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Abstract

E-Learning class formation will take benefit if common learners’ needs are

taken into account. For instance, the availability of trust relationships among

users can represent an additional motivation for classmates to engage ac-

tivities. Common experience also suggests that there are many similari-

ties within dynamics of formation for thematic social network groups and

e-Learning classrooms. Since Online Social Networks provide data concern-

ing users interactions (e.g. trust relationships), we propose a model aimed

at managing the formation and the evolution of e-Learning classes based

on information available on Online Social Networks — skills, interactions,

and trust relationships — which are properly combined in a unique measure.

The aim is to suggest both to a user the best classes to join with and to the

classes themselves the best students to accept. The proposed approach has

been tested by simulating an e-Learning scenario within a large social net-

work. Experiments show that this proposal is able to support students and

class managers in order to satisfy their expectations in a scalable manner.

Keywords: e-Learning, Class formation, Online Social Networks, Skill,

Trust
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1. Introduction

E-Learning is a cost-effective solution to lifelong learning and on-the-job

work force training [7, 18], providing a learner-centered environment and

giving to e-learners (hereafter, only learners) the opportunity of exploiting

time and location flexibility, low costs, unlimited access to knowledge and

archival capability for information sharing [30].

In this context, learners progresses depend on many factors, as their own

attitudes and initial skills (i.e. background) and, last but not least, the cog-

nition of the “human” virtual environment where interactions take place.

There is also a relation between “learner-teacher”, or “learner-learner” in-

teractions and student learning and satisfaction issues [34, 35]. In fact, the

attitude of the learner to start interactions with her/his peers also depends

on the mutual trust level [29].

1.1. Motivations

Based on the previous considerations, the design of a proper process of

class formation – in order to improve the “quality” of learner-learner/teacher in-

teractions such that actual knowledge improvements can be maximized [11,

24] – should be supported by i) an analysis of learners’ skills and attitudes,

and by ii) the knowledge of the mutual trust between learners. Such an anal-

ysis can benefit from information available on Online Social Networks (OSNs)

and, therefore, e-Learning activities can take further advantages from the po-

tential synergies with OSNs. In addition, OSN platforms, like Facebook [15]

or Twitter [40], support activities of thematic groups1, which embrace a wide

1Each day more than 100,000 groups are created only on Facebook [28]
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range of topics [22] and evolve by following the dynamic of human interac-

tions [3]. Due to their large relevance, social groups have been studied by

researches with particular emphasis to their formation [20], evolution [3, 27]

and failure [28].

In this context, intelligent software agents can support the process of e-

Learning class formation by providing suggestions for students (resp., classes)

about the best classes (resp., students) to join with (resp., to accept into a

class) [6, 41, 19]. Class formation is important for the generic student because

he can join with a class potentially capable to satisfy his/her expectations

at the best and the increment of utility for his/her future mates in accepting

him/her in their class.

Moreover, some studies confirmed that the users’ attitude to mutually

interact and share information depends also from the mutual trust [12]: the

larger the reciprocal trust among users, the larger their interest to start in-

teractions [8, 39]. Besides, several studies show that, in forming OSN groups,

existing trust relationships can provide a relevant contribution, in addition

to a similarity criterion [12, 36]. The use of trust relationships when forming

groups is motivated also by the common practical problems of computing

similarities between users [2, 31, 38]. Indeed, processing the overall amounts

of data about OSN users and groups is not easy, due to the size and limita-

tions in crawling these data for OSN and/or group administrators policies.

Therefore, such algorithms cannot really examine the entire space of involved

OSN groups to suggest suitable solutions for learners’ needs.

At the best of our knowledge, any of the existing approaches to form

e-Learning classes considers the recent results described above that should
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lead to form groups based on both students’ skills and trust relationships.

From the analysis reported in Section 5, the past proposals are mainly based

on considering the skills [10] as the sole criterion for groups formation, and

only a few of work is addressed on the use of trust information. In any case,

any of these past approaches explicitly study roles and mutual interactions

between skills and trust component in forming effective groups.

1.2. Contribution

Based on the considerations above we propose a model aimed at manag-

ing formation and evolution of e-Learning classes by using skills and trust

information already available on OSNs. The main novelty of our proposal

is of combining skills and trust data in a unique measure, named conve-

nience, used to (i) suggest the best class to join with or to leave to a user

and (ii) to suggest the best students to accept or remove to the class itself.

The information on the skills of the generic student on a set of topics of

interest, as specified above, is a fundamental aspect to consider for giving

teaching-homogeneity to the class [37]. Indeed, by analyzing the nature and

the number of such activities carried out in the past by the involved users, it

is possible to give a significant contribution in forming classes. Based on such

information, “supply” and “offer” of interactions can be balanced in class for-

mation, such that unfitting requests and users profile resulting incompatible

might be avoided.

Trust relationships is the second component and it is combined (i.e.

weighted) with the “results” derived by these interactions (i.e. the learn-

ers’ satisfaction level) and the relevance they assign to them, also in order

to limit malicious behaviors. Although existing trust relationships can be
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found within OSNs, in order to consider specific concerns related to the

mutual interactions within learning classes, the proposed solution includes a

trust model exploiting reliability and reputation criteria. The model includes

some countermeasures aimed at filtering erroneous or malicious opinions.

Students and classes are driven by personal software agents, respectively

named learner and class agents, delegated to create, manage and update the

profiles of their respective owners (i.e. a learner or a class) on the basis of

information found in the OSNs. The convenience measure is exploited by

a distributed procedure, named Class Formation (CF), that allows learner/

class software agents to cooperate in order to form classes.

A number of experimental trials was performed to test the proposed ap-

proach. A first set of results highlights that i) by adopting the discussed

trust model, learners can identify malicious peers in several different scenar-

ios. A second set of experiments proved the ability of the CF algorithm ii)

to improve the average value of the convenience within classes during their

formation processes. Finally, the same results also prove that the increment

of average convenience within classes leads to an increment of satisfaction

of the learners. The rest of the paper is structured as follows: Section 2

introduces the context of the work as well as the definition of Behavioral,

Trust and Convenience measures.

Section 3 illustrates the supporting multi-agent architecture and the

distributed CF algorithm. Section 4 presents our experimental tests. In Sec-

tion 5 we compare our work with related literature and, finally, in Section 6

we draw our conclusions and illustrate some possible future works.

