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On Possibilistic Representations

of Fuzzy Intervals

Luciano Stefanini∗, Maria Letizia Guerra†

Abstract

It is acknowledged that a fuzzy interval has two equivalent representa-
tions given in terms of the so called Left and Right sides of the membership
function (LR-representation) or in terms of the Lower and Upper branches
defining the endpoints of the α-cuts (LU-representation).

In this paper we suggest an additional representation of fuzzy intervals
called ACF-representation (using an average cumulative function instead
of the membership function), based on possibility theory.

We illustrate how to build the new representation and we state its
basic properties. The main result is that the Average Cumulative (AC)
function can be uniquely defined for any fuzzy interval and it is possi-
ble to move from one representation to the others through appropriate
transformations.

An interesting link can be established between ACF-representation
and quantile functions, with a possible statistical interpretation useful in
real application.

We also recommend a parametric form of the AC function.
KEYWORDS: possibility distribution, parametric representations, fuzzy

intervals, quantiles, average cumulative function.

1 Introduction

Representation of fuzzy intervals may take advantage of some key concepts
emerging from possibility theory. Possibility theory has been widely studied; in
particular, for a given normal, upper-semicontinuous and quasi-concave mem-
bership function two dual functions, called the possibility and the necessity
measures have been introduced by Dubois and Prade in [12] and [13]. The
relationship between membership functions and possibility distributions was
primary introduced by Zadeh ([44]) in order to provide a graded semantics to
natural language statements. Many other aspects have been focused by Dubois
and Prade in [14] (see also the recent paper [16]) for normal fuzzy sets; Klir in
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[27] generalizes the standard fuzzy-set interpretation to non normal fuzzy sets
too. Furthermore, Dubois in [11] shows that many notions in statistics are well
interpreted by the numerical possibility theory and Baudrit and Dubois (details
in [2]) analyze the existing relations between possibility theory, imprecise prob-
ability and belief functions. More recently, Couso and Sanchez in [7] and in
[8] rephrase the possibilistic interpretation of fuzzy sets to define fuzzy random
variables and confidence interval for fuzzy approximations.

In this paper we present a new representation of fuzzy intervals (called ACF-
representation) based on possibility theory: associated to the membership func-
tion, we define an Average Cumulative Function (ACF), which is monotonic
with values in [0, 1]. We illustrate how to build the representation and we ana-
lyze its basic properties. The ACF can be uniquely defined for any fuzzy interval
and we show that the α−cuts of a fuzzy interval u can be directly obtained from
the ACF.

A relevant aspect motivating the use of the ACF representation stays in the
fact that it can be successfully adopted to determine the membership function
from experimental data. An interesting link is indeed established between AC
function and quantile functions with a possibly statistical interpretation poten-
tially useful in real applications.

The ACF-representation is crucial because a one-to-one relationship can be
established between the set of ACFs and the membership functions of fuzzy
intervals. In the specific case of continuous membership function, the ACF is
continuous too (and monotonic) and it has the same properties of a statistical
cumulative distribution function (cdf). We will shortly discuss about parametric
ACF functions, based on monotonic spline functions, in order to obtain families
of ”basic” functions useful in computations and applications.

As well known, any fuzzy interval has two equivalent representations given
in terms of the so called Left and Right side of the membership function (LR-
representation introduced by Dubois Prade) or in terms of Lower and Upper
branches defining the endpoints of the α-cuts (LU-representation introduced by
Voxman and Goetschel - see, e.g., [3]). We will analyze the basic relationship
between ACF and LU representations, in order to obtain a strict connection
between the LR, LU and ACF representations; it is then possible to go from
one representation to the other two, through appropriate transformations.

The paper is organized in five sections; in section 2 we define the ACF, its
basic properties and its relation with the LU-representation i.e. the α−cuts. In
section 3 we show the connection between the ACF and the quantile functions
and in section 4 the parametric representation of ACF is detailed with exam-
ples. The fifth section ends the paper with some comments and ideas for future
research.
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2 Average cumulative functions associated to a
fuzzy interval

We consider real fuzzy intervals u with compact support [a, b] and compact
nonempty core [c, d] ⊂ [a, b] where a ≤ c ≤ d ≤ b ∈ R; they are defined in
terms of a quasi-concave, upper-semicontinuous function u : R −→ [0, 1] such
that [a, b] = cl ({x|u(x) > 0}) is the support and [c, d] = {x|u(x) = 1} is the
core (here, cl (A) is the closure of set A). The space of fuzzy intervals will be
denoted by RF .

We first consider the so-called proper fuzzy intervals, such that a < c ≤ d <
b. The membership function of u ∈ RF can be represented in the form

u(x) =





0 if x < a
uL(x) if a ≤ x < c

1 if c ≤ x ≤ d
uR(x) if d < x ≤ b

0 if x > b

(1)

where uL : [a, c] −→ [0, 1[ is a nondecreasing right-continuous function, uL(x) >
0 for x ∈]a, c], called the left side of the fuzzy interval and uR : [d, b] −→ [0, 1]
is a nonincreasing left-continuous function, uR(x) > 0 for x ∈ [d, b[, called the
right side of the fuzzy interval. If c = d then u is called a fuzzy number and
{c} is the core or u. Before the end of subsection 2.1, we will generalize the
ACF representation to include any form of fuzzy intervals, including special and
non-proper (crisp) cases.

We extend the two functions uL(x) and uR(x) to the real domain by setting

uLext(x) =





0 if x < a
uL(x) if a ≤ x < c

1 if x ≥ c
(2)

uRext(x) =





1 if x ≤ d
uR(x) if d < x ≤ b

0 if x > b.
(3)

Following Dubois-Kerre-Mesiar-Prade (see, e.g., [18], [19]), a fuzzy interval
u ∈ RF can be viewed as a possibility distribution on the real numbers and there
exists a pair of cumulative distribution functions, called the lower cdf and the
upper cdf of u, respectively, based on the extended left side function uLext(x) and
the extended right side function uRext(x). As described in [18], a fuzzy interval u
with membership (1) can be equivalently characterized by the pair (Posu, Necu)
of function Posu : R −→ [0, 1] and Necu : R −→ [0, 1] given by

Posu(x) = sup {u (t) | t ≤ x} = uLext(x) (4)

Necu(x) = 1− sup {u (t) | t > x} = 1− lim
t↓x

uRext(t). (5)

3
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By construction, the two distribution functions Posu and Necu are nonde-
creasing and càdlàg (French ”continue à droite, limite à gauche”, right contin-
uous with left limits) in all points belonging to their domain R.

For interpretations of Posu and Necu it can useful to consider the extended
literature on possibility theory, born with the papers [44], [13], [19] and recently
extended with the books [4] and [15], [16].

In the present work, instead of the pair (Posu, Necu), we consider a modified
pair of functions where the second component is substituted by

FRu (x) = 1− uRext(x) =





0 if x ≤ d
1− uR(x) if d < x ≤ b

1 if x > b.
(6)

For uniformity of notation, we also denote

FLu (x) = uLext(x). (7)

Both functions FLu and FRu are non decreasing and, from the upper semi-
continuity of u, FLu is right continuous while FRu is left continuous. Clearly, we
have:

u (x) = FLu (x)− FRu (x) ∀x ∈ R. (8)

Remark that, for continuous membership functions, we always have lim
t↓x

uRext(t) = uRext(x) and FRu (x) = Necu(x) and any weighted average (convex
combination) of the two functions FLu and FRu can be used to represent a fuzzy
interval.

Definition 1 For a fixed value of λ ∈ [0, 1], the λ-Average Cumulative function
(λ-ACF) of u is defined to be the following convex combination of FLu and FRu ,
for all x ∈ R,

F (λ)
u (x) = (1− λ)FLu (x) + λFRu (x) (9)

=





0 if x < a
(1− λ)uL(x) if a ≤ x < c

1− λ if c ≤ x ≤ d
1− λuR(x) if d < x ≤ b

1 if x > b.

