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Abstract

Sensitivity methods for the analysis of the outputs of discrete Bayesian networks have

been extensively studied and implemented in different software packages. These meth-

ods usually focus on the study of sensitivity functions and on the impact of a parameter

change to the Chan-Darwiche distance. Although not fully recognized, the majority of

these results rely heavily on the multilinear structure of atomic probabilities in terms of

the conditional probability parameters associated with this type of network. By defin-

ing a statistical model through the polynomial expression of its associated defining

conditional probabilities, we develop here a unifying approach to sensitivity methods

applicable to a large suite of models including extensions of Bayesian networks, for

instance context-specific ones. Our algebraic approach enables us to prove that for

models whose defining polynomial is multilinear both the Chan-Darwiche distance

and any divergence in the family of φ-divergences are minimized for a certain class of

multi-parameter contemporaneous variations when parameters are proportionally co-

varied.

Keywords: Bayesian networks, CD distance, Interpolating Polynomial, Sensitivity

Analysis, φ-divergences.

1. Introduction

Many discrete statistical problems in a variety of domains are nowadays often mod-

eled using Bayesian networks (BNs) [32]. There are now thousands of practical appli-

cations of these models [4, 24, 26], which have spawned many useful technical de-
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velopments: including a variety of fast exact, approximate and symbolic propagation

algorithms for the computation of probabilities that exploit the underlying graph struc-

ture [14, 16, 17]. Some of these advances have been hard-wired into software [6, 27]

which has further increased the applicability and success of these methods.

However, BN modeling would not have experienced such a widespread application

without tailored methodologies of model validation, i.e. checking that a model pro-

duces outputs that are in line with current understanding, following a defensible and

expected mechanism [19, 34]. Such techniques are now well established for BN mod-

els [11, 27, 34]. These are especially fundamental for expert elicited models, where

both the probabilities and the covariance structure are defined from the suggestions

of domains experts, following knowledge engineering protocols tailored to the BN’s

building process [30, 35]. We can broadly break down the validation process into two

steps: the first concerns the auditing of the underlying graphical structure; the sec-

ond, assuming the graph represents a user’s beliefs, checks the impact of the numerical

elicited probabilities within this parametric family on outputs of interest. The focus of

this paper lies in this second validation phase, usually called a sensitivity analysis.

The most common investigation is the so-called one-way sensitivity analysis, where

the impacts of changes made to a single probability parameter are studied. Analyses

where more than one parameter at a time are varied are usually referred to as multi-way.

In both cases a complete sensitivity analysis for discrete BNs often involves the study

of Chan-Darwiche (CD) distances [6, 7, 8] and sensitivity functions [13, 40]. The CD

distance is used to quantify global changes. It measures how the overall distribution

behaves when one (or more) parameter is varied. A significant proportion of research

has focused on identifying parameter changes such that the original and the ‘varied’

BN distributions are close in CD distance [8, 37]. This is minimized when, after a sin-

gle arbitrary parameter change, other covarying parameters, e.g. those from the same

conditional distribution, have the same proportion of the residual probability mass as

they originally had. Sensitivity functions, on the other hand, model local changes with

respect to an output of interest. These describe how that output probability varies as

one (or potentially more) parameter is allowed to be changed. Although both these

concepts can be applied to generic Bayesian analyses, they have been discussed and

2



applied almost exclusively within the BN literature (see [9, 10, 36] for some excep-

tions). This is because the computations of both CD distances and sensitivity functions

are particularly straightforward for BN models.

In this paper we introduce a unifying comprehensive framework for certain multi-

way analyses, usually called in the context of BNs single full conditional probability

table (CPT) analyses - where one parameter from each CPT of one vertex of a BN

given each configuration of its parents is varied. Using the notion of an interpolating

polynomial [33] we are able to describe a large variety of models based on their poly-

nomial form. Then, given this algebraic characterization, we demonstrate that one-way

sensitivity methods defined for BNs can be generalized to single full CPT analyses for

any model whose interpolating polynomial is multilinear, for example context-specific

BNs [3] and stratified chain event graphs [12, 39]. Because of both the lack of theoreti-

cal results justifying their use and the increase in computational complexity, multi-way

methods have not been extensively discussed in the literature: see [2, 7, 21] for some

exceptions. This paper aims at providing a comprehensive theoretical toolbox to start

applying such analyses in practice.

Importantly, our polynomial approach enables us to prove that single full CPT anal-

yses in any multilinear model are optimal under proportional covariation in the sense

that the CD distance between the original and the varied distributions is minimized.

The optimality of this covariation method has been an open problem in the sensitivity

analysis literature for quite some time [7, 37]. However, we are able to provide further

theoretical justifications for the use of proportional covariation in single full CPT anal-

yses. We demonstrate below that for any multilinear model this scheme minimizes not

only the CD distance, but also any divergence in the family of φ-divergences [1, 15].

The class of φ-divergences include a very large number of divergences and distances

(see e.g. [31] for a review), including the famous Kullback-Leibler (KL) divergence

[28]. The application of KL distances in sensitivity analyses of BNs has been almost

exclusively restricted to the case when the underlying distribution is assumed Gaussian

[20, 21], because in discrete BNs the computation of such a divergence requires more

computational power than for CD distances. We demonstrate below that this additional

complexity is a feature shared by any divergence in the family of φ-divergences.
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The paper is structured as follows. In Section 2 we define interpolating polynomials

and demonstrate that commonly used models entertain a polynomial representation. In

Section 3 we review a variety of divergence measures. Section 4 presents a variety of

results for single full CPT sensitivity analyses in multilinear models, namely the deriva-

tion of sensitivity functions and the proof of optimality of proportional covariation. We

conclude with a discussion.

2. Multilinear and polynomial parametric models

In this section we first provide a generic definition of a parametric statistical model

together with the notion of interpolating polynomial. We then discuss parametric mod-

els whose interpolating polynomial is multilinear.

2.1. Parametric models and interpolating polynomials

Let Y = (Y1, . . . , Ym) be a random vector with an associated discrete and finite

sample space Y, with #Y = q. Although our methods straightforwardly applies when

the entries of Y are random vectors, for ease of notation, we henceforth assume its

elements are univariate.

Definition 1. Denote by Pθ = {pθ(y) | y ∈ Y} the values of a probability mass function

pθ : Y→ [0, 1] which depends on a choice of parameters θ ∈ Rk. The entries of Pθ are

called atomic probabilities and the elements y ∈ Y atoms.

