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1. Introduction

Among several theoretical tools applied in data mining, an important role
is played by aggregation functions. Recall, for example, the application of
Choquet and Sugeno integrals and other aggregation functions discussed in
[43]. Note that aggregation functions were originally introduced to act on real
intervals, for details we refer the reader to the comprehensive monographs
[3, 16] and [29].

However, recently the aggregation on posets, and in particular on lattices,
has became a rapidly growing topic, especially due to applications in infor-
mation sciences, see e.g. [9], [16] etc. This trend was stressed at the interna-
tional conference ABLAT (Aggregation on Bounded LATtices) held in 2014
in Trabzon, Turkey, among others. Aggregation on lattices exploiting several
algebraic results is often bringing new lights also into the standard real-
valued aggregation techniques. For example, though the Sugeno integral was
introduced in 1974 [44], and discussed in many papers and monographs, only
recently, based on algebraic look, it was shown that it is, in fact, an aggrega-
tion function which preserves congruences [19, 20]. This allows to apply the
Sugeno integral consistently also when we change a numerical scale into lin-
guistic scale, for example. Also quite recently, the essential progress with re-
spect to understanding how aggregation functions can be generated has been
achieved, see [21, 22, 23]. For more details on recent applications of aggrega-
tion functions we refer the reader to [4, 7, 13, 25, 27, 31, 36, 37, 38, 39, 40].

Another useful method used in data mining during last decades is Formal
Concept Analysis (FCA, in short) [14]. It is a theory where data are analysed
by means of conceptual structures among data sets. Mathematically, FCA
is based on the notion of a formal context which is represented by two sets,
objects and attributes, and by a binary relation between the set of objects
and the set of attributes representing the relationship between them. As a
result of the process, we obtain so-called formal concepts which correspond
to the maximal rectangles in the data set. The set of formal concepts has
a structure of a complete lattice (called concept lattice) consisting of all
conceptual abstractions (concepts) combining subsets of objects with subsets
of shared attributes. FCA has been proved to be an effective tool in many
areas of science, besides decision making it has been extensively applied to
fields such as knowledge discovery, information retrieval, software engineering
etc.

Classical FCA method is used for a binary case where we can sharply
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decide whether or not a given object has a given attribute. On the other
hand, there are many natural practical examples where this most simple
case is not appropriate. Namely, in many concrete situations the relation
between objects and attributes is not crisp, and then many-valued or fuzzy
description of object-attribute model is more convenient. Therefore, when
dealing with imprecise data, uncertainty or even when the information is not
complete, this more general setting of FCA method has become an important
research topic in the recent years. For more details we recommend the reader
the papers [1, 2, 5, 8, 10, 24, 28, 30, 32, 33, 34, 35, 41, 42].

Concept lattices can be viewed from another important equivalent way.
Namely, they correspond to Galois-closed sets with respect to a Galois con-
nection, both in monotone as well as in antitone setting, induced by the
incidence relation between the sets of objects and attributes. Remark that
Galois connections play a fundamental role in mathematics because of their
universality. To be more specific, Galois connections represent a structure-
preserving passage between two worlds, the one living on the object side, the
second on the attribute side. Consequently, they are inherent with respect
to human thinking in a sense that they allow to closely connect certain quite
different worlds of hierarchical structures. Order-theoretically, Galois con-
nections consist of two order-preserving maps whose composition yields two
operators on the respective structures, one closure operator, and the second
being a kernel operator. In other words, the two hierarchies living in two
different worlds can be transported to each other. Such an adjoint situation
has an advantage that the knowledge about one of the worlds can be used
to gain the information in the second one. Remind that historically, the
classical Galois theory has been used for solving the problem of solvability
of algebraic equations. Besides this one can find many other applications
of Galois-correspondences in almost all branches of mathematics and applied
science. As an example, recall the link between conjunctions and implications
in fuzzy logics [18]. For more details on Galois connections we recommend
the survey paper by Erné et al. [12].

By authors’ knowledge, so far no essential connection between the the-
ory of aggregation functions and FCA has been developed. The purpose of
this paper is to fill this gap by building a bridge between these two theories,
one of them living in the world of data fusion, the second one in the area
of data mining. Our aim is to show how Galois connections can be used to
describe important classes of aggregation functions. Note that the majority
of aggregation functions exploited in applications are considered to preserve
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suprema (e.g., for maximization problems on real intervals) or infima (e.g., for
minimization problems). Moreover, on real intervals, simultaneous preserva-
tion of suprema and infima by an aggregation function means its continuity.
In our paper, we focus on the case of sup-preserving aggregation functions
only, while the related results for inf-preserving aggregation functions can
be obtained by duality. As shown below, our method gives an elegant and
complete description of this class.

2. Preliminaries

We assume that the reader is familiar with the basic notions and termi-
nology of partially ordered sets, especially lattice theory, cf. [6] or [17].

