
Handling Location Uncertainty in Probabilistic Location-Dependent Queries

Carlos Bobeda,1,∗, Jorge Bernada,1, Sergio Ilarria, Eduardo Menaa

aDept. of Computer Science & Systems Engineering
University of Zaragoza
50018 Zaragoza, Spain

Abstract

Location-based services have motivated intensive research in the field of mobile computing, and particularly on location-dependent
queries. Existing approaches usually assume that the location data are expressed at a fine geographic precision (physical coordinates
such as GPS). However, many positioning mechanisms are subject to an inherent imprecision (e.g., the cell-id mechanism used in
cellular networks can only determine the cell where a certain moving object is located). Moreover, even a GPS location can be
subject to an error or be obfuscated for privacy reasons. Thus, moving objects can be considered to be associated to an uncertainty
area where they can be located.

In this paper, we analyze the problem introduced by the imprecision of the location data available in the data sources by
modelling them using uncertainty areas. To do so, we propose to use a higher-level representation of locations which includes
uncertainty, formalizing the concept of uncertainty location granule. This allows us to consider probabilistic location-dependent
queries, among which we will focus on probabilistic inside (range) constraints. The adopted model allows us to develop a systematic
and efficient approach for processing this kind of queries. An experimental evaluation shows that these probabilistic queries can be
supported efficiently.
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1. Introduction

Location-Based Services [34, 39] (LBSs) have motivated
intensive research in the field of mobile computing. These ser-
vices provide value-added data by considering the locations of
the mobile users and other moving objects to offer more cus-
tomized information. As a basic building block of LBSs, the
efficient processing of location-dependent queries [23] (queries
whose answer depends on the location of certain moving ob-
jects) is a key issue. As a sample location-dependent query,
consider a user with a smartphone that wants to locate the avail-
able taxi cabs that are near her while she is walking home on a
rainy day.

Most proposals on location-dependent query processing im-
plicitly assume GPS locations for the objects in a scenario (e.g.,
[8, 16, 17, 23, 30, 33, 35]). However, in some cases we do not
require location data at GPS resolution, and a coarser represen-
tation may be more appropriate. For example, a train tracking
application may need to know in which city a train is currently
located (its precise GPS coordinates may just be meaningless),
and thus each city as a whole could be considered a different
location. To model these situations, in [5, 21] we defined the
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concept of location granule as a set of physical locations with
an associated semantics. Our proposal allows users to express
queries and retrieve results based on the concept of “location”
that they need to manage, which may correspond with GPS lo-
cations but, in general, it will be locations at a lower resolu-
tion (e.g., freeways, buildings, offices in a building, segments
in a motorway, etc.). Thus, location granules represent areas
with some semantics interesting for the user rather than just be-
ing plain granularity indications of location resolution or pre-
cision. Besides, managing location granules instead of precise
geographic locations could also be interesting for privacy rea-
sons, as a LBS should not track location information more pre-
cise than what is required to provide the service [3]; moreover,
the chosen granularity may depend not only on the service re-
quired but also on the user preferences [36].

In our previous work [21], we proposed a query process-
ing architecture based on a distributed infrastructure of different
data sources, each one covering a specific area and managing
the location information of all the moving objects within (as
also proposed in works such as [22, 32]). However, the main
problem of that approach was that we assumed that the data
sources that store information about moving objects are able to
provide the precise GPS locations of the moving objects, which
is a strong assumption that we remove with this work. Thus, it is
well-known that many positioning mechanisms have an inher-
ent imprecision [43]; for example, the cell-id mechanism used
in cellular networks can only determine the cell where a certain
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moving object is located [40], but not its precise location within
the cell. Similarly, location imprecision is also unavoidable in
object-tracking wireless sensor networks [29]. Moreover, even
GPS coordinates can have an error [42]. Finally, for privacy
reasons, artificial errors may be introduced in the locations of
certain moving objects [27].

In this paper, we analyze the problem introduced by the
imprecision of the location data available in the data sources,
and consider probabilistic location-dependent queries using lo-
cation granules to model location uncertainty. Thus, we ex-
tend our previous location model (based on location granules)
by proposing the concept of uncertainty location granule (or
just uncertainty granule) to model situations where the uncer-
tainty is part of the nature of the problem. Intuitively, an un-
certainty granule is a place or an area where an object can be
located, together with a probability density function (pdf from
now on) to know the likelihood that the object was in any point
of this area. This extension allows us to consider probabilis-
tic granule-based location-dependent queries, among which we
focus in this paper on queries with inside constraints, i.e., con-
straints that are satisfied by objects located within a certain
range around a given moving object. As an example, imagine
that we want to monitor policemen that are located less than r
meters from a place where a certain criminal is currently located
with a probability of at least 70%; alternatively, for example, we
might want to monitor all the policemen that may be within that
radius and obtain the probability that they are actually within
the radius. Let us note that we deal with uncertainty places
(uncertain locations): 1) the place where the criminal (what we
call the reference object) is located, and 2) the places where po-
licemen (what we call the target objects) are located. We will
call to this type of queries probabilistic inside queries. This
type of queries can be considered a specialization for the spatial
domain in R2 of fuzzy probabilistic range queries [38] or uncer-
tain range queries [45]; the concept of probabilistic similarity
join defined in [25] is also similar as well. While there have
been many works on the processing of different types of queries
in the presence of uncertainty [6, 9, 13, 24, 28, 31, 46], there is
a lack of an in-depth formal study of this type of queries, along
with an efficient processing approach, where uncertainty is also
considered for the queried position (as it can be the position of
moving object) and which does not assume the availability of
indexes of moving objects. Moreover, we provide an extensive
experimental evaluation including simulated scenarios and mo-
bile devices. In a sense, we follow a similar processing schema
as in [9], where the authors propose a three-step query process-
ing approach, namely, filtering (i.e., prune out objects with zero
probabilities of being in the answer set), verification (i.e., cal-
culate sufficient conditions –probability bounds– for an object
to be or not to be in the answer set), and refinement (i.e., cal-
culate the exact probabilities); our work completely focuses on
second third steps, not being bound to any particular approach
for the first one.

The main contributions of this paper are:

• We formalize the concept of uncertainty granule and its
relationship with traditional location granules (granules

without uncertainty).

• We analyze a type of query, that we call probabilistic in-
side query, and provide a method to solve them efficiently
when the underlying probability density function is the
uniform distribution. Note that, in fact, the uniform dis-
tribution is the case where the least information we have
about the position of the objects, and it has been used in
many previous works [11, 12, 24, 28].

• We perform an extensive experimental evaluation where
the efficiency of the described method for the uniform
distribution can be appreciated.