Definition 2. A discrete parametric statistical model on q ∈ N atoms is a subset PΨ ⊆

∆q−1 of the q − 1 dimensional probability simplex, where

Ψ : Rk → PΨ, θ 7→ Pθ, (1)

is a bijective map identifying a particular choice of parameters θ ∈ Rk with one vector

of atomic probabilities. The map Ψ is called a parametrisation of the model.

The above definition is often encountered in the field of algebraic statistics, where

properties of statistical models are studied using techniques from algebraic geometry

and commutative computer algebra, among others [18, 38]. We next follow [22] in

extending some standard terminology.
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Definition 3. A model PΨ ⊆ ∆q−1 has a monomial parametrisation if

pθ(y) = θαy , for all y ∈ Y,

where αy ∈ Nk
0 denotes a vector of exponents and θαy = θ

α1,y
1 · · · θ

αk,y
k is a monomial.

Then equation (1) is a monomial map and θαy ∈ Rk[Θ], for all y ∈ Y. Here Θ =

{θ1, . . . , θk} is the set of indeterminates and Rk[Θ] is the polynomial ring over the field

R.

For models entertaining a monomial parametrisation the network polynomial we

introduce in Definition 4 below concisely captures the model structure and provides a

platform to answer inferential queries [17, 23].

Definition 4. The network polynomial of a model PΨ with monomial parametrisation

Ψ is given by

cPΨ
(θ, λ) =

∑
y∈Y

λyθ
αy ,

where λy is an indicator function for the atom y.

Probabilities of events in the underlying sigma-field can be computed from the network

polynomial by setting equal to one the indicator function of atoms associated to that

event. In the following it will be convenient to work with a special case of the network

polynomial where all the indicator functions are set to one.

Definition 5. The interpolating polynomial of a model PΨ with monomial parametri-

sation Ψ is given by the sum of all atomic probabilities,

cPΨ
(θ) =

∑
α∈A
θα,

where A = {αy | y ∈ Y} ⊂ Nk
0.

2.2. Multilinear models

In this work we focus on parametric models whose interpolating polynomial is

multilinear.

5



Definition 6. We say that a parametric model PΨ is multilinear if its associated inter-

polating polynomial is multilinear, i.e. if A ⊆ {0, 1}k.

We note here that a great portion of well-known non-dynamic graphical models are

multilinear. We explicitly show below that this is the case for BNs and context-specific

BNs [3]. In [23] we showed that certain chain event graph models [39] have multilinear

interpolating polynomial. In addition, decomposable undirected graphs and probabilis-

tic chain graphs [29] can be defined to have a monomial parametrisation whose asso-

ciated interpolating polynomial is multilinear. An example of models not entertaining

a monomial parametrisation in terms of atomic probabilities are non-decomposable

undirected graphs, since their joint distribution can then only be written as a rational

function of multilinear functions [9].

2.2.1. Bayesian networks

For an m ∈ N, let [m] = {1, . . . , m}. We denote with Yi, i ∈ [m], a generic discrete

random variable and with Yi = [mi] its associated sample space. For an A ⊆ [m], we

let YA = (Yi)i∈A and YA = ×i∈AYi. Recall that for three random vectors Yi, Y j and Yl,

we say that Yi is conditional independent of Y j given Yl, and write Yi ⊥⊥ Y j | Yl, if

Pr(Yi = i | Y j = j, Yl = l) = Pr(Yi = i | Yl = l), for every i ∈ Yi, j ∈ Y j and l ∈ Yl.

Definition 7. A BN over a discrete random vector Y[m] consists of

• m − 1 conditional independence statements of the form Yi ⊥⊥ Y[i−1] |YΠi , where

Πi ⊆ [i − 1];

• a directed acyclic graph (DAG) G with vertex set V(G) = {Yi : i ∈ [m]} and edge

set E(G) = {(Yi, Y j) : j ∈ [m], i ∈ Π j};

• conditional probabilities P(Yi = j | YΠi = π) for every j ∈ Yi, π ∈ YΠi and

i ∈ [m].

The vector YΠi , i ∈ [m], includes the parents of the vertex Yi, i.e. those vertices Y j such

that there is an edge (Y j, Yi) in the DAG G of the BN. For a vertex Y with parents YΠ,

let θyπ = P(Y = y|YΠ = π). From [7] we know that for any atom y ∈ Y[m] its associated
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Y1 // ))
Y2 // Y3

Figure 1: A BN model for the medical problem in Example 1.

monomial in the network polynomial can be written as

pθ(y) =
∏

y∼{y,π}

λyθyπ,

where ∼ denotes the compatibility relation among instantiations.

Lemma 1. From [17, 23], the interpolating polynomial of a BN model can be written

as

cBN(θ) =
∑

y∈Y[m]

∏
y∼{y,π}

θyπ. (2)

From Equation (2) we can immediately deduce the following.

Proposition 1. A BN is a multilinear parametric model, whose interpolating polyno-

mial is homogeneous with monomials of degree m.

Example 1. Suppose a newborn is at risk of acquiring a disease and her parents are

offered a screening test (Y1) which can be either positive (Y1 = 2) or negative (Y1 = 1).

Given that the newborn can either severely (Y2 = 3) or mildly (Y2 = 2) contract the

disease or remain healthy (Y2 = 1), her parents can then decide whether or not to give

her a vaccine to prevent a relapse (Y3 = 2 and Y3 = 1, respectively). We assume that

the parents’ decision about the vaccine does not depend on the screening test if the

newborn contracted the disease.

The above situation can be described, with some loss of information, by the BN in

Figure 1, with probabilities, for i, l ∈ [2] and j ∈ [3],

Pr(Y1 = i) = θi, Pr(Y2 = j |Y1 = i) = θ ji, Pr(Y3 = l |Y2 = j, Y1 = i) = θl ji.

Its associated interpolating polynomial has degree 3 and equals

cBN(θ) =
∑
i∈[2]

∑
j∈[3]

∑
l∈[2]

θiθ jiθl ji.

Its specific form can also be seen as the sum of the monomials reported in Table 1.
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θ1θ11θ111 θ1θ11θ211 θ1θ21θ121 θ1θ21θ221 θ1θ31θ131 θ1θ31θ231

θ2θ12θ112 θ2θ12θ212 θ2θ22θ122 θ2θ22θ222 θ2θ32θ132 θ2θ32θ232

Table 1: Monomials in the interpolating polynomial of the BN in Figure 1.

Y2

2

��

3

!!