The direct product of an indexed system {Li | i ∈ I} of lattices is defined
in the usual way; we apply the notation

∏

i∈I Li. If Li = L for all i ∈ I,
the symbol LI denotes the direct power of a lattice L or we use Ln provided
I = {1, . . . , n}. The elements of the direct product will be denoted by the
bold symbols and for x ∈

∏

i∈I Li, x(i) is the i-th component of x in the
lattice Li. Recall that the direct product of lattices forms a complete lattice
if and only if all of them are complete lattices.

Given a partially ordered set P , a closure operator on P is a self-map
c : P → P which is monotone, extensive and idempotent. More precisely,
this means the following conditions for all x, y ∈ P :

1. c(x) ≤ c(y) provided x ≤ y

2. x ≤ c(x)

3. c(x) = c(c(x)).

The notion of an interior operator is defined dually, i.e., an interior operator

on P is a mapping i : P → P which is monotone, intensive (i.e., i(x) ≤ x for
all x ∈ P ) and idempotent.

In the case of complete lattices, the notions of closure and interior op-
erators are closely related to that of closure systems and interior systems,
respectively. Given a complete lattice L, a closure system on L is a subset
S ⊆ L closed under arbitrary infima, i.e.,

X ⊆ S =⇒
∧

X ∈ S.
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Dually, an interior system on L is a subset T ⊆ L closed under arbitrary
suprema, i.e.,

X ⊆ T =⇒
∨

X ∈ T.

Let us remark that as
∧

∅ = 1 and
∨

∅ = 0 holds in any complete lattice, the
top element 1 belongs to every closure system and analogously, every interior
system contains the bottom element 0.

It is the well-known fact that every closure operator gives rise to a closure
system and vice versa. For a closure system S on L, one can define cS : L → L

by cS(x) =
∧

{y ∈ S | x ≤ y}. Conversely, given a closure operator c on L,
the set Fix(c) = {x ∈ L | c(x) = x} of fixed points forms a closure system
on L. In this case Fix(cS) = S and cFix(c) = c.

A similar correspondence holds between interior operators and interior
systems, in this case iT (x) =

∨

{y ∈ T | y ≤ x} represents the interior
operator corresponding to an interior system T .

Further, we recall the definition and basic properties of monotone Galois
connections. The results presented in this section can be found in several
sources, however in a non-compact form, c.f. [6] or [12]. In order to make
the paper as self-contained as possible, we provide the necessary results in a
modified comprehensive form together with their proofs.

Let P , Q be two posets. We say that a pair of mappings (f, g), f : P → Q

and g : Q → P forms amonotone Galois connection if for all x ∈ P and y ∈ Q

it holds
f(x) ≤ y iff x ≤ g(y). (1)

Then f is called the lower adjoint of g, while g is referred to as the upper

adjoint of f . Note that given a mapping f , there is at most one upper adjoint
g satisfying (1). To see this, consider two such mappings g1 and g2. From
(1) we immediately infer x ≤ g1(y) if and only if x ≤ g2(y), i.e., the sets
of lower bounds of g1(y) and g2(y) coincide, implying that g1(y) = g2(y).
The uniqueness of the lower adjoint (if it exists) corresponding to a given
mapping g can be shown similarly.

Let (f, g) be a monotone Galois connection between P and Q. Then f

and g are both monotone and they satisfy x ≤ g(f(x)) and f(g(y)) ≤ y for
all x ∈ P and y ∈ Q. Indeed, from (1) we easily obtain that f(x) ≤ f(x)
implies x ≤ g(f(x)). Consequently, applying (1) again, the inequality x1 ≤
x2 ≤ g(f(x2)) yields f(x1) ≤ f(x2), i.e., f is monotone.
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Consequently, we obtain the following important property:

f ◦ g ◦ f = f and g ◦ f ◦ g = g. (2)

To see this, using (1), from g(f(x)) ≤ g(f(x)) we obtain f(g(f(x))) ≤ f(x).
On the other hand, x ≤ g(f(x)) and the monotonocity of f yield f(x) ≤
f(g(f(x))).

Let L be a complete lattice. For an element a ∈ L, (a〉 denotes the
principal ideal generated by a, i.e., (a〉 = {x ∈ L | x ≤ a}. Dually, 〈a) =
{x ∈ L | a ≤ x} denotes the principal filter generated by a. A subset L1 ⊆ L

is called hereditary, or a down-set, if for every x ∈ L and x1 ∈ L1 with x ≤ x1

we have x ∈ L1. The concept of an up-set is defined dually.

Proposition 2.1. Let L and M be complete lattices and f : L → M be a

mapping. The following conditions are equivalent.

1. f is
∨

-preserving.

2. The inverse image f−1
(

(a〉
)

⊆ L is a down-set for every a ∈ M .