The structure of the rest of this paper is as follows. In Sec-
tion 2, we present an overview of location granules, extend their
basic definition to incorporate uncertainty, and formally define
the problem we tackle in this paper. Then, in Section 3, we
focus on probabilistic inside queries, and explain our approach
to tag objects with the probabilities that they are part of the
answer to the query. In Section 4, we focus on the case of uni-
form pdfs, providing a method to quickly determine whether
an object belongs to the answer set for a given query. In Sec-
tion 5, we present an experimental evaluation that shows that
the probabilistic location-dependent queries studied in this pa-
per can be supported efficiently. In Section 6, we present some
related work. Finally, in Section 7, we draw our conclusions
and present some ideas for future work.

2. Location Granules and Uncertainty

In this section, we first provide a brief explanation of the
notion of location granule. Then, we introduce the data model
used to represent location granules and its extension to deal
with uncertainty and imprecise locations. Finally, we formally
define the type of range queries we deal with in this paper, to
state the problem we address in latter sections. For better read-
ability, we summarize in Table 1 the notations that will be used
throughout the paper.

A location granule [5, 21] refers to one or more geographic
areas which identify a set of GPS locations under a common
name. As an example, it can be said that a given car is at a
certain <x, y> location, but alternatively it can be stated, for
example, that it is in the location granule Los Angeles (a loca-
tion granule of type city), in the location granule California (a
location granule of type state), or in the location granule USA
(a location granule of type country), depending on the location
granularity required (GPS, city, state, or country, respectively).
This concept of semantic location is similar to the notion of
place [18, 20] or spatial granule [4] proposed in the literature.

2.1. Data Types: Uncertainty Location Granules

The basic data model that we consider for location-dependent
query processing with location granules is composed of three
datatypes (see Table 2 for a summary):
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Table 2: Basic probabilistic data model: datatypes and main operators for location granules and uncertainty granules.

Datatype Tuple format Operators
Object (OB) <id, name, loc, class, otherAttr> representObject

Location Granule (LG) <id, name, GA> inGr: LG x GPS→ Boolean
inGr: LG x OB→ Boolean

inGr: P(LG) x GPS→ Boolean
dist: GPS x LG→ Real

distBtwGrs: LG x LG→ Real
Uncertainty Granule (UG) <id, UGt, density function> inGrProb: LG x UG→ Real

inGrProb: P(LG) x UG→ Real
distProb: LG x UG→ PDF
distProb: UG x UG→ PDF

Table 1: Notations in the paper.
Gi location granule
EA(Gi) extended area of a location

granule
Oi =< id,UGi, pd fi > uncertainty granule with as-

sociated uncertainty area UGi

and probability density func-
tion pd fi

P(O ∈ G) probability that the uncer-
tainty granule O is located in-
side the location granule G

inGrProb(O,G) same as P(O ∈ G)
distProb(G,O)(R) probability that the distance

between O and G is equal to
R

P(distProb(G,O) ≤

R)
P(distProb(O′,O) ≤

R)

probability that the distance
between G (O′) and O is less
or equal to R

probLOt
Or

(R) same as P(distProb(Ot,Or) ≤
R)

B(l, r) disk centered in l ∈ R2 with
radius r ∈ R

f r
l uniform density function over

B(l, r)
f R1,R2
l1,l2 convolution product of f R1

l1
and f̄ R2

l2

AR2
R1

(x) R2
1 arccos(

R2
1 − R2

2 + x2

2R1x
)

TR1,R2 (x)
√

4R2
1R2

2 − (R2
1 + R2

2 − x2)2

CR1,R2
l annulus centered at l and ra-

dius R1 and R2

CR1,R2
l (α, β) Portion of the annulus CR1,R2

l
between an angle α and β

• Objects are characterized by an internal (system-managed)
identifier, a name, a GPS location (loc.x and loc.y), a
class, and probably other attributes specific to their class.

• A location granule (or simply a granule) G is a tuple
(id, name,GA) where id is an internal (system-managed)
identifier, name is the name of the granule, and GA ⊆ R2

is the area of the location granule. It provides three main
kinds of operators: the inGr operators (short for inGran-
ule) returns a boolean indicating whether a certain GPS
location or location granule is within a specified gran-
ule (or within a set of granules), the dist operator (dis-
tanceGranule) computes the distance between a provided
GPS location and a granule, and distBtwGrs (distance-
BetweenGranules) computes the distance between two
granules. Different types of distances can be considered:
the limits-distance (the minimum distance to the bound-
aries of the areas composing the granule), the centroid-
distance (the distance to the centroids of the granules),
and the outsideLimitsBased-distance (a variation of the
limits-distance in which all the inner points of the granule
are considered to be at zero distance). Unless otherwise
indicated, we will use in this paper the limits-distance.

Up to this point, no special provisions have been made to
consider location uncertainty in the data model. So, to deal
with imprecise locations and probabilistic queries, we extend
the basic model by introducing the notion of uncertainty gran-
ule.

Definition 1. Uncertainty Granule (UG). An element Ot of type
Uncertainty Granule (in the following, type UG) is a tuple Ot =<
id,UGt, pd ft > composed by:

• an internal (system-managed) identifier id.

• UGt ⊆ R2, which is an area or a discrete set of points;
we will say that UGt is the uncertainty area of Ot.

• a function pd ft ∈ PDF, the set of all probability density
functions, whose interpretation depends on whether UGt

is an area or a set of points: if UGt is an area, pd ft is a
probability density function from R2 to R that represents
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the probability of an object being in each point of this
area, and therefore,

∫
UGt

pd ft = 1; if UGt is a discrete
set of points, pd ft is a probability mass function such that∑

x∈UGt
pd ft(x) = 1.

Without loss of generality, an element x ∈ UGt is said to be
an instance of the uncertainty granule Ot and we will denote it
by x ∈ Ot.

Different probability density functions could be considered
to define an uncertainty granule, depending on the information
available as background knowledge. As an example, a uniform
distribution could be assumed, which means that the object can
be with the same probability in any location within the corre-
sponding uncertainty granule. Of course, a specific probability
density function could consist of different sub-functions to es-
timate the probability for each of the component areas (e.g.,
considering a uniform distribution within some of the areas and
a Gaussian distribution in others).

An uncertainty granule can represent an imprecise location.
For example, due to GPS errors, a car can be considered as an
uncertainty granule Oc =< id,UGc, pd fc >, where UGc is a
disk of a given radius (the error radius), and pd fc is the uniform
distribution over the disk UGc.