6



2. Basic scenario and exploited measures

2.1. The OSN Scenario

The e-Learning scenario is built on the generic OSN community, whose

members are able to form classes and perform e-Learning activities with their

peers and their teachers. Let i) N be the space of the OSN members, with

||N || = N ; let ii) C be the set of classes, with ||C|| = C; let iii) c ∈ C be

any e-learning class, which consists of a number of learners, and at least a

teacher, that is also its administrator; iv)learners are assisted by software

agents [17], denoted as ai for any user ui ∈ N . Each software agent ai is

able to analyze the behavior of its owner to obtain a detailed view on his/her

background and attitudes and assists the learner in joining with or leaving

classes; v) class administrators are assisted by software agents, denoted as

Ai. Each software agent Ai assists its associated class manager in getting

decision about the acceptance of a new member for its own class.

Class space

C1 C2

Trust Relationships

Learning Interactions

Figure 1: A simplified schema of class formation process in the OSN e-Learning scenario.
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2.2. Measures

Two different measures are introduced: i) behavioral measure, related

to the interactions carried out by a learner, (Section 2.2.1), and ii) trust

measure, i.e. level of trust that an OSN member places on another OSN

member (Section 2.2.2).

A simplified schema of the approach to compose classes is depicted in

Figure 1. The bottom layer represents a portion of the OSN space where

edges identify the set of learning interactions measured among the same

users: the different kind of interactions (i.e., the set of skills) have been

represented by means of different type of lines due to the different set of

considered skills, and their thick is proportional to the difference among their

behavioral measure. The middle layer describes trust relationships among

students of the same OSN. Class formation is driven by the computation of

the convenience measure which combines trust and behavioral measures as

described in Section 2.2.3. The result of this final process, i.e. the formation

of two e-Learning classes, C1 and C2, is depicted in the top layer of Figure 1.

2.2.1. Behavioral Measures

The concern of behavioral measure is based on the concept of “skill”, i.e.

the level of knowledge of a particular learner at a certain time. We model the

concept that each learner is interested in improving his/her own knowledge

also by interacting with other users. Therefore, learners are interested in

joining with specific classes also because the other participants have suitable

skills. On the other hand, when classes are deficient in skills of interest to

their own members, class managers have the interest to include those users

holding some specific skills which can potentially help other users to perform
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better in their e-Learning activities.

Classes. Let’s define a class c as a tuple 〈S,W, Vc, o〉 where: (i) S = {s1, s2, . . . , sm}

is the set of skills required by a class manager for participating to c; (ii)

W = {w1, w2, . . . , wm} is the set of weights used by the class agent to eval-

uate the skills of their students; (iii) Vc is the minimum overall skill grade

required to join with the class; (iv) o is the reference topic or subject or goal

of the course itself (e.g., “Course for Cambridge FCE”).

More in detail, the overall skill grade V is defined as the estimated grade

(or level) of an OSN user, computed over a specific skill set S. More for-

mally, for an OSN user uk and a skill set S, V is computed as V (k, S) =
m∑
i=1

wi · g(k, si), where g(k, si) ∈ [0, 1] ∈ R is the knowledge grade of the user

uk coming from the evaluation of the skill si ∈ S 2, while wi ∈ [0, 1] ∈ R is

specifically set by the class manager to weight the knowledge grade gi and

such that
m∑
i=1

wi = 1. For example, a class manager may focus on the language

requirements for joining a class; a set of specific skills related to the language

may be S = {s1, s2, s3} with: s1 ={“Speaking fluently”}; s2 ={“Reading

technical documents”}; s3 ={“Extracting relevant technical information”}.

Contextually, the set of weights adopted by the class manager is w1 = 0.2,

w2 = 0.4 and w3 = 0.4.

Historical attitude. Let H be the “historical” attitude of the OSN user uk to

require and/or offer interactions related to its own skills, H(k) = α ·H(k) +

2Although the grade for a skill (e.g., Ability to fluently speak English) generally will

take non numerical values from a finite set (e.g., {A, B, C, D}), they can be always

converted into a set of numerical normalized values.
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(1− α) ·H(k), with α ∈ [0, 1]. Therefore, the new value of the real number

H ∈ [0, 1] is given by combining the previous value and the new contribution

H due to the requests and supply for interactions occurred at the last step.

H is calculated as:

H(k) =


1− |h(k)req − h(k)off |

h(k)req + h(k)off
if h(k)req + h(k)off 6= 0

0.5 otherwise
(1)

with

h(k)req =
1

Nreq

Nreq∑
i=1

g(k, Sreq,i) h(k)off =
1

Noff

Noff∑
i=1

g(k, Soff,i) (2)

where, with respect to the OSN user uk, h(k)off is the evaluation of the

offered interactions for a skills subset Si ⊂ S, and h(k)(req) is the similar

evaluation for the requested interactions. Moreover, the smaller the overall

skills in Sreq, the greater the resulting factor. Indeed, it will result that,

when h(k)req ≈ h(k)off , then H ≈ 1, i.e. the attitude of the user uk is to ask

and provide interactions to the same extent. Vice versa, if h(k)req � h(k)off

(h(k)req � h(k)off ) then H ≈ 0, it means that the attitude of the user uk is

to offer (require) interactions.

Class Behavior. The class behavior for the class cj, denoted as B(j) ∈ [0, 1]

is defined as a sort of “footprint” over the class itself, in order to characterize

the tendency of the whole class cj to offer or require interactions. It is defined
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as follows 3:

B(j) =
1

||cj||

||cj ||∑
k=1

H(k) (3)

2.2.2. Trust

The second measure is based on the concept of trust, which can be as-

sumed as “The quantified belief by a truster with respect to the competence,

honesty, security and dependability of a trustee within a specified context”

in accord to [21]. In the model described in this work, trust is computed

by combining the reliability and the reputation factors. The former is the

measure of perceived trust derived by the direct knowledge between truster

and trustee due to their past interactions. The reputation represents an indi-

rect knowledge, i.e. the perceived trust due to the past interactions occurred

among the trustee with counterparts different from the current truster [1].