3. There exists an upper adjoint mapping g : M → L of f .

Proof. (1) ⇒ (2) : Let a ∈ M and x ∈ f−1
(

(a〉
)

= U . As f is
∨

-preserving,
it is monotone. Thus, for x1 ≤ x we obtain f(x1) ≤ f(x) ∈ (a〉, which yields
that x1 ∈ U , i.e., the set U is hereditary. Further, put b =

∨

x∈U x. As
f(x) ≤ a for all x ∈ U , we obtain

f(b) = f(
∨

x∈U

x) =
∨

x∈U

f(x) ≤ a,

showing that b ∈ U . Since U is a down-set and b is its greatest element, we
have U = (b〉.

(2) ⇒ (3) : For a ∈ M put g(a) = b where b ∈ L is such that (b〉 =
f−1

(

(a〉
)

. Then obviously

f(x) ≤ y iff x ∈ f−1
(

(y〉
)

iff x ≤ g(y).

(3) ⇒ (1) : Assume that f and g fulfill (1) and let {xi | i ∈ I} ⊆ L

be a family of elements. We have already shown that f is monotone. Then
xi ≤

∨

i∈I xi for all i ∈ I and the monotonicity of f yields
∨

i∈I

f(xi) ≤ f
(

∨

i∈I

xi

)

.
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Conversely, denoting y =
∨

i∈I f(xi), we have f(xi) ≤ y for each i ∈ I.
However, by (1) this holds if and only if

xi ≤ g(y), ∀i ∈ I iff
∨

i∈I

xi ≤ g(y) iff f
(

∨

i∈I

xi

)

≤ y,

which shows that f is
∨

-preserving.

Using the dual arguments, one can similarly prove the following.

Proposition 2.2. Let L and M be complete lattices and g : M → L be a

mapping. Then the following conditions are equivalent:

1. g is
∧

-preserving.

2. The inverse image g−1
(

〈b)
)

⊆ M is an up-set for every b ∈ L.

3. There exists the lower adjoint mapping f : L → M of g.

Hence, as a conclusion of the above propositions we obtain that given a
∨

-preserving mapping f : L → M , there is the unique
∧

-preserving mapping
g : M → L such that f and g form a monotone Galois connection.

For a mapping f : L → M , let Rng(f) = {f(x) : x ∈ L} denotes its range.
The following important assertion provides an inner description of monotone
Galois connections.

Proposition 2.3. Let L and M be complete lattices and f : L → M , g : M →
L be two mappings between them. If the pair (f, g) forms a monotone Galois

connection then

1. the range Rng(f) is an interior system on M ,

2. the range Rng(g) is a closure system on L,

3. Rng(f) and Rng(g) are isomorphic posets.

Conversely, let S be a closure system on L with the corresponding closure

operator cS, T an interior system on M with the corresponding interior oper-

ator iT and ϕ : S → T an isomorphism. Then the mappings cS ◦ϕ : L → M ,

iT ◦ ϕ−1 : M → L form a monotone Galois connection.
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Proof. Obviously, Rng(f) is an interior system on M since f is
∨

-preserving.
Similarly, Rng(g) is a closure system on L. Further, as f and g satisfy (2),
we have f(g(y)) = y for all y ∈ T as well as g(f(x)) = x for all x ∈ S. Thus,
we obtain that f restricted to S and g restricted to T are mutually inverse.
As both these mappings are monotone, S and T are isomorphic posets.

Conversely, assume that S and T are isomorphic. Since ϕ−1(iT (y)) ∈ S

and ϕ(cS(x)) ∈ T , from the basic properties of closure and interior operators
we obtain

x ≤ ϕ−1(iT (y)) iff cS(x) ≤ cS(ϕ
−1(iT (y))) = ϕ−1(iT (y)),

which is equivalent to

ϕ(cS(x)) = iT (ϕ(cS(x))) ≤ iT (y) iff ϕ(cS(x)) ≤ y.

In the sequel, if a pair of isomorphic closure-interior systems is consid-
ered, it is implicitly assumed that some isomorphism between them is also
present. Moreover, we will consider (n-ary) aggregation functions f : Ln →
L, i.e., functions which are characterized by the monotonicity and boundary
conditions. Hence f is an aggregation function whenever f(x1, . . . , xn) ≤
f(y1, . . . , yn) if x1 ≤ y1, . . . , xn ≤ yn, and f(0, . . . , 0) = 0, f(1, . . . , 1) = 1. In
particular, each homomorphism f : Ln → L is an aggregation function.