From the previous definitions, it follows that when the sys-
tem has no uncertainty about the location of a certain object,
then its precise location can be defined by a particular case of
uncertainty granule < id,UGt, pd ft > (see Definition 1) where
UGt is equal to the precise location (x0, y0) and pd ft is the fol-
lowing probability mass function:

pd f (x, y) =

{
1 if (x, y) = (x0, y0)
0 otherwise

Finally, we also have to extend the model by adding new op-
erators that relate location granules with uncertainty granules.
The inGr operators turns into inGrProb, which takes as input
a granule (or a set of granules) and an uncertainty granule, and
returns the probability that the imprecise location represented
by the uncertainty granule is inside the location granule, that is,
if G is a location granule with associated area GA, and Ot is an
uncertainty granule with associated pdf pd ft, then:

inGrProb(G,Ot) =

∫
GA

pd ft

We also use the notation P(Ot ∈ G) (probability that Ot is
in G) for inGrProb(G,Ot).

The other two operators that we introduce are: the distance
between location granules and uncertainty granules, and the
distance between uncertainty granules. The former operator
takes as input a location granule G and an uncertainty granule
Ot and returns a probability density function:

distProb(G,Ot) = f : R→ R

such that distProb(G,Ot)(R) represents the probability that the
distance between the imprecise location represented by the un-
certainty granule Ot and the location granule G is equal to R,
that is:

distProb(G,Ot)(R) = P({x ∈ Ot | dist(x,G) = R})

Similarly, the operator distProb(O1,O2), where O1 and O2
are uncertainty granules, is defined by;

distProb(O1,O2) = f : R→ R

and distProb(O1,O2)(R) is the probability that the imprecise
locations modeled by the uncertainty granules O1 and O2 are at
distance R. Note that the distances involving uncertainty gran-
ules do not return a real number, but a function representing a
probability density function.

We denote by P(distProb(G,O) ≤ R) (probability that G
and O are not further than R) the value:

P(distProb(G,O) ≤ R) =

∫ R

0
distProb(G,O)(x)dx

Similarly, we denote by P(distProb(O1,O2) ≤ R) the prob-
ability that the distance between O1 and O2 is less or equal than
R.

2.2. Probabilistic Inside Queries: Problem Statement

Now that we have defined the data model we are using
to represent objects and location granules with uncertain lo-
cations, we are able to define the probabilistic location-based
constraints that we address in this paper.

Definition 2. Let D = {O1, . . . ,On} be a set of uncertainty
granules, Or be an uncertainty granule, and R and p be real
numbers. A probabilistic inside query, q(D,Or,R, p), returns
the uncertainty granules of the setD that are no further than R
from the reference object Or with a probability greater or equal
to p, that is:

q(D,Or,R, p) =

{Oi ∈ D | P(distProb(Oi,Or) ≤ R) ≥ p}

For simplicity, from now on we will say that the uncertainty
granules in D are the target objects (more precisely, the loca-
tion granules of the target objects) and the uncertainty granule
Or is the reference object (more precisely, the location granule
of the reference object).

In the following section, we analyze this kind of constraints
and present our approach to process them in an efficient way.
The main problem with these queries is to calculate the proba-
bility that an object is in the answer set. Recalling the sample
query in the introduction, an interesting query could be “What
is the probability that a policeman is no further than 100 meters
from the criminal’s location?”. As we will see in the next sec-
tions, the solution requires to numerically solve an integral for
each of the objects in the scenario, and this calculus has a direct
impact on the performance. One way to address this issue is to
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define some kind of spatial index enriched with additional in-
formation. For example, in [38], the authors define a type of R∗-
tree to maintain the objects, so they can filter some objects using
the R∗-tree, and the numerical integral is only calculated for a
few objects. Similarly, in [45], the authors use a quadtree for
the same purpose. However, in a volatile and highly-uncertain
environment, where the objects are moving continuously and
we cannot foresee the next movement for each object, it is diffi-
cult to maintain an index structure such an R∗-tree or a quadtree.
Our goal is to obtain a method to calculate which objects are in
the answer set of a probabilistic inside query without using any
index structure for the objects and assuming that we have very
little information about the location of the objects, that is, each
object can be in any place within a disk of a given radius. How-
ever, our method is not incompatible with the use of a spatial
index: It could be used jointly with an index to speed up the
calculus of the query by avoiding the computation of many nu-
merical integrals that slow down the process. In particular, as
we will show in our experiments, we adopt an approach similar
to [11] to show the benefits of our approach both in the pres-
ence and the absence of an index filtering the objects which are
clearly out of the answer set.

3. Processing of Probabilistic Inside Queries

In this section, we tackle the processing of probabilistic in-
side queries using our model. We focus on the problem of tag-
ging each target object with the probability that the object is
part of the query answer, as applying a probability threshold
specified in the constraint can be considered as a filtering step
once these probabilities have been computed. For simplicity of
exposition, we assume uncertainty with a continuous probabil-
ity density function in all the situations and for all the objects.
An analogous discussion would apply for a discrete probability
mass function.

As an example of the queries to be processed, consider a
query such as “Which taxis (class of target objects) are less
than R meters from Anne (reference object) with a probability
greater than p”. In this case, while raw GPS locations are con-
sidered, the locations are subject to an uncertainty; therefore,
the concept of uncertainty granule (see Definition 1) must be
used to refer to those locations.

For illustrative purposes, let us take a look at Figure 1. In
the figure, UGt is the uncertainty area associated to the target
object Ot, and UGr is the uncertainty area associated to the ref-
erence object Or; for simplicity, and without loss of generality,
UGr is a rectangle and UGr is a circle. The area At are the
points of UGt which are not further than R (the radius of the
inside constraint) from the uncertainty area UGr associated to
the reference object Or. Formally:

At = {x ∈ UGt | dist(x,UGr) ≤ R}

= EA(UGr) ∩ UGt

where EA(UGr) is what we call the extended area of UGr (the
area inside the dotted line surrounding UGr in Figure 1), i.e.,

Figure 1: Areas involved in a probabilistic inside query.

the Minkowski sum of the area UGr and a disk with radius R
(the Minkowski sum of two sets in the Euclidean space is ob-
tained by adding every element of one set to every element of
the other [41]).

In the same way, the area Ar contains the points in UGr that
are not further than R from UGt:

Ar = {x ∈ UGr | dist(x,UGt) ≤ R}

= EA(UGt) ∩ UGr

If we consider a may constraint (probability threshold > 0),
then there is no need to compute the actual probabilities of the
objects (unless this information must be computed to show it to
the user). In this case, a target object will be part of the answer
as long as its area At is not empty.

As we will see in the next subsection, calculating the ex-
act probability that the objects Ot and Or are no further than
R involves solving numerically a double integral that may have
a great impact on the computational cost when dealing with a
large number of objects, even if we assume that the pd f func-
tions of the uncertainty granules are simple. Section 4.1 is de-
voted to explain how objects can be sieved to decide if an object
must be or cannot be in the answer set. With this sieve, we limit
the number of objects for which we have to compute the exact
probability.