An interaction between the two generic OSN learners up and ur consists of

a process where the learner up starts an interaction (i.e. one or more learning

tasks) with the learner ur (e.g. checking homework, practice on a specific

topic, asking some explanations). Consequently, the software agents ap and

ar, respectively associated with up and ur, can observe the interactions car-

ried out by their owners to i) register the interaction features (type, topic,

duration) and ii) collect feedbacks about other OSN users to compute their

respective reputations. Such feedbacks will reflect the quality of the interac-

tions among the two learners, e.g. whether each counterpart has complied

3Anyway, depending on the distribution of the numbers H(k), it can be defined as its

average or median value, as the latter is not sensitive to the outliers
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with the fixed meetings, or deadlines to provide feedbacks on homework, and

so on (remember that users’ skills are evaluated by the behavioral measures).

Let ηp,r and ρp,r be respectively the measures of reliability and reputation

that the generic OSN user up (i.e., agent ap) computes for the OSN user ur

(i.e., agent ar). The trust measure τp,r is obtained by combining the reliability

(ηp,r) and the reputation (ρp,r) by means of a real coefficient βp,r ∈ [0, 1] ∈ R:

τp,r =


0.5 if Ip,r = 0

βp,r · ηp,r + (1− βp,r) · ρp,r if Ip,r > 0
(4)

where Ip,r is the number of previous interactions between agents ap and ar.

For new coming learners the initial trust/reputation is set to 0.5 to mitigate

penalization [32] but to sufficiently contrast whitewashing strategies [43]. To

compute βp,r, we consider that, first of all, its value should increase according

to the number of interactions occurred between the learners and its peers,

because the direct knowledge that up (i.e. ap) has of ur (i.e. ar) will consoli-

date over time. Moreover, it should increase as the recommenders reliability

in providing suggestions decreases. Then we also consider that each OSN

user (i.e. agent) has only a partial view of his/her (i.e. its) community and

the trust measures computed in his/her (i.e. its) own might differ from those

computed by including the opinions of the whole community. Finally, the

reputation or one or more peers may differ due to malicious behavior. For

the above considerations, the coefficient βp,r is computed as:

βp,r = Max(β1, β2) with β1 = min

(
Ip,r
Imax

, 1

)
and β2 = 1− Ω(t)

p,r (5)
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where Ω
(t)
p,r is the average confidence computed at time t for the current set of

recommenders which provided at least a suggestion to ap for agent ar, where

Rp,r is the set of agents which provided an opinion about ar (i.e. ur):

Ω(t)
p,r =

1

||Rp,r||

Rp,r∑
i=1

|σ(t−1)
p,r − τq,r| (6)

Looking at Equation 6, the confidence factor minimizes the impact of

untrustworthy opinions by giving more relevance to those mentors that ap

evaluates as the most similar to it. Imax is a threshold representing the

number of interactions after which the “knowledge” of an OSN user about

another OSN user is assumed maximum. It is incremented at each step as:

Ip,r = min(Imax, Ip,r + 1) (7)

The ratio of Formula 7 is that the number of interaction between ap and

ar is increased of one unit until the threshold Imax is reached, since Imax is

considered as a sort of saturation value for Ip,r, in order to give a practical

limit to the increment of Ip,r. In other words, the ratio adopted in computing

βp,r is to provide a different relevance to the reputation with respect to the

reliability based on the experience acquired by up (i.e., ap) about ur (i.e., ar).

As a result, the contribute of the reputation in computing trust decreases as

much as the number of the interactions occurred between the two involved

learners constantly increases.

Computation of Reliability. Reliability measure, denoted as ηp,r ∈ [0, 1], is

computed by up (i.e., ap) about ur (i.e., ar) as ηp,r = ϑp,r ·σp,r+(1−ϑp,r) ·ηp,r,

where ϑp,r weights in a complementary way the contributes of i) the feedback
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parameter σp,r ∈ [0, 1] computed for the last interaction between up and

ur at time-step t and ii) the value of ηp,r computed at time-step (t − 1).

The parameter ϑp,r should take into account the relevance assigned to the

interaction between up and ur, let be Ψp,r. In principle, malicious behaviors

focused to gain good reputation on low value interactions (Ψ � 0.5) with

high reliability (σ � 0.5) may occur. In this case, malicious users may start

interaction of high relevance (Ψ ∼ 1) due to good reputation providing poor

performance (σ ∼ 0). Therefore, the closer the ratio Ψ/σ to 1, the higher

the value of ϑ; the farther the value Ψ/σ from 1, the lower the value of ϑ4.

A possible choice for ϑ is given by the adoption of the Gaussian centered in

1, as follows:

ϑ = e−(Ψ/σ−1)2/v2 (8)

By Equation 8, ϑ will perform as a “filter” for those values of σ which,

for the analogous values of Ψ, may be a malicious behavior. Parameter v2

is useful to tune the filter. Small values of v will select only values of σ

for which σ/ϑ is close to 1, while large values of v will ensure that almost

the whole history of feedbacks σ is considered in computing the reliability η

defined above.

Computation of Reputation. The reputation measure ρp,r is computed by up

(i.e., ap) with respect to ur (i.e., ar) as a value ranging in [0, 1] ∈ R:

4For convenience, let’s suppose that σ > 0
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ρp,r =
1

||Rp,r||

||Rp,r||∑
q=1

τq,r (9)

Through the usual meaning of these indexes, 0 means that ur is totally

unreliable and, conversely, 1 means that ur is totally reliable.

2.2.3. Convenience Measure

Behavioral and trust measures are combined to measure the convenience,

for a user, to join with the class cj. Due to the asymmetric nature of the

trust measure, convenience is also an asymmetric measure. Therefore, let

γu,c and ηc,u be the convenience of the user u to join with the class c and that

of the class c to accept the affiliation request of a user u defined as follows:

γk,j =
(1− |H(k)−B(j)|)

||cj||
∑
ai∈cj

τk,i φj,k =
(1− |H(k)−B(j)|)

||cj||
∑
ai∈cj

τi,k

(10)

where ||c|| is the number of users (i.e. agents) affiliated to c. Convenience

increases with the difference between the behaviors of ak and cj. The asym-

metric part is due to the different trust measures τk,i and τi,k, with ai ∈ c.