3. Sup-preserving and inf-preserving aggregation functions

Recall that any aggregation function f on a complete lattice L fulfills the
boundary conditions

f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1,

where 0 and 1 denote the bottom and the top element of the lattice L.
In order to apply Proposition 2.3, these conditions give the following basic
characterization:

Lemma 3.1. Let L be a complete lattice and f : Ln → L be an aggregation

function. Then f is
∨

-preserving if and only if f(x) = ϕ(cS(x)) for all

x ∈ Ln, where ϕ : S → T is an isomorphism between a closure system S ⊆ Ln
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and an interior system T ⊆ L such that 1 ∈ T , and cS : L
n → Ln is the

closure operator corresponding to S.

Similarly, f is
∧

-preserving if and only if f(x) = ϕ(iT (x)) for all x ∈ Ln,

where ϕ : T → S is an isomorphism between an interior system T ⊆ Ln and

a closure system S ⊆ L such that 0 ∈ S, and iT : L
n → Ln is the interior

operator corresponding to T .

Proof. Assume that f : Ln → L is a
∨

-preserving aggregation function. Ac-
cording to Proposition 2.3, f is determined by isomorphic closure system
S ⊆ Ln and interior system T ⊆ L via some isomorphism ϕ : S → T . As
f(1, . . . , 1) = 1 and (1, . . . , 1) ∈ S (every closure system contains the top
element), we obtain

f(1, . . . , 1) = ϕ(cS(1, . . . , 1)) = ϕ(1, . . . , 1) = 1

and it follows that 1 ∈ T .
Conversely, assume that f(x) = ϕ(cS(x)). Obviously, f is

∨

-preserving.
Since the closure cS(0, . . . , 0) equals to

∧

S, the least element of S, we obtain

f(0, . . . , 0) = ϕ(cS(0, . . . , 0)) = ϕ(
∧

S) = 0.

Note that the last equality follows from the fact that ϕmaps the least element
of S into the least element of T , which is 0. Dually, for the greatest element
of Ln we obtain

f(1, . . . , 1) = ϕ(cS(1, . . . , 1)) = ϕ(1, . . . , 1) = 1,

since ϕ maps the greatest element of S into the greatest element 1 ∈ T .
The assertion concerning the

∧

-preserving aggregation functions can be
proved analogously.

Although the previous lemma provides the basic inner characterization of
the

∨

-preserving as well as the
∧

-preserving mappings, closure and interior
systems on a direct power Ln need not be so transparent. In what follows we
try to find a similar characterization, however with respect to possibly more
simple factors.

Obviously, any
∨

-preserving aggregation function f : Ln → L is decom-
posable in the following way

f(x) =

n
∨

i=1

fi(x(i)), for all x ∈ Ln, (3)
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Figure 1: An example of isomorphic closure-interior systems.

where fi : L → L for all i ∈ {1, . . . , n} is
∨

-preserving. In this case, for each
i ∈ {1, . . . , n} the function fi is the lower adjoint of g ◦ πi : L → L, where g

is the upper adjoint of f and πi : L
n → L denotes the i-th projection.

Conversely, given any system of {fi : L → L | 1 ≤ i ≤ n} of
∨

-preserving
mappings, the formula (3) determines a

∨

-preserving function f . In addition,
f being an aggregation function, the functions of the system have to satisfy
∨n

i=1 fi(1) = 1. Hence, there is a one-to-one correspondence between the
family of all n-ary

∨

-preserving aggregation functions on a complete lattice
L and the family whose elements consist of n pairs of closure-interior system
pairs {(Si, Ti) | 1 ≤ i ≤ n} on L, satisfying

∨n
i=1⊤i = 1, where ⊤i is a

greatest element in Ti.
Notice that a similar characterization can be also applied for

∧

-preserving
aggregation functions.

Example 3.2. Consider the six-element lattice L = {0, 1, a, b, c, d} whose
Hasse diagram is depicted in Fig. 1.

In order to generate a binary
∨

-preserving aggregation function, consider
two pairs of isomorphic closure-interior systems (S1, T1) and (S2, T2) on L.
In this case S1 = {1, b, c, 0} and T1 = {d, a, c, 0}. Both systems are indicated
by filled circles, where S1 is depicted on the left side and T1 on the right side
of Fig. 1. The systems S2 and T2 are denoted by slashed circles, particularly
S2 = {1, a} and T2 = {b, 0}. Let us note that for the pair (S2, T2), the cor-
responding isomorphism ϕ2 between these two systems is unique. However,
considering the pair (S1, T1), the corresponding isomorphism ϕ1 : S1 → T1 is
indicated by the arrow, i.e., ϕ1(c) = a. Then we necessarily have ϕ1(b) = c,
and the top and the bottom elements are mapped into their respective coun-
terparts. As the top elements of T1 and T2 satisfy ⊤1 ∨ ⊤2 = d ∨ b = 1,
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x \ y 0 a b c d 1
0 0 0 b b b b

a c c 1 1 1 1
b c c 1 1 1 1
c a a b b b b

d d d 1 1 1 1
1 d d 1 1 1 1

Table 1: The table corresponding to the values f(x, y).

the considered two pairs of isomorphic closure-interior systems induce a
∨

-
preserving aggregation function f , the values of which are given in Table
1. For example, the value f(c, d) is calculated in the following way. First,
the closures cS1

(c) and cS2
(d) are determined. In the first case, cS1

(c) is the
smallest element in S1 which is above c and, obviously, it is c itself. In the
second case, cS2

(d) is the smallest element in S2 which is above d, which is
1. Finally,

f(c, d) = ϕ1(cS1
(c)) ∨ ϕ2(cS2

(d)) = ϕ1(c) ∨ ϕ2(1) = a ∨ b = b.

