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Abstract

Search diversification (also called diversity search), is an important approach to

tackling the query ambiguity problem in information retrieval. It aims to diver-

sify the search results that are originally ranked according to their probabilities

of relevance to a given query, by re-ranking them to cover as many as possi-

ble different aspects (or subtopics) of the query. Most existing diversity search

models heuristically balance the relevance ranking and the diversity ranking,

yet lacking an efficient learning mechanism to reach an optimized parameter

setting. To address this problem, we propose a learning-to-diversify approach

which can directly optimize the search diversification performance (in term of

any effectiveness metric). We first extend the ranking function of a widely used

learning-to-rank framework, i.e., LambdaMART, so that the extended rank-

ing function can correlate relevance and diversity indicators. Furthermore, we

develop an effective learning algorithm, namely Document Repulsion Model

(DRM), to train the ranking function based on a Document Repulsion Theory

(DRT). DRT assumes that two result documents covering similar query aspects

(i.e., subtopics) should be mutually repulsive, for the purpose of search diver-

sification. Accordingly, the proposed DRM exerts a repulsion force between

each pair of similar documents in the learning process, and includes the diver-
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sity effectiveness metric to be optimized as part of the loss function. Although

there have been existing learning based diversity search methods, they often

involve an iterative sequential selection process in the ranking process, which is

computationally complex and time consuming for training, while our proposed

learning strategy can largely reduce the time cost. Extensive experiments are

conducted on the TREC diversity track data (2009, 2010 and 2011). The results

demonstrate that our model significantly outperforms a number of baselines in

terms of effectiveness and robustness. Further, an efficiency analysis shows that

the proposed DRM has a lower computational complexity than the state of the

art learning-to-diversify methods.

Keywords: Search Diversification, Learning-to-Rank, Document Repulsion

Model, Diversity Features

1. Introduction

In recent decades, Information Retrieval (IR) techniques have underpinned

a growing number of Web information processing systems (e.g., search engines,

recommender systems) that have changed the way people access and interact

with information. The core research problem of IR is to rank documents with5

respect to a given query. Most traditional ranking models follow the Probability

Ranking Principle (PRP) [17], which assumes that documents are independently

ranked according to their probabilities of relevance to the query.

Despite its great success, the traditional PRP is insufficient to deal with the

challenging issue of query ambiguity. Specifically, in Web search, there often10

exist numerous ambiguous queries that may have more than one interpretations

(e.g., a query “apple” can refer to the fruit apple or the Apple corporation) or

multiple subtopics (e.g., “program language” contains many different aspects).

A PRP-based ranking model tends to first estimate the most probable inter-

pretation (or subtopic) of a query, and then compute the relevance scores of15

documents with respect to this interpretation, and sort them in a descending

order. A consequence is that the retrieval model may return wrong search re-
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sults (due to the mis-estimation of the query intent) or redundant results for

only one subtopic while leaving out relevant information about other subtopics.

Such query ambiguity and result redundancy problem can be addressed by di-20

versifying the search results (i.e., the selected relevant document for a lower

ranking position should be as dissimilar as possible to the documents that have

already ranked at the higher positions), so that the search results can cover

multiple subtopics and satisfy the users’ diverse information needs.

In the literature, a range of diversity search approaches have been proposed.25

Essentially, most of them [1, 4, 18, 22, 27, 28] use a greedy algorithm1 to re-

rank the original result list by balancing the query-document relevance score

and document-document dissimilarity scores. These approaches usually do not

adopt a learning mechanism and are difficult to reach an optimized parameter

setting, thus limiting the effectiveness of search diversification.30

In this paper, we aim to develop a learning-to-diversify approach by di-

rectly optimizing an effectiveness metric, such as α-nDCG [7], within the pop-

ular Learning to Rank (LTR) framework. LTR involves learning to optimize

a ranking function based on a set of features. In line with the state of the

art diversity search models [1, 18, 28], we first define a ranking function for35

search diversification, which can integrate both relevance features (including

query-dependent features, document-dependent features and query-document

dependent features [13]) and diversity features (including document-document

features that capture the interrelationships between documents) into our pro-

posed learning-to-diversify approach. To do this, we formalize a series of typical40

diversity features derived from selected diversity models [28, 30]. Note that, not

all diversity models can be used, which will be discussed in Section 3.2.5.