1~~
Y1

2

  1~~
θl11 θl12 θl2− θl3−

Figure 2: CSI-tree associated to vertex Y3 of the BN in Figure 1 of Example 1, where θl2− = Pr(Y3 = l|Y2 =

2), θl3− = Pr(Y3 = l|Y2 = 3), θl12 = Pr(Y3 = l|Y2 = 1, Y1 = 2) and θl11 = Pr(Y3 = l|Y2 = 1, Y1 = 1), for

l ∈ [2].

2.2.2. Context-specific Bayesian networks

In practice it has been recognized that often conditional independence statements

do not hold over the whole sample space of certain conditioning variables but only

for a subset of this, usually referred to as a context. A variety of methods have been

introduced to embellish a BN with additional independence statements that hold only

over contexts. A BN equipped with such embellishments is usually called context-

specific BN. Here we consider the representation known as context specific indepen-

dence (CSI)-trees and introduced in [3].

Example 2. Consider the medical problem in Example 1. Using the introduced nota-

tion, we notice that by assumption, for each l ∈ [2], the probabilities θl2i are equal for

all i ∈ [2] and called θl2−. Similarly, θl3i are equal and called θl3−, i, l ∈ [2]. These

constraints can be represented by the CSI-tree in Figure 2, where the inner nodes are

random variables and the leaves are entries of the CPTs of one vertex. The tree shows

that, if Y2 = 2 or Y2 = 3 then no matter what the value of Y1 is, the CPT for Y3 = l

will be equal to θl2− and θl3− respectively. In our polynomial approach, context-specific

independences can be straightforwardly imposed in the interpolating polynomial rep-
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resentation of the model. In fact the interpolating polynomial for the model in this

example corresponds to the polynomial in equation (2) where the appropriate indeter-

minates are substituted with θl2− and θl3−. This polynomial is again multilinear and

homogeneous, just like for all context-specific BNs embellished with CSI-trees.

We notice here that the interpolating polynomial of a multilinear model is not nec-

essarily homogenous, as for example the one associated to certain chain event graph

models, as shown in [23].

3. Divergence measures

In sensitivity analyses for discrete parametric statistical models we are often in-

terested in studying how far apart from each other are two vectors of values of two

probability mass functions Pθ and Pθ̃ from the same model PΨ. Divergence measures

are used to quantify this dissimilarity between probability distributions. In this section

we provide a brief introduction to these functions within the context of our discrete

parametric probability models.

Definition 8. A divergence measureD within a discrete parametric probability model

PΨ is a functionD(·, ·) : PΨ × PΨ → R such that for all Pθ,Pθ̃ ∈ PΨ:

• D(Pθ,Pθ̃) ≥ 0;

• D(Pθ,Pθ̃) = 0 iff Pθ = Pθ̃.

The larger the divergence between two probability mass functions Pθ and Pθ̃, the more

dissimilar these are. Notice that divergences are not formally metrics, since these do

not have to be symmetric and respect the triangular inequality. We refer to divergences

with these two additional properties as distances.

The divergence most commonly used in practice is the KL divergence [28].

Definition 9. The KL divergence between Pθ̃,Pθ ∈ PΨ,DKL(Pθ̃,Pθ), is defined as

DKL(Pθ̃,Pθ) =
∑
y∈Y

pθ̃(y) log
(

pθ̃(y)
pθ(y)

)
, (3)

assuming pθ(y), pθ̃(y) > 0 for all y ∈ Y.
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Notice that the KL divergence is not symmetric and thus DKL(Pθ,Pθ̃) , DKL(Pθ̃,Pθ)

in general. However both divergences can be shown to be a particular instance of a

very general family of divergences, called φ-divergences [1, 15].

Definition 10. The φ-divergence between Pθ̃,Pθ ∈ PΨ,Dφ(Pθ̃,Pθ), is defined as

Dφ(Pθ̃,Pθ) =
∑
y∈Y

pθ(y)φ
(

pθ̃(y)
pθ(y)

)
, φ ∈ Φ, (4)

where Φ is the class of convex functions φ(x), x ≥ 0, such that φ(1) = 0, 0φ(0/0) = 0

and 0φ(x/0) = limx→∞ φ(x)/x.

So for example DKL(Pθ̃,Pθ) = Dφ(Pθ̃,Pθ) for φ(x) = x log(x) and DKL(Pθ,Pθ̃) =

Dφ(Pθ̃,Pθ) for φ(x) = − log(x). Many other renowned divergences are in the family of

φ-divergences: for example J divergences [25] and total variation distances (see [31]

for a review).

The distance usually considered to study the dissimilarity of two probability mass

functions in sensitivity analyses for discrete BNs is the aforementioned Chan-Darwiche

distance. This distance is not a member of the φ-divergence family.

Definition 11. The CD distance between Pθ,Pθ̃ ∈ PΨ,DCD(Pθ,Pθ̃), is defined as

DCD(Pθ,Pθ̃) = log max
y∈Y

pθ̃(y)
pθ(y)

− log min
y∈Y

pθ̃(y)
pθ(y)

, (5)

where 0/0 is defined as 1.

Notice that DCD(Pθ,Pθ̃) = DCD(Pθ̃,Pθ) since CD is formally a distance and not a

divergence. It has been noted that in sensitivity analysis in BNs, if one parameter of

one CPT is varied, then the CD distance between the original and the varied BN equals

the CD distance between the original and the varied CPT [8]. This distributive property,

and its associated computational simplicity, has lead to a wide use of the CD distance

in sensitivity studies in discrete BNs.

4. Sensitivity analysis in multilinear models

We can now formalize sensitivity analysis techniques for multilinear parametric

models. We focus on an extension of single full CPT analyses from BNs to generic
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multilinear models. Standard one-way sensitivity analyses can be seen as a special

case of single full CPT analyses when only one parameter is allowed to be varied. We

demonstrate in this section that all the results about one-way sensitivity analysis in

BN models extend to single full CPT analyses in multilinear parametric models and

therefore hold under much weaker assumptions about the structure of both the sample

space and the underlying conditional independences. Before presenting these results

we review the theory of covariation.

4.1. Covariation

In one-way analyses one parameter within a parametrisation of a model is varied.

When this is done, then some of the remaining parameters need to be varied as well to

respect the sum-to-one condition, so that the resulting measure is a probability measure.

In the binary case this is straightforward, since the second parameter will be equal to

one minus the other. But in generic discrete finite cases there are various considerations

the user needs to take into account, as reviewed below.