Further, we describe a decomposition in the case when an underlying
complete lattice is a direct product of an indexed system of complete lattices.

Theorem 3.3. Let {Lλ | λ ∈ Λ} and {Mγ | γ ∈ Γ} be indexed families

of complete lattices. Then there is a
∨

-preserving mapping f :
∏

λ∈Λ Lλ →
∏

γ∈Γ Mγ if and only if there is a system {fλγ : Lλ → Mγ | λ ∈ Λ, γ ∈ Γ} of
∨

-preserving mappings such that

f
(

x
)

(γ) =
∨

λ∈Λ

fλγ(x(λ)), for all x ∈
∏

λ∈Λ

Lλ. (4)

Proof. First, assume that there is the above system {fλγ | λ ∈ Λ, γ ∈ Γ} of
∨

-preserving mappings. Let {xi | i ∈ I} ⊆
∏

λ∈Λ Lλ be a family of elements
and let f be defined by (4). Then for each γ ∈ Γ

f
(

∨

i∈I

xi

)

(γ) =
∨

λ∈Λ

fλγ
(

∨

i∈I

xi(γ)
)

=
∨

λ∈Λ

∨

i∈I

fλγ
(

xi(γ)
)

,

where the last equality follows from the fact that for each λ ∈ Λ and γ ∈ Γ
the mapping fλγ is

∨

-preserving. However, due to basic properties of the
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supremum operation, we obtain

∨

λ∈Λ

∨

i∈I

fλγ
(

xi(γ)
)

=
∨

i∈I

∨

λ∈Λ

fλγ
(

xi(γ)
)

=
∨

i∈I

f
(

xi

)

(γ) =
(

∨

i∈I

f(xi)
)

(γ).

Conversely, assume that f :
∏

λ∈Λ Lλ →
∏

γ∈Γ Mγ is a
∨

-preserving map-
ping. For λ ∈ Λ and γ ∈ Γ define fλγ : Lλ → Mγ as fλγ(x) = f(0λ,x)(γ),
where 0λ,x ∈

∏

λ∈Λ Lλ is given by 0λ,x(ξ) = x if ξ = λ and 0λ,x(ξ) = 0 other-
wise. It is easily seen that every fλγ is

∨

-preserving. Further, for all γ ∈ Γ
we obtain

f
(

x
)

(γ) = f
(

∨

λ∈Λ

0λ,x(λ)

)

(γ) =
∨

λ∈Λ

f
(

0λ,x(λ)

)

(γ) =
∨

λ∈Λ

fλγ(x(λ)).

Corollary 3.4. Let f :
∏

λ∈Λ Lλ →
∏

γ∈Γ Mγ be a
∨

-preserving mapping

defined by (4). Then its
∧

-preserving adjoint g :
∏

γ∈Γ Mγ →
∏

λ∈Λ Lλ is

given by

g
(

x
)

(λ) =
∧

γ∈Γ

gλγ(y(γ)), for all y ∈
∏

γ∈Γ

Mλ, (5)

where for each λ ∈ Λ and γ ∈ Γ, gλγ is the upper adjoint of fλγ.

Proof. Let f , g be the mappings defined by (4) and (5), respectively. Then
for any x ∈

∏

λ∈Λ Lλ and y ∈
∏

γ∈Γ Mγ we obtain

f(x) ≤ y iff f
(

x
)

(γ) =
∨

λ∈Λ

fλγ(x(λ)) ≤ y(γ), ∀γ ∈ Γ,

which is equivalent to fλγ(x(λ)) ≤ y(γ), for all λ ∈ Λ and for all γ ∈ Γ.
However, by (1) this is equivalent to x(λ) ≤ gλγ(y(γ)) for all λ ∈ Λ and
γ ∈ Γ, which holds if and only if

x(λ) ≤
∧

γ∈Γ

gλγ(y(γ)) = g
(

y
)

(λ), ∀λ ∈ Λ iff x ≤ g(y).

This shows that f and g satisfy (1).