F
(λ)
u is non-decreasing, right continuous on ]−∞, d[ and left continuous on

]c,+∞[. For the value λ = 1
2 we denote F

( 1
2 )

u (x) simply by Fu(x).

Remark 2 The two functions FLu and FRu can be derived also in the setting of
the functions of bounded variation (BV); indeed, if we define the total variation
function of u as:

Vu (x) = sup





n∑

j=1

|u (tj)− u (tj−1)| ; tj ∈ Px
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if x ∈ a, b], where Px = {a = t0 < t1 < ... < tn = x} is a finite decomposition of
[a, x], Vu (x) = 0 if x ≤ a and Vu(x) = Vu(b) if x ≥ b, then we have (see [1]):

FLu (x) =
Vu (x) + u(x)

2
(10)

FRu (x) =
Vu (x)− u(x)

2
. (11)

In this context, FLu and FRu are called the positive and the negative variations
of u, respectively, and equation (8) is called the Jordan decomposition of u.
It is well known that FLu is non-decreasing and right continuous while FRu is
non-decreasing and left continuous.

Remark 3 In the continuous case, i.e. when the membership function of u is
continuous, we have

F (λ)
u (x) = (1− λ)uLext(x) + λ

(
1− uRext(x)

)

= (1− λ)Posu (x) + λNecu (x) .

As a consequence, for continuous u, each function F
(λ)
u = (1 − λ)FLu + λFRu

is nondecreasing and càdlàg for all λ ∈ [0, 1]; it can be considered as a cdf,

as indeed lim
x−→−∞

F
(λ)
u (x) = 0 and lim

x−→+∞
F

(λ)
u (x) = 1; its generalized inverse,

defined by (F
(λ)
u )−1(t) = inf{x ∈ R|F (λ)

u (x) ≥ t} = sup{x ∈ R|F (λ)
u (x) < t} is

also called, in statistical literature, the quantile function of F
(λ)
u .

Remark 4 The average of the possibility and necessity functions 1
2Posu (x) +

1
2Necu (x) is called ”credibility distribution” by Liu (see [33]); it coincides with
Fu when u is a continuous fuzzy interval.

In Figure 1 we represent an LR fuzzy interval u and the corresponding

functions F
(λ)
u for some values of λ ∈ [0, 1].

Proposition 5 The λ-ACF has the following translation property: for a given
fuzzy interval u ∈ RF and a number ρ ∈ R, the translated fuzzy interval v =
u+ ρ, with membership function v(x) = u(x− ρ), is such that

F
(λ)
u+ρ(x) = (1− λ)vLext(x) + λvRext(x) (12)

= (1− λ)uLext(x− ρ) + λuRext(x− ρ)

= F (λ)
u (x− ρ).

An interesting connection between the λ-ACF of u and the opposite fuzzy
interval −u can be established. We recall that, from the extension principle,
the fuzzy number −u can be defined by the following membership function

(−u)(x) := u(−x), for all x ∈ R.

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Fuzzy Interval u

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1
Fuzzy Interval −u

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

λ=0.3

λ=0.5

λ=0.8

λ−ACF functions of u

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

λ=0.3

λ=0.5

λ=0.8

λ−ACF functions of −u

Figure 1: A fuzzy interval u (top,left) and −u (top,right) and the corresponding
lambda-ACFs, for λ ∈ {0.3, 0.5, 0.8}.

We can also write (−u)(−x) := u(x), i.e., the membership value (−u)(−x) of
−x ∈ R, with respect to the fuzzy interval (−u), is the same as the membership
value of x with respect to u.

We have the following property, relating the λ-ACF of u and the (1−λ)-ACF
of −u.

Lemma 6 Let u ∈ RF and let −u ∈ RF be its opposite interval; then, the
following equality is true for all λ ∈ [0, 1]

F (λ)
u (−x) + F

(1−λ)
−u (x) = 1, for all x ∈ R

where F
(1−λ)
−u is the (1− λ)-ACF of −u.

Proof. Let [a, b] be the support of u and [c, d] its core, with a ≤ c ≤ d ≤ b,
so that the support and the core of −u are, respectively, [−b,−a] and [−d,−c],
with −b ≤ −d ≤ −c ≤ −a ≤ 0. The membership function of −u is given by

(−u)(x) =





0 if x < −b
uR(−x) if −b ≤ x < −d

1 if −d ≤ x ≤ −c
uL(−x) if −c < x ≤ −a

0 if x > −a

so that the extended functions of −u are

(−u)Lext(x) = uRext(−x) (13)

6
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(−u)Rext(x) = uLext(−x) (14)

It follows that the two functions FL−u(x) = (−u)Lext(x) = uRext(−x) and FR−u(x) =
1− (−u)Rext(x) = 1−uLext(−x) are, respectively, nondecreasing, right continuous
and nonincreasing, left continuous.

Then, from F
(1−λ)
−u (x) = λ(−u)Lext(x) + (1− λ)

(
1− (−u)Rext(x)

)
with (13)-(14)

and F
(λ)
u (−x) = (1− λ)FLu (−x) + λFRu (−x) we obtain

F (λ)
u (−x) + F

(1−λ)
−u (x) = (1− λ)FLu (−x) + λFRu (−x)

+λFL−u(−x) + (1− λ)FR−u(x)

= (1− λ)uLext(−x) + λ
(
1− uRext(−x)

)

+λuRext(−x) + (1− λ)
(
1− uLext(−x)

)

= λ+ (1− λ) = 1.

Remark 7 From Lemma 6 we immediately deduce the following formula for
the λ-ACF of −u:

F
(λ)
−u (−x) = 1− F (1−λ)

u (x), for all x ∈ R.

The latest lemma 6 is applied to prove our main result that is the next
theorem 10: it shows that the α-cuts of any fuzzy interval can be obtained by
inverting the λ-ACFs of u and −u for any value of λ ∈]0, 1[. Its proof will
immediately show that the λ-ACFs corresponding to the values λ = 0 or λ = 1

are not able to capture completely the α-cuts [u−α , u
+
α ], as in fact F

(0)
u and F

(1)
−u

loose information on uR, while F
(1)
u and F

(0)
−u loose information on uL.

Remark 8 As we have previously shown, the two functions F
(λ)
u and F

(1−λ)
−u do

not have, in general, the properties of a cdf (indeed, F
(λ)
u is càdlàg on [a, b] only if

uR is continuous and F
(1−λ)
−u is càdlàg on [−b,−a] only if uL is continuous). But

it is straightforward to verify that, for any value of λ ∈]0, 1[, the function F
(λ)
u

is càdlàg on ]−∞, d[ and the function F
(1−λ)
−u is càdlàg on ]−∞,−c[ implying

that, at least partially in their domains, they have the properties of a cdf.

For a given nondecreasing function F : [a, b] −→ [0, 1], the generalized inverse
(also called the quantile function of F in probability theory, see, e.g. [20], when
F is càdlàg) is defined to be the function F−1 : [0, 1] −→ [a, b] such that

F−1(α) = inf{x|F (x) ≥ α} for all α ∈ ]0, 1] and F−1(0) = a (15)

7
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Remark 9 An equivalent definition of (15) for function F , called in [26] the
pseudo-inverse F (−) : [0, 1] −→ R of F , is

F (−)(α) =

{
a if {x|F (x) < α} is empty
sup{x|F (x) < α} otherwise.

(16)

Several properties of the pseudo-inverse of a nondecreasing function are analyzed
in [26]. The equivalence between the two definitions in (15) and (16) can be
deduced from Theorem 1 in [21], observing that in its proof F is only required
to be nondecreasing.

Clearly, F−1 is not the ordinary inverse, unless F itself in strictly increasing
from 0 to 1. The following well-known properties of F−1 (see [20]) have a role
in a possibly statistical interpretation of the next Theorem 10:

1) F−1 is nondecreasing, left continuous and has right limits lim
h↓0

F−1(p+

h) = inf{x|F (x) > p};
2) F−1(F (x)) ≤ x for all x ∈ [a, b] with 0 < F (x) < 1;
3) F (F−1(p)) ≥ p for all p ∈]0, 1[ and for real x it is F−1(p) ≤ x if and

only if p ≤ F (x).