2.2.4. Discussion

Reliability and reputation defined above are rooted into the relationships

among OSN users. Indeed, even e-Learning bring students to have interac-

tions in virtual environments, users have the attitude to create closed re-

lationships, which help them to benefit from the resulting interactions. In

defining trust and its components, a number of additional factors have been

introduced to improve their computations. In particular, the definition of
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βp,r in Eq. 5 takes account of the suggestion “quality”, by the definition of

Eq. 6, and how much the direct knowledge, in terms of number of interactions

already taken with the counterparts, by the definition of expression for Ip,r

in Eq. 7. Finally, the definition of Eq. 8 is an attempt to limit “malicious”

behaviors of participants, as detailed above, basing on the ratio Ψ/σ.

Furthermore, based on the fact that ηp,r 6= ηr,p and, therefore, the trust

computed by the agent ar about the agent ap is different of that computed

by ar vs ap. For such a reason, Equations in 10 assume different values for

the agents ap and ar. Consequently, the procedure described in Section 3

is distributed among the agents assisting learners and those related to class

administrators. As it will be discussed in the experimental Section, the aim

of the distributed procedure is to let the system to reach a balance in terms

of convenience among all the considered actors of the proposed scenario.

3. The distributed procedure for Class Formation (CF)

In the proposed approach, we suppose that OSN users (i.e. learners) are

supported by intelligent software agents [42] capable to perform all the ac-

tivities aimed at organizing the e-Learning classes basing on the measures

presented in Section 2. Such a multi-agent architecture is sketched in Fig-

ure 2: on each of the three classes in Figure 2, black circles represents humans

(i.e. learners and class managers), white circles, built around the black ones,

software agents (i.e. learner and class agents) and black circles, built around

the white ones, the class agents built around the class managers.

In particular, each agent will execute a set of tasks briefly summarized

below. Each Learner Agent has to update behavioral measures, as well as
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Manager
class C3

Learner ui

Learner
Agent  ai

N

OUT

C1 C2 C3

Class
Agent Ai

C

C1 C2 C3

IN

Figure 2: The multi-agent architecture for the e-Learning system.

reliability and convenience whenever one or more interactions occurred with

the user’ peers. The generic learner agent is also in charge of sending, on

a periodical basis, behavioral and trust measures to the class agents repre-

senting its own classes once they have been recomputed. Finally, the generic

learner agent will assist its own user to decide about joining with or leaving

classes by executing the CF algorithm detailed in Section 3.1. For this aim,

it will receive behavioral and trust measures from its own class agents.

The generic class agent waits for messages coming from learner agents

in order to update behavioral, trust and convenience measure of the entire

class. Furthermore, it has to send updated behavioral measure to allow

learner agents to compute their convenience in updating their own conve-

nience measure. Finally, as specified in Section 3.1, each class agent must

be capable to assist its own class administrator to decide about the requests

coming from learner agents to join with or leave classes.

17



3.1. The distributed CF procedure.

The CF procedure is executed by every learners, in order to join with a

set of classes that will maximize the resulting convenience index. We suppose

that agents can query a distributed database named CR (Class Repository)

storing the list of the classes of the e-Learning system. Details are explained

below.

The CF procedure performed by the learner agents is formalized into the

pseudocode listed in Figure 3. Let T be the time between two consecutive

executions (steps) of the CF procedure, Xn the set of the classes which the

agent an is affiliated to, and NMAX the maximum number of classes which an

e-Learning agent can analyze at time t, with NMAX ≥ |Xn|. Moreover, let us

suppose that an stores into a cache the class profile of each class contacted in

the past and the timestamp d of the execution of the CF procedure. Finally,

let ξn be a timestamp threshold and χn ∈ [0, 1] be a threshold set by the

agent an. The ratio behind the procedure executed by the learner agent is

represented by the attempt, of the learner agent, to improve the convenience

in joining with a class. For this aim, the values of convenience are recalculated

if they are older than the threshold ξn (lines 1-4). Then, candidate classes

are sorted in a decreasing order with respect to their Convenience value (line

5). The two loops in lines 7-15 represent the core of the procedure, on which

NMax classes are selected. If some classes in the set Lgood are not in the

set Xn, agent an can potentially improve convenience of the user un, if they

accept the user itself to join with. The only constraint of the algorithm is

the maximum number of classes the user want/can join with.

The CF procedure performed by the class agent is formalized into the

18



Input: Xn, NMAX , ξn, χn; Y = {c ∈ C} a random class set : |Y | ≤ NMAX

Xn
⋂
Y = {0}, Z = (Xn

⋃
Y )

1: for c ∈ Z : dc > ξn do

2: Send a message to Ac to retrieve the profile Pc.

3: Compute γun,c

4: end for

5: Let be Lgood = {ci ∈ Z : i ≤ j → γun,ci ≥ χn}, with |Lgood| = NMAX

6: j → 0

7: for c ∈ Lgood ∧ c 6∈ Xn do

8: send a join request to Ac

9: if Ac accepts the request then

10: j → j + 1

11: end if

12: end for

13: for c ∈ {Xn − Lgood} ∧ j > 0 do

14: Sends a leave message to c

15: j → j − 1

16: end for

Figure 3: CF algorithm: Learner Agent

pseudocode in Figure 4. Let Kc be the set of the agents affiliated to the class

c, where ||Kc|| ≤ KMAX , being KMAX the maximum number of learners

allowed to be within the class c. Suppose that the class agent Ac stores into

its cache the profile P of each user u managed by his/her learner agent a ∈ Kc

and the timestamp du of its acquisition. Moreover, let ωc be a timestamp and

πc ∈ [0, 1] ∈ R be a threshold set by the agent Ac. The procedure performed

by the class agent Ac is triggered whenever a join request by a learner agent ar

(along with its profile Pr in the interest of its user ur) is received by Ac. First
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Input: Kc,KMAX ,W, ωc, πn, ar, Z = Kc
⋃
{ar};

1: if (V (r, Sc) < Vc ∨ |Kc| ≥ KMAX) then Send a reject message to ar

2: else

3: for a ∈ Kc do

4: if du ≥ ωc then ask to a its updated profile

5: end if

6: end for

7: for a ∈ Z do

8: compute φc,a

9: end for

10: Let be Kgood = {a ∈ Z : φc,a ≥ πc}

11: for a ∈ Kc −Kgood do

12: send a leave message to a.