In particular cases, the last two results can be significantly strength-
ened. For example, consider an associative symmetric aggregation func-
tion f : ([0, 1]n)2 → [0, 1]n with a neutral element e = (1, . . . , 1), i.e., f
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Figure 2: Decomposition of the mapping corresponding to (S1, T1) pair of Example 3.2.

is a triangular norm [29] of the product lattice [0, 1]n. Then, due to [11],
f is

∨

-preserving (
∧

-preserving) if and only if f is a product of classi-
cal

∨

-preserving (
∧

-preserving) t-norms, i.e., there are triangular norms
fi : [0, 1]

2 → [0, 1], i = 1, . . . , n, which are
∨

-preserving (
∧

-preserving), and
f(x,y) = (f1(x1, y1), . . . , fn(xn, yn)).

Example 3.5. Consider the lattice L from Example 3.2. It can be easily seen
that L ∼= 3× 2, where 3 = {0, 1, 2} and 2 = {0, 1} denote the three-element
and two-element chains respectively, with the usual order. We present the
decomposition of the

∨

-preserving mapping f1 determined by the closure-
interior system (S1, T1) from Example 3.2. According to Theorem 3.3, there
is a system of

∨

-preserving mappings between the particular direct factors.
The resulting decomposition via closure-interior systems is given in Fig. 2.

In the finite case, every lattice is a direct product of directly indecom-
posable lattices. However, the structure of directly indecomposable lattices
may be difficult, e.g., it is evident that every lattice with a prime number of
elements is directly indecomposable. Hence, in order to obtain a representa-
tion of

∨

-preserving aggregation functions with respect to possibly simpler
lattices, we turn our attention to the so-called subdirect products, cf. [17].

Recall that a lattice L is a subdirect product of an indexed family {Li |
i ∈ I} of lattices if

1. L is a sublattice of
∏

i∈I Li,

13



2. πi(L) = Li for each i ∈ I, i.e., each coordinate projection πi maps L

onto the corresponding factor.

In such a case we shall write L ≤
∏

i∈I Li. A subdirect representation of a
lattice is any embedding whose image is a subdirect product. A lattice L is
said to be subdirectly irreducible if |L| > 1 and all subdirect representations
of L are trivial, i.e., if L ∼= L1 ≤

∏

i∈I Li then necessarily L ∼= Li for
some index i ∈ I. In other words, a lattice is subdirectly irreducible if it
is not subdirectly representable by “simpler” lattices. Note that subdirectly
irreducible lattices play a similar role with respect to subdirect products of
lattices as primes with respect to multiplication of integers.

Recall the well-known fact that every lattice L is isomorphic to a subdirect
product of subdirectly irreducible lattices, which are homomorphic images
of L. From this point of view, the subdirectly irreducible lattices can be
considered to have a simpler structure than the former lattice.

As subdirectly irreducible factors of a subdirect representation can be
found within the homomorphic images, it follows that every finite lattice
is isomorphic to a subdirect product of finite numbers of finite subdirectly
irreducible lattices.

For the sake of simplicity, when dealing with a subdirect representation,
we limit our attention to the finite case.

First, observe the following two simple but important facts. If f1 : L →
M , g1 : M → L and f2 : M → K, g2 : K → M are monotone Galois connec-
tions, then the composition f1 ◦ f2 : L → K, g2 ◦ g1 : K → L is a monotone
Galois connection as well. Indeed, for all x ∈ L and y ∈ K we have

x ≤ g1(g2(y)) iff f1(x) ≤ g2(y) iff f2(f1(x)) ≤ y.

Further, given a finite lattice L and a sublattice M ⊆ L, let cM and iM be
the corresponding closure and interior operators, respectively. Note that M
is both closure and interior system on L, since M is a sublattice. Then the
pair (cM , idM), considering cM as a mapping cM : L → M and idM : M → L

being the identity inclusion ofM into L, forms a monotone Galois connection
between L and its sublattice M . This follows from the defining properties of
the closure operators, in fact for any x ∈ L and y ∈ M we obtain

x ≤ idM(y) = y iff cM(x) ≤ cM(y) = y.

14



Similarly, the pair (idM , iM), iM : L → M , forms a monotone Galois connec-
tion between M and L, since for all x ∈ M and y ∈ L

x ≤ iM(y) iff idM(x) = x ≤ iM (y) ≤ y.

Lemma 3.6. Let L be a finite lattice and M ⊆ L be a sublattice. Then any
∨

-preserving function f : M → M is given by

f(x) = cM(F (x)), for all x ∈ M, (6)

where F : L → L is a
∨

-preserving mapping.

In this case, the upper adjoint g : M → M of f is given by

g(y) = iM (G(y)), for all y ∈ M, (7)

where G : L → L is the upper adjoint of F .

Proof. Obviously, if f and g are given by (6) and (7) respectively, then

f = idM ◦ F ◦ cM and g = idM ◦G ◦ iM .

Since the pairs of mappings (idM , iM), (F,G) and (cM , idM) form monotone
Galois connections, their composition pair (f, g) forms a monotone Galois
connection as well.