2.1 Main property of ACF representation

The main theorem below shows that the (partial) càdlàg property 1) is anyhow
sufficient to determine all the relevant α-cuts [u−α , u

+
α ] of u, i.e., for α ∈]0, 1].

Recall that the fuzzy interval −u has α-cuts given by [−u+
α ,−u−α ], so that, in

particular, u+
α = −(−u)−α .

Theorem 10 Let u ∈ RF and let F
(λ)
u , F

(1−λ)
−u be the λ-ACF of u and the

(1− λ)-ACF of −u, respectively, for any given value λ ∈]0, 1[. For all α ∈]0, 1],
the α-cut [u−α , u

+
α ] of u is given by

u−α = inf
{
x ∈ [a, c]|F (λ)

u (x) ≥ (1− λ)α
}

(17)

=
(
F (λ)
u |∗

)−1

((1− λ)α)

u+
α = −(−u)−α = − inf

{
x ∈ [−b,−d]|F (1−λ)

−u (x) ≥ λα
}

(18)

= −
(
F

(1−λ)
−u |∗

)−1

(λα)

where
(
F

(λ)
u |∗

)−1

and
(
F

(1−λ)
−u |∗

)−1

are the generalized inverses of the restric-

tions of F
(λ)
u and F

(1−λ)
−u to the subintervals [a, c] and [−b,−d], respectively (or

more generally to ]−∞, c] and ]−∞,−d]).

In the particular case of λ = 1
2 , we obtain, denoting Fu = F

( 1
2 )

u and F−u = F
( 1
2 )
−u ,

u−α = inf
{
x|Fu(x) ≥ α

2

}
= (Fu)

−1
(α

2

)
(19)

u+
α = − inf

{
x|F−u(x) ≥ α

2

}
= − (F−u)

−1
(α

2

)
.

8
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Proof. Let α ∈ ]0, 1] be fixed. Observe first that F
(λ)
u (x) = 1−λ for all x ∈ [c, d]

so that inf{x|F (λ)
u (x) ≥ (1 − λ)α} ≤ c and inf{x|F (1−λ)

−u (x) ≥ λα} ≤ −d. Due

to (17), we can consider only x ≤ c and then the inequality F
(λ)
u (x) ≥ (1− λ)α

is equivalent to (1− λ)uL (x) ≥ (1− λ)α, i.e., uL (x) ≥ α if x ∈]a, c]; it follows

that inf{x|F (λ)
u (x) ≥ (1 − λ)α} = inf{x|uL(x) ≥ α} = u−α . Analogously, due

to (18), we can consider only x ≤ −d, so that the inequality F
(1−λ)
−u (x) ≥ λα,

using Lemma 6, is equivalent to λuR(−x) ≥ λα, i.e., uR(−x) ≥ α; it follows that

− inf
{
x|F (1−λ)
−u (x) ≥ λα

}
= sup{−x|F (1−λ)

−u (x) ≥ λα} = sup{y|uR(y) ≥ α} =

u+
α .

Remark 11 Considering λ = 1
2 , we have F−u(x) = 1 − Fu(−x) for all x, so

that

u+
α = − inf{x|1− Fu(−x) ≥ α

2
}

= − inf{−t|Fu(t) ≤ 1− α

2
}

= sup{x|Fu(x) ≤ 1− α

2
}.

A consequence is that, if Fu(x) is continuous and strictly increasing, u−α is such
that Fu(u−α ) = α

2 and u+
α is such that Fu(u+

α ) = 1 − α
2 ; furthermore, if u has

{c} as the core and considering α = 1, we obtain c = inf{x|Fu(x) ≥ 1
2} =

sup{x|Fu(x) ≤ 1
2} i.e. c = {x|Fu(x) = 1

2}. The core value c (assumed to be
unique) has the same property as the median of Fu(x), when we consider Fu
itself as a statistical cdf. In addition, with the same assumptions on Fu, it is
immediate that

u−α = F−1
u (

α

2
) and u+

α = F−1
u (1− α

2
). (20)

Given any fixed value λ ∈ ]0, 1[ , consider a nondecreasing function F :
R −→ [0, 1] satisfying the properties:

1) aF = sup{x|F (x) = 0} ∈ R, bF = inf{x|F (x) = 1} ∈ R (clearly
aF ≤ bF );

2) cF = inf{x|F (x) ≥ 1 − λ} ∈ R, dF = sup{x|F (x) ≤ 1 − λ} ∈ R
(clearly cF ≤ dF );

3) aF ≤ cF ≤ dF ≤ bF and F is right-continuous on [aF , cF [, left-
continuous on ]dF , bF ] and F (x) = 1− λ for all x ∈ [cF , dF ].

In properties 1 and 2 we practically assume that the sets {x|F (x) = 0} and
{x|F (x) = 1} are not empty implying that F represents a fuzzy number with a
compact support and compact nonempty core.

Then there exists a unique fuzzy interval uF ∈ RF with λ-ACF, for λ ∈ ]0, 1[
given by F . Indeed, the membership function of uF is given by (compare with

9
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Definition 1.)

uF (x) =





0 if x < aF
1

1−λF (x) if aF ≤ x < cF
1 if cF ≤ x ≤ dF

1
λ (1− F (x)) if dF < x ≤ bF

0 if x > bF

(21)

and, from the assumptions 1), 2) and 3) on F , uF is a fuzzy interval (the proof
is immediate by directly verifying that uF ∈ RF ).

We denote by Fλ(R) the family of all functions F : R −→ [0, 1] satisfying
properties 1)-2)-3).

We soon deduce that, for any fixed λ ∈ ]0, 1[ there exists a bijection between
the set of fuzzy intervals, RF , and the family of nondecreasing functions Fλ(R):

φλ : RF −→ Fλ(R), φλ(u) = F (λ)
u (22)

φ−1
λ : Fλ(R) −→ RF , φ−1

λ (F ) = uF . (23)

By construction, it is obvious that φ−1
λ (φλ(u)) = u for all u ∈ RF , and that

φλ(φ−1
λ (F )) = F for all F ∈ Fλ(R). We summarize the above result by the

following proposition:

Proposition 12 For any u ∈ RF , its λ-AC function given by definition 1 satis-
fies properties 1),2),3) and, vice-versa, for any F satisfying 1),2),3) there exists
a unique element uF ∈ RF , given by (21), having F as its λ-AC function.

In the particular case of λ = 1
2 , the family Fλ(R) will be simply denoted by

F(R) and the bijection φλ will be denoted by φ; the 1
2−AC function of u ∈ RF

is a nondecreasing function Fu : R −→ [0, 1] such that Fu(x) = 1
2u

L(x) on [a, c[,
Fu(x) = 1 − 1

2u
R(x) on ]d, b] and Fu(x) = 1

2 on the core [c, d] of u. On the
other hand, if F ∈ F(R) is given, the membership function of the corresponding
fuzzy number uF ∈ RF has left and right branches given by uL(x) = 2F (x) and
uR(x) = 2− 2F (x)

If u ∈ RF is continuous, then Fu ∈ F(R) is also continuous; vice-versa, if
F ∈ F(R) is continuous, then also uF ∈ RF is continuous. So, the bijection
φ : RF −→ F(R) transforms continuous fuzzy intervals into continuous 1

2 -AC

functions and the bijection φ−1 : F(R) −→ RF transforms continuous F ∈ F(R)
into continuous uF ∈ RF .