13: end for

14: if ar ∈ Kgood then

15: the request of ar is accepted

16: end if

17: end if

Figure 4: CF algorithm: Class Agent

of all, parameter KMAX represents the maximum number of students that

can join with a given class5. In fact, if the class has reached this maximum,

no more students can be accepted to join with the class. By lines 3-6 the

class agent asks the updated profile of the components of the class itself,

therefore the convenience γc,a is computed for all these agents (lines 7-9) and

a new, sorted set Kgood ⊂ {Kc

⋃
ar} is built (line 10). Then, the class agent

5We assume that it is the same for all the classes and topics for convenience

20



Unreliable users Malicious users

Sc. Ratio

(ru)

Behaviors Ratio

(rmal)

Behaviors

A 0.1 Feedbacks generated by the

PdF in row no.2 of Table 2.

– –

B 0.1 Feedbacks generated by the

PdF in row no.2 of Table 2.

0.2–1.0 Malicious learners give false recom-

mendation.

C 0.2− 0.8 also malicious rmal=ru Unreliable users are reliable in

interactions having low relevance

and are unreliable on those with

high relevance. See Eq. 8 and Ta-

ble 3

Table 1: Trust model, simulated users behavior. ru=ratio unreliable; rmal=ratio mali-

cious

will send a leave message to all the learner agents a showing a convenience

γc,a (lines 11-13). Finally, if ar ∈ Kgood (line 16), its request is accepted.

4. Experiments

To evaluate the described approach, we obtained two different sets of re-

sults. A first set of simulations was devoted to test the effectiveness of our

trust model in identifying untrustworthy users or those that assume anoma-

lous behaviors (e.g. cheating to gain positive reputation). Results are de-

scribed in SubSection 4.1. By the second set of simulations we studied the

convergence of the CF algorithm described in Section 3, and the benefits in

improving the quality of the learners’ interactions. Results are described in

SubSection 4.2.
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Figure 5: Scenario B - Time evolution for different ratio of malicious users rmal=0.2−1.0

of A) E1 and B) E2.

4.1. The Trust model

The first set of experiments consisted in a number of simulations where

learners were grouped in classes. A simulation consisted in a certain number

of interactions between Learners of the same class. We carried out these

experiments by an ad-hoc simulator written in C++6. At each simulation

6The simulator can be downloaded at the following address: https://globus.dmi.

unict.it/~fmessina/suppIS.zip

Epochs (Sc. A,B,C) 500 Users (Sc. A,B,C) 1000

No. of Classes (Sc. A,B,C) 50 No. of user recc. (Sc. A,B,C) 200

No. of interactions within classes

(Sc. A,B,C)

300 Ratio of high values, 0.3

reliable interactions (Sc. C)

Class size (Sc. A,B,C) 20 Imax (Sc. A,B,C) 50

Low value interactions (Sc. C) Ψ = 0.2, σ = 0.8 High value interactions (Sc. C) Ψ = 0.8, σ = 0.2

Table 2: Trust model, simulation parameters
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Generated feedback (σ)

P.d.F. (Norm. dist.)

No. Profile mean stdev

1 Reliable Learner 0.5− 0.8 0.1− 0.3

2 Unreliable Learner 0.2− 0.5 0.1− 0.3

Table 3: Trust model, simulation parameters: generated feedbacks.

Unreliable learners ratio (ru) = 0.1

mean Rel/Unrel E1 E2 E1 E2 E1 E2

stdev=0.3 stdev=0.2 stdev=0.1

0.5/0.5 0.48 0.23 0.48 0.16 0.48 0.10

0.6/0.4 0.30 0.20 0.28 0.13 0.16 0.05

0.7/0.3 0.25 0.18 0.15 0.11 0.05 0.02

0.8/0.2 0.16 0.15 0.07 0.012 0.01 0.01

Table 4: Results for Scenario A
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Figure 6: Scenario C - Time evolution for rmal=r=0.2 and different values of v = 0.4−1.0

of A) E1 and B) E2.

epoch, the following tasks are executed:

1) An e-Learning class in the set of classes is selected at random;

2) for each learner l1, a set of distinct recommenders is selected. These
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Figure 7: Scenario C - Time evolution of E1 for different values of v = 0.4 − 1.0 and of

A) rmal=r=0.6 and B) rmal=ru=0.8.

recommenders are selected at random among the whole set of learners;

3) an interactions among two learners l1, l2 will result in assigning a feed-

back σl1,l2 ∈ [0, 1], as specified in Section 2.2.2.

4) correspondent values of η, ρ and τ (Section 2.2.2) are updated.

Learners behaviors, in terms of reliability and honesty, are simulated by

combining the behavioral profiles described below and reported in Table 1.

Scenario A: users will be reliable (generated values of reliability σ >= 0.5)

or unreliable (σ < 0.5) in their interactions with colleagues.

Scenario B: there will be also malicious learners, which provide false opinion

about their peers, i.e. an opinion which does not reflect the actual reliability

of the learner.

Scenario C: unreliable learners have a particular malicious behavior which

consists in trying to gain reputation by performing reliable interactions hav-

ing low relevance (see Section 2.2.2). Moreover, they provide unreliable inter-

actions having high relevance. Table 2 reports the ratio between the number

of high and low relevant (i.e. unreliable and reliable) interactions and the
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values of simulated Ψ (relevance) and σ (feedback).

Feedbacks for the different simulation scenarios A and B were sampled by

a normal distribution with mean and standard deviation reported in Table 3.

Two indexes have been evaluated to evaluate the performance of the trust

model described in Section 2.2.2, as follows:

E1 =
fp+ fn

Nint

E2 =
∑

i<=fp+fn

ei(σ, τ)

fp+ fn
(11)

fn – false negative – (resp. fp – false positive), is an integer number rep-

resenting the number of times a learners received a value of trust τ which

does not reflect its real attitude to be reliable (resp., unreliable). Moreover,

ei(σ, τ) is the absolute value of the difference between the value of τ (trust

value) and the last value of σ (feedback) computed for the counterparts.

This value is computed only for interactions on which a false positive or false

negative occurred.