Let θi ∈ Θ be the parameter varied to θ̃i and suppose this is associated to a random

variable YC in the random vector Y. Let ΘC = {θ1, . . . , θi, . . . , θr} ⊆ Θ be the subset of

the parameter set including θi describing the probability distribution of YC and whose

elements need to respect the sum to one condition. For instance ΘC would include the

entries of a CPT for a fixed combination of the parent variables in a BN model or the

entries of a CPT associated to the conditional random variable from a leaf of a CSI-tree

as in Figure 2. Suppose further these parameters are indexed according to their values,

i.e. θ1 ≤ · · · ≤ θi ≤ · · · ≤ θr. From [37] we then have the following definition.

Definition 12. Let θi ∈ ΘC be varied to θ̃i. A covariation scheme σ(θ j, θ̃i) : [0, 1]2 →

[0, 1] is a function that takes as input the value of both θ̃i and θ j ∈ ΘC and returns an

updated value for θ j denoted as θ̃ j.

Different covariation schemes may entertain different properties which, depending

on the domain of application, might be more or less desirable. We now list some of

these properties from [37].

Definition 13. In the notation of Definition 12, a covariation scheme σ(θ j, θ̃i) is
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• valid, if
∑

j∈[r] σ(θ j, θ̃i) = 1;

• impossibility preserving, if for any parameter θ j = 0, j , i, we have that

σ(θ j, θ̃i) = 0;

• order preserving, if σ(θ1, θ̃i) ≤ · · · ≤ σ(θ j, θ̃i) ≤ · · · ≤ σ(θr, θ̃i);

• identity preserving, if σ(θ j, θi) = θ j, ∀ j ∈ [r];

• linear, if σ(θ j, θ̃i) = γ jθ̃i + δ j, for γ j ∈ [0, 1] and δ j ∈ (−1, 1).

Of course any covariation scheme needs to be valid, otherwise the resulting measure

is not a probability measure and any inference from the model would be misleading.

Applying a linear scheme is very natural: if for instance δ j = −γ j, then σ(θ j, θ̃i) =

δ j(1 − θ̃i) and the scheme assigns a proportion δ j of the remaining probability mass

1 − θ̃i to the remaining parameters. Following [37] we now introduce a number of

frequently applied covariation schemes.

Definition 14. In the notation of Definition 12, we define

• the proportional covariation scheme, σpro(θ j, θ̃i), as

σpro(θ j, θ̃i) =

 θ̃i, if j = i,
1−θ̃i
1−θi

θ j, otherwise.

• the uniform covariation scheme, σuni(θ j, θ̃i), for r = #ΘC , as

σuni(θ j, θ̃i) =

 θ̃i, if j = i,
1−θ̃i
r−1 , otherwise.

• the order preserving covariation scheme, σord(θ j, θ̃i), for i , r, as

σord(θ j, θ̃i) =



θ̃i, if j = i,
θ j

θi
θ̃i, if j < i and θ̃i ≤ θi,

−θ j(1−θsuc)
θsucθi

θ̃i +
θ j

θsuc
, if j > i and θ̃i ≤ θi,

θ j

θmax−θi
(θmax − θ̃i), if j < i and θ̃i > θi,

θ j−θmax

θmax−θi
(θmax − θ̃i) + θmax, if j > i and θ̃i > θi,

where θmax = 1/(1 + r − i) is the upper bound for θ̃i and θsuc =
∑r

k=i+1 θk is the

original mass of the parameters succeeding θi in the ordering.
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Scheme/Property valid imp-pres ord-pres ident-pres linear

Proportional 3 3 7 3 3

Uniform 3 7 7 7 3

Order Preserving 3 3 3 3 3

Table 2: Summary of the covariation schemes and the properties these entertain.

Table 2 summarizes which of the properties introduced in Definition 13 the above

schemes entertain (see [37] for more details). Under proportional covariation, to all

the covarying parameters, i.e. those parameters θ j ∈ ΘC \ {θi}, is assigned the same

proportion of the remaining probability mass as these originally had. Although this

scheme is not order preserving, it maintains the order among the covarying parameters.

The uniform scheme on the other hand gives the same amount of the remaining mass to

all covarying parameters. In addition, although the order preserving scheme is the only

entertaining the order preserving property, this limits the possible variations allowed.

Note that this scheme is piece-wise linear, i.e. a function composed of straight-line

sections. All the schemes in Definition 14 are domain independent and therefore can

be applied with no prior knowledge about the application of interest. Other schemes,

for instance domain dependent or non-linear, have been defined, but these are not of

interest for the theory we develop here.

4.2. Sensitivity functions

We now generalize one-way sensitivity methods in BNs to the single full CPT case

for general multilinear models. This type of analysis is simpler than other multi-way

methods since the parameters varied/covaried never appear in the same monomial of the

BN interpolating polynomial. So we now find an analogous CPT analysis in multilinear

models which has the same property. Suppose we vary n parameters θ1i , . . . , θni and

denote by Θ j = {θ j1 , . . . , θ jr j
}, j ∈ [n], the set of parameters including θ ji and associated

to the same (conditional) random variable: thus respecting the sum to one condition.

Assume these sets are such that ∩ j∈[n]Θ j = ∅. Note that a collection of such sets can

not only be associated to the CPTs of one vertex given different parent configurations,
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but also, for instance, to the leaves of a CSI-tree as in Figure 2 or to the positions along

the same cut in a CEG [39].

We start by investigating sensitivity functions. These describe the effect of the

variation of the parameters θ1i , . . . , θni on the probability of an event YT ⊆ Y of interest.

A sensitivity function fyT (θ̃1i , . . . , θ̃ni ) equals the probability P(Y ∈ YT ) , pθ̃(yT ) and

is a function in θ̃1i , . . . , θ̃ni , where θ1i , . . . , θni are varied to θ̃1i , . . . , θ̃ni . Our parametric

definition of a statistical model enables us to explicitly express these as functions of

the covariation scheme for any multilinear model. Recall that A = {αy | y ∈ Y} and

let T = {αy | y ∈ YT }. Let A j,T j ⊂ {0, 1}k be the subsets of A and T respectively

including the exponents where the entry associated to an indeterminate in Θ j is not

zero, A js ⊆ A j and T js ⊆ T j be the subsets including the exponents such that the entry

relative to θ js is not zero, j ∈ [n], s ∈ [r j]. Formally,

A j = {αy | y ∈ Y,α js,y , 0, s ∈ [r j]}, T j = {αy | y ∈ YT ,α js,y , 0, s ∈ [r j]},

A js = {αy | y ∈ Y,α js,y , 0}, T js = {αy | y ∈ YT ,α js,y , 0}.