3.1. Calculating the Exact Probability
This section is devoted to describe how to calculate the

probability that two objects represented by the uncertainty gran-
ules O1 and O2 are not further than R, that is, how to calcu-
late the value P(distProb(O1,O2) ≤ R) that appears in Defini-
tion 2. We first describe how to calculate the probability for the
general case, i.e., making no assumption about the uncertainty
area UGi and the density function fi of the uncertainty granules
Oi = 〈id,UGi, fi〉. Then, we particularize these calculations
when UGi is a disk and fi is the uniform probability density
function over the disk UGi.

So, we will describe how to obtain the function

probLO2
O1

: R→ [0, 1]
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such that probLO2
O1

(R) = P(distProb(O1,O2) ≤ R). Note that
probLO2

O1
is the cumulative distribution function of the proba-

bility density function, distProb(O1,O2) (see Table 2 in Sec-
tion 2.1).

f2

f1

f2f2f1*

R1

R2

R1 R2+

X

Y

R

Figure 2: Probability density functions and random variables used for modeling
the problem: f1, f2, f̄2, and f1 ∗ f̄2.

Let O1 and O2 be two imprecise objects (uncertainty gran-
ules) O1 = 〈id,UG1, f1〉 and O2 = 〈id,UG2, f2〉. We will de-
note by X the two-dimensional random variable that models
where the object O1 is situated in the plane. It is clear that f1 is
the probability density function of the random variable X. Sim-
ilarly, we define Y as a two-dimensional random variable with
probability density function f2 for O2 (see Figure 2). Let us
denote by Ȳ , the random variable, Ȳ(w) = −Y(w) with density
function f̄2, where f̄2(x, y) = f2(−x,−y) (that is, f̄2 is symmetric
to f2 with respect to the origin). This is illustrated in Figure 2.

The random variable X + Ȳ represents all difference vectors
from a possible location of O1 to a possible location of O2. In-
tuitively, the probability that the distance from O1 to O2 is less
than R, i.e., probLO2

O1
(R), can be calculated dividing the number

of these difference vectors whose norm is less than R (all the
possible locations where the objects are not further than R) by
the number of all the possible difference vectors (all the possi-
ble locations of the objects). It is well known that the density
function f of the sum of two random variables is the convo-
lution product (denoted by ∗) of the density functions of each
random variable. So, the density function of X + Ȳ is:

f (t) = ( f1 ∗ f̄2)(t) =

∫
R2

f1(x) f̄2(t − x)dx

or equivalently:

f (t) =

∫
R2

f1(x) f2(x − t)dx (1)

since f̄2(t − x) = f2(x − t).

Hence, the cumulative distribution function probLO2
O1

, rep-
resenting the probability that the objects are no further than R,
is the integral of f over the disk of center (0, 0) and radius R,
B(0,R):

probLO2
O1

(R)=

∫
B(0,R)

f (t)dt= P(distProb(O1,O2)≤R)

In general, the computation of this integral could have a
great computational cost since we have to solve numerically
two integrals in the plane: one integral to solve the convolution
and another one to integrate this convolution over a disk.

4. Case of Study: Uniform Pdfs

In this section, we focus on the case of study where den-
sity functions f1 and f2 in Equation 1 are uniform pdfs over a
disk, which is a common assumption in the field of moving ob-
jects. The uniform pdf is applied when there is no information
about the location of an object. In that case, we consider the
worst case: The object can be in any place of the uncertainty
area with equal probability. Another reason to consider the uni-
form distribution is its simplicity and feasibility (see [11] for a
extended discussion).

Thus, we will denote by f R
l the uniform probability density

function over a disk centered in a location l ∈ R2 and radius
R ∈ R:

f R
l (t) =


1
πR2 , t ∈ B(l,R)

0, t < B(l,R)

In the formula, πR2 obviously represents the area of the
disk. In this case, we can give a closed formula for the con-
volution of two functions, f R1,R2

l1,l2 (t) = f R1
l1 ∗ f̄ R2

l2 (t), doing some
geometrical calculations:

f R1,R2
l1,l2 (t) =


1

π2R2
1R2

2

A(‖t‖) t ∈ B(l1 − l2,R1 + R2)

0 otherwise

where A(‖t‖) is the area of B((0, 0),R2) ∩ B((‖t‖, 0),R1) and ‖t‖
represents the norm of the vector t, as shown in Figure 3.

If we calculate the area A(‖t‖), the function f R1,R2
l1,l2 (t) is equal

to: 

1
πmax(R2

1,R
2
2)
, ‖l1 − l2 − t‖ ≤ |R1 − R2|

FR1,R2 (‖t‖)
π2R2

1R2
2

, |R1 − R2| ≤ ‖l1 − l2 − t‖ ≤ R1 + R2

0, otherwise

where FR1,R2 (x) = AR2
R1

(x) + AR1
R2

(x) − TR1,R2 (x)/2, and:

Ak2
k1

(x) = k2
1 arccos(

k2
1 − k2

2 + x2

2k1x
) (2)

TR1,R2 (x) =

√
4R2

1R2
2 − (R2

1 + R2
2 − x2)2 (3)
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A(||t||)  

||t||

R1

R2

R1

X

Y

Figure 3: Inside constraint: A(‖t‖) for the uniform probability density function
case.

In Figure 4, the shape of a function f R1,R2
l1,l2 (t) can be seen.

The top circle has radius |R1 − R2|, the bottom one has radius
R1 + R2, and its center is situated in l1 − l2.

Figure 4: Shape of the function f R1 ,R2
l1 ,l2

(t) for the uniform probability density
function case. The center of the bottom circle is at l1 − l2.

It is easy to see that Figure 4 is the solid of revolution gen-
erated by the curve (see Figure 5) g : R→ R, defined as:

g(x) =



1
πR2

2

, 0 ≤ x ≤ R2 − R1

1
π2R2

1R2
2

FR1,R2 (x), R2 − R1 ≤ x ≤ R2 + R1

0, otherwise

Therefore, the probability that the distance between objects
O1 and O2 with associated density functions f R1

l1 and f R2
l2 is less

than R can be computed by:

1

π max(R1 , R2 )
2

R1 - R2

R1 + R2

Figure 5: Curve that generates the function f R1 ,R2
l1 ,l2

for the uniform probability
density function case.

probLO2
O1

(R) =

∫
B(0,R)

f R1,R2
l1,l2 (t)dt = 2π

∫ R

0
xg(x)dx (4)

Due to the symmetry of the problem, the following proposi-
tion can be proved, that will be used to simplify the computation
of probLO2

O1
(R):

Proposition 1. Let f R1
l1 and f R2

l2 be uniform density functions
over the disks of center l1 and l2, and radius R1 and R2, respec-
tively. If we denote by d0 the distance from l1 to l2, d0 = ‖l1−l2‖,
then: ∫

B(0,R)
f R1,R2
l1,l2 (t)dt =

∫
B(0,R)

f R1,R2
(0,0),(d0,0)(t)dt

Hence, the value of probLO2
O1

(R) for uncertainty granules
with uniform probability density functions over disks depends
only on the distance between the centers of the disks.