Then, the key challenge is how to consider document diversity in the learning

process for the defined ranking function. In order to address this problem, we

propose a novel Document Repulsion Theory (DRT). Essentially, DRT assumes45

1For each ranking position, a greedy algorithm computes the diversity scores for all un-

selected documents and select the one with the highest diversity score.
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that (1) two documents in a relevant-irrelevant document pair (i.e., two docu-

ments that have different relevance scores, one is more relevant than another.)

should be mutually repulsive for the purpose of relevance ranking (i.e., the rel-

evant document should be pushed upwards and the irrelevant document gets

pushed downwards in the ranking list); (2) for the purpose of diversity ranking,50

two documents covering similar query aspects (i.e., subtopics) should also be

mutually repulsive. Intuitively, if a pair of topically similar documents can be

automatically separated from each other, the final ranking of results will become

diversified naturally. Based on the above assumptions, we develop a document

repulsion model (DRM) to simulate DRT in the learning process, which not55

only maximizes the diversity metric but also maintains the quality of relevance.

In order to implement the DRM, we borrow the idea of relevance-irrelevance

document repulsion as used in a popular learning-to-rank algorithm, namely

LambdaMART. Specifically, for a pair of documents (d1, d2), if d1 is more rel-

evant than d2, then LambdaMART will exert a repulsion force with size |λ12|,60

to push up d1 and push down d2. Similarly, we can incorporate an additional

repulsion force between two documents sharing similar query subtopics, so that

the similar documents can be naturally separated. The direction of movement

of separated documents will be determined by the original relevance scores, in

order to guarantee that the repulsion operation will not hurt the quality of the65

relevance ranking.

We have carried out extensive experiments on the TREC diversity track

data and Clueweb09B document collection. The experimental results show the

effectiveness and robustness of our proposed DRM model. We also theoretically

show the efficiency of the proposed model in comparison with various state of70

the art learning-to-diversify methods through a complexity analysis.

In a nutshell, the major contributions of this paper are summarized as fol-

lows:

• First, we propose a novel Document Repulsion Model (DRM) which leads

to an improved Learning-to-Rank algorithm for search diversification.75
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• Second, we prove what diversity features are suitable for DRM, based on

which we further formalize a series of novel diversity features that take

into account the interrelationship between documents.

• Third, we conduct extensive comparative experiments and gain insightful

findings about the proposed model from a range of different perspectives.80

The rest of the paper is organized as follows. Section 2 presents a review of

the related work, which motivates the proposed document repulsion model as

detailed in Section 3. Section 4 reports our experimental setup. The experimen-

tal results are reported and discussed in Section 5. In Section 6, we conclude

the paper and point out future research directions.85

2. Related Work

Search diversification can be used to solve the problems of query ambiguity

and result redundancy. Algorithmatically, it can be seen as an instance of

the maximum coverage problem [10] which is NP-hard. Most existing search

diversification approaches apply an iterative sequential selection process for each90

ranking position to re-rank the original search results. They can be organized

into a two-dimensional taxonomy [20], i.e., diversification strategies and query

aspect (subtopic) representation methods.

Two main diversity strategies [16] include extrinsic diversity (coverage-based)

and intrinsic diversity (novelty-based). The former aims at retrieving search re-95

sults by considering all possible interpretations of a query, thus maximizing the

coverage of query aspects. The latter aims at avoiding redundancy in the search

results. The methods for aspect (subtopic) representation can be grouped into

implicit representation and explicit representation. Specifically, implicit repre-

sentation methods do not mine query aspects explicitly and assume that similar100

documents cover similar query aspects; while explicit representation methods

usually use external information (e.g., query logs) to explicitly model query as-

pects. Jointly considering the diversity strategies and aspect representation
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methods, the existing diversity search approaches can be classified into the

following categories: implicit coverage-based, explicit coverage-based, implicit105

novelty-based, explicit novelty-based, and hybrid approaches.