Let A− js ,T− js ⊆ {0, 1}k−1 be the sets including the elements in A js and T js , respectively,

where the entry relative to θ js ∈ Θ j is deleted. Lastly, let θ− js =
∏

θk∈Θ\{θ js }
θk.

Example 3. To illustrate the notation introduced, consider the medical application of

Example 1 described by the BN in Figure 1. For this example

Θ = {θ1, θ2, θ11, θ21, θ31, θ12, θ22, θ32, θ111, θ211, θ121, θ221, θ131, θ231, θ112, θ212, θ122, θ222, θ132, θ232},

and the elements of the associated set A are reported in Table 3. For example we can see

that the top-left element of Table 3 is associated to the monomial θ1θ11θ111. Now sup-

pose we vary the parameters θ21 and θ22. Let Θ1 = {θ11, θ21, θ31} and Θ2 = {θ12, θ22, θ32}

be the two sets of parameters that need to respect the sum to one condition after pa-

rameters’ variations. Then A1 and A2 simply correspond to the left and right column

of Table 3, respectively, since for instance the left column has non-zero exponents for

the elements in Θ1. Then, for instance, the set A11 comprising all exponents with a

non-zero entry for θ11 corresponds to the first two entries on the left column of Table

3. Conversely, the set A−11 includes the first two rows in the left column of Table 3, but

for each of these the third vector entry, that associated to θ11, is deleted. Last consider
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(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

(1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

(1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

(1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Table 3: Elements of the set A for the BN in Figure 1.

the event Y1 = 1, i.e. that the screening test is negative. The associated set T then

corresponds to the left column of Table 3. The sets T j and T js can then be deduced by

similar observations as for A j and A js .

Proposition 2. Consider a multilinear model PΨ where the parameters θ ji ∈ Θ j are

varied to θ̃ ji and θ js ∈ Θ j \ {θ ji } is covaried according to a valid scheme σ j(θ js , θ̃ ji ),

j ∈ [n], s ∈ [r j] \ { ji}. The sensitivity function fyT (θ̃1i , . . . , θ̃ni ) can then be written as

fyT (θ̃1i , . . . , θ̃ni ) =
∑
j∈[n]

∑
α∈T− ji

θα− ji θ̃ ji +
∑
j∈[n]

∑
s∈[r j]\{ ji}

∑
α∈T− js

θα− js
σ j(θ js , θ̃ ji ) +

∑
α∈T\∪k∈[n]Tk

θα. (6)

Proof. The probability of interest can be written as

pθ(yT ) =
∑
α∈T

θα =
∑
j∈[n]

∑
s∈[r j]

∑
α∈T− js

θα− js
θ js +

∑
α∈T\∪k∈[n]Tk

θα

=
∑
j∈[n]

∑
α∈T− ji

θα− jiθ ji +
∑
j∈[n]

∑
s∈[r j]\{ ji}

∑
α∈T− js

θα− js
θ js +

∑
α∈T\∪k∈[n]Tk

θα.

The result follows by substituting the varying parameters with their varied version.

From Proposition 2 we can deduce that for a multilinear model, under a linear

covariation scheme, the sensitivity function is multilinear.

Corollary 1. Under the conditions of Proposition 2 and the linear covariation schemes

σ j(θ js , θ̃ ji ) = γ js θ̃ ji + δ js , the sensitivity function fyT (θ̃1i , . . . , θ̃ni ) equals

fyT (θ̃1i , . . . , θ̃ni ) =
∑
j∈[n]

a jθ̃ ji + b, (7)
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where

a j =
∑
α∈T− ji

θα− ji +
∑

s∈[r j]\{ ji}

∑
α∈T− js

θα− js
γ js , b =

∑
j∈[n]

∑
s∈[r j]\{ ji}

∑
α∈T− js

θα− js
δ js +

∑
α∈T\∪k∈[n]Tk

θα. (8)

Proof. The result follows by substituting the definition of a linear covariation scheme

into equation (6) and then rearranging.

Therefore, under a linear covariation scheme, the sensitivity function is a multi-

linear function of the varying parameters θ̃ ji , j ∈ [n]. This was long known for BN

models [5, 37, 40]. However, we have proven here that this feature is shared amongst

all models having a multilinear interpolating polynomial. In BNs the computation of

the coefficients a j and b is particularly fast since for these models computationally ef-

ficient propagation techniques have been established. But these exist, albeit sometimes

less efficiently, for other models as well (see e.g. [14] for chain graphs). Within our

symbolic definition, we note however that once the exponent sets T− js , s ∈ [r j], are

identified, then one can simply plug-in the values of the indeterminates to compute

these coefficients.

We now deduce the sensitivity function when parameters are varied using the pop-

ular proportional scheme.

Corollary 2. Under the conditions of Proposition 2 and proportional covariation

schemes σ j(θ js , θ̃ ji ) =
1−θ̃ ji
1−θ ji

θ js , the sensitivity function, fyT (θ̃1i , . . . , θ̃ni ) can be written

in the multilinear form of equation (7), where

a j =
∑
α∈T− ji

θα− ji −
∑

s∈[r j]\{ ji}

∑
α∈T js

θα

1 − θ ji
, b =

∑
j∈[n]

∑
s∈[r j]\{ ji}

∑
α∈T js

θα

1 − θ ji
+

∑
α∈T\∪k∈[n]Tk

θα.

Proof. For a proportional scheme the coefficients in the definition of a linear scheme

equals γ js = −θ js/(1 − θ ji ) and δ js = θ js/(1 − θ ji ). By substituting these expressions

into equation (8) we have that

a j =
∑
α∈T− ji

θα− ji−
∑

s∈[r j]\{ ji}

∑
α∈T− js

θα− js

θ js

1 − θ ji
, b =

∑
j∈[n]

s∈[r j]\{ ji}

∑
α∈T− js

θα− js

θ js

1 − θ ji
+

∑
α∈T\∪k∈[n]Tk

θα.

By noting that
∑
α∈T− js

θα
− js
θ js =

∑
α∈T js

θα the result then follows.

16



θ1 = 0.6, θ11 = 0.5, θ21 = 0.4, θ12 = 0.24, θ22 = 0.35

θ111 = 0.8, θ121 = 0.5, θ131 = 0.2, θ112 = 0.6 θ122 = 0.5 θ132 = 0.2.

Table 4: Probability specifications for Example 2.

It is often of interest to investigate the conditional probability of a target event

(Y ∈ YT ) given that an event (Y ∈ YO) has been observed, YT ,YO ⊆ Y. This can

be represented by the conditional sensitivity function f yO
yT (θ̃1i , . . . , θ̃ni ) describing the

probability P(Y ∈ YT |Y ∈ YO) as a function of the varying parameters θ̃1i , . . . , θ̃ni .