A geometrical interpretation of the value probLO2
O1

(R) is shown
in Figure 6: probLO2

O1
(R) is the volume over the circumference

of radius R and the function f R1,R2
l1,l2 .

Figure 6: Interpretation of probLO2
O1

(R) for uncertainty granules with uniform
probability density functions.

It is not possible to give a closed formula to compute the
value of probLO2

O1
(R) when Oi has an arbitrary uniform pdf f Ri

li ,
so it could be necessary to compute it numerically. That has a

7



great impact on the performance, as we will see in Section 5.
To avoid this problem, we will sieve the objects that must be or
cannot be in the answer set, so the integral will be computed for
a small set of objects. In the next section, we will explain how
to perform this sifting. We will see that we can find a closed
formula to compute probLO2

O1
(R) if l1 = l2 in Equation (4) (and

so, in that case, we do not need to compute it numerically).
Moreover, we will explain how we can obtain an upper and a
lower bound for probLO2

O1
(R) when l1 , l2, which allow us to

sieve many of the candidates with less effort.

4.1. Optimization when a Minimum Probability is Required:
Probability Threshold

As we mentioned in the previous section, the integral of
Equation (4) has to be solved numerically. In a scenario with
hundreds of objects, if we want to retrieve the objects that are
not further than R from a reference object with a given proba-
bility (probability threshold), the integral has to be calculated
numerically hundreds of times, which is computationally ex-
pensive. In this section, we will describe how to sift out the
objects to avoid calculating the integral as many times as possi-
ble. We start with some notations that we will use in the rest of
the paper.

Definition 3. We denote by Cd1,d2
l the annulus formed by two

circles centered at l and radius d1 and d2 (d1 < d2, see Fig-
ure 7.a) :

Cd1,d2
l = B(l, d2) \ B(l, d1)

We also denote by Cd1,d2
l (θ1, θ2) the portion of the annulus

Cd1,d2
l between the lines passing through l with slopes equal to

θ1 and θ2, that is (see Figure 7.b):

Cd1,d2
l (θ1, θ2) = {y ∈ Cd1,d2

l | θ1 ≤ ŷ − l ≤ θ2}

where ŷ − l is the angle between y − l and the x-axis.

Figure 7: Geometric interpretation of an annulus, Cd1 ,d2
l (a); and a portion of

an annulus, Cd1 ,d2
l (θ1, θ2) (b).

Definition 4. We will denote by BR1,R2 (x) the value of the inte-
gral:

BR1,R2 (x) =

∫
B(0,x)

f R1,R2
l0,l0 (t)dt

Note that BR1,R2 (x) does not depend on the choice of l0 by
Proposition 1. Geometrically, the value BR1,R2 (x) is the volume
of the intersection of a cylinder of radius x centered on the co-
ordinate origin and f R1,R2

l0,l0 .
Using the notation of Equations (2) and (3), it can be shown

that BR1,R2 (x) is equal to:

x2

max(R2
1,R

2
2)
, 0 ≤ x ≤ |R1 − R2|

1
πR2

1R2
2

[x2(AR2
R1

(x) + AR1
R2

(x)) + R2
2Ax

R1
(R2)

−1/4(R2
1 + R2

2 + x2)TR1 ,R2 (x)],
|R1 − R2| < x < R1 + R2

1, x ≥ R1 + R2

(5)

The basic idea of the sifting process is that BR1,R2 (x) can be
calculated using the closed formula (5).

Let S = {Oti | 1 ≤ t ≤ m} be a set of target objects and Or

be a reference object. The process of sifting the set S is based
on obtaining a lower and an upper bound for the value of the
integral corresponding to probL

Oti
Or

(R). If we want to retrieve
the objects of S that are not further than R from Or with a prob-
ability greater than p, and it is known that probL

Oti
Or

(R) ∈ [li, ui],
then the objects such that p < li are in the answer set and the
objects with ui < p are not in the answer set. So, we have to
calculate the integral only for the objects where p ∈ [li, ui].

Now, we will explain in detail how to get the lower and
the upper bound, [l, u], for probLOt

Or
(R), where Or and Ot are

the uncertainty granules with associated density functions f R1
l1

and f R2
l2 , respectively. By Proposition 1, we can assume that

l1 = (0, 0) and l2 = (d0, 0), where d0 is the distance from l1 to
l2. We want to give an upper and a lower bound of the volume
of f R1,R2

l1,l2 under the area A = B((0, 0),R) ∩ B((d0, 0),R1 + R2)
(gray area in Figure 8):

probLOt
Or

(R) =

∫
A

f R1,R2
l1,l2

Let us denote by [ml,mu] the interval that is the intersection
of A and the x-axis. We divide the interval [d0 −mu, d0 −ml] in
n equal parts:

[d0 − mu, d0 − ml] = ∪n
i=1[xi, xi+1]

where obviously x1 = d0 −mu and xn+1 = d0 −ml. If we denote
by Ci = Cxi,xi+1

(d0,0) the annulus centered at (d0, 0) and radius xi and
xi+1, we can split the area A into n parts, A = A1 ∪ · · · ∪ An with
Ai = Ci ∩ A (see Figure 8).

Let αi be the maximum angle such that Li = Cxi,xi+1
(d0,0) (αi,−αi)

holds that Li ⊆ Ai (see Figure 9.a), and βi be the minimum angle
such that Ai ⊆ Ui = Cxi,xi+1

(d0,0) (βi,−βi) (see Figure 9.b). It is clear
that L = ∪n

i=1Li ⊆ A ⊆ U = ∪n
i=1Ui. Therefore:

l =

∫
L

f R1,R2
l1,l2 ≤

∫
A

f R1,R2
l1,l2 ≤

∫
U

f R1,R2
l1,l2 = u
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Figure 8: Annuli used to give a lower and upper bound for the sieve.

Figure 9: Minimum bound for Ai (a); and maximum bound for Ai (b).

Hence, l and u are bounds satisfying that probLOt
Or
∈ [l, u].