Further, assume that f : M → M is a
∨

-preserving mapping. Then we
can extend f to a

∨

-preserving mapping F with the domain L as follows:

F (x) = f(cM(x)), for all x ∈ L.

The mapping F : L → M ⊆ L is a composition of
∨

-preserving mappings
since cM is the lower adjoint of idM , and thus it is

∨

-preserving. Moreover,
for all x ∈ M we have cM(x) = x and f(x) ∈ M , which yields

cM(F (x)) = cM(f(cM(x))) = cM(f(x)) = f(x).

Finally, this shows that f can be expressed by (6).

Theorem 3.7. Let L be a finite lattice, {Li | i ∈ I} be a finite family of finite

lattices such that L ≤
∏

i∈I Li and let cL, iL be the corresponding closure and

interior operators on
∏

i∈I Li. Then the following conditions are equivalent:

1. f : Ln → L is a
∨

-preserving aggregation function.
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Figure 3: A subdirect representation of the lattice L in 2
3.

2. For each l ∈ {1, . . . , n} there is a system {f l
ij : Li → Lj | i, j ∈ I}

of
∨

-preserving mappings satisfying
∨n

l=1

∨

i∈I f
l
ij(1) = 1. Moreover,

f(x) =
∨n

l=1 cL(Fl(x(i))) for all x ∈ Ln, and for each l ∈ {1, . . . , n},
Fl :

∏

i∈I Li →
∏

i∈I Li are given by (4).

Example 3.8. Consider the lattice L from Example 3.2. It is the well-known
fact that the only subdirectly irreducible distributive lattice is isomorphic to
the two element chain 2. As L is distributive, it has a subdirect representation
into the direct power of two element chains. Fig. 3 shows such a subdirect
representation of L in 23.

With respect to this representation, any
∨

-preserving mapping is de-
termined by a system of closure-interior systems on 2. We present such a
system, corresponding to the

∨

-preserving mapping determined by the pair
(S1, T1) from Example 3.2. Particularly, as L is subdirectly represented in
23, we have 3 · 3 = 9 pairs of closure-interior systems. They are depicted in
Fig. 4. The system in the i-th row and in the j-th column corresponds to
the mapping between the i-th factor and the j-th factor within the subdirect
representation of L.

Let us note, that in a similar way the subdirect decomposition of the
mapping corresponding to (S2, T2) pair can be obtained. Hence the whole
aggregation function f from Example 3.2 can be characterized as a 6 × 3
matrix consisting of isomorphic closure-interior pairs on 2.
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Figure 4: “Subdirect decomposition” of the mapping corresponding to (S1, T1) pair of
Example 3.2.

4. Relationship to the FCA based biclustering methods

In this section we briefly discuss possible applications of the results from
the previous section within certain biclustering fuzzy FCA-based methods.

As it is common in cluster analysis, an n×m data matrix R is given by
objects B, attributes A and entries R(b, a). The primary aim of bicluster
analysis is to identify subgroups of objects X ⊆ B which are as similar as
possible to each other with respect to some subset of attributes Y ⊆ A, and
different as much as possible to the rest of objects and attributes. Bicluster
is then formally defined as a pair (X, Y ).

Such a relatively wide definition of biclustering certainly fulfills the clas-
sical FCA, cf. [26] where some link between FCA and biclustering can be
found. In this case a data matrix R contains only 0 - 1 values and it can
be formally seen as an incidence relation between the objects and attributes,
i.e., R ⊆ B × A. Then (b, a) ∈ R or equivalently R(b, a) = 1 is interpreted
as “an object b has an attribute a”. The biclusters, so-called formal con-
cepts, correspond to the maximal rectangles in the data sets. Given a formal
concept (X, Y ), Y is a subset of all attributes shared by all objects of X ,
while X is a subset of objects sharing all attributes of Y . This “sharing” of
attributes represents the essence of the similarity, mentioned in the definition
of biclustering. It turns out that formal concepts can be defined via concept
forming operators, acting between the power set P(B) of objects and the
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power set P(A) of attributes. These operators are induced by the relation R

X ′ = {a ∈ A | (b, a) ∈ R for all b ∈ X}

Y 8 = {b ∈ B | (b, a) ∈ R for all a ∈ Y }.

The formal concepts are precisely the fixed points of the operators, i.e., pairs
(X, Y ) fulfillingX ′ = Y andX = Y 8. Such defined concept forming operators
form an antitone Galois connection between P(B) and P(A), cf. [14].

Having this in mind, several biclustering-like fuzzy approaches to FCA
were proposed, either with the help of antitone or monotone Galois connec-
tions [5, 30, 10, 32, 33].