Corollary 3. Under the conditions of Corollary 1, a conditional sensitivity function

f yO
yT (θ̃1i , . . . , θ̃ni ) can be written as the ratio

f yO
yT (θ̃1i , . . . , θ̃ni ) =

∑
j∈[n] c jθ̃ ji + d∑
j∈[n] e jθ̃ ji + f

, (9)

where c j, e j ∈ [0, 1], j ∈ [n], and d, f ∈ (−1, 1).

Proof. The result follows from equation (7) and by noting that P(Y ∈ YT |Y ∈ YO) =

P(Y ∈ {YT ∩ YO})/P(Y ∈ YO).

The form of the coefficients in Corollary 3 can be deduced by simply adapting

the notation of equation (6) to the events P(Y ∈ {YT ∩ YO}) and P(Y ∈ YO) for the

numerator and the denominator, respectively, of equation (9). Sensitivity functions

describing conditional probabilities in BNs have been proven to entertain the form in

equation (9). Again, Corollary 3 shows that this is so for any model having a multilinear

interpolating polynomial.

Example 4. Suppose the BN model definition in Example 1 is completed by the prob-

ability specifications in Table 4. Suppose we are interested in the event that the parents

do not decide to vaccine. Figure 3 shows the sensitivity functions for this event when

θ21 (on the x-axis) and θ22 (on the y-axis) are varied and the other covarying parameter

are changed with different schemes. We can notice that for uniform and proportional

covariation the sensitivity function is linear in its arguments, whilst for order preserv-

ing covariation this is piece-wise linear. Notice that the resulting probabilities after
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(a) Proportional. (b) Uniform. (c) Order-preserving.

Figure 3: Sensitivity functions for Example 4 under different covariation schemes.

full single CPT variations are significantly different for different covariation schemes.

Thus, without formal justifications to prefer one scheme over the others, any inference

resulting from such sensitivity analyses might not be tenable.

4.3. The Chan-Darwiche distance

Whilst sensitivity functions study local changes, CD distances describe global vari-

ations in distributions [8]. These can be used to study by how much two vectors of

atomic probabilities vary in their distributional assumptions if one arises from the other

via a covariation scheme. We are then interested in the global impact of that local

change.

We next characterize the form of the CD distance for multilinear models in single

full CPT analyses, first generalizing its form, again derived in [37] for BN models. We

demonstrate that the distance depends only on the varied and covaried parameters: thus

very easy to compute.

Proposition 3. Let Pθ,Pθ̃ ∈ PΨ, where PΨ is a multilinear parametric model and Pθ̃
arises from Pθ by varying θ ji to θ̃ ji and θ js ∈ Θ j \ {θ ji } to θ̃ js = σ j(θ js , θ̃ ji ), where

σ j(θ js , θ̃ ji ) is a valid covariation scheme, j ∈ [n], s ∈ [r j] \ { ji}. Then the CD distance

between Pθ and Pθ̃ is equal to

DCD(Pθ,Pθ̃) = log max
j∈[n]
s∈[r j]

θ̃ js

θ js

− log min
j∈[n]
s∈[r j]

θ̃ js

θ js

. (10)
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Proof. For a multilinear parametric model the CD distance can be written as

DCD(Pθ,Pθ̃) = log max
α∈A

θ̃α

θα
− log min

α∈A

θ̃α

θα

= log max

max
j∈[n]
α∈A j

θ̃α

θα
, max
α∈A\∪l∈[n]Al

θ̃α

θα

 − log min

min
j∈[n]
α∈A j

θ̃α

θα
, min
α∈A\∪l∈[n]Al

θ̃α

θα

 .

If α ∈ A \ ∪l∈[n]Al, then θ̃ = θ and thus θ̃α/θα = 1. Because of the validity of

the covariation scheme note that maxα∈A j θ̃
α/θα ≥ 1 and minα∈A j θ̃

α/θα ≤ 1, for all

j ∈ [n]. Thus

DCD(Pθ,Pθ̃) = log max
j∈[n]
α∈A j

θ̃α

θα
− log min

j∈[n]
α∈A j

θ̃α

θα
.

Now note that θ̃ = θ− js θ̃ js , for a θ js ∈ Θ j, j ∈ [n], since no two parameters in ∪ j∈[n]Θ j

can have exponent non-zero in the same monomial. Thus θ̃α/θα = θ̃ js/θ js since α ∈

{0, 1}k and the result follows.

We can now prove that the proportional covariation scheme is optimal for single

full CPT analyses. This is important since a set of parameters might be varied to

change an uncalibrated probability of interest, but a user might want to achieve this

by choosing a distribution as close as possible to the original one. Several authors

have posed this problem for BNs without finding a definitive answer [7, 37]. Here,

exploiting our polynomial model representation, we can prove the optimality of the

proportional scheme not only for BN models, but also for multilinear ones in single

full CPT analyses.

Theorem 1. Under the conditions of Proposition 3 and proportional covariations

σ j(θ js , θ ji ), the CD distance between Pθ and Pθ̃ is minimized and can be written in

closed form as

DCD(Pθ,Pθ̃) = log max
j∈[n]

{
θ̃ ji

θ ji
,

1 − θ̃ ji

1 − θ ji

}
− log min

j∈[n]

{
θ̃ ji

θ ji
,

1 − θ̃ ji

1 − θ ji

}
. (11)

Proof. First note that we can write equation (10) as

DCD(Pθ,Pθ̃) = log max
{

max
s∈[r1]

θ̃1s

θ1s

, . . . , max
s∈[rn]

θ̃ns

θns

}
− log min

{
min
s∈[r1]

θ̃1s

θ1s

, . . . , min
s∈[rs]

θ̃ns

θns

}
.

(12)
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Now, let θ̄ ji = θ̃ ji and suppose θ̄ js ∈ Θ j \{θ ji } is obtained via a valid covariation scheme,

j ∈ [n], s ∈ [r j]. We want to prove that DCD(Pθ,Pθ̄) ≥ DCD(Pθ,Pθ̃). Suppose now

the proportional scheme is optimal for one-way sensitivity analyses. If this is true, we

must have that, for all j ∈ [n],

max
s∈[r j]

θ̄ js

θ js

≥ max
s∈[r j]

θ̃ js

θ js

, and min
s∈[r j]

θ̄ js

θ js

≤ min
s∈[r j]

θ̃ js

θ js

.