There exist a number of implicit novelty-based approaches, such as the

widely applied Maximal Marginal Relevance (MMR) [4] and others [22, 27,

28, 30]. They are non-learning approaches, and usually use heuristic rules to

sequentially select documents from a candidate document set by considering the110

already selected documents. The current selected document needs to be maxi-

mally dissimilar to the documents ranked at the higher positions. Additionally,

the Affinity Ranking (AR) approach [28, 25] computes diversity scores of doc-

uments based on the “information richness” (derived from the Affinity Graph),

using a greedy algorithm to penalize the unselected document with all docu-115

ments in the selected document set. Similarly, the Quantum Probability Rank-

ing Principle (QPRP) [30] takes a document’s relevance score as the original

information richness score, but uses a different penalty item. Except for QPRP,

all of these approaches have various free parameters that define the trade-off

between “query-document” similarity and “document-document” similarity. As120

non-learning methods, they often use some heuristic methods (e.g., grid search)

to tune parameters. In this paper, we use machine learning methods to train

the model parameters automatically. Moreover, we adopt a number of diversity

features inspired by some aforementioned methods, e.g., AR and QPRP.

Moreover, there exist various learning-based approaches, such as [12, 15, 21,125

29] (belonging to categories of implicit coverage-based or hybrid approaches).

For example, Radlinski et al.[15] proposed an online learning approach that

uses multi-armed bandit and click data to minimize the abandonment activity

(i.e., users do not find any satisfied results). However, it requires external data

and only solves the maximized coverage of query aspects. Another learning130

method, presented in [29], does not model the query aspects explicitly, but

considers both coverage and novelty problems at the same time. In this hybrid

learning method, the training and ranking processes are based on the MMR

criterion [4]. It has led to an improvement over the original search results.
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Xia et al. [12] proposed a learning approach, which is similar to the work in135

[29] in term of the ranking process (i.e., MMR based ranking) but differs in

the learning process that trains the ranking model by directly optimizing the

diversity evaluation metric. Note that, the diversity search approaches in both

[12] and [29] apply an iterative sequential ranking function in both learning

and ranking processes, which is computationally expensive. Additionally, Yue140

and Joachims [21] replaced the subtopic coverage with word coverage to solve

both coverage and novelty problems within the framework of Support Vector

Machines (SVM). However, they do not consider the document relevance.

For explicit approaches, some external information is often required. For

example, query logs have been used [5, 14] to mine the query aspects. Santos145

et al. [18] used query reformulations to represent different query aspects. The

Open Directory Project (ODP) has also been used [1]. Up to now, xQuAD[18]

and IASelect[1] are considered as the most effective explicit diversification ap-

proaches. Similar to MMR, the ranking in these approaches is still a sequential

selection process. Differently, xQuAD involves a probabilistic framework to150

measure the relationships between current document and the already selected

documents. Our approach does not use any external information to represent

query aspects. Nevertheless, formalizing query aspects explicitly as diversity

features for our model is a research direction worth future investigation.

Our proposed model is an implicit approach and focuses on both novelty155

and coverage. Compared with the existing approaches, the main advantage of

our model is that we develop a novel Document Repulsion Theory which then

underpins a non-greedy learning process to achieve search diversification. In

this way, we gain significant performance improvements with relatively lower

computational cost.160

3. Document Repulsion Model for Search Diversification

In this section, we propose a Document Repulsion Model (DRM) for learn-

ing to diversify, which can directly optimize an effectiveness metric. In the
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following, we first introduce the learning-to-rank framework. Then, we present

a Document Repulsion Theory, based on which the Document Repulsion Model165

is developed within the learning-to-rank framework.

3.1. Learning to Rank Framework

The learning-to-rank framework is composed of a learning process and a

ranking process. In the learning process, the training data is used to learn a

ranking model by directly optimizing the evaluation metric. The learned rank-170

ing model is then used to re-rank the test data in the ranking process. Therefore,

in the following, we first introduce the ranking function with a series of model

parameters that need to be trained in the learning process. Then we describe

the learning algorithms for training the model parameters. In the present paper,

our learning algorithm is extended from a listwise learning-to-rank algorithm,175

namely LambdaMART [24]. The reason why we choose this approach is that

LambdaMART [24] combines a tree-boosting optimization (called MART) [9]

and a widely used learning-to-rank algorithm (called LambdaRank) [2]. There-

fore, we present the LambdaRank [2] (LambdaMART is the boosted tree version

of it) algorithm in this subsection.180

3.1.1. Ranking Function

Traditional learning-to-rank models compute documents’ ranking scores in-

dependently and sort them in a decreasing order. Formally , let Xi = {xi
1, ..., x

i
n}

, where xi
j denotes the feature vector of a document j given a query i. The rank-

ing score for each document can be computed as follows:

f(xi
j) = wTxi

j (1)

where wT encodes the model parameters which need to be trained. The query-

dependent features, document-dependent features and query-document features

are used in the ranking function. In the next subsection, we introduce a well

known Learning to Rank algorithm, i.e., LambdaRank [3], for training this185

ranking function.
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3.1.2. Introduction to LambdaRank

