{0.1,0.2}}, which indicates that the degree to 

which alternative A1 satisfies attribute C2 may be 0.6 or 0.7, and the degree to which 

alternative A1 does not satisfy attribute C2 may be 0.1 or 0.2.  

Assume that the OWA operator weight vector is specified as w = (1/7, 1/7, 1/7, 1/7, 

1/7, 1/7, 1/7). When the Hamacher arithmetic hybrid weighted averaging operator in 

Definition 10 is applied, the aggregated assessment of alternative Ai is given by 

iA  = 
( ) ( )

7 7

( ) ( )1 1

7 7

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )

 



 

       
  

       

 

 

ij ij

i j i j ij ij

w w

i j i jj j

h w w

i j i jj j

r

r r 

 



 

 

 
, 

( )( )

7

( )1

7 7

( ) ( )1 1
(1 ( 1)(1 )) ( 1)





 

 
 
 

      



 

ij

i ji j ij ij

w

i jj

g w w

i j i jj j

r

r r






 



 
. 

The arithmetic mean score AMIi (i = 1,...,5) is subsequently calculated, using Theorem 

8, as (0.2886, 0.1680, 0.2180, 0.2404, 0.0801). Using Theorem 9, the geometric mean 

score GMIi (i = 1,...,5) is also computed to be (0.2886, 0.1680, 0.2180, 0.2404, 

0.0801). The same value of AMIi and GMIi generates a common ranking order of the 

five countries, i.e. A1 A4 A3 A2 A5, where the notation „ ‟ represents „superior 

to‟. Consequently, the optimal choice for investment is A1 (Australia).  

Example 2. Reconsider the example investigated by Ju et al. [19], in which the board 

director of a company intends to plan the development of large projects in the 
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following five years. Four projects denoted by Ai (i=1, 2, 3, 4) are evaluated on four 

attributes including financial perspective (C1), customer satisfaction (C2), 

international business process perspective (C3), and learning and growth perspective 

(C4). The relative weights of the four attributes and the OWA operator weight vector 

are specified as   = (0.2, 0.15, 0.35, 0.3) and w = (0.25, 0.25, 0.25, 0.25), 

respectively. The DHF decision matrix 4 4A   = ({hij, gij})4×4 of the example is 

presented in Section B.2 of Appendix B. 

When the Hamacher arithmetic hybrid weighted averaging operator in Definition 

10 is applied, the aggregated assessment of alternative Ai is given by 

iA  = 
( ) ( )

4 4

( ) ( )1 1

4 4

( ) ( )1 1

(1 ( 1) ) (1 )

(1 ( 1) ) ( 1) (1 )
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The arithmetic and geometric mean scores AMIi and GMIi (i = 1,...,4) can then be 

calculated, using Theorems 8 and 9, both of which are equal to (0.0333, 0.1173, 

0.1219, 0.009). A ranking order of the four projects is then generated as 

A3 A2 A1 A4. Consequently, the most desirable project is A3. A comparison 

between the developed method and the methods of Ju et al. [19] and Ye [45] is made 

based on the above two examples in the next section. 

5.4 Comparative analysis 

In the following, the proposed method is compared with two representative 

methods developed by Ju et al. [19] and Ye [45] to highlight its consistency and 

validity.  

The key ideas of the two existing methods are briefly described as follows. In the 

method of Ju et al. [19], the Hamacher arithmetic or geometric aggregation operator is 

utilized to combine the assessments on each attribute for each alternative. The values 

of the parameter r in Hamacher aggregation operators are given first by decision 

makers. After the aggregated assessments of alternatives are obtained, a ranking order 

of alternatives is generated using Definition 6. In Ye‟s method [45], a virtual ideal 

solution is used as a reference to compare alternatives. An alternative with 

performance close to the ideal solution is preferred. Its closeness is measured by the 

correlation coefficient between the performance of the alternative and that of the ideal 

solution. The ranking order of alternatives is generated by using their closeness to the 
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ideal solution.  

In order to compare the proposed method with those of Ju et al. and Ye, the two 

numerical examples in Section 5.3 were solved by using the latter two methods. The 

results of applying all three methods to the first example are presented in Table B.3 of 

Section B.3 in Appendix B. From Table B.3, we can see that the proposed method and 

the method of Ju et al. (using the Hamacher arithmetic aggregation operator) generate 

the same ranking order of the five countries: A1 A4 A3 A2 A5. It should be noted 

that in the method of Ju et al., the ranking orders generated by Hamacher arithmetic 

aggregation operators differ from those generated by Hamacher geometric 

aggregation operators when r  {0.5, 1, 2}. More importantly, the ranking orders 

generated by Hamacher arithmetic and geometric aggregation operators change with 

different given values of r. However, the ranking orders generated by the Hamacher 

arithmetic and geometric hybrid weighted averaging operators are always the same in 

the method proposed here. By using Ye‟s method, we can obtain the weighted 

correlation coefficients between the alternatives and the ideal solution as (0.8914, 

0.8191, 0.8096, 0.8672, 0.8043). From Table B.3, we can see that the ranking order 

generated by Ye‟s method is A1 A4 A2 A3 A5, where the rankings of A2 and A3 

differ from those generated by the proposed method, but the best choice is still A1.  