The assumption of a proper fuzzy interval is not really restrictive in our
construction and we can consider the λ-ACF representation for three special
cases, according to the possible equalities for the values a, c, d, b and to the
absence of proper definitions for some components in equation (1):

(i) a = c ≤ d < b (right fuzzy intervals),
(ii) a = c ≤ d = b (crisp intervals), and
(iii) a < c ≤ d = b (left fuzzy intervals).
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In case (i), u is a right fuzzy interval with membership function

u(x) =





0 if x < a = c
1 if c ≤ x ≤ d

uR(x) if d < x ≤ b
0 if x > b

(24)

so that

uLext(x) =

{
0 if x < a
1 if x ≥ c , uRext(x) =





1 if x ≤ d
uR(x) if d < x ≤ b

0 if x > b
(25)

and we have

F (λ)
u (x) =





0 if x < a = c
1− λ if c ≤ x ≤ d

1− λuR(x) if d < x ≤ b
1 if x > b.

(26)

In case (ii), u is a crisp interval [c, d] (improper fuzzy interval), or a crisp number
if also c = d, with membership function

u(x) =





0 if x < a = c
1 if c ≤ x ≤ d
0 if x > d = b

(27)

so that

uLext(x) =

{
0 if x < a = c
1 if x ≥ c , uRext(x) =

{
1 if x ≤ d
0 if x > d = b

(28)

and we obtain

F (λ)
u (x) =





0 if x < a = c
1− λ if c ≤ x ≤ d

1 if x > d = b.
(29)

In case (iii), u is a left fuzzy interval with membership function

u(x) =





0 if x < a
uL(x) if a ≤ x < c

1 if c ≤ x ≤ d
0 if x > d = b.

(30)

so that

uLext(x) =





0 if x < a
uL(x) if a ≤ x < c

1 if c ≤ x ≤ d
, uRext(x) =

{
1 if x ≤ d = b
0 if x > b

(31)

and we have

F (λ)
u (x) =





0 if x < a
(1− λ)uL(x) if a ≤ x < c

1− λ if c ≤ x ≤ d
1 if x > d = b.

(32)

11
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2.2 Arithmetic operations with ACF

It is interesting to express fuzzy arithmetic operations in terms of 1
2 -AC func-

tion. If } is any binary operation defined on the space RF , there exists a
corresponding operation }′ on the space F(R), such that, in terms of bijections
φ (22) and φ−1 (23) it holds:

Fu }′ Fv = φ(u} v), and u} v = φ−1(Fu }′ Fv). (33)

Among the most popular operations with fuzzy numbers there are the scalar
multiplication (scalar different from zero) and the addition of fuzzy intervals.
Below we show how the scalar multiplication and binary addition between fuzzy
sets can be transformed to the respective operation between AC functions.

As we have seen in the previous section, the relationships between the mem-
bership function u(x) and the corresponding AC function Fu(x) are the following
(we consider, for simplicity, the case with a < c < d < b):

u(x) =





0 if x < a
uL(x) if a ≤ x < c

1 if c ≤ x ≤ d
uR(x) if d < x ≤ b

0 if x > b.

(34)

Fu(x) =





0 if x < a
1
2u

L(x) if a ≤ x < c
1
2 if c ≤ x ≤ d

1− 1
2u

R(x) if d < x ≤ b
1 if x > b.

(35)

The scalar multiplication ku of u is such that, for k 6= 0, (ku) (x) = u
(
x
k

)

and for its AC function we have:

Proposition 13 If u is given by (34) and k 6= 0, then the AC function of ku
is given by

Fku(x) =

{
Fu(xk ) if k > 0

1− Fu(xk ) if k < 0
(36)

Proof. Consider first the case k > 0. We have (ku) (x) = u
(
x
k

)
, given by:

(ku) (x) =





0 if x < ka
uL
(
x
k

)
if ka ≤ x < kc

1 if kc ≤ x ≤ kd
uR
(
x
k

)
if kd < x ≤ kb

0 if x > kb.

(37)

from (35) it follows that

Fku(x) =





0 if x < ka
1
2u

L
(
x
k

)
if ka ≤ x < kc

1
2 if kc ≤ x ≤ kd

1− 1
2u

R
(
x
k

)
if kd < x ≤ kb

1 if x > kb.

(38)
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i.e. Fku(x) = Fu(xk ). To prove the case k < 0 (i.e. (−k) > 0), from Lemma 6,

Fku(x) = 1− F(−k)u(−x) = 1− Fu
(−x
−k

)
= 1− Fu

(x
k

)
.

Remark 14 If k = 0 then ku = {0} is the crisp 0 ∈ R and its membership
function is:

{0} (x) =

{
0 if x 6= 0
1 if x = 0

(39)

so that

F{0}(x) =

{
0 if x < 0
1 if x ≥ 0

. (40)

For the addition of two different proper fuzzy intervals u, v with supports
[a, b] and [a′, b′] , we require an additional property of the generalized inverse
that, in this case, to avoid confusing notations, it will be denoted by ϕu =
F−1
u ϕv = F−1

v . Their addition ϕ = ϕu+ ϕv has itself a generalized inverse
ϕ−1 defined on R with values in [0, 1] and such that ϕ−1 (x) = 0 if x < a +
a′, ϕ−1 (x) = 1 if x > b+ b′ and

ϕ−1 (x) = inf {α | ϕ (α) ≥ x} (41)

if x ∈ [a+ a′, b+ b′].

Proposition 15 The function ϕ−1 defined in (41) is the AC function of u+ v
and, according to (33), we have:

(Fu ⊕′ Fv) (x) = ϕ−1 (x) ∀x ∈ R

i.e. (Fu ⊕′ Fv) =
(
F−1
u + F−1

v

)−1

Proof. Considering that

ϕ− (α) = lim
h↗0

ϕ (α+ h) and ϕ+ (α) = lim
h↘0

ϕ (α+ h)

we have
ϕ− (α) ≤ ϕ+ (α)

with strict inequality iff ϕ is discontinuous at α and

ϕ−1 (x) = α⇔ x ∈
[
ϕ− (α) , ϕ+ (α)

]
for x ∈ [a+ a′, b+ b′] .

From theorem 10, we have that F−1
u

(
α
2

)
= u−α and F−1

v

(
α
2

)
= v−α . On the

other hand, we have −u+
α = F−1

−u
(
α
2

)
and −v+

α = F−1
−v
(
α
2

)
; but, using Lemma

6, we have:
α

2
= F−u

(
−u+

α

)
= 1− Fu

(
u+
α

)

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and
α

2
= F−v

(
−v+

α

)
= 1− Fv

(
v+
α

)

so that
Fu
(
u+
α

)
= 1− α

2
and Fv

(
v+
α

)
= 1− α

2
.

In terms of the inverses

u+
α = F−1

u

(
1− α

2

)
and v+

α = F−1
v

(
1− α

2

)
.

We conclude that

F−1
u+v

(α
2

)
= u−α + v−α = F−1

u

(α
2

)
+ F−1

v

(α
2

)
= (Fu ⊕′ Fv)

(α
2

)

F−1
u+v

(
1− α

2

)
= u+

α+v+
α = F−1

u

(
1− α

2

)
+F−1

v

(
1− α

2

)
= (Fu ⊕′ Fv)

(
1− α

2

)

and
F−1
u+v = (Fu ⊕′ Fv)−1

= ϕ−1.

Example 16 For linear shaped trapezoidal fuzzy intervals such as u = 〈a, c, d, b〉
and v = 〈a′, c′, d′, b′〉, we know that

u+ v = 〈a+ a′, c+ c′, d+ d′, b+ b′〉 . (42)

Corresponding to the left and right branches of the membership functions, the
ACF of u is Fu (x) = 1

2
x−a
c−a on [a, c[, Fu (x) = 1− 1

2
b−x
b−d on ]d, b] and Fu (x) = 1

2
on [c, d] (similarly for v); then

F−1
u (α) =

{
a+ 2α (c− a) if 0 ≤ α ≤ 1

2
d− 2

(
1
2 − α

)
(b− d) if 1

2 < α ≤ 1
(43)

(similarly for F−1
v (α)). For the addition we have

F−1
u+v(α) = F−1

u (α) + F−1
v (α) =

=

{
a+ a′ + 2α (c+ c′ − a− a′) if 0 ≤ α ≤ 1

2
d+ d′ − 2

(
1
2 − α

)
(b+ b′ − d− d′) if 1

2 < α ≤ 1

and it holds Fu+v =
(
F−1
u + F−1

v

)−1
.