The LambdaRank algorithm is derived from RankNet [3]. The cost func-

tion of RankNet involves penalizing the document pairs that are incorrectly

ranked, while rewarding the pairs that are correctly ranked. Specifically, the190

cost function C is formalized as follows:

C =
1

2
(1 − Sij)σ(si − sj) + log(1 + e−σ(si−sj)) (2)

where si and sj are the model scores of documents i and j respectively; σ is

the shape parameter of the sigmoid function; Sij = 1 if the relevance label of

document i is larger than that of document j, and Sij = −1 when the relevance

label of document i is smaller than that of document j. The gradient of the195

cost function with respect to the model score si is:

λij ≡ σ(
1

2
(1 − Sij) −

1

1 + eσ(si−sj)
) (3)

This gradient can be interpreted as a force. For document i and document

j, if i is more relevant than j, this force will push i up with size λij and push j

down with size λij . For each pair of documents which belongs to the set I (I is

the set of document pairs < i, j >, in which document i is more relevant than

document j), the λij is computed. Then, for every document i, we can obtain:

λi =
∑

j:{i,j}∈I

λij −
∑

j:{j,i}∈I

λij =
∑

{i,j}⇌I

λij (4)

where λi is computed from all pairs that contain document i. λ for each docu-

ment can be regarded as an arrow, the direction of which represents the direction

the document will move towards in the next iteration, and the length of which

indicates the size of movement.200

In order to optimize the evaluation metric directly, some rules are first made

[2], and then the gradient is defined to meet the rules through modifying Eq. (3)

by simply multiplying the change value of the evaluation metric |∆Z| when

swapping the rank positions of document i and document j:

λij =
−σ

1 + eσ(si−sj)
|∆Z| (5)
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where the document i is more relevant than document j.

The intuitions can be described as follows [2]: it is much easier to make

rules to guide the rank order of documents than to directly construct the cost

function which desires certain rank order properties. Furthermore, the specified

rules can be achieved through defining the gradient of the cost function. Note205

that, the cost function can be derived by computing the integral of the gradient.

A limitation of the lambdaRank algorithm is that it only considers the doc-

ument pairs < i, j > in which the relevance of document i is more or less than

the relevance of document j. The gradient λij can be seen as a repulsion force

which can push the more relevant document up and the less relevant document210

down in the ranking. However, all document pairs whose component documents

have the same relevance degrees are likely untouched in the learning process.

As a result, documents covering similar query aspects are ranked closely.

In the following, we propose rules (as the Document Repulsion Theory) to

guide the rank order of document in the learning process. We also define the215

gradient of cost function to capture these rules.

3.2. A Document Repulsion Model for Learning to Diversity

In this subsection, we describe how to extend the listwise learning-to-rank

approach (LambdaMART [24]) to obtain the Document Repulsion Model. At

first, we present the ranking function for diversification which considers both220

relevance ranking and diversity ranking (Section 3.2.1). Then, we propose a

Document Repulsion Theory to resolve the problem described in Section 3.1.2.

Correspondingly, we define the gradients of cost function for our learning-to-

diversity approach and prove the validity of the cost function. Finally, the

diversity features used in Document Repulsion Model are also formalized.225

3.2.1. Ranking Function for Diversification

Santos et al. [19] used traditional ranking function to rank documents and

train the model by directly optimizing the diversity evaluation metrics for search

diversification. However, they did not gain good results. A likely reason is that
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Figure 1: To combine the relevance ranking and diversity ranking as the final ranking.

they do not consider the diversity features in the final ranking function, although230

they have considered diversity evaluation metrics in the learning process.

In fact, most of the existing diversification models [11, 28] consider both

relevance ranking and diversity ranking. The search diversification problem

is regarded as a bi-criterion optimisation problem which needs to balance rel-

evance and diversity in the final ranking function. As shown in Figure 1, the235

relevance ranking maximizes the relevance of top ranked results, while the diver-

sity ranking maximizes the novelty of top ranked results, and the final ranking

will consider both relevance and diversity.