Finally, values of parameters epochs, users, no. of classes, no. of recom-

menders per user, and no. of interactions within classes were a priori fixed

for all the simulations, and reported in Tables 2 and 3. The above five pa-

rameters were fixed on the basis of a sensitivity analysis which allowed us to

obtain reasonable simulation times. In the following we discuss the results

obtained by the simulation of the three scenarios A,B,C.

Scenario A. The first scenario illustrated in Table 1 represents a basic

testbed to understand the performance of the trust model with respect to

some basic parameters. The ratio of unreliable users has been set as indicated

in Table 1, i.e. ru = 0.1, and interactions feedbacks generated on the basis of

the normal distribution with parameters mean and stdev indicated in Table 3.
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We report the first set of results in Table 4. As expected, both errors E1 and

E2 are affected by the mean value and the stdev of the generated feedback

σ. Indeed, the higher is the standard deviation of the generated feedbacks

and the closer is the mean to 0.57, the less defined, in terms of reliability,

the profile of the users. As a consequence, the worst performance, for E1, is

reached when mean = 0.5. In this case the trust system will generate about

50% of false positive/negative. Nevertheless, when the users have a defined

behavior, i.e. when a behavioral gap between reliable and unreliable users

exists (the mean is far from 0.5 and stdev < 0.3), values of the error E1 is

very low, which is a desirable property.

Scenario B. In the second set of simulations, a number of malicious learn-

ers was also simulated (their ratio w.r.t. the total number of learners is

reported in Table 1), i.e. those users giving false recommendations. To this

aim, let denote the malicious recommender as aq, then we simulated that the

recommendation sent about an agent ar, denoted as τ ∗q,r is set as the value

τ ∗q,r = 1−τq,r, where τq,r is the actual measurement of trust hold by the agent

aq about agent ar. The ratio of malicious users with respect to the total num-

ber of users is denoted as rmal= 0.2− 1.0 (table 1), while the ratio of unreli-

able users was fixed the same of scenario A (ru=0.1). Furthermore, feedbacks

were sampled from a normal distribution by fixing mean rel/unrel = 0.7/0.3

and stdev = 0.1. In this scenario we tested the resilience of the trust model

with regards to the different ratio of malicious users rmal. Figure 5(a) shows

the results for E1 while Figure 5(b) shows the results for E2. In particular,

7A value of 0.5 will mean, in terms of reliability, “incertitude’
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the different plots have been obtained for the different values of parameter

rmal. From Figure 5(a) we observe that, after a transitory, on which the

error reaches a maximum value of about 20% 8, the error decreases to reach

values close to zero in all tested cases. In other words, parameter β given in

Equation 5 leads the expected results, i.e. it allows agents to assign a low

weight to malicious suggestions. Results in Figure 5(b) show a similar trend,

with values of E2 always lower than 10%.

Scenario C. The last trial was aimed to understand whether counter-

measure given by Equation 8 is able to recognize malicious patterns de-

scribed in the third row of Table 1. In this case we obtained results for E1

and E2, by driving simulations by means of different values of parameter

v = 0.4, 0.65, 0.9, 1.0 (see expression of ϑ in Eq. 8), while the ratio of ma-

licious users was fixed as rmal=ru=0.2. At this regard we remark that, as

stated in Section 2.2.2, the smaller the parameter v, the higher the sensitiv-

ity over the values Ψ/σ which are far from 1. For this set of experiments

the behavior of malicious users is further characterized by the values of Ψ

(interaction relevance) and σ (resulting feedback), cf. Table 2.

Results for rmal=ru=0.2 are shown in Figures 6(A)-(B). Here, as ex-

pected, since the percentage of untrusted learners having a malicious pattern

is 20% (rmal=ru=0.2), the whole range of simulations for the different values

of v seem to perform very well: the error quickly decreases to values under

10% after about 350 epochs. In addition, figures 7(A)-(B) reveals that, as

the ratio of unreliable users is very high, i.e. ur = 0.6 and rmal=ru=0.8,

8Although having all the users malicious may seem unrealistic, we tested until this

value to perform an exhaustive study of the recommender subsystem of the trust model
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Sc. |C| |U | KMax NMax

1 50 200

20 52 100 400

3 200 800

τr τu {hReq , hoff}

mean 0.8 0.3 0.5, 0.5

stdev 0.2 0.2 0.2, 0.2

Table 5: CF algorithm. Simulation parameters

the filter represented by parameter ϑ calculated as in Eq. 8 should be set to

be more selective, i.e. related parameter v has to be set with small values.

Indeed, only when v = 0.4 users are able to recognize untrusted peers, as

shown by the values of E1. This last set of results show that the expression

of ϑ in Equation 8 is effective in recognizing malicious patterns, based on

the ratio Ψ/σ. Nevertheless, parameter v must be set appropriately, as the

higher the ratio of users which show a malicious pattern, the smaller the

value of v to set in Equation 8.

4.2. The CF Algorithm.

The second set of experiments was aimed at testing the effectiveness of

the distributed algorithm CF reported in Figures 3 and 4. As a measure of

the internal convenience measured for a class cj, we introduced the concept

of Average Convenience (AC), computed as the average of all the measures

ηj,i computed by the class cj ∈ C for all its students ui ∈ cj. Thereafter, to

measure the global convenience of all the classes belonging to N in our sim-

ulated scenario, we computed the mean MAC =

∑
cj∈C ACj

||C|| and the standard

deviation DAC =

√∑
cj∈C(ACj−MAC)2

||C|| .

A preliminary test involved three scenarios consisting of 50, 100, and 200

e-Learning classes, as reported in Table 5. To compute the convenience, the
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users profiles were build by assuming that 20% of OSN members have an

unreliable behavior. Behavioral coefficients hreq and hoff (useful to compute

behavioral coefficients H), and the values of trust (τ), have been sampled

from a normal PdF [23] around specific mean and standard deviation (stdev),

as reported in Table 5. In particular, τr represents the mean of generated

trust values for reliable users (e.g. users showing, in average a trusted behav-

ior), while τu is the mean for unreliable users. Moreover, for the first set of

experiments, the ratio r = Kmax·|C|
Nmax·|U | was set to 1 and the starting composition

of classes is random. We report, in Table 6, the results obtained by the CF

algorithm for the three scenarios reported in Table 5. In particular, we report

the initial value of MAC/DAC and the final one, calculated when Te = 20 9.