3 AC function as a quantile function

In probability and statistical theory the following results are standard.
Consider a given probability space (Ω,A, P ). It is well known that (see

[20]): if U is a real random variable with uniform distribution on [0, 1], then
F : R → [0, 1] is a cdf with generalized inverse F−1 and if we consider the
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quantile transformation X = F−1(U), then the random variable X has exactly
F as its cdf.

Let X1, X2, ..., XN be N independent and identically distributed real random
variables on (Ω,A, P ) with common cdf F such that:

FN (x) =
1

N

N∑

i=1

I (Xi ≤ x) , x ∈ R, (44)

where

I (Xi ≤ x) =

{
1 if Xi ≤ x
0 if x < Xi

,

is the corresponding so called empirical distribution function, i.e., the fraction
(frequency) of observed values that are smaller or equal to x.

Theorem 17 (Glivenko-Cantelli, Theorem 2.4.7 in [20]) Assuming that X1,
X2, ..., XN are independent and identically distributed with cdf F (x), the fol-
lowing property holds

sup
x∈R
|FN (x)− F (x)| → 0 a.s. on Ω

where the limit is obtained as N tends to infinity.

For a real random variable X with cdf FX , a quantile of order p ∈]0, 1[ is a
real value x where FX crosses or jumps over p.

Definition 18 ([42]) A quantile of order p ∈]0, 1[ for a cdf FX (or for the
associated random variable X) is a real value κp such that

lim
x↑κp

FX(x) ≤ p and FX(κp) ≥ p.

Consider a simple sample x1, x2, ..., xN from a real random variable X; for
a value of p ∈]0, 1], the (empirical) p-quantile κ̂p(N) is obtained by minimizing,
with respect to k, (see [10], [29], [30], [43]) the following (empirical) function

Sp,N (k) = (1− p)
N∑
i=1
xi<k

(k − xi) + p
N∑
i=1
xi>k

(xi − k); (45)

furthermore,
κ̂p(N) = arg min

k
Sp,N (k)

is an unbiased estimate of κp.
We have now all the elements to show that any AC function can be inter-

preted in terms of quantile functions and this property will be useful to estimate
the membership function of a fuzzy number or interval u ∈ RF by an (empirical)
estimate of its AC function in terms of finite samples of independent values in
its support.
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For simplicity, if not declared explicitly, in the rest of the paper we will
consider the λ-AC functions only for λ = 1

2 and the 1
2 -ACF of fuzzy intervals u

and −u will be denoted by Fu(x) and F−u(x), respectively.
We will first consider the case of a fuzzy number u ∈ RF with a continuous

membership function and a single-valued core. In this case, only the AC function
Fu is needed to obtain the α-cuts of u and we can apply the Glivenko-Cantelli
theorem directly to Fu. The general case will be considered in subsection 3.2.

3.1 The case of continuous u

According to Theorem 10 it is easy to deduce the following proposition.

Proposition 19 Let u ∈ RF have continuous membership function (1); let
Fu(x), x ∈ R be its 1

2 -ACF. Then for all α ∈]0, 1], the α-cuts [u−α , u
+
α ] of u are

such that u−α is the α
2 -quantile of Fu(x) and u+

α is the α
2 -quantile of F−u(x).

Proof. We have

Fu(x) =
1

2
uLext(x) +

1

2

(
1− uRext(x)

)

and, from equality F−u(x) = 1− Fu(−x),

F−u(x) =
1

2
uRext(−x) +

1

2

(
1− uLext(−x)

)
;

From the continuity of uLext(x) and uRext(x) it follows that both Fu and F−u are
continuous and their inverses are quantile functions.

Let us consider the case where the membership function is given at a finite
number of points, i.e. suppose that the fuzzy number u ∈ RF is ”measured”
at N (independent) observations (ti, u(ti)); this is equivalent to consider a set
of independent variables X1, X2, ..., XN identically distributed on the support
[a, b] and to extract a simple sample of N distinct values ti from each Xi,
i = 1, 2, ..., N .

Consider the decomposition PN= {x1 < x2 < ... < xN} of the support [a, b],
obtained by ordering the ti such that t(1) < t(2)... < t(N) and defining xi = t(i)
for i = 1, 2..., N . We define the corresponding empirical AC function as:

F̂PN
(x) =

1

N

N∑

i=1

Î (x ≥ xi) (46)

where

Î (x ≥ xi) =

{
1 if x ≥ xi
0 if x < xi

. (47)

For α ∈]0, 1], the α-cuts of u can be estimated by computing the empirical
α
2 -quantile of the sample data {xi|i : 1, ..., N} and the empirical α

2 -quantile of
the data {−xi|i : 1, ..., N}. To this issue, we have to minimize the two empirical
functions, as in eq. (45),

S−α (m) = (1− α

2
)

N∑
i=1
xi<m

(m− xi) +
α

2

N∑
i=1
xi>m

(xi −m) (48)
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and

S+
α (m) = (1− α

2
)

N∑
i=1
−xi<m

(m+ xi) +
α

2

N∑
i=1
−xi>m

(−xi −m). (49)

The obtained values

m−α (N) = arg min
m
S−α (m) (50)

m+
α (N) = arg min

m
S+
α (m) (51)

give an estimate [m−α (N),m+
α (N)] of the α-cut [u−α , u

+
α ] of u and are obtained

without computing directly the (empirical) AC function from the data.

For a given empirical AC function F̂PN
, the values m−α (N) and m+

α (N) are
called the plug-in non parametric estimators of u−α and u+

α respectively (as in
[42]).

The Glivenko-Cantelli theorem can be applied to analyze the convergence of
interval [m−α (N),m+

α (N)] to the α−cut [u−α , u
+
α ].

Remark 20 It is interesting to observe that the empirical function S+
α (m) can

also be written as

S+
α (m) =

α

2

N∑
i=1
xi<m

(m− xi) + (1− α

2
)

N∑
i=1
xi>m

(xi −m) (52)

and, comparing with eq. (45), the estimated value m+
α (N) is exactly the (1− α

2 )-
quantile of the sample data {xi|i : 1, ..., N}; so, the extreme values u−α and u+

α of
each α-cut of u can be estimated, statistically, by an α

2 -quantile and an (1− α
2 )-

quantile, respectively.

In the case of a continuous ACF Fu, we have that the α
2 -quantile and the(

1− α
2

)
-quantile of Fu give exactly the α-cuts of u; as a consequence, the

Glivenko-Cantelli theorem ensures that:

Proposition 21 F̂PN
converges to F almost surely uniformly on the support of

u and this implies that the empirical intervals [m−α (N),m+
α (N)] will converge to

[u−α , u
+
α ] as N −→∞ (assuming that {t1, t2, ..., tN} is a simple sample).

In practical applications the assumption of continuity of Fu is not restrictive
and it is a standard approach in statistics to estimate the quantiles and the
cumulative distribution function.

Remark 22 In several statistical software procedures, the quantiles of the em-
pirical distribution of observations ti, i = 1, ..., N , are frequently computed by
sorting the data in ascending order, taking the sorted values xi = t(i) as the

quantiles corresponding to probability pi = 2i−1
2N , i = 1, , ..., N and using linear

interpolation for quantiles corresponding to intermediate probabilities. A similar
algorithm is not exact; this is why we adopt (50) and (51). An example is the
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following with N = 8, x1 = 2, x2 = 4, x3 = 5, x4 = 6, x5 = 8, x6 = 9, x7 = 11,
x8 = 13; the empirical fuzzy interval has (piecewise constant) membership func-
tion given by

u(x) =





0 if x < 2 or x > 13
1
4 if x ∈ [2, 4[ or x ∈]11, 13]
1
2 if x ∈ [4, 5[ or x ∈]9, 11]
3
4 if x ∈ [5, 6[ or x ∈]8, 9]
1 if x ∈ [6, 8] (the core)

.