Now, let us note that the value l can be calculated using
BR1,R2 (x) (see Definition 4):

l =

∫
L

f R1,R2
l1,l2 =

n∑
i=1

∫
Li

f R1,R2
l1,l2 =

=

n∑
i=1

(π − αi)
π

(BR1,R2 (xi+1) − BR1,R2 (xi)) =

=

n+1∑
i=1

Mi

π
BR1,R2 (xi)

where Mi = π − αi if i = 1 or i = n + 1, and Mi = αi − αi−1
if i = 2, . . . , n. In a similar way, we can deduce that the upper
bound u is equal to:

u =

n+1∑
i=1

Ni

π
BR1,R2 (xi)

where Ni = π − βi if i = 1 or i = n + 1, and Ni = βi − βi−1 if
i = 2, . . . , n.

Finally, the angles αi and βi can be also computed with a
closed formula since, basically, their computation is equivalent
to finding the point where B((0, 0),R) and B((d0, 0), xi) intersect
(see the notation of Equation 2):

αi = AR
R1+R2

(xi)/(R1 + R2)2

βi = AR
R1+R2

(xi+1)/(R1 + R2)2

Therefore, we can quickly calculate a lower and an upper
bound for probLOt

Or
, since we have a closed formula. In Sec-

tion 5, we will see empirically the benefits of these bounds.

5. Experimental Evaluation

To validate our proposal in terms of performance and scala-
bility, we have performed an extensive experimental evaluation.
In this section, we first specify the implementation details of
our prototype and the experiment settings (Section 5.1). Then,
we present some experimental results in two different sections:
Section 5.2 is dedicated to tests focused on measuring the filter-
ing capabilities of our approach, while Section 5.3 is dedicated
to tests focusing on evaluating the performance over both syn-
thetic and real datasets.

5.1. Experimental Settings

We have developed a prototype to show the feasibility of our
approach, capable of processing probabilistic location-based
queries in the presence of location uncertainty. Our prototype
has been implemented using Java 1.7 as the programming lan-
guage, which has allowed us to test it on Desktop PCs and An-
droid devices (see specifications later).

In the experiments, we have used both synthetic and real
datasets. We have generated five sets of 1,000,000 objects each,
which are randomly placed in a 4000x4000 grid, as synthetic
datasets, which we have made available at http://sid.cps.

unizar.es/projects/ProbabilisticQueries/datasets/. As
real dataset, we have used the LB dataset, a dataset contain-
ing the minimum bounding rectangles (MBRs) of Long Beach
county roads. It contains 53K pairs of points, but we have
considered each of the points in the tuples as a possible lo-
cation for an object, leading to a 106K point dataset. This
dataset has been produced by the Tiger project of the US Cen-
sus Bureau, and it is downloadable at the R-tree portal, http:
//www.rtreeportal.org.

We focus on evaluating the query processing where a min-
imum probability threshold has been established in the query.
We take as ground-truth probability values the ones obtained
using the Simpson’s rule2 in 2D for integration to calculate the
integrals using 100 steps for each dimension. Moreover, we

2Simpson’s rule is a well known integration method. A brief introduction to
this method can be found in http://en.wikipedia.org/wiki/Simpson’

s_rule or in http://spikedmath.com/336.html.
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consider that the uncertainty area of all the reference and the
target objects is a disk and the pdf associated is the uniform
distribution over the disk3. The specific uncertainty and query
range radii varies from experiment to experiment depending on
the particular aspect of our approach we are evaluating, and it
will be specified at the beginning of each of the subsequent ex-
periment sections.

In order to effectively assess the benefits of our approach in
presence of possible spatial indexing techniques, our prototype
is able to use a filter based on a PR-tree [2] to index and prefilter
the objects in the scenario using the minimum bounding boxes
(MBBs) of the uncertainty areas of the objects4. The main idea
behind this prefiltering step is that whenever the MBB of an
object does not overlap the MBB of the uncertainty area of the
reference object extended by the range radius of the query, the
probability that such an object belongs to the answer set is 0,
and can be directly discarded without performing further cal-
culations. Thus, when this index-based filter is used, our sieve
is applied to the set of objects that are not pruned by it. In our
experiments, whenever this index-based filter is used, it will be
explicitly stated; otherwise, the evaluation is performed over all
the objects in the scenario without using any index.

Finally, the experiments were run on a computer with an
Intel Core i5-2320 processor running at 3.00 GHz and 16 GB
of RAM memory, and on two different Android smartphones, a
Galaxy Nexus (Android 4.2.1, Texas Instruments OMAP 4460
dual-core 1.2 GHz, 1 GB RAM, released in 2011), and a BQ M5
(Android 5.1.1, Qualcomm Snapdragon 615 octa-core 1.5 GHz,
2 GB RAM, released in 2015).

5.2. Evaluating Filtering Capabilities

The first set of tests was focused on evaluating the filtering
capabilities of the method presented in Section 4.1, that is, the
percentage of objects that are correctly evaluated to be part or
not of the answer without having to calculate the exact prob-
ability. The filtering efficiency was measured in two different
settings: with no previous object indexing (i.e., the calculations
are performed against all the objects in the scenario, regardless
their position), and using a PR-tree to prefilter all the objects
that could never be part of the answer set. This latter prefilter-
ing is performed taking into account the minimum bounding
box of the uncertainty area of each object in the scenario, and
the minimum bounding box of the query relevance area (defined
by the uncertainty radius plus the range radius): if such mini-
mum bounding boxes do not overlap the object is discarded, as
the probability that it belongs to the answer set is 0.

In these experiments, we set high levels of uncertainty (un-
certainty radius range 50-500 distance units), along with large
inside radius (500-1500 distance units, which is from 12.5%
to 37.5% of the length of the scenario) to involve as many ob-
jects as possible. Thus, we evaluate the performance in difficult

3Similar to the error given by a GPS position, assuming no further informa-
tion on the probabilities.

4We have used the implementation by Robert Olofsson, which can be ob-
tained at http://www.khelekore.org/prtree/, last accessed 29th December, 2015.

scenarios. The values that we have considered for the parame-
ters in a query q(D,Or,R, p), as described in Definition 2, can
be seen in Table 3. We have run queries for five locations of
the reference object in the 4000x4000 grid, and all the possible
combinations of the other parameters.

Table 3: Parameters for the filtering experiments of a query q(D,Or ,R, p).
Total target objects inD 102, 103, 104, 105

Locations of the reference ob-
ject (Or)

(2000, 2000)
(2000±1500,
2000±1500)

Radius for uncertainty area of
reference and target objects

50, 100, 250, 500

R (inside radius) 500, 1000, 1500
p (probability threshold) 0.25, 0.50, 0.75 1.0
Number of annuli 16, 32, 64

The results of the first filtering experiment (no preindex-
ing) are shown in Figure 10, which displays the mean of the
filtering rate when 16, 32, and 64 annuli are used to obtain the
filtering bounds. For instance, the mean of the filtering rate for
all the possible queries combining the parameters of Table 3
with 100 objects and using 64 annuli is 99.92%. We can ob-
serve that the numerical integral to obtain the exact probability
has to be calculated for less than 1% of the target objects.