The improvement, in terms of MAC, at the end of the experiments, is in the

order of 8% for all the tested configuration. Based on the observation above,

and since the ratio r = Kmax·|C|
Nmax·|U | is the same for the three scenarios, without

relevant variations, the subsequent were driven by the variation of r.

For the second set of experiments we assumed a variable value of r =

Kmax·|C|
Nmax·|U | (Table 7), ranging from 0.1 to 0.9. A value r < 1 say us that users,

9Indeed, we verified that, after 20 epochs of executions, the MAC reaches a stable

value

Sc 1 Sc 2 Sc 3

MAC DAC MAC DAC MAC DAC

T0 0.63 0.12 0.62 0.12 0.62 0.12

Te 0.67 0.10 0.66 0.10 0.67 0.12

Table 6: Results with r = 1.0
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r=0.1 r=0.2 r=0.3 r=0.4 r=0.5

MAC DAC MAC DAC MAC DAC MAC DAC MAC DAC

T0 0.61 0.07 0.59 0.02 0.60 0.03 0.60 0.04 0.60 0.08

Te 0.61 0.08 0.63 0.08 0.69 0.04 0.70 0.10 0.73 0.06

r=0.6 r=0.7 r=0.8 r=0.9

MAC DAC MAC DAC MAC DAC MAC DAC

T0 0.60 0.07 0.63 0.09 0.63 0.09 0.62 0.11

Te 0.70 0.09 0.69 0.08 0.68 0.08 0.67 0.10

Table 7: MAC and DAC

in overall, can join with more places (Nmax · |U |) than the total allowed

(Kmax · |C|). By looking at Figure 8, the best improvement, in terms of

MAC, is obtained for r = 0.4 (+20%), r = 0.5 (+16%) and r = 0.6 (+20%).

This result can be explained as follows. On one hand, finding a class to

improve the personal convenience γ is a bit more difficult for the user when

r < 1, therefore the CF algorithm will help to improve the MAC for random

composition of classes. On the other hand, the algorithm clearly needs a

certain degree of freedom to give benefit: indeed, when r is very small, the

improvements, in terms of MAC are comparable to those given for values of

r closed to 1 (see Figure 8). In overall, these results point out that the CF

algorithm gives, on average, a relevant improvement of the convenience for

the classes.

To take a step forward in our analysis, some simulations were performed

in order to quantify the benefits due to the CF algorithm in terms of “qual-

ity of interactions” among learners. Indeed, as stated in the introductory

section, mutual trust and behavioral components (i.e. attitude to interact

and skills), in principle, influence the quality of the overall learning in a
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r=0.1 r=0.2 r=0.3 r=0.4 r=0.5

MQI DQI MQI DQI MQI DQI MQI DQI MQI DQI

T0 0.60 0.09 0.56 0.18 0.56 0.17 0.57 0.13 0.50 0.18

Te 0.60 0.10 0.57 0.16 0.72 0.11 0.71 0.14 0.75 0.16

r=0.6 r=0.7 r=0.8 r=0.9

MQI DQI MQI DQI MQI DQI MQI DQI

T0 0.50 0.13 0.54 0.11 0.57 0.13 0.57 0.13

Te 0.68 0.16 0.61 0.15 0.61 0.12 0.60 0.16

Table 8: MQI and DQI

class. Therefore, the execution of the CF algorithm to form classes im-

pacts positively on the learners interactions. To verify this aspect, a number

of interactions among couple of users, denoted as nint, were simulated, as

in the experiments performed to test the capabilities of the recommender

system (SubSection 4.1). In addition, we assumed that the probability of

each interaction, say pint(ij), grows with the mutual trust among users, i.e.

pint(ij) = τij. Besides, to measure the quality of interactions, we defined an

index, QI as QI = 1
nint

∑nint

i=1 (1 − |Hi(u) − Hi(v)|), where u and v are the

users involved in the ith interaction. Results are shown in Table 8. Based on

index QI, the indexes Mean Quality Index (MQI) and standard Deviation of

Quality Index (DQI) were computed. The trend of MQI is similar to that of

MAC (Table 8). Indeed, around the value r = 0.5 the CF algorithm allows

class manager to reach the best improvement, in terms of QI. Nevertheless,

the overall improvement is larger than that obtained in terms of MAC in the

correspondent configuration. In particular, the trend, when MQI is steeper

than that of MAC. To offer the best view of this comparison, all the results

(Tables 7 and 8) are shown in Figure 8.
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4.3. Discussion

In order to test the effectiveness of the trust model along with the dis-

tributed CF algorithm we performed two sets of experimental trials. The

analysis of the first set of results give us a good confidence that the pro-

posed recommender system, based on the computation of direct and indirect

measures (i.e. reliability and reputation), is effective in characterizing the

behavior, in terms of trust, of the learners, even when recommenders show a

malicious behavior. This model can support learners of OSNs during learn-

ing interaction. In particular, the model can start from trust relationships

taken from the social network, to be enriched by means of interactions made

within e-Learning classes.

In addition, we have verified, by simulations, that the class formation

algorithm leads to high and stable values of average convenience. Further-

more, the convenience measure is computed as a combination of trust and

behavioral aspects based on the skills of the learners. As both components
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represent as incentive, for the users, to start interactions, we also simulated a

number of interactions and quantified the benefit (“quality of interactions”)

due to these interactions. Simulations have shown that the CF algorithm

will lead significant benefits in terms of average quality of interactions.

5. Related Work

The learning activity in a structured educational environment may be

thought of as a two-step process which involves both the reception and pro-

cessing of information. In this setting, a learning-style model can be viewed

as a classification of students according to where they fit on a number of

scales pertaining to the ways they receive and process information [16]. E-

Learning systems provide computer-supported collaborative learning (CSCL)

technologies to allow the possibility of a group interaction for physically

distributed users. These kind of systems extend e-Learning Content Man-

agement Systems (LCMS) by adding inter-group communication on learning

topics, and learning material can be manipulated by group collaboration. On

the other hand, the presence of OSN for personal communication and enter-

tainment leads to an increasing demand for applications that are integrated

into the OSN, and people tend to share personal information with connected

persons in the OSN. Educational Hypermedia has evolved in the past years

from static system to dynamic content presentation and delivery platforms.