Motivated by above discussion, we propose a balanced ranking function by

directly adding a diversity part to the original ranking function, as formalized

in Eq.6:

f(xi
j , v

i
j) = wT

r x
i
j + wT

s v
i
j (6)

where xi
j denotes the relevance feature vector of the document j for query i,

vij represents the diversity feature vector of the document j for query i. Then,240

document scores are computed by this balanced ranking function. Finally, we

sort documents in the decreasing order according to the final ranking scores.

After defining this balanced ranking function, our main problems become (i)

how to consider diversity when training the model parameters and (ii) how to

extract the diversity features, which will be addressed next.245
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Figure 2: Different cases for document pairs < i, j >.

3.2.2. Document Repulsion Theory

The Document Repulsion Theory assumes that two documents in a docu-

ment pair (i.e., one document is more relevant than the other) should be mutu-

ally repulsive for the purpose of relevance ranking (i.e., the relevant document

gets pushed upwards and the irrelevant document gets pushed downwards), and250

two documents covering with similar query aspects (i.e., subtopics) also should

be mutually repulsive for the purpose of diversity ranking. Intuitively, if the

similar documents can be separated, the final ranking results will be diversified.

According to the document repulsion theory, we make a series of repulsion rules

for the learning process.255

To this end, we define 5 cases, to which a document pair (e.g., < i, j >) may

belong (as shown in Figure 2). (i) One document in the pair (e.g., document

i) covers at least one subtopic, while the other document does not cover any.

The original LambdaRank model can handle this case in the learning process.

(ii) Document i and document j have the same subtopic coverage. In this case,260

the two documents in this pair should be separated according to the document

repulsion theory. Specifically, the document ranked higher in original result list

should be pushed up, while the other one should be pushed down. (iii) If the

subtopics covered by document i contain all subtopics covered by document j,

the intuition is to push document i up and document j down, since document i265

contains more subtopics and contribute more diversification to the final ranking.

(iv) The document i has some overlap of subtopics with the document j. How-

ever, each document has some novelty information which could contribute to
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the final diversification ranking. Thus, they should not be mutually repulsive.

(v) If two documents’ subtopics do not have any overlap or they do not cover270

any query subtopics, there will be no any repulsion force.

Those repulsion forces existing in the first three cases are based on the

following intuitive hypotheses: (1) The relevant documents (which cover at

least one query subtopic) should rank higher than irrelevant documents (which

do not cover any query subtopics). (2) If two documents have the same query275

subtopics coverage, the first document (which rank higher in the original result

list) should be seen as more relevant compared with the other one, so the first

document should rank higher than the other and thus needs to be pushed down

to make a separation. (3) The documents covering more query subtopics are

also regarded as more “relevant” than documents covering less query aspects.280

Therefore, they should be ranked higher and repulse the less relevant documents

to make them apart from each other.

Intrinsically, more cases of document pairs are considered in our model than

LambdaRank, which only considers the relevance-irrelevance document pairs.

Similar to LambdaMART, our final model combines with MART to produce285

the boosted tree version. In the next subsection, we will introduce the docu-

ment repulsion model (DRM), which is an operationalization of the document

repulsion theory for diversity search.

3.2.3. Gradients of Cost Function for DRM

In the LambdaRank method, the gradient of weights is computed according290

to Eq.(4), where the set I only contains the first case illustrated in Figure 2. In

our Document Repulsion Model, more cases are considered. As there exist more

than one relevance labels for each document in the diversity search task, we use

T (i) to replace the Y (i). Y (i) is a one-dimensional vector, where Y
(i)
j represents

the relevance label of document j for query i. In contrast, T (i) is matrix, in295

which the jth row vector (T
(i)
j ) represents the relevance label list of document

j for query i (each element in the row vector corresponds to a query subtopic).