100 Obj. 1,000 Obj. 10,000 Obj. 100,000 Obj.

16 Annuli 99.61 99.63 99.63 99.63

32 Annuli 99.83 99.82 99.82 99.82

64 Annuli 99.92 99.92 99.91 99.91
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Filtering Test - Filtering Rate

Figure 10: Filtering rate varying the number of annuli without indexing.

In Figure 11, the results of applying our approach after pre-
filtering the objects using a PR-tree based filter are shown. The
graph should be read as follows:

• The first column of each group displays the mean per-
centage of target objects that the PR-tree based filter has
been able to filter out. For example, for 100,000 objects,
it was able to detect and remove 44.86% of the objects
that were not going to be part of the answer set (proba-
bility 0) thanks to the use of the index.

• Each of the associated columns is the mean of the filter-
ing rate of our approach over the results of the prefiltering
step. Following with the previous example, for 100,000
objects and using 32 annuli, a 55.14% of the objects in
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the scenario were passed to our filtering approach, which
was able to successfully determine whether the objects
belonged or not to the answer set while avoiding the cal-
culation of the integral in 99.32% of the cases.

100 Obj. 1,000 Obj. 10,000 Obj. 100,000 Obj.

PRTree Filter 43.75 44.74 44.81 44.86

16 Annuli 99.30 99.33 99.32 99.32

32 Annuli 99.70 99.68 99.67 99.67

64 Annuli 99.85 99.85 99.83 99.84
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Filtering Test - Filtering Rate After PR-tree

Figure 11: Filtering rate using the PR-tree-based filter and varying the number
of annuli.

In all the filtering experiments, we can see how the amount
of annuli used in the approximation has a direct impact on the
filtering rate. However, there is a balance between the precision
of the approximation and the speedup obtained by the filter-
ing, as we will see in the following section. For completeness’s
sake, we include in Figure 12 the performance graph of these
experiments, which displays the mean execution times grouped
by the number of objects in the scenario. There, the perfor-
mance of the base approach using indexes (i.e., a PR-tree based
approach without our sieve step) is compared to our approach
without using an index (i.e., calculating the query against all the
objects in the scenario).
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Figure 12: Performance of our approach in the filtering tests.

5.3. Evaluating the Performance and Scalability

The second set of tests was focused on testing the perfor-
mance and scalability of our algorithm using both synthetic and
real datasets.

Using Synthetic Datasets
In this set of experiments, we reduced the uncertainty (the

uncertainty radius ranged from 10 to 50 units) and the radius
for the range queries (from 100 to 500 units), but we increased
the number of objects in the scenario up to 1,000,000 objects
(see Table 4).

Table 4: Parameters for the performance experiments of a query q(D,Or ,R, p).
Total target objects inD 5 × 104, 105, 5 × 105,

106

Locations object reference (Or) (2000, 2000)
(2000±1500,
2000±1500)

Radius for uncertainty area of
reference and target objects

10, 30, 50

R (inside radius) 100, 300, 500
p (probability threshold) 0.25, 0.50, 0.75
Number of annuli 16, 32, 64

We measured the performance both not using the index-
based filtering and using it, whose mean results grouped by the
number of objects in the scenario can be seen in Figures 13
and 14, respectively. In the graphs, we can see the balance be-
tween the precision of the approximation (number of annuli)
and the performance achieved. As the number of annuli in-
creases, our approximation is more expensive in terms of exe-
cution time and, although it is linear in the number of objects in
the scenario, such cost becomes more significant than the cost
of calculating the avoided numeric integrals5.
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Figure 13: Performance and influence of the number of annuli in our approach
when no index is used.

This can be seen in both figures, where the times spent for
the tests with 64 annuli are slightly above the times spent for
the tests with 32 annuli. Moreover, in Figure 13, note how for
1,000,000 objects, the times for the tests with 32 annuli are no
longer below the performance for 16 annuli due to this balance.
This does not happen for the indexed tests as, thanks to the use

5This depends directly on the numeric method used to calculate the inte-
grals. In our case, the Simpson’s algorithm is quadratic in the number of steps.
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Figure 14: Performance and influence of the number of annuli in our approach
using a PR-tree based indexing.

of the PR-tree, our approach is not applied to all the objects in
the scenario.

Needless to say, if we did not use the filter bounds, the ex-
ecution time would be huge, which clearly shows the interest
and the benefits of the proposed filtering technique.

Using a Real Dataset
In order to evaluate our approach in a real scenario, we con-

ducted a set of performance experiments on the LB dataset (de-
scribed in Section 5.1). To do so, we took the same parameters
used in [38] with the difference that we forced the reference ob-
ject of the query to follow a trajectory of 25 steps which crossed
the cloud of points of the dataset (selecting the position of the
reference object randomly led to many queries with no objects
in the answer and biased the results, so we chose a more chal-
lenging scenario). The parameters used for these tests can be
found in Table 5. Based on the results shown in the previous
set of experiments, we set the number of annuli to 32 as it is
the optimal value to achieve the best performance in a scenario
with such number of objects. Besides testing our approach with
a real spatial dataset, we also wanted to evaluate our approach
on mobile devices to determine whether it could be used in de-
vices with limited capabilities. Thus, we implemented an An-
droid version of the tests, and ran it on two different devices
(described in Section 5.1).

Table 5: Parameters for the LB dataset experiments of a query q(D,Or ,R, p).
Total target objects inD 106 × 103

Locations of the reference ob-
ject (Or)

25 steps within the LB
cloud of points

Radius for uncertainty area of
reference and target objects

5, 100, 250

R (inside radius) 250, 500, 750
p (probability threshold) 0.25, 0.50, 0.75
Number of annuli 32

The filtering rates and performance results of these tests can
be seen in Figures 15 and 16, respectively. There, the results
are grouped by uncertainty radius, e.g., the label LB-5 repre-

sents the aggregated results of the tests using the scenario LB
with an uncertainty radius of 5 distance units.

In Figure 15, we can see how the filtering rates achieved
by our approach are consistent with those achieved in the syn-
thetic scenarios. The figures should be read as follows. PRTree
Prefilter is the mean filtering rate achieved by the PRTree pre-
filter, Filter is the mean filtering rate of our approach when ap-
plied to the objects that the prefiltering step has not discarded
(similar to Figure 11) and, finally, Total is the global mean fil-
tering of our proposal independently of using the index-based
prefilter or not (similar to Figure 10). Note how the efficiency
of the PRTree-based prefilter decreases as the uncertainty and
query radii increase. This is due to the fact that the difference
between the area of relevance (i.e., the area where the objects
must lay to be part of the answer set) and its minimum bound-
ing box increases as the sum of the uncertainty radius and the
inside range radius grows, leading to more false positives (i.e.,
objects whose probability of being part of the answer set is 0
but are not discarded in the prefiltering step using the PRTree);
however, all of those false positives are quickly removed by our
sieve. Of course, these filtering rates are exactly the same for
both PC and Android devices.