The core is [6, 8] and the support is [2, 13] so that a = 2, b = 13, c = 6, d = 8.

3.2 The case of a general fuzzy interval u

The two functions defined in the next proposition satisfy the properties of a cdf.

Proposition 23 Let λ ∈]0, 1[ be fixed and F
(λ)
u be the λ-ACF of u ∈ RF with

membership function (1). Then, the two functions Φ
(λ)
u , Φ

(1−λ)
−u : R −→ [0, 1]

defined by

Φ(λ)
u (x) =

{
1

1−λF
(λ)
u (x) if x < c

1 if x ≥ c (53)

and

Φ
(1−λ)
−u (x) =

{
1
λF

(1−λ)
−u (x) if x < −d

1 if x ≥ −d (54)

are càdlàg on R with Φ
(λ)
u (x) = 0 if x < a and Φ

(1−λ)
−u (x) = 0 if x < −b.

Proof. For function Φ
(λ)
u the proof is immediate because F

(λ)
u is càdlàg on

]−∞, d[; for function Φ
(1−λ)
−u we have F

(1−λ)
−u (x) = λFLu (x)+(1−λ)FR−u(x) and,

from equations (13)-(14), for x < −d, it is F
(1−λ)
−u (x) = λFL−u(x) with FL−u right

continuous and càdlàg.
For the value λ = 1

2 we will denote the two functions (53) and (54) by Φu(x)
and Φ−u(x), respectively. We have

Φu(x) =

{
2Fu(x) if x < c

1 if x ≥ c (55)

and

Φ−u(x) =

{
2F−u(x)) if x < −d

1 if x ≥ −d ; (56)

the two functions above are both càdlàg on R (a similar result has been obtained
in [17]).

Consider now the simple samples {tLi , i = 1, 2, ..., NL} from Φu(x) on its
support [a, c] and {tRj , j = 1, 2, ..., NR} from Φ−u(x) on its support [−b,−d];

let xLi = tL(i) and xRj = tR(j) be the corresponding ascending ordered values

and construct the decompositions (eventually by extending the samples to ob-
tain partitions) PL=

{
xL1 < xL2 < ... < xLNL

}
and PR=

{
xR1 < xR2 < ... < xRNR

}
.
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Again, we are assuming that the simple samples are obtained from NL inde-
pendent random variables with common cdf Φu and NR independent random
variables with cdf Φ−u on the same probability space (Ω,A, P ).

The empirical AC functions Φ̂PL(x) and Φ̂PR(x) are obtained according to eq.
(46). Together with the Proposition 23, the Glivenko-Cantelli theorem implies
the following property.

Proposition 24 Φ̂PL converges to Φu almost surely and uniformly and Φ̂PR

converges to Φ−u almost surely and uniformly as NL and NR tend to infinity

sup
x∈R

∣∣∣Φ̂PL (x)− Φu (x)
∣∣∣ → 0 a.s. on Ω

sup
x∈R

∣∣∣Φ̂PR (x)− Φ−u (x)
∣∣∣ → 0 a.s. on Ω.

It is immediate to obtain a Glivenko-Cantelli result for the AC function Fu
of a general u ∈ RF .

Proposition 25 Let u ∈ RF have AC function Fu and let Φu, Φ−u be as in
(55)-(56); define the empirical AC function of Fu as

F̂PN
(x) =

Φ̂PL (x) + 1− Φ̂PR (−x)

2

where PN = PL ∪ PR is the union of decompositions PL, PR defined above and
N = NL +NR. Then, for NL →∞ and NR →∞,

sup
x∈R

∣∣∣F̂PN
(x)− Fu (x)

∣∣∣→ 0 a.s. on Ω.

Proof. From the definition of Φu and Φ−u we have that, for all x ∈ R,

Φu(x) = uLext(x) and Φ−u (x) =

{
uRext(−x) if x < −d

1 if x ≥ −d
so that

Φu(x) =





0 if x < a
uL(x) if a ≤ x < c

1 if x ≥ c
and

1− Φ−u (−x) =





0 if x ≤ d
1− uR(x) if d < x ≤ b

1 if x > b
;

then

Φu(x) + 1− Φ−u (−x) =





0 if x < a
uL(x) if a ≤ x < c

1 if c ≤ x ≥ d
2− uR(x) if d < x ≤ b

2 if x > b

, i.e., (57)

Φu(x) + 1− Φ−u (−x) = 2Fu(x). (58)
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It follows that, for all x ∈ R,

∣∣∣F̂PN
(x)− Fu (x)

∣∣∣ =

∣∣∣∣∣
Φ̂PL (x) + 1− Φ̂PR (−x)

2
− Φu(x) + 1− Φ−u(−x)

2

∣∣∣∣∣

≤ 1

2

(∣∣∣Φ̂PL (x)− Φu(x)
∣∣∣+
∣∣∣Φ−u(−x)− Φ̂PR (−x)

∣∣∣
)

.

Then

sup
x∈R

∣∣∣F̂PN
(x)− Fu (x)

∣∣∣ ≤ 1

2
sup
x∈R

∣∣∣Φ̂PL (x)− Φu(x)
∣∣∣+ 1

2
sup
x∈R

∣∣∣Φ−u(−x)− Φ̂PR (−x)
∣∣∣

and the proof follows from Proposition 24, i.e. by the simultaneous application
of the Glivenko-Cantelli theorem to Φu and Φ−u.

The final step is now to apply the empirical quantile procedure to obtain the
estimates m−α (NL) and m+

α (NR) of u−α and u+
α , respectively. From eq. (57) the

α
2 -quantile of Fu(x) and F−u(x) will correspond to the α-quantile of Φu(x) and
Φ−u(x), respectively; we define the two (empirical) objective functions

SLα (m) = (1− α)
NL∑
i=1
xL
i <m

(m− xLi ) + α
NL∑
i=1
xL
i >m

(xLi −m) (59)

and

SRα (m) = α
NR∑
i=1
xR
i <m

(m− xRi ) + (1− α)
NR∑
i=1

xR
i >m

(xRi −m). (60)

The obtained values

m−α (NL) = arg min
m
SLα (m) (61)

m+
α (NR) = arg min

m
SRα (m) (62)

give an estimate [m−α (NL),m+
α (NR)] of the α-cut [u−α , u

+
α ] of u and, also in this

case, are obtained without computing directly the (empirical) AC function from
the data.

3.3 Computational experiments

In order to evaluate the applicability of equations (50) and (51) to approximate
the α-cuts of a fuzzy number we show a series of five experiments by generating
100 random samples from the ACF of a continuous fuzzy interval for different
sampling techniques.

We consider the fuzzy number u ∈ RF having α-cuts

[u−α , u
+
α ] = [10α0.5, 12− 2α1.5], α ∈ [0, 1].

The core of u is c = 10 and the support is [0, 12]. Observations from u can be
generated by sampling u−α and u+

α at n values αi, i = 1, ..., n, uniformly between
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0 and 1, for different values of n (so than a total of N = 2n data are obtained).
Furthermore, to verify robustness, we apply (50),(51) to randomly generated
fuzzy numbers u(k), k = 1, ...,K by perturbing the core and/or the support of
u, for a given number K of replications.