As shown in [33], CSCL research is focused on finding mechanisms to allow

learners to learn in a group of physically distributed people. Popular OSN

sites like Facebook or Google+ store personal profiles of each user, and per-
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sonal profiles are linked witch each other through a bidirectional relationship,

established individually between two users. Therefore, a social network site

like Facebook can be seen an undirected graph which edges represent the re-

lationship between users. Building a team in OSNs means to find a subgraph

of members in the OSNs user graph which fulfills the following conditions:

(i) Each user-node has the motivation for collaborative learning on a certain

topic; (ii) Learning style of a user-node is appropriate for a balanced group;

(iii) Persons knowledge in the topic is equal among group members. (iv) A

mutual trust relationship links each member with each other member of the

group. members.

In the following we cite the work among the recent literature that, in our

view, takes into account the main concerns cited above, i.e. behavioral and

trust aspects in group formation processes.

Authors of [13] discuss the issue of forming random groups or classes,

as the lack of proportional participation of individuals, or the absence of

adequate motivation and low attitude to work in groups may cause a problem

within any e-learning group. A more recent work [25] emphasizes that group

formation is the first step to design a CSCL on which students can learn and

participate to the class activities. They discuss how to select individuals on

the basis of their characteristics (e.g. knowledge or learning attitudes) can

be usefully combined to create a positive synergy among participants.

A recent survey on algorithms for group/class formation in CSCL is pre-

sented in [10], on which 250 works have been analyzed. The authors found

that about 50 studies concern the group formation in collaborative e-Learning

and, in particular, about 20% of them exploit probabilistic models, while the
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remaining studies rely on Genetic Algorithms (GA), swarm intelligence, data

mining (e.g. k-means), Bayesian networks and machine learning. Among

them, a generic mathematical model for e-Learning group formation is pre-

sented in [9], on which it is proposed an optimizer driven by an evolutionary

algorithm able to create groups by using the criteria given by the instructors.

In their study, the authors focused to find a near optimal solution for the

group-formation problem in a reasonable time. As stated by the authors, the

power of the approach is represented by the expressiveness of their model.

Strategies for group formation based on individual behaviors are ad-

dressed in [26], on which behaviors are analyzed during class discussions, with

particular emphasis to the level and kind of participation in small groups.

The work is based on the analysis of communication data, i.e. forum posts,

either of small of larger forums. The results of the analysis show that the

students participation in small groups is correlated with their behavior in

the class and, therefore, the authors suggest to instructors to use these in-

formation to allocate initial classes into small groups heterogeneously. Nev-

ertheless, the class formation strategy we proposed it is aimed at grouping

individuals with similar behaviors, in terms of “positive” and “negative” in-

teractions. Besides, a relevant component in our proposal is given by the

trust relationships derived from OSN data that in [26] is neglected.

A recent survey [14] regards recommender systems for Technology En-

hanced Learning (TEL), which are capable to recommend a wide variety

of items, i.e. any type of learning resources on the Web, foreign language

lessons, complete courses or fellow peers. Nevertheless, specific methods must

be adopted in order to evaluate TEL recommender systems, as requirements
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are very different from other domains like e-Commerce. In our proposal we

include a recommender system for learners, focused on the interactions occur-

ring between them with emphasis on those involving e-Learning interactions.

In [5] the authors analyze the state-of-the-art of the “socialization” of

e-Learning activities and propose an automated approach to form OSN e-

Learning environments by grouping users within the OSN. For this aim the

focused on a data model that would extend the OSN itself by introducing

e-Learning features. As in our work, they start with the considerations that,

in addition to the common criteria exploited to form groups, e.g. knowledge

and learning style, social networks offer the opportunity to access the myr-

iad of data related to virtual social relationships. Then they propose suitable

metrics in order to weight the “edges” between users. Interestingly, among

the several factors taken into account by the users (e.g. learning style, knowl-

edge and group density), the users take into account availability. To form

groups, the OSN is explored to find a minimal number of suitable candidates,

thereafter the set of candidates is optimized to find the “optimal constella-

tion” for group learning experience. The interesting difference with our work

is that we strongly exploit the concept of trust, which is represented, in turn,

by combining reliability and reputation within the OSN itself.

Finally, another relevant experience in using an OSN (i.e. Facebook)

is [4], where it is analyzed the student use of Facebook at the Cape Town

University. Lecturer engagement with students via OSN are also taken into

account, and through qualitative interviews they show that while there are

real positive benefits in using Facebook in teaching and learning, in particular

to build e-Learning micro-communities. On the other hands, certain existing
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challenges, i.e. including ICT literacy and uneven access, remain opened.

6. Conclusions

Class formation in e-Learning is a critical task for its impact on the quality

of learning activities. In this work we focused on a distributed algorithm

supported by a trust model and some behavioral measures to form classes

in OSNs. Our proposal uses information coming from the OSN, i.e. trust

relationships among users, quality of interactions, as well historical attitude

to interact with peers, for improving the metrics related to class composition.

E-Learning classes are dynamically managed, as the proposed model al-

lows class managers to accept new students, and students itself to join with

and leave classes in order to improve the quality of their own learning expe-

riences. This flexibility is reached by combining information about trust and

learning interactions in a unique measure named “convenience”. The pro-

posed approach has been tested by simulating an artificial scenario including

an e-Learning platform within a large OSN. Experiments show that this pro-

posal can support students and class managers to satisfy their expectations.

In particular, experimental results highlight that by using our trust model,

learners can identify malicious peers in several dierent scenarios. Further-

more, our experiments proved the ability of the CF algorithm to improve

the average value of the convenience within classes during their formation

processes. This is shown by a simulation on which we measured the poten-

tial increment of satisfaction of the learners due to the increment of average

convenience within classes. The current main limitation of our results is rep-

resented by the fact that they have been obtained on a simulated scenario,

37



that although having realistic features, cannot be considered as completely

representative of real social network environments. An important research

question is how our results could change in presence of social networks having

higher size than that we have considered. Our ongoing research is dealing

with these issues, and for the future we are planning to test our approach

with data extracted from real social networks having high size.
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