The results generated by the three methods for the second numerical example are 

presented in Table B.4 of Section B.3. It is shown that the ranking orders of the four 

projects derived from the Hamacher arithmetic and geometric hybrid weighted 

averaging operators in the proposed method are always the same: A3 A2 A1 A4. 

On the contrary, the ranking orders generated by the Hamacher arithmetic and 

geometric aggregation operators in the method of Ju et al. are different. When a 

method generates inconsistent outcomes, a decision maker may have difficulty in 

choosing which one to follow. Moreover, the value of r influences decision results, 

and so to determine the value is another burden on a decision maker. In the proposed 

method, however, these two problems are handled without any burden on a decision 

maker. As shown in Table B.4, the ranking order of the four projects generated by Ye‟s 

method is A3 A2 A4 A1, in which the rankings of A1 and A4 differ from those 

generated by the proposed method, but the best alternative is still A3.  

In summary, the proposed method is able to generate more consistent decision 

results independent of the choice of Hamacher arithmetic and geometric aggregation 

operators and the value of r, compared with Ju et al.‟ method. This also indicates that 

the proposed method is more efficient than that of Ju et al. from the perspective of 

decision makers‟ involvement in a decision process. The best choices generated by the 

proposed method are always the same as those generated by the methods of Ye and Ju 

et al. The above comparative analysis highlights the consistency and validity of the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

28 

method proposed in this paper.  

6. Conclusions 

When finding solutions to fuzzy MADM problems, Hamacher t-norms and 

t-conorms with a parameter r are commonly used to combine various styles of fuzzy 

assessments on each attribute, such as AIF, IVIF, HF, and DHF assessments. Although 

different Hamacher aggregation operators have been developed to combine various 

styles of fuzzy assessments, the existing operators can generally be divided into two 

categories: Hamacher arithmetic and Hamacher geometric aggregation operators.  

Since AIF and HF assessments are special cases of IVIF and DHF assessments, 

from numerical examples and real cases with IVIF and DHF assessments in the 

literature we present two propositions: (1) alternative scores decrease and increase 

with the increase of r in Hamacher arithmetic and geometric aggregation operators; 

and (2) alternative scores generated by Hamacher arithmetic operators are always 

larger than those generated by Hamacher geometric operators given the same r. These 

two propositions are theoretically proven in the context of MADM with IVIF and 

DHF assessments. They are further applied to illustrate the meaning of r and to 

develop a method for comparing alternatives in MADM with DHF assessments with 

full coverage of all possible values of r. Two numerical examples are solved by the 

proposed method to demonstrate its applicability and validity, and a comparative 

analysis is conducted to illustrate the consistency and validity of the method proposed 

in this paper.  

The main contributions of this paper include the following: (1) two propositions 

concerning Hamacher arithmetic and geometric aggregation operators in the context 

of fuzzy MADM are presented following a thorough review and analysis of the 

literature on MADM with IVIF and DHF information; (2) these two propositions are 

proven theoretically in the context of MADM with IVIF and DHF assessments; (3) 

the meaning of the parameter r in Hamacher arithmetic and geometric aggregation 

operators is explained using Proposition 1 and its theoretical proof; and (4) a new 

method is proposed for ranking alternatives in MADM problems with DHF 

information under the two propositions. 

In recent decades, many developments have been achieved concerning the 

combination of multiple pieces of uncertain information in decision making. Despite 

this, some related scientific problems still require focused research. For example: 1) 

the selection of the type of aggregation functions [7]; 2) the studies about the 

admissible orders in terms of aggregation functions for various fuzzy sets [24]; and 3) 

the choice of score functions of different fuzzy assessments, as studied in [12] and 

[31]. In addition, granular computing [25] is a flexible and feasible tool for decision 
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makers to address the challenges of characterizing their preferences in an uncertain 

context. Recently, a number of achievements [2,23,28,29,36,42,44] have been made in 

this area which contribute to further studies of uncertain decision making. All these 

areas are worth exploring in future research to solve uncertain MADM problems.  
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