Then the computation of the gradient for every document can be illustrated

13



by Algorithm 1 (detailed in Appendix), where (1) T
(i)
k > T

(i)
l represents that

document k covers one query subtopic, while document l does not cover any;300

(2) T
(i)
k ⊃ T

(i)
l denotes that document k covers more query subtopics than

document l; (3) T
(i)
k ≡ T

(i)
l represents that two documents have the same query

subtopics coverage. Additionally, we replace the Z in the computation function

of λkl with the diversity evaluation metric (e.g., α-NDCG[7]) that is to be

optimized directly.305

3.2.4. Cost Function

We have already specified a set of rules based on the Document Repulsion

Theory to determine how to change the rank order of documents, and defined

the gradient of cost function to meet the rules. However, we still do not know

whether the gradient can be successfully used to the learning process. To guar-310

antee the effectiveness of the gradient, we need to prove the feasibility of the

definition. The proof in [2] determines that the condition
∑

di∈DQ
λi = 0 (di is

a document in the document set DQ given a query Q) should be satisfied. If

the gradient of cost function is defined, we should guarantee that the modified

cost function exists and is convex, so that the proposed learning algorithm can315

be used.

According to [2], Eq.(7) can be used to determine if there exists a cost

function. Furthermore, the cost function is convex if the Jacobian (that is, the

matrix Jjk ≡ ∂λj/∂sk) is positive semidefinite for each j, k.

∂λj

∂sk
=

∂λk

∂sj
∀j, k ∈ {1, ..., n} (7)

Since the computation process of the λi (Eq.(4)) and the computation func-

tion of λij are similar to those of LambdaRank (the consideration of more kinds

of document pairs does not influence the computation of λi and λij), there ex-

ists a convex cost function in our learning algorithm, showing the feasibility of320

the proposed learning algorithm.

Correspondingly, the cost function derived from the defined gradient can be
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Algorithm 1 : Computation of gradients.

Input: (qi, X
(i), T (i)), x

(i)
j ∈ X(i)

// X(i): feature vector set, T (i): relevance label matrix

Output: λ(i), λ
(i)
j ∈ λ(i)

1: for k = 1, ..., n do

2: for l = k + 1, ..., n do

3: if T
(i)
k > T

(i)
l then

4: λ
(i)
kl = −σ

1+eσ(sk−sl)
|△Z|

5: λ
(i)
k + = λ

(i)
kl

6: λ
(i)
l − = λ

(i)
kl

7: else if T
(i)
k < T

(i)
l then

8: λ
(i)
kl = −σ

1+eσ(sl−sk) |△Z|

9: λ
(i)
l + = λ

(i)
kl

10: λ
(i)
k − = λ

(i)
kl

11: else if T
(i)
k ⊃ T

(i)
l then

12: λ
(i)
kl = −σ

1+eσ(sk−sl)
|△Z|

13: λ
(i)
k + = λ

(i)
kl

14: λ
(i)
l − = λ

(i)
kl

15: else if T
(i)
k ⊂ T

(i)
l then

16: λ
(i)
kl = −σ

1+eσ(sl−sk) |△Z|

17: λ
(i)
l + = λ

(i)
kl

18: λ
(i)
k − = λ

(i)
kl

19: else if T
(i)
k ≡ T

(i)
l then

20: λ
(i)
kl = −σ

1+eσ(sk−sl)
|△Z|

21: λ
(i)
k + = λ

(i)
kl

22: λ
(i)
l − = λ

(i)
kl

23: end if

24: end for

25: end for

26: return λ(i)
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formalized as follows:

C =
∑

{di,dj}⇌G

|△Z| log(1 + e−σ(si−sj)) (8)

where G contains all document pairs with respect to the first three cases men-

tioned above. The meaning of the notation ⇌ is similar to that in Eq.(4).

3.2.5. Formalization of Diversity Features

To conduct search diversification, we need to formalize a set of diversity325

features which are combined with the relevance features to determine the final

ranking. To this end, we come up with an intuitive idea of using selected existing

diversity models to form the diversity features directly. However, not all the

existing diversity models are applicable in the learning-to-diversify framework,

because the required model score of a document for diversity feature should330

reflect the diversity ranking order. Specifically, if document di ranks before the

document dj in diversity ranking list, the model score of the document di should

be larger than that of the document dj . Only this kind of model score can be

used as diversity feature. In this paper, we select the diversity model score as a

diversity feature according to the above rule (we call it “score-rank consistency”335

rule).

However, most diversity models apply the iterative sequential selection pro-

cess to re-rank the initial ranking list, and the model score of a document may

not necessarily meet the above rule (since the diversity score of a unselected

document is updated for each iteration, we regard the diversity score in final340

selection iteration as the model score of the document).

Let us look at the MMR approach [4] as an