In each experiment, for a fixed n ∈ {11, 21, 51, 101}, K = 100 random sam-
ples [(u(k))−i , (u

(k))+
i ] are generated (i = 1, ..., n, k = 1, ...,K) and (50-51) are

applied for each k to obtain L = 41 estimated level-cuts [û
(k)−
βj

, û
(k)+
βj

] of u,

with βj = j−1
L−1 (j = 1, ..., L); finally, the averages (u)−βj

= 1
K

∑K

k=1
û

(k)−
βj

and

(u)+
βj

= 1
K

∑K

k=1
û

(k)+
βj

are compared with the exact α-cuts of u, u−βj
= 10β0.5

j ,

u+
βj

= 12 − 2β1.5
j . The percentage average absolute error (being u−βj

≥ 0, the

denominator is set to 1 + u−βj
to avoid possible division by zero)

AERR =
100

2L

L∑

j=1

(∣∣∣∣∣
(u)−βj

− u−βj

1 + u−βj

∣∣∣∣∣+

∣∣∣∣∣
(u)+

βj
− u+

βj

1 + u+
βj

∣∣∣∣∣

)

is computed for each experiment and different values of n.
In all figures describing the results, the top subplot shows the K = 100 repli-

cations of the sampled observation points
(

(u(k))−i , α
(k)
i

)
and

(
(u(k))+

i , α
(k)
i

)
,

for i = 1, ..., n and for the selected n (i.e. the membership functions of each

u(k)). The bottom-left subplot reproduces the analogous points
(

(û(k))−j , β
(k)
j

)

and
(

(û(k))+
j , β

(k)
j

)
, i.e. the K membership functions of the fuzzy numbers ob-

tained by (50-51). Finally, the bottom-right subplot reproduces the estimated
membership functions (black crosses) and the original membership correspond-
ing to the βj-cuts, j = 1, ..., L (blue circles).

In the first experiment, the samples [(u(k))−i , (u
(k))+

i ] are obtained from u

simply for different selections of the ”observed” levels α
(k)
i , i = 1, ..., n, randomly

generated from a uniform distribution between 0 and 1, and replicated K times.
In figure 2, the case with n = 21 is pictured.

In table 1, the AERR is given for the different values of n; we see that it
decreases quickly as the number of the observed levels increases from n = 11 to
n = 101.

Table 1: AERR for different values of n in first experiment.

n 11 21 51 101
AERR 4.33% 2.26% 0.90% 0.36%

The aim of the next four experiments is to verify the robustness of the
introduced estimation of u through its α-cuts, with respect to different ways to
perturb data:

1. the core is not the constant c = 10, but c(k) = c+ ξc,k where each ξc,k is
a normal variable with distribution N(0, σc) (mean 0 and variance σ2

c);
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Figure 2: First experiment, = 21.

2. the left value of the support is not the constant a = 0, but a(k) = ξa,k,
where each ξa,k is a normal variable randomly generate from a distribution
N(0, σa) (mean 0 and variance σ2

a);
3. the right value of the support is not the constant b = 12, but b(k) =

12 + ξb,k, where each ξb,k is a normal variable with distribution N(0, σb) (mean
0 and variance σ2

b).
As for the first experiment, we sample u−α and u+

α at n points αi generated
from uniform distribution on [0, 1] as follows: α1 = 0, αi = rand() and αn = 1
(N = 2n and rand() is a uniform pseudo-random number generator); the data
are then computed with the same shape as for u but with the modified core c(k)

and support [a(k), b(k)] (provided that a(k) < c(k) < b(k))

(u(k))−i = a(k) + (c(k) − a(k))α0.5
i

(u(k))+
i = b(k) − (b(k) − a(k))α1.5

i

The second experiment uses σc = 1.0, σa = 0.0 and σb = 0.0, i.e. only the core
is perturbed. Consider that σc = 1.0 produces a relatively big perturbation
with respect to c = 10.0. This appears in figure 3, where the case with n = 21
is pictured.

In table 2, the AERR for the second experiment is given for the different
values of n; also for this experiment the AERR rapidly decreases for n = 11 to
n = 101.

Table 2: AERR for different values of n in second experiment.

n 11 21 51 101
AERR 4.38% 2.29% 0.90% 0.35%

The third experiment uses σc = 1.0, σa = 0.5 and σb = 1.0, i.e. the core and
the support are both changed with relatively big perturbations. This appears
in figure 4, where the case with n = 21 is pictured, and in table 3, for different
values of n.
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Figure 3: Second experiment, with σc = 1.0, σa = 0.0, σb = 0.0 and n = 21.
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Figure 4: Third experiment, with σc = 1.0, σa = 0.5, σb = 1.0 and n = 21.
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Figure 5: Fourth experiment, with σc = 0.5, σa = 0.25, σb = 0.5 and n = 21.

Table 3: AERR for different values of n in third experiment.

n 11 21 51 101
AERR 4.81% 2.71% 1.26% 0.81%

.

Finally, the last two experiments are obtained by progressively reducing the
perturbations of the core and the support; in the fourth case, we chose σc = 0.5,
σa = 0.25 and σb = 0.5, in the fifth case we chose σc = 0.2, σa = 0.1 and
σb = 0.2. Tables 4 and 5 give the corresponding AERR for different n.

Table 4: AERR for different values of n in fourth experiment.

n 11 21 51 101
AERR 4.54% 2.42% 1.03% 0.46%

.

Table 5: AERR for different values of n in fifth experiment.

n 11 21 51 101
AERR 4.41% 2.32% 0.94% 0.37%

.

Resuming the results of the five experiments it follows that the AERR has
the same order of magnitude independently from the perturbations we apply
and this may be viewed as a good robustness property.

4 Parametric representation of ACFs

As in section 2, we consider fuzzy intervals u ∈ RF with membership function
u : R −→ [0, 1], with compact support [a, b] (where a = inf{x|u(x) > 0} and
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Figure 6: Fifth experiment, with σc = 0.2, σa = 0.1, σb = 0.2 and n = 21.

b = sup{x|u(x) > 0}) and nonempty compact core [c, d], c ≤ d (where c =
inf{x|u(x) = 1} and d = sup{x|u(x) = 1}).

From the same section it comes to light that any u ∈ RF has tree parametric
representations:

I LR-parametric uLR, with decompositions of the support for left and right
sides;

I LU-parametric uLU , with decompositions of [0, 1] for the lower and upper
branches;

I ACF-parametric uACF , i.e.,

uACF = {(xLi , FLi ), (xRj , F
R
j )|i = 0, 1, ..., NL, j = 0, 1, ..., NR}

with decompositions of left and right subintervals for quasi-càdlàg function Fu.
Using appropriate transformations of the parameters we can obtain each one
from the other; for example from LR we can obtain ACF as in (21).

Remark 26 The ACF-representation can be related to the horizontal member-
ship functions introduced in [35] and to the RDM arithmetic in [34]. Essentially,
the so called horizontal membership function of a fuzzy interval u ∈ RF with
α-cuts [u−α , u

+
α ] is represented in terms of the function

Hu(α, tu) = (1− tu)u−α + tuu
+
α for all tu ∈ [0, 1], α ∈]0, 1].

We then have, in general, for α ∈]0, 1],

Hu(α, tu) = (1− tu)(Fu|∗)−1(
α

2
)− tu(F−u|∗)−1(

α

2
), tu ∈ [0, 1]

and, for a continuous strictly increasing AC function Fu with ordinary inverse
F−1
u ,

Hu(α, tu) = (1− tu)F−1
u (

α

2
) + tuF

−1
u (1− α

2
), tu ∈ [0, 1].
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In the rest of this paper, we assume that F is continuous and we denote by
Fc(R) the subfamily of continuous functions of F(R).

A general approximation for functions F ∈ Fc(R) can be obtained by adopt-
ing parametric monotonic functions of the same type as suggested in [39] and
[40], e.g., the (2,2)-rational function p : [0, 1] −→ [0, 1] defined, for fixed but
arbitrary β0, β1 ≥ 0, by

p(t;β0, β1) =
t2 + β0t(1− t)

1 + (β0 + β1 − 2)t(1− t) , t ∈ [0, 1] (63)

The basic properties of p are that, for all β0, β1 ≥ 0, p(0;β0, β1) = 0, p(1;β0, β1) =
1, its derivative is nonnegative (considering right derivative at t = 0 and left
derivative at t = 1) and p′(0;β0, β1) = β0, p′(1;β0, β1) = β1. By changing the
values of β0, β1 ≥ 0, functions (63) generate an infinite number of monotonic
increasing functions.

The ”shape” functions p(t;β0, β1) can be adopted to represent functions F ∈
Fc(R) ”piecewise” on two decompositions of the intervals [aF , cF ] and [dF , bF ]
into NL subintervals aF = xL0 < xL1 < ... < xLNL

= cF and NR subintervals

dF = xR0 < xR1 < ... < xRNR
= bF ; at the extreme points of each subinterval ILi =[

xLi−1, x
L
i

]
and IRj =

[
xRj−1, x

R
j

]
the values of F are fixed to the nondecreasing

values FLi , i = 0, 1, ..., NL and FRj , j = 0, 1, ..., NR with FL0 = 0 < FLi < FLNL
=

1
2 (with FLi−1 ≤ FLi for i = 2, ..., NL − 1) and FR0 = 1

2 < FRj < FRNR
(with

FRj−1 ≤ FRj for j = 2, ..., NR − 1).
Finally, F ∈ Fc(R), is constructed by choosing NL+NR pairs of nonnegative

parameters (βL0,i, β
L
1,i), (βR0,j , β

R
1,j) for all i = 1, ..., NL and j = 1, ..., NR (the

slopes of F at the extremes of each subinterval ILi and IRj ) and by setting

F (x) =





0 if x < aF

FLi−1 + (FLi − FLi−1)p(
x−xL

i−1

xL
i −xL

i−1
;βL0,i, β

L
1,i) if xLi−1 ≤ x < xLi

1
2 if cF ≤ x ≤ dF

FRj−1 + (FRj − FRj−1)p(
x−xR

j−1

xR
j −xR

j−1
;βR0,j , β

R
1,j) if xRj−1 < x ≤ xRj

1 if x > bF
(64)

It is easy to check that the construction leads to functions F ∈ Fc(R).
For the case when NL = NR = 1, we have a simple construction where a

single standardized function p
(
t;βL0 , β

L
1

)
is used to represent F on [aF , cF ] and

another p
(
t;βR0 , β

R
1

)
to represent F on [dF , bF ]

F (x) =





0 if x < aF
p( x−aF
cF−aF ;βL0 , β

L
1 ) if aF ≤ x < cF

1
2 if cF ≤ x ≤ dF

1
2

(
1 + p( x−dF

bF−dF ;βR0 , β
R
1 )
)

if dF < x ≤ bF
1 if x > bF

. (65)
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This simple construction requires 8 parameters, i.e. the four values aF ≤
cF ≤ dF ≤ bF for the support and the core of the corresponding uF and the
four nonnegative parameters (βL0 , β

L
1 ) and (βR0 , β

R
1 ) used to fix the slopes of F

at the points aF , cF and dF , bF , respectively.

Remark 27 The described method allows a way to generate fuzzy random in-
tervals, as introduced and analyzed by several authors to model imprecisely val-
ued (fuzzy valued) random variables ([32], [37], [24], [25], [22]). In this set-
ting, given a probability space (Ω,A, P ), a real fuzzy valued interval can be
parametrized using (65) by defining a random support [aF (ω), bF (ω)]ω∈Ω , and
a random core [cF (ω), dF (ω)] such that aF (ω) ≤ cF (ω) ≤ dF (ω) ≤ bF (ω) for

all ω ∈ Ω, and random standardized functions pω

(
t;βL0 , β

L
1

)
, qω(t;βR0 , β

R
1 ) for

ω ∈ Ω. The immediate way is to generate the support [aF , bF ] , the core [cF , dF ]
and the four parameters βL0 , β

L
1 , βR0 , β

R
1 ≥ 0 and use (65) to obtain the corre-

sponding random AC function Fω(x). More generally, a random AC function
can be parametrized by 2+NL+NR random variables xLi (ω), i = 0, 1, ..., NL and
xRj (ω), j = 0, 1, ..., NR together with 2NL random parameters βL0,i(ω), βL1,i(ω),

i = 1, ..., NL and 2NR random parameters βR0,j(ω), βR1,j(ω), j = 1, , , .NR; the
corresponding AC function Fω is then obtained by equation (64).

Examples of functions F and corresponding uF for different pairs (βL0 , β
L
1 )

and (βR0 , β
R
1 ) are pictured in figure 7, where aF = 1, bF = 5, cF = 2+0.5 rand(),

dF = 3 + 0.5 rand() and the various parameters βs are generated between 0 and
2 by β = 2 rand().

In applications where we are interested in generating fuzzy numbers uF with
a single-valued core, without specifying its value a priori, we can model the
ACF by fixing the support [aF , bF ], aF < bF , and the two end-slope parameters
βL0 = βa ≥ 0, βR1 = βb ≥ 0 so that

F (x) =





0 if x < aF
p( x−aF
bF−aF ;βa, βb) if aF ≤ x ≤ bF

1 if x > bF

; (66)

the core of uF can be computed simply by solving for the unique value of
x ∈ [aF , bF ] that solves the equation F (x) = 1

2 , i.e. by solving the equation

q(t) = t2 + βat(1− t)−
1

2
− 1

2
(βa + βb − 2)t(1− t) = 0

for the unique root tF ∈]0, 1[ (observe that q(0) = − 1
2 and q(1) = 1

2 and q(t) is
quadratic), then the core of uF is obtained as cF = aF + tF (bF − aF ).

Some examples for different values of βa, βb are given in figure 8, where
aF = 1, bF = 5, cF = dF (the core is a singleton) and βa, βb are generated
between 0 and 5.

A final interesting case with βa = βb = β is in figure 9. Again, aF = 1,
bF = 5, and β is generated randomly between 0 and 2.

It is immediate to see that in the last case (if βa = βb in (66)) the associated
fuzzy number is symmetric with respect to the core cF = aF +bF

2 .
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Figure 7: Randomly generated F ∈ Fc(R) and corresponding fuzzy intervals uF
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Figure 8: Randomly generated F ∈ Fc(R) and corresponding fuzzy numbers uF

5 Conclusions and further research

We introduce the ACF-representation of fuzzy intervals, its parametric form
and its properties; the ACF is based on some concepts shared with possibility
theory.

We prove that the ACF can be uniquely defined for any fuzzy interval and
we establish a relationship between ACF and quantile functions with a possibly
statistical interpretation.

Further research involves some computational, empirical and theoretical as-
pects about several topics:

• arithmetic operations: using an approach similar to probabilistic arith-
metic, which is based on convolutions with density functions (as in [31],
[23]) we will try to express fuzzy arithmetic in terms of AC functions,
as we have done for scalar multiplication and addition in subsection 2.2.
This approach has been extensively addressed by developing a very ef-
ficient software like the packages ”distr” and ”distrEx” in R language
([28]);

• membership estimation through observations (see for example [17] and

[9]); as we have seen, the empirical AC function F̂PN
(x) is an unbiased
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Figure 9: Randomly generated F ∈ Fc(R) and corresponding core-symmetric
uF

estimator of the AC function Fu(x) of a fuzzy interval u ∈ RF , for all fixed

x ∈ R. In the case of a simple sample, the average and variance of F̂PN
(x)

(for any fixed x) can be easily estimated by standard statistical procedure

as indeed E[F̂PN
(x)] = Fu(x) and V ar[F̂PN

(x)] = 1
N Fu(x)(1−Fu(x)) (see

[42], Chapter 3). This is a possible starting point to compute confidence
intervals for the estimated α-cuts [m−α (N),m+

α (N)], e.g. by the well known
bootstrap method.

• generation of random fuzzy intervals and possible metrics on ACFs that
focus on useful topological structures (see for example [38] and [41]);

• ACF approximation through F-transform: the ACF-representation based
on monotonic functions eases the search of approximation methods and
algorithms (as in [5] and [6]);

• relationship between probability distributions and membership functions
([36], [17]).
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