Therefore,

max
{

max
s∈[r1]

θ̄1s

θ1s

, . . . , max
s∈[rn]

θ̄ns

θns

}
≥ max

{
max
s∈[r1]

θ̃1s

θ1s

, . . . , max
s∈[rn]

θ̃ns

θns

}
,

and

min
{

min
s∈[r1]

θ̄1s

θ1s

, . . . , min
s∈[rn]

θ̄ns

θns

}
≤ min

{
min
s∈[r1]

θ̃1s

θ1s

, . . . , min
s∈[rn]

θ̃ns

θns

}
,

from which the optimality condition follows.

We thus have to prove that for a single parameter change, the proportional covari-

ation scheme minimizes the CD distance in any multilinear model. The proof follows

similar steps to the ones in [6] for BNs. Fix j ∈ [n] and note that if either θ ji = 0 or

θ ji = 1 then the distance is infinite under both covariation schemes and the result holds.

Consider now θ ji ∈ (0, 1) and suppose θ̄ ji = θ̃ ji > θ ji . Under a proportional scheme, we

have that

max
s∈[r j]

θ̃ js

θ js

=
θ̃ ji

θ ji
and min

s∈[r j]

θ̃ js

θ js

= min
s∈[r j]\{ ji}

θ js (1 − θ̃ ji )
(θ js (1 − θ ji ))

=
(1 − θ̃ ji )
(1 − θ ji )

.

Conversely, for the generic covariation scheme σ(θ js , θ̄ ji ) we have that

1 − θ̄ ji

1 − θ ji
=

∑
s∈[r j]\{ ji} θ̄ js∑
s∈[r j]\{ ji} θ js

=

∑
s∈[r j]\{ ji} θ js (θ̄ js/θ js )∑

s∈[r j]\{ ji} θ js

≥

∑
s∈[r j]\{ ji} θ js (mink∈[r j] θ̄k/θk)∑

s∈[r j]\{ ji} θ js

= min
s∈[r j]

θ̄s

θs
.

Thus since (1 − θ̄ ji )/(1 − θ ji ) = (1 − θ̃ ji )/(1 − θ ji ) we have that mins∈[r j] θ̃ js/θ js ≥

mins∈[r j] θ̄ js/θ js . Furthermore,

max
s∈[r j]

θ̄ js

θ js

≥
θ̄ ji

θ ji
=
θ̃ ji

θ ji
= max

s∈[r j]

θ̃ js

θ js

.

It then follows that DCD(Pθ,Pθ̄) ≥ DCD(Pθ,Pθ̃) when θ̃ ji > θ ji for one-way analyses.

For the case θ̃ ji < θ ji the proof mirrors the one presented here. The explicit form of
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(a) Proportional. (b) Uniform. (c) One-way analysis.

Figure 4: CD distances for Example 5 under different covariation schemes: proportional (black), uniform

(dashed), order-preserving (dotted).

the distance under proportional covariation schemes in equation (11) follows by noting

that the maximum and the minimum can either be θ̃ ji/θ ji or (1 − θ̃ ji )/(1 − θ ji ).

Example 5. In Figure 4 we plot the CD distance between the varied and the original

probability distributions for Example 1 when θ21 (x-axis) and θ22 (y-axis in 4a and 4b)

are varied for the covariation schemes so far considered. From Figures 4a and 4b we

can see intuitively why the distance under proportional covariation is smaller than in

the uniform case. This becomes clearer when we only let θ21 vary as shown in Figure

4c since then the solid line representing proportional covariation is always underneath

the others. Notice that in Figure 4c the CD distance for order preserving covariation is

computed up to 0.5, the value associated to θmax in this example.

4.4. φ-divergences

Although the CD distance is widely used in sensitivity analyses, comparisons be-

tween two generic distributions are usually performed by computing the KL diver-

gence. For one-way sensitivity analysis in BNs, the KL divergence equals the KL

divergence between the original and varied conditional probability distribution of the

manipulated parameter times the marginal probability of the conditioning parent con-

figuration [8]. This means that one way sensitivity analyses based on KL distances

can become computationally infeasible, since this constant term might need to be com-

puted an arbitrary large number of times. In Proposition 4 below we demonstrate that
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this property is common to any φ-divergence for any multilinear model and single full

CPT analyses.

Proposition 4. Let Pθ,Pθ̃ ∈ PΨ, where PΨ is a multilinear parametric model and Pθ̃
arises from Pθ by varying θ ji to θ̃ ji and θ js ∈ Θ j \ {θ ji } to θ̃ js = σ j(θ js , θ̃ ji ), where

σ j(θ js , θ̃ ji ) is a valid covariation scheme, j ∈ [n], s ∈ [r j] \ { ji}. Then the φ-divergence

between Pθ̃ and Pθ is equal to

Dφ(Pθ̃,Pθ) =
∑
j∈[n]

w jDφ(P j
θ̃
,P j
θ), (13)

where P j
θ denotes the vector of atomic probabilities in Θ j and w j ∈ [0, 1].

Proof. For a model with monomial parametrisation the φ-divergence can be written as

Dφ(Pθ̃,Pθ) =
∑
α∈A
θαφ

(
θ̃α

θα

)
=

∑
j∈[n]

∑
α∈A j

θαφ

(
θ̃α

θα

)
+

∑
α∈A\∪ j∈[n]A j

θαφ

(
θ̃α

θα

)
.

Notice that for α ∈ A \ ∪ j∈[n]A j, θ̃α/θα = 1. Thus, since φ(1) = 0, we then have that

Dφ(Pθ̃,Pθ) =
∑
j∈[n]

∑
α∈A j

θαφ

(
θ̃α

θα

)
=

∑
j∈[n]

∑
s∈[r j]

∑
α∈A− js

θα− js
θ jsφ

θα− js
θ̃ js

θα
− js
θ js


=

∑
j∈[n]

∑
s∈[r j]

θ jsφ

(
θ̃ js

θ js

) ∑
α∈A− js

θα− js
. (14)

Now notice that by construction
∑
α∈A− js

θα
− js

is equal for all s ∈ [r j] and is a number

between zero and one that we denote w j. This is because the probability distribution of

any random vector Y can be written as

Pr(Y = y) = Pr(Ym = ym|Y[m−1] = y[m−1])Pr(Ym−1 = ym−1|Y[m−2] = y[m−2]) · · · Pr(Y1 = y1)

= θym y[m−1]θym−1 y[m−2] · · · θy1 .