Regarding the performance, we can see the benefits of using
our approach even not having indexed the objects in the sce-
nario, as the calculations needed to sieve the results are faster
than calculating their exact probabilities. Besides, the results
obtained for Android devices suggest that this technique could
be carried out by the mobile devices, without having to rely on
a back-end server to perform the calculations.

6. Related Work

Inside queries [8, 17] have been studied in the literature of
spatio-temporal and moving object databases (see [23] for a
survey). However, existing works on location-dependent query
processing usually implicitly assume GPS locations for the ob-
jects in a scenario. Although some proposals acknowledge the
importance of considering different location resolutions (e.g.,
[19]), the processing of classical constraints such as inside is
not considered in that context.

The importance of dealing with the uncertainty of location
information is emphasized in the literature. Probabilistic queries,
even though not in the context of moving objects, were intro-
duced in [10]. For moving objects, probabilistic queries are
usually computed by estimating the locations of the objects
through a probability density function that models the uncer-
tainty, in a way that the probability that an object is within a
certain region can be computed by integration (see [11]). As
solving these integrals is frequently expensive (numerical meth-
ods are usually required), an index-based filtering step is intro-
duced to prune the search space. Different relevant proposals
exist in the literature. For example, probabilistic range queries
are the focus of [38], and probabilistic nearest neighbor queries
are studied in [7, 26]. In [45], the authors present a model to
index uncertain objects and solve probabilistic queries.

In particular, as we mentioned in Section 2.2, the process-
ing of probabilistic inside query has been studied previously,
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R = 250 R = 500 R = 750

PRTree Prefilter 99.40 97.80 95.33

Filter 99.94 99.96 99.97

Total Filtering 99.99 99.99 99.99
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LB-5 Filtering Rate 

R = 250 R = 500 R = 750

PRTree Prefilter 98.27 96.04 92.85

Filter 99.40 99.56 99.67

Total Filtering 99.99 99.98 99.98
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Figure 15: Filtering rate for the different uncertainty values (LB-5,LB-100,LB-250) in the LB dataset experiments.
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Figure 16: Performance of our approach for the different uncertainty values (LB-5,LB-100,LB-250) on a PC and two Android devices.

mainly, in [1, 38, 44, 45]. In all these works, the bottleneck in
the performance is the calculus of numerical integrals. So, the
fewer integrals have to be calculated, the better is the perfor-
mance. In [38], the authors propose an index, called U-tree,
that avoids doing some of these integrals. The U-tree is an
R*-tree augmented with some information about the pdf of the
uncertain objects. This information is based on PCRs (proba-
bilistically constrained rectangles), an extension of the concept
of minimum bounding rectangles for uncertain areas. The filter
capabilities using the U-tree behave quite well when the range
query is a rectangle, but it has worse results when the range
query is a circle, as we have in our experiments. Trying to over-
come this problem, the authors in [44] construct an index, a
UI-tree, which is also a modified R-tree. In this case, the UI-
tree holds some disjoint partitions of the uncertain area of the
objects together with the cumulative pdf in each of these parti-
tions. A different method is proposed in [1], where the authors
define an index, called UP-tree, based on the selection of some
pivot points that are used to prune (not validate) objects by the
reverse triangle inequality. Finally, in [45], the authors define a
U-Quadtree, a Quadtree with additional information about the
pdf of objects. The main difference with the other methods is

that the summary information about the pdf saved on the index
depends on where the pdf has more information.

The previous approaches do not constrain the used pdfs;
however, they rely on the assumption that pre-indexing the ob-
jects is always feasible, which might not be the case in a mobile
and volatile environment. Moreover, as shown in the experi-
mental section, our approach would be complementary to their
works in order to lower the number of numeric integrals to be
solved.

There are several works [6, 9, 13, 24, 28, 31, 46] which
consider different types of probabilistic queries (e.g., different
variants of nearest neighbour queries and range queries within
temporal ranges and trajectories). However, none of them, but
for [6], consider that the uncertainty can also affect the queried
position (e.g., the query could be expressed in terms also of a
moving object, and thus, be subject of uncertainty). The work
in [6] focuses on calculating the similarity domination rather
than the type query that we are dealing with in our work.

Thus, as opposed to existing related work, in this paper we
have presented a model of uncertainty based on the concept of
location granule, analyzed the problem of probabilistic inside
queries using it, and proposed a different (and complementary
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to other related works) approach to speed up the calculations
needed to solve probabilistic inside queries, where the uniform
distribution is considered and which filters a large percentage
of the objects of the search space by just performing a few op-
erations.

7. Conclusions and Future Work

Location-dependent queries are the main building block of
location-based services, and therefore we have to provide effi-
cient methods to solve them. However, as we have seen, they
usually do not take into account the imprecision of the locations
(inherent to the mechanism or introduced to force it, for ex-
ample, for privacy issues). When you consider imprecise loca-
tions, the uncertainty in object locations also introduce a heavy-
weight problem when solving the already troublesome location-
dependent constraints.

In this paper, we have presented an extension of our location
model [5, 21] to deal with location imprecision using uncer-
tainty location granules, thus combining the higher semantics
achieved thanks to the use of location granules with probabilis-
tic approaches in a seamless way. In particular:

• We have formalized the concept of uncertainty granule to
model uncertain locations and their relationship with tra-
ditional location granules (granules without uncertainty).
This has allowed to extend our location granule model to
deal with imprecise locations in a seamless way.

• We have analyzed a type of probabilistic inside query,
and provided a method to solve them efficiently when
the underlying probability density function is the uniform
distribution.

• We have performed an extensive experimental evaluation
with both synthetic and real datasets where the efficiency
of the described method for the uniform distribution can
be appreciated. The results obtained showed the interest
of our proposal, even in non-indexed and mobile scenar-
ios (where the calculations could be performed in mobile
devices).

We are currently studying how to extend our method for
normal pdfs and histograms (i.e., how to calculate rapidly an ap-
proximation of the integral using annuli), and how our approach
could be applied and integrated with other approaches based on
indexing. We also plan to study how the use of different location
granularities would affect the semantics of probabilistic inside
constraints and their efficient calculation. Last but not least, we
will study other popular location-dependent constraints (such as
nearest-neighbor queries, closest-pairs [14, 15] and similarity
joins [14], as well as reverse kNN queries [37]) .
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