To mention an example of such fuzzy concept forming operators, consider
the so-called monotone L-Galois connections, introduced in [15]. In this case,
L = (L,∧,∨,⊗,→, 0, 1) is a complete commutative residuated lattice and
R : B×A → L is an L-relation. The concept forming operators ↑ : LB → LA

and ↓ : LA → LB are given by

↑(x)(a) =
∨

b∈B

x(b)⊗R(b, a),

↓(y)(b) =
∧

a∈A

R(b, a) → y(a).

These concept forming operators are typically involved when some type
of fuzzy logic, with L as the truth value structure, is used for evaluation
membership degrees of particular attributes. The operation ⊗ is a fuzzy
counterpart of the classical logical conjunction, while → stands for a fuzzy
implication. From a fuzzy logical point of view, the concept forming operators
admit the following interpretation: ↑(x)(a) represents the truth degree of the
proposition “there exists an object b ∈ X having an attribute a”, where the
fuzzy subset x corresponds to X , and ↓(y)(b) represents the truth degree of
the proposition “for all attributes a ∈ A, a ∈ Y provided an object b is in
relation R with a”, y taking the role of Y .

In each residuated lattice, the two fuzzy connectives ⊗ and → are related
by adjoint property

x⊗ a ≤ y iff x ≤ a → y.

Hence each a ∈ L determines a
∨

-preserving mapping fa : L → L, fa(x) =
x ⊗ a for all x ∈ L, with the upper adjoint ga(y) = a → y for all y ∈ L.
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Observe that concept forming operators ↑ and ↓ are defined by (4) and (5),
respectively.

The previous considerations allow to define a slightly modified, but more
general approach, not connected with any fuzzy logic framework. Let L be
a fixed complete lattice, B be a set of objects and A be a set of attributes
characterizing particular objects. As a basic input, consider a data table
in the form of a many-valued binary relation R : B × A → V , where V

represents some set of possible alternatives for a characterization of objects
from B by particular attributes from A. To induce concept forming operators
from such input data, we use a mapping from the set V into the set of

∨

-
preserving mappings, where fa : L → L denotes a mapping associated to an
element a ∈ V . Then applying Theorem 3.3 and its corollary we obtain the
mappings F : LB → LA and G : LA → LB defined by

F (x)(a) =
∨

b∈X

fR(b,a)(x(b)), (8)

for all x ∈ LB, and

G(y)(b) =
∧

a∈A

gR(b,a)(y(a)), (9)

for all y ∈ LA, form a monotone Galois connection between them. The
biclusters, or fuzzy formal concepts, are defined as the fixed points of these
operators, i.e. (x,y) is a fuzzy formal concept if F (x) = y and x = G(y).

From Proposition 2.3 we obtain that the set of all concepts, partially
ordered by (x1,y1) ≤ (x2,y2) if x1 ≤ x2 (or equivalently, y1 ≤ y2), has a
lattice structure. Particularly, this concept lattice is isomorphic to the in-
duced interior system Rng(F ) on LA, which is also isomorphic to the induced
closure system Rng(G) on LB.

Taking into account a natural condition that the top elements of LB and
LA should form a formal concept, we obtain that for each a ∈ A the compo-
sition F ◦ πa : L

B → L of F and the projection map πa forms a
∨

-preserving
aggregation function. Hence the basic concept forming operator can also
be seen as a system of |A|

∨

-preserving mappings, where any of them is in
some sense determined by the values R(b, a), b varying through the set of all
objects B. Given a fixed attribute a ∈ A, the mapping F ◦ πa assigning to
each x ∈ LB the value F (x)(a) =

∨

b∈B fR(b,a)(x(b)) can be seen as some kind
of weighted supremum of the values {x(b) | b ∈ B}. Consequently, formal
concepts can be studied and interpreted within many other theories, where
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these types of functions play an important role, e.g., in multicriterial deci-
sion support. Also the mapping F ◦ πa can be understood as some L-valued
possibility measure on L-fuzzy sets, being a fuzzy analogy of possibility mea-
sures. Such view allows to consider about FCA-based clustering methods
in the realm of the possibility theory. These different perspectives on the
mentioned fuzzy FCA-based biclustering method can be useful in order to
incorporate other types of information usually available for the considered
data.

5. Conclusion

Formal concepts can be studied and interpreted within many different
theories, where these types of clusters play an important role, e.g., in mul-
ticriteria decision support, or in possibility theory. In this contribution, we
have focused on links between aggregation functions acting on complete lat-
tices and formal concept analysis. In particular, we have elaborated a de-
scription of sup- (inf-) preserving aggregation functions, thus generalizing
several particular results known from the literature (such as the structure
of sup- and inf-preserving triangular norms and conorms on product lattices
characterized in [11]). We have also discussed possible applications of our re-
sults within certain biclustering fuzzy FCA-based methods. We believe that
our approach and examples of applications of the general methods of formal
concept analysis will expand to several new areas, offering them a powerful
tool.
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