Notice that, for instance, any parameter θym y[m−1] , for any ym ∈ Ym but for a fixed

y[m−1] ∈ Y[m−1], is multiplied with the same linear combination of parameters in the

interpolating polynomial. This linear combination of probabilities corresponds to the

term
∑
α∈A− js

θα
− js

in equation (14). A statistical model then simply imposes some equal-

ity constraints on these probabilities, but each parameter will still be multiplied by the

same linear combination of probabilities. From this observation the result then fol-

lows.
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Example 6. To illustrate the form of φ-divergences in full single CPT analyses re-

ported in equation (13), we now derive it for the KL divergence in Definition 9. Con-

sider the BN model in Example 1 and suppose again that θ21 and θ22 are varied. The

KL divergence can be computed as

DKL(Pθ̃,Pθ) = θ1(θ111 + θ211)θ̃11 log
(
θ̃11

θ11

)
+ θ1(θ121 + θ221)θ̃21 log

(
θ̃21

θ21

)
+ θ1(θ131 + θ231)θ̃31 log

(
θ̃31

θ31

)
+ θ2(θ112 + θ212)θ̃12 log

(
θ̃12

θ12

)
+ θ2(θ122 + θ222)θ̃22 log

(
θ̃22

θ22

)
+ θ2(θ132 + θ232)θ̃32 log

(
θ̃32

θ32

)
.

We can notice in the above expressions that each element ofDφ(P j
θ̃
,P j
θ), i.e. θ̃l j log(θ̃l j/θl j),

is multiplied by θ j(θ1l j + θ2l j) for l ∈ [3] and j ∈ [2]. However, since θ1l j + θ2l j = 1

for every l ∈ [3] and each j ∈ [2], then every element in Dφ(Pi
θ̃
,Pi
θ) is multiplied by

the same probability: in this specific example θ j. Notice that the parameter θ j, j ∈ [2],

corresponds to the marginal probability of the conditining parent configuration. This

property is of course expected to hold since the underlying model is a BN [8].

The additional complexity of having to compute the constant terms w j, j ∈ [n], in

equation (13) has limited the use of KL divergences, and more generally φ-divergences,

in both practical and theoretical sensitivity investigations in discrete BNs. However,

looking at probabilistic models from a polynomial point of view, we are able here to

establish an additional strong theoretical justification for the use proportional covaria-

tion even in single full CPT analyses, since this also minimizes any φ-divergence.

Theorem 2. Under the conditions of Proposition 4, Dφ(Pθ̃,Pθ) is minimized by the

proportional covariation scheme.

Proof. Since w j in equation (13) is a positive constant, Dφ(Pθ̃,Pθ) is minimized if

each Dφ(P j
θ̃
,P j
θ) attains its minimum. Fix a j ∈ [n]. We use the method of Lagrange

multipliers to demonstrate that Dφ(P j
θ̃
,P j
θ) is minimized by proportional covariation,

subject to the constraint that
∑

s∈[r j] θ̃ js − 1 = 0. Define

L =
∑
s∈[r j]

θ jsφ

(
θ̃ js

θ js

)
− λ

∑
s∈[r j]

θ̃ js − 1

 .
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Taking the first derivative of L with respect to θ̃ js and equating it to zero gives

∂

∂θ̃ js

L = φ′
(
θ̃ js

θ js

)
= λ,

where φ′ denotes the derivative of φ. By inverting we then deduce that

θ̃ js = φ′(λ)−1θ js . (15)

Since equation (15) holds for every s ∈ [r j] \ { ji} we have that∑
s∈[r j]\{ ji}

θ̃ js = φ′(λ)−1
∑

s∈[r j]\{ ji}

θ js (16)

Now take the first partial derivative of L with respect to λ and equate it to zero. This

gives
∂

∂λ
L =

∑
s∈[r j]

θ̃ js = 1 =⇒
∑

s∈[r j]\{ ji}

θ̃ js = 1 − θ̃ ji (17)

Plugging the right hand side of (17) into (16), we deduce that

φ′(λ)−1 =
1 − θ̃ ji∑

s∈[r j]\{ ji} θ js

=
1 − θ̃ ji

1 − θ ji
. (18)

Thus, by plugging (18) into (15) we conclude that

θ̃ js =
1 − θ̃ ji

1 − θ ji
θ js .

This is guaranteed to be a minimum by the convexity of the function φ.

Example 7. As an example of a φ-divergence, in Figure 5 we have plotted KL(Pθ̃,Pθ)

for Example 1 when θ21 (x-axis) and θ22 (y-axis in 5a and 5b) are varied for the co-

variation schemes so far considered. From Figures 5a and 5b we can see why the KL

divergence under proportional covariation is smaller than in the uniform case. This

becomes clearer when we only let θ21 vary as shown in Figure 5c since again the solid

line, associated to proportional covariation, is always underneath the others.

5. Discussion

The polynomial representation of discrete statistical models based on the interpo-

lating polynomial does not only represent an elegant characterization of a large class
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(a) Proportional. (b) Uniform. (c) One-way analysis.

Figure 5: KL divergences for Example 7 under different covariation schemes: proportional (solid), uniform

(dashed), order-preserving (dotted).

widely-used graphical models, it also provides a platform to answer a variety of sen-

sitivity queries. Exploiting this representation we have been able to extend one-way

sensitivity analysis results known for BNs only to a wide array of other models, for

instance context-specific BNs and chain event graph amongst others. However, this

technology allowed us to prove new optimality results of the proportional covariation

operator for all multilinear models, including BNs. We showed that proportional co-

variation does not only minimize the CD distance in single full CPT sensitivity analy-

ses, but also any divergence in the class of φ-divergences.

We notice that the flexibility of the interpolating polynomial representation might

enable us to investigate even larger classes of models, for instance dynamic BNs, ex-

tending sensitivity methods to dynamic settings. The interpolating polynomial of such

models is not necessarily multilinear. Preliminary results seem to suggest that in this

framework both sensitivity functions and CD distances exhibit different properties than

in the simpler multilinear case, with the potential of even more informative sensitivity

investigations.

A different extension of this work would conversely look at more general multi-way

sensitivity analyses, where varied parameters might appear in the same monomial of

the interpolating polynomial. Intuitively, for such analyses sensitivity functions will not

simply be multilinear as for single full CPT analyses, but also include interaction terms.

Similarly, both CD distances and φ-divergences will be affected by such interactions.
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For this reason the proportional covariation scheme for generic multi-way analyses

might not be always optimal. However the polynomial representation of probabilities

in BNs and related models gives us a promising starting point to start investigating this

class of problems.
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