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This paper presents an adaptive amoeba algorithm to address the shortest path tree (SPT) problem in
dynamic graphs. In dynamic graphs, the edge weight updates consists of three categories: edge weight increases,
edge weight decreases, the mixture of them. Existing work on this problem solve this issue through analyzing
the nodes influenced by the edge weight updates and recompute these affected vertices. However, when the
network becomes big, the process will become complex. The proposed method can overcome the disadvantages
of the existing approaches. The most important feature of this algorithm is its adaptivity. When the edge
weight changes, the proposed algorithm can recognize the affected vertices and reconstruct them spontaneously.
To evaluate the proposed adaptive amoeba algorithm, we compare it with the Label Setting algorithm and
Bellman-Ford algorithm. The comparison results demonstrate the effectiveness of the proposed method.

The shortest path tree problem (SPT) is one of the basic network optimization problems and it is a variance
of the shortest path problem (SPP), which has been widely used in many fields, such as multicast routing,1

Route Information Protocol (RIP),2 wireless network,3 network design,4, 5 IS-IS,6 and complex networks.7–9 Its
objective is to find the set of edges which connect all the nodes in the network so that the sum of the edge
lengths from the source to the other nodes is minimized. As the SPT problem is frequently as subproblem when
solving many combinatorial and network optimization problems, many researchers payed their attention to this
problem.10, 11

In practical environment, the network is changing with time. It lead to the occurence of the variance of
SPTs named Dynamic Shortest Path (DSP) problem. Assume G (V,E, ω) be a simple network and the edge

weights in this network are nonnegative numbers. Let G
′

(

V,E, ω
′

)

be another network obtained from G in

which some edge weights change. Suppose Ts and T
′

s are the SPTs rooted at s in G and G
′

. The DSP problem is
to compute T

′

s from Ts. Many methods have been proposed to deal with this problem. For example, the classical
Dijkstra algorithm12 and Bellman algorithm solve this problem through recalculating the SPTs whenever there is
a change to edge weights. Due to the high computational time, it cannot meet the requirement of the emergent
accidents. After the idea of using an SPTs update program which only reconstruct on the affected vertices
proposed by Frigioni13 appeared, many dynamic SPTs approaches have implemented this concept into real-
world applications10, 11 to reduce the computational time. They have divided the edge weight updates into three
categories: edge weight increase, edge weight decreases, the mixture of them. For the edge updates belonging
to different categories, various operations are processed. The main feature of these approaches is recognize the
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affected vertices, such as the intelligent semidynamic DSP algorithm named BallString in,14 the fully dynamic
algorithm called DynamicSWSF-FP proposed in.15

However, the above algorithms have obvious disadvantages. When the scale of the network becomes very big
or the weights of multiple edges decrease while that of other multiple edges increase, the procedure analyzing the
affected vertices will become very complex. Secondly, from the practical viewpoint, this will cost lots of time.
Especially in recent years, the networks with big scale become more and more. This may still cause long latency
and unnecessary overheads. As a consequence, it is meaningful to explore new methods to handle the SPTs
problem. Recently, a large amoeboid organism, the plasmodium of Physarum polycephalum, has been shown to
be capable of solving many graph theoretical problems,16–19 including finding the shortest path,20–23 network
design,24–26 population migration27 and others.28–32 Moreover, this organism has been shown to be able to form
networks with features comparable to or better than the Tokyo rail network.18 In addition, Baumgarten has
proved the mass of mold will eventually convergence to the shortest path of the network that the mold lies on.17

Inspired by this intelligent organism, a path finding mathematical model has been established.33 To the best of
knowledge, the amoeba model is not used to deal with SPTs by now.

In what follows, based on the amoeba model, an adaptive amoeba appraoch to SPTs in dynamic graphs is
presented. The main characteristic of the propose method is its adaptivity. More specially, the algorithm can
recognize the affected vertices and reconstruct them spontaneously. Those unaffected nodes will not be computed
again. We will introduce how to implement amoeba model to deal with SPTs in the following sections.

Results

System Environment and Data Sets. In order to evaluate the performance of the proposed method, we in-
troduce the experimental environment and the problem instance generator is presented. Besides, the performance
of our algorithm is compared with the Label Setting algorithm34 and Bellman-Ford algorithm.35

The proposed adaptive amoeba algorithm for shortest path tree in dynamic graphs is tested on networks
with random and varying topologies through computer simulations using Matlab on an Intel Pentium Dual-Core
E5700 processor (3.00 GHz) with 2 GB of RAM under Windows Seven. The random directed graphs can be
generated using the erdos.renyi.game function of the igraph package in R language (for details, please refer
to http://igraph.sourceforge.net/doc/R/erdos.renyi.game.html). The weight for an edge is randomly generated
ranging from 1 to 1000. The data for random graph is shown in Table 1.

Performance Indicators. In each testing graph, the first node in the random generated graph is denoted
as the source node. Then, a set λ of edges is randomly selected to decrease or increase their edge weights. If both
the increased case and the decreased case associated with the edge weights appear in the network, we denote
λ as mixed. In this paper, we pay attention to the CPU runtime for each algorithm. In order to examine the
efficiency of the presented method, the following parameters are taken into consideration.

• Graph size (graphsize). It denotes the size of the network. We will focus on how the CPU runtime changes
with the change of network size.

• Ratio of updated edges (rue). This parameter represents the percentage of updated edges occupied in the
whole network. For instance, in a network with 1000 edges, when 100 edges get their weight updated, then
we will say rue is 0.1.

• Ratio of changed weight (rcw). This variable reflects the degree of the changed weight which is decreased
or increased from its original value. As for this parameter, in the increased case, the rcw for the edge
weight ranges from 1 to a large number 10. For example, assume the original weight value associated with
the edge is 100. If the parameter rcw is 1, the updated weight for this edge will be 200. In the decreased
case, the rcw for the edge weight ranges from 0 to 0.9.

In order to evaluate the performance of the proposed method, we compare it with modified Dijkstra algorithm.
We will show how the parameter rue affects the investigated algorithms. For the following computational results,
the program is run for 10 times for each instance.

http://igraph.sourceforge.net/doc/R/erdos.renyi.game.html


Edge Weight Increases. For the increase case, Fig. 1 shows the influence of rue on the networks with
different sizes when the parameter rue changes from 0.1 to 0.6 (here, the parameter rcw is set a constant value
0.1). As can be seen in Fig. 1, in the increase cases, regardless of the change of the parameter rue, the CPU time
of all the three algorithms remain constant. On the other hand, considering CPU runtime, the Bellman-Ford
algorithm has less computational time than the Label Setting algorithm in the four networks. The proposed
adaptive amoeba algorithm outperforms when compared with the Label Setting algorithm and Bellman-Ford
algorithm. The reason for this phenomenon is due to the change of the edge weights. When the weights
associated with the edge change, the proposed adaptive amoeba algorithm can recognize the affected vertices
and reconstruct them spontaneously. However, for the Label Setting Algorithm and Bellman-Ford Algorithm,
it must reconstruct the whole network, which consumes more time. As a result, there is a big gap between the
CPU runtime of the proposed method and that of Label Setting algorithm and Bellman-Ford algorithm.
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Figure 1. Comparison in edge weight increases when the parameter rue changes from 0.1 to 0.6 (here, the parameter rcw
is set a constant value 0.1)

In what follows, we focus on how the change of the parameter rcw affects the CPU runtime of the different
algorithms in the increase case. As shown in Fig. 2, it shows the influence of the parameter rcw on the three
algorithms’ computational time when the parameter rcw changes from 0.1 to 0.6 (here, the parameter rue is set
a constant value 0.2). As we can see, the parameter rcw has different influences on the three algorithms. For the
Label Setting algorithm and Bellman-Ford algorithm, the computational time remains relatively constant, which
is shown as straight lines in Fig. 2. On the contrary, for the proposed adaptive amoeba algorithm, it is influenced
strongly by the parameter rcw, especially when the graph size is greater than 1500. From Fig. 2, it can be seen
that the CPU runtime of the presented method becomes more and more with the increase of parameter rcw.
The reason lies that when the parameter rcw becomes bigger and bigger, the edge length is increased a lot from
its original value. As a result, most of the paths in the SPT need to be recomputed. Although the CPU time of
the proposed adaptive amoeba algorithm increases a lot, it is still less than that of the Label Setting algorithm
and Bellman-Ford algorithm.

In summary, in the increase case, the change of the parameter rue has little influence on these algorithms. The
adaptive amoeba algorithm proposed in this paper has the least CPU runtime when dealing with the networks
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Figure 2. Comparison in edge weight increases when the parameter rcw changes from 0.1 to 0.6 (here, the parameter rue
is set a constant value 0.2)

with different sizes. On the contrary, the change of the parameter rcw has great influence on the CPU runtime of
the proposed method. The CPU runtime of the presented method becomes bigger with the increase of parameter
rcw.

Edge Weight Decreases. Similarly, in the decrease case, we have observed the influence of the two
parameters on the CPU runtime of the above three algorithms. Figs. 3 and 4 show the experimental results,
when the parameters rue, rcw change respectively.

As can be seen in Fig. 3, the parameters are set the same as that of the edge weight increases. From Fig. 3, it
can be concluded that, in the decrease case, when the parameter rue changes from 0.1 to 0.6, the CPU runtime
of the three algorithms fluctuates slightly in the networks with different sizes. In other words, the parameter
rcw has very little effect on the computational efficiency of these algorithms. The proposed method has obvious
advantage over the Label Setting algorithm and Bellman-Ford algorithm when dealing with the SPT in dynamic
graphs.

As shown in Fig. 4, when the parameter rcw changes from 0.1 to 0.6, the CPU runtime of the proposed
method fluctuates strongly. When rcw increases from 0.1 to 0.6, the CPU runtime for the adaptive amoeba
algorithm deteriorates rapidly. In the network with graph size equal to 500, 1500, 2000, when rcw reaches 0.6,
it can be observed that the performance of the Label Setting algorithm and Bellman-Ford algorithm outperform
compared to the proposed method. It can be observed that when rcw is less than a certain threshold value, the
proposed method has better performance. The threshold value varies with the size of a graph. When rcw is
bigger than 0.4, it is more appropriate to adopt the Label Setting algorithm and Bellman-Ford algorithm. The
reason why the performance of the proposed algorithm gets worse when rcw is bigger than the threshold value is
that more edges are influenced, and more time is spent to reconstruct the SPT and reallocate the flux associated
with each edge in the amoeba algorithm.

In summary, in the decreased case, the situation is similar to that of the increased case. The parameter
rcw has different effect with that of parameter rue. Besides, the performance of the adaptive amoeba algorithm
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Figure 3. Comparison in edge weight decreases when the parameter rue changes from 0.1 to 0.6 (here, the parameter rcw
is set a constant value 0.1)
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Figure 4. Comparison in edge weight increases when the parameter rcw changes from 0.1 to 0.6 (here, the parameter rue
is set a constant value 0.2)



gets worse when rcw is more than a threshold value. As a consequence, it is appropriate to carry out different
algorithms according to the specific value of this parameter.

Mixed Edge Weight Changes. In the mixed case, both the increased case and the decreased case share
the same percentage in the total ratio of updated edges. Simply speaking, suppose there are 200 edges in the
network whose weights change, then 100 of them increase their edge weights while the left 100 edges’ weights
decrease. As for the parameter rcw, it is implemented for both the increased case and the decreased case. It is
to say suppose rcw is 0.1, then half of the randomly selected edges will increase their weights by 10 percentages
while the left edges will decrease their weights by 10 percentages.
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Figure 5. Comparison in mixed change of the edge weight when the parameter rue changes from 0.1 to 0.6 (here, the
parameter rcw is set a constant value 0.1)

Fig. 5 shows the CPU runtime of the three algorithms when the parameter rue changes from 0.1 to 0.6.
Similarly, it has slight influence like in the increased and decreased cases. Obviously, the adaptive amoeba
algorithm outperforms when compared with the other algorithms.

As for the change of parameter rcw, Fig. 6 displays the computational results of the three algorithms. It can
be concluded that the Label Setting algorithm and Bellman-Ford algorithm remain constant, regardless of the
changed weights. For the adaptive amoeba algorithm, it fluctuates greatly when rcw changes. As can be seen in
Fig. 6, when the rcw is less than 0.5, the proposed method outperforms certainly than the other two algorithms.
When rcw reaches 0.6 and the graph size reaches 2000, the CPU runtime of the presented algorithm has spent
more time than the other two algorithms. In the four sub figures, the results are not consistent. It is due to
the difference of the network topology. Every time, the affected edges are randomly selected, which may lead to
different influences on the network. In one word, similar to the increased and decreased case, the parameter rue
affect the CPU runtime a little while rcw playing an important role regarding the CPU runtime.

Discussion

In this paper, we investigated the previous algorithms used to deal with SPT problem in dynamic graphs.
These algorithms solving SPT problem with edge updates by identifying the affected nodes and reconstruct the
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Figure 6. Comparison in mixed change of the edge weight when the parameter rcw changes from 0.1 to 0.6 (here, the
parameter rue is set a constant value 0.2)

shortest path among these nodes. However, when these algorithms are faced with the network with big scale,
on the one hand, this procedure becomes very complicated. On the other hand, it cost much time. In order
to address the above problems, we proposed a fully adaptive amoeba algorithm for solving SPT in dynamic
graphs. The efficiency of the presented algorithm is demonstrated by implementing it in all the edge updates
including the increase, decrease, mixed change of the edge weight. In order to evaluate the performance of the
proposed method, we conducted experiments on randomly generated graphs, in terms of the CPU execution time.
Moreover, we compared our algorithm with the existing algorithms, such as the Label Setting algorithm, Bellman-
Ford algorithm. The purpose of the experiment is to obverse how these algorithms behave for different graph sizes
and various mixes of changed edges. We randomly generate four graphs with different sizes: 500, 1000, 1500, 2000.

We evaluate the performance of the three algorithms according to three factors: graphsize, ratio of updated
edges (rue), ratio of changed weight (rcw). For the increased case, the change of the parameter rue has little
influence on these algorithms while the change of the parameter rcw has great influence on the CPU runtime of
the proposed method. For the decreased case, the influence of parameter rue is similar to that of the increased
case. On the other hand, the performance of the adaptive amoeba algorithm gets worse when rcw is more than
a threshold value. As for the other left algorithms, they are slightly influenced by parameter rcw. For the mixed
change of the edge weights, the influences of parameters rue and rcw on the computational time are consistent
with that of the increased and decreased cases. We conclude the following for the above three algorithms. For
the increased case, decreased case, and mixed change case, in spite of the ratio of updated edges, the proposed
method has the best overall performance. On the contrary, when the parameter rcw changes, it is appropriate
to carry out different algorithms according to the specific value of rcw.

Methods

Physarum Polycephalum Inspired Shortest Path Finding Model. Physarum Polycephalum is a large,
single-celled amoeboid organism forming a dynamic tubular network connecting the discovered food sources



during foraging. The mechanism of tube formation can be described as: tubes thicken in a given direction when
shuttle streaming of the protoplasm persists in that direction for a certain time. It implies positive feedback
between flux and tube thickness, as the conductance of the sol is greater in a thicker channel. With this
mechanism, a mathematical model illustrating the shortest path finding has been constructed.33

Suppose the shape of the network formed by the Physarum is represented by a graph, in which a plasmodial
tube refers to an edge of the graph and a junction between tubes refers to a node. Two special nodes labeled
as N1, N2 act as the starting node and ending node respectively. The other nodes are labeled as N3, N4, N5, N6

etc. The edge between node Ni and Nj is expressed as Mij . The parameter Qij denotes the flux through tube
Mij from node Ni to Nj . Regard the flow along the tube as an approximately poiseuille flow, the flux Qij can
be expressed as:

Qij =
Dij

Lij

(pi − pj) (1)

where pi is the pressure at the node Ni, Dij is the conductivity of the tube Mij , Lij is its length.

By considering that the inflow and outflow must be balanced, we have:

∑

Qij = 0(j 6= 1, 2) (2)

For the source node N1 and the sink node N2 the following two equations hold

∑

i

Qi1 + I0 = 0 (3)

∑

i

Qi2 − I0 = 0 (4)

where I0 is the flux flowing from the source node and I0 is a constant value here.

In order to describe such an adaptation of tubular thickness we assume that the conductivity Dij changes
over time according to the flux Qij . The following equation for the evolution of Dij(t) can be used

d

dt
Dij = f(|Qij |)− rDij (5)

where r is a decay rate of the tube. It can be obtained that the equation implies that the conductivity ends
to vanish if there is no flux along the edge, while it is enhanced by the flux. The f is monotonically increasing
continuous function satisfying f(0) = 0.

Then the network poisson equation for the pressure can be obtained from the Eq. (8-4) as follows:

∑

i

Dij

Lij

(pi − pj) =







+1 for j = 1,
−1 for j = 2,
0 otherwise

(6)

By setting p2=0 as a basic pressure level, all pi can be determined by solving Eq. (6) and Qij can also be
obtained.

In this paper, f(Q) = |Q| is used. With the flux calculated, the conductivity can be derived, where Eq. (7)
is used instead of Eq. (5), adopting the functional form f(Q) = |Q|.

Dn+1
ij −Dn

ij

δt
= |Q| −Dn+1

ij (7)

The amoeba model is modified to solve SPTs in dynamic graphs. The algorithm is composed of three parts.
First of all, the amoeba model is extended to solve the shortest path in the directed networks. Then a modified



model is presented to handle SPTs in static directed networks. Finally, we analyze the changing trend of the
amoeba algorithm is applied to deal with SPTs in dynamic graphs.

Shortest Path Problem in Directed Network. It is observed that the original amoeba model can only
handle the shortest path problem (SPP) in the undirected network according to.16, 20, 33 As a result, we need to
extend its application field to directed networks by modifying the original model.

Let G = (N,E,L) be a directed network, where N denotes a set of n nodes, E denotes an edge set with m

directed edges, and L denotes a weight set for E. Given a source node s and a sink node t, the directed shortest
path problem can be defined as how to find a path from s to t, which only consists of directed edges of E, with
the minimum sum of weights on the edges.

The original amoeba model is designed to solve the shortest path problem in the undirected graphs. For the
directed graphs, the following equations are constructed according to the Kirchhoff’s laws:

∑

j∈N

(

Dij

Lij

+
Dji

Lji

)

(pi − pj) =







+1 for i = s

−1 for i = t

0 otherwise

(8)

where s denotes the starting node, t denotes the ending node, Lij is the length of the edge Mij , Dij is the
conductivity of the edge Mij . In the directed graphs, Mij is different from that of the undirected networks.
Here, Mij denotes the tube starting from node i to node j. As a result, the way that Dij is initialized in the
directed graphs is different from that in the undirected networks. If Mij ∈ E, then Dij = 1. Otherwise, Dij = 0.

In what follows, the flux Qij of every edge can be obtained. The direction of the edge is related with the
pressure of each node. Naturally, the flux starts at the node with high pressure and ends at the node with low
pressure. In the directed graphs, in order to keep the direction of each edge, the following check procedure is
inevitable. Assume there is an edge Mij starting from node i and ending at node j. If the pressure pj is larger
than pi, it means the flux is flowing from node j to node i, which is opposite with the direction of the edge in the
directed graph. Once the phenomenon is found, then the flux needs to be cut off. As a consequence, we change
the flux of this edge Qij to be 0. Next, the following Eq. (9) for the evolution of Dij(t) can be summarized. As
can be seen, the changing process of D is continuous. In the process of the algorithm, a discrete procedure is
applied as shown in Eq. (10). The general flow of the proposed method is detailed in Table 2.

dDij (t)

dt
=

{

Qij (t)−Dij (t) pi (t) ≥ pj (t)
−Dij (t) pi (t) < pj (t)

(9)

Dij (n+ 1) =

{

(Qij (n)−Dij (n)) ∗∆t+Dij (n) pi (n) ≥ pj (n)
(0−Dij (n)) ∗∆t+Dij (n) pi (n) < pj (n)

(10)

where ∆t is the time interval, 0 < ∆t < 1.

There are several possible solutions to decide when to stop execution of Algorithm 1, such as the maximum
number of iterations is arrived, conductivity of each tube converges to 0 or 1, flux through each tube remains
unchanged, etc. In this paper, when the conductivity matrix changes between the current iteration and the

previous iteration very little (in other words,
N
∑

i=1

N
∑

j=1

∣

∣Dn
ij −Dn−1

ij

∣

∣ ≤ δ, where δ is a threshold), then the program

will stop.

Proofs of Physarum Polycephalum Model in Directed Networks. In undirected graphs, the model
is able to converge to an equilibrium state and Baumgarten17 has proved its stability . In directed graphs, a
lot of our experiments have shown that, it will also convergence to an equilibrium state in directed networks
and the process of the convergence is similar to that of the undirected graphs. In this section, we prove that all
the flux flowing from s to t consists of the shortest path in the directed networks when the network reaches the
equilibrium state.



First of all, the following parameters are defined:

F (t): F (t) is one set of edges whose Qij is non-negative number at time t. Let F = lim
t→∞

F (t).

B (t): B (t) is another set of edges whose Qij is is negative number at time t. Let B = lim
t→∞

B (t).

uij (t): uij (t) is the pressure difference between node i and node j at time t. uij (t) = pi (t) − pj (t). Let
uij = lim

t→∞

uij (t).

lemma 3.1. For any directed edge Mij , lim
t→∞

(Qij (t)−Dij (t)) = 0.

Proof When t goes to a infinite number, the network reaches stable. As a result, for anyMij , lim
t→∞

dDij(t)
dt

= 0.

According to Eq. (9), it can be seen that:

{

lim
t→∞

(Qij (t)−Dij (t)) = 0 Mij ∈ F

lim
t→∞

Dij (t) = 0 Mij ∈ B

When j ∈ B, lim
t→∞

Qij (t) = lim
t→∞

Dij(t)uij(t)
Lij

= 0.

Lemma 3.1 is established.

lemma 3.2. For any Mij , if lim
t→∞

Qij (t) 6= 0, then Mij ∈ F and ue = Le.

Proof According to lemma 3.1, if lim
t→∞

Qij (t) 6= 0, then lim
t→∞

Dij (t) = lim
t→∞

Qij (t) 6= 0.

Based on Eq. (8), it can be seen that uij = Lij > 0 and Mij ∈ F .

Lemma 3.2 is established.

lemma 3.3. If Mij ∈ F , then uij ≤ Lij .

Proof According to lemma 3.2, when lim
t→∞

Qij (t) 6= 0, lemma 3.3 is established.

When lim
t→∞

Qij (t) = 0 and Mij ∈ F , then lim
t→∞

Dij (t) = 0, ∃T, ∀t > T,
dDij(t)

dt
< 0. Thus, Mij ∈ F (t).

According to Eq. (9), we can obtain Qij (t) < Dij (t).

According to Eq. (8), it can be seen uij (t) < Lij .

In summary, uij ≤ Lij . Therefore, lemma 3.3 is established.

lemma 3.4. When the model reaches the equilibrium state:

(i) All the flow converges to some paths from s to t.

(ii) These directed paths have the same path length and their length is equal to ust.

(iii) These directed paths have the shortest path length.

Proof

(i) According to lemma 3.1 and lemma 3.2, in the equilibrium state, the directions of all the edges are in
accordance with the flow directions. Consequently, the flow converges to the paths existing in the directed
graph G.

(ii) Assume v is one directed path which the flow converges to, Lv is the length of v. According to lemma 3.2,
there are ust =

∑

Mij∈v

uij =
∑

Mij∈v

Lij = Lv.



(iii) Assume v is one path from s to t, it is known to us that ust =
∑

Mij∈v

uij . For any edge Mij , if uij ≥ 0,

then Mij ∈ F . According to lemma 3.3, uij ≤ Lij . If uij < 0, it is obviously seen that uij ≤ Lij .
Consequently, ust =

∑

Mij∈v

uij ≤
∑

Mij∈v

Lij = Lv. It means that all the other paths’ length is not less than

ust. Incorporating with (ii), these paths are the shortest ones.

Based on the above proofs, lemma 3.4 is established.

Shortest Path Tree Problem in Directed Networks. The above algorithm can only compute the
shortest path between two nodes at a time. Assume there are N nodes in the network, if we want to construct
the shortest path tree, the algorithm must be run for N − 1 times. However, this will consume lots of time. In
this section, after we modify the above model further, the shortest path tree can be constructed by running the
algorithm one time. In what follows, the modified model used to find the shortest path tree is introduced.

In the original amoeba model, there are only one starting node s and one ending node t in it. If there are one
starting node s and all the other nodes are the ending nodes, the Kirchhoffs laws can be transformed as below:

∑

i

(

Dij

Lij

+
Dji

Lji

)

(pi − pj) =

{

+1 for j = s
−1
N−1 for j 6= s

(11)

The general flow of the modified model used to construct SPTs rooted at node s are shown in Table 3. By
this way, SPT can be constructed through running the program once.

(a) An SPT Ts rooted at node s. In this figure, the vertex

are represented by letters and the numbers along the arcs

denote the path length. The arrow from the tail to the

head means the direction of the edge.

(b) The SPTs rooted at node s constructed by the adaptive

amoeba algorithm for shortest path tree

Figure 7. The amoeba algorithm for SPT

Example 0.1. In order to illustrate the algorithm shown in Table 3, an example is shown in Fig. 7(a). There
are 16 nodes in this network. In this example, the amoeba model is applied to construct SPT rooted at node
s. According to Algorithm 2, first of all, initialize the parameters, such as the length matrix L, the initial
conductivity matrix D, the initial pressure matrix Q etc. Then, according to Eq. (11), the pressure of each node
can be obtained during the first iteration. In turn, the flux of each node can be computed according to Eq. (8).
Next, the conductivity matrix during the following iteration can be constructed based on Eq. (7). This procedure
will continue until the flux of each arc do not change any more. Fig. 8 shows the flux variation of each edge
during different iterations in the graph shown in Fig. 7(a) using the adaptive amoeba model. As we can see, the
flux of some edges converges to 0 during the iterations. Those edges whose flux are not equal to zero constitutes
the following graph shown in Fig. 7(b).
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Fig. 7(b) shows the SPTs rooted at vertex s. The trees represented by the edges in blue color are consistent
with the result in.10 The edges with red color appear in the adaptive amoeba algorithm, but not in.10 The reason
lies that there are more than one shortest paths between the rooted node s and nodes e, k. For example, the length
of the path S → b → e is equal to that of the path S → b → f → e. Similarly, the length of path S → d → h → k

is equal to that of S → c → g → k. This is the first advantage of our presented method.

The edge weight change can be divided into three categories: increase only, decrease only, the mixture of
them. In this section, the adaptive amoeba algorithm for SPTs in dynamic graphs will be analyzed from the
three perspectives.

Edge Weight Increase. As shown in Fig. 9(a), the weights of edges (c, g) and (g, j) are increased. For
traditional approaches to SPT in dynamic graphs, such as DynDijkInc, MBallString10 etc, firstly, these methods
locates all locally affected vertices and reconstruct the shortest path between these affected nodes. In this
example, the vertices g, k, o, p, i, n are affected, which are shown in blue circles in Fig. 9(a). For the above
methods, when the scale of the network become very big, on the one hand, the process to locate the affected
nodes become very complex. On the other hand, it costs much time. For the adaptive amoeba algorithm proposed
in this paper, the following Fig. 10 displays the changing trend of the flux existing in each edge.

(a) An SPT rooted at node S. In this example, the length

of edge (c, g) is increased by 2 and the length of edge (g,

j) is increased by 3. The changed edges are denoted by

red dotted arrows.

(b) The SPT after the increase of the edge weights.

Figure 9. The SPT with edge weight increase

As can be seen in Fig. 10, the red doted line divides the whole process into two parts. The first part is the
changing trend of the flux associated with each edge before the edge weights change. The second part illustrates
how the flux associated with every edge change after the increase of edge weights. During the iteration process,
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Figure 10. The changing trend of the flux when the length of edge (c, g) is increased by 2 and the length of edge (g, j) is
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the flux of the edge (g, j) decreases to 0 while that of the edge (f, j) become one of the edges constructing
SPT. This example shows the adaptivity of the presented algorithm. It can recognize the affected vertices and
reconstruct them spontaneously after the increase of the edge weights. Fig. 9(b) displays the SPT after the
increase of the edge weights and the result is consistent with that of.10

Edge Weight Decrease. Given a graph shown in Fig. 11(a), there are a source vertex S, an SPT rooted
at node S. The weights of edge (c, g) and edge (g, j) are decreased by 3, 1 respectively. Different from the
increase case, the locally affected nodes can be predicted. In the decrease case, the traditional algorithms such
as DynDijkstra, MBallString recognize the all affected heads and then recompute the shortest path among the
affected heads. When the network becomes very big, the traditional algorithms are faced with the same problems
mentioned in the increase case. For the adaptive amoeba algorithm, the following Fig. 12 illustrates the changing
trend of the flux of each edge when the edge weights decrease.

(a) An SPT rooted at node S. In this example, the length

of edge (c, g) is decreased by 3 and the length of edge (g,

j) is decreased by 1. The changed edges are denoted by

red dotted arrows.

(b) The SPT after the decrease of the edge weights.

Figure 11. The SPT with edge weight decrease

As can be seen in Fig. 12, the whole process can be separated into two procedures by the red dotted line: the
part before edge weight decrease, the part after edge weight decrease. It can be seen that the flux associated with
every edge changes when the edge weights decrease. All the edges can be divided into 2 categories: the edges
which is not influenced by the edge weights decrease, such as edges (k, p) and (b, e) shown in Fig. 12 belongs to
the first category; the second category includes the edges that are influence by the edge weights decrease, such
as edges (h, k), (S, d), (S, c) etc. From Fig. 12, it can be concluded that the adaptive amoeba algorithm have the
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Figure 12. The changing trend of the flux when the length of edge (c, g) is decreased by 3 and the length of edge (g, j) is
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advantage of recognizing all the affected vertices spontaneously over traditional algorithms such as DynDijkstra,
MBallString. Fig. 11(b) displays SPT after the edge weights decrease and the result is the same as that of.10

Mixed Edge Weight Changes. In Fig. 13(a), the weights of the following edges updates: edge (c, g) is
decreased by 1, the weight of edge (g, j) is increased by 3, and the weight of edge (f, i) is decreased by 8. Based
on this example, we will pay attention to the changing trend of the flux associated with each edge in the adaptive
amoeba algorithm when both the decrease and increase of the edges appear in the graph.

(a) An SPT rooted at node S. In this example, the weight

of edge (c, g) is decreased by 1, the weight of edge (g, j)

is increased by 3, and the weight of edge (f, i) is

decreased by 8. The changed edges are denoted by red

dotted arrows.

(b) The SPT after the update of the edge weights.

Figure 13. The SPT with mixed edge weight changes

As can be seen in Fig. 14, the changing trend of the flux associated with every edge is shown. Several edges
such as edge (h, k) disappear from the SPT while edges (f, i) and (i, n) become the elements constructing SPT
after the update of edge weight. The other edges such as edges (k, p) and (b, e) are not affected by the update
of the edge weight. Fig. 13(b) gives the final SPT after the update of the edge weights. From Fig. 13(b), it can
be concluded that the amoeba algorithm can distinguish all the nodes adaptively.

In summary, all the edge updates including the increase, decrease, mixed change of the edge weight can be
handled efficiently by the adaptive amoeba algorithm.
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Table 1. The related parameters of the erdos.renyi.game function. In this function, the parameter p denotes the probability
for drawing an edge between two arbitrary vertices.

Dataset Number of Nodes p Number of Edges

dataset 1 500 0.0200 5000
dataset 2 1000 0.0100 9921
dataset 3 1500 0.0060 13475
dataset 4 2000 0.0050 19903

Table 2. Adaptive Amoeba Algorithm(L, V, E) for Directed Networks

// L is an N ×N matrix, Lij denotes the length between node i and
node j

// V denote the set of nodes, E denotes the set of edges
// s is the starting node, t is the ending node
Dij ← (0, 1] (∀i, j = 1, 2, . . . , N ∧ Lij 6= 0)
Qij ← 0 (∀i, j = 1, 2, . . . , N)
pi ← 0 (∀i = 1, 2, . . . , N)
count← 1
repeat

pt ← 0 // the pressure at the ending node t

Calculate the pressure of every node using Eq. (8)

∑

i

(

Dij

Lij

+
Dji

Lji

)

(pi − pj) =







+1 for j = s

−1 for j = t

0 otherwise

Qij ← Dij × (pi − pj)/Lij // Using Eq. (8)
if Qij < 0 then

Qij = 0
end if

Dij ← Qij +Dij // Using Eq. (7)
count← count + 1

until a termination criterion is met
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Table 3. Adaptive Amoeba Algorithm(L, V, E) for Shortest Path Tree

// L is an N ×N matrix, Lij denotes the length between node i and
node j

// V denote the set of nodes, E denotes the set of edges
// s is the root node
Dij ← (0, 1] (∀i, j = 1, 2, . . . , N ∧ Lij 6= 0)
Qij ← 0 (∀i, j = 1, 2, . . . , N)
pi ← 0 (∀i = 1, 2, . . . , N)
count← 1
repeat

Calculate the pressure of every node using Eq. (11)

∑

i

(

Dij

Lij

+
Dji

Lji

)

(pi − pj) =

{

+1 for j = s
−1

N−1
for j 6= s

Qij ← Dij × (pi − pj)/Lij // Using Eq. (8)
if Qij < 0 then

Qij = 0
end if

Dij ← Qij +Dij // Using Eq. (7)
count← count + 1

until a termination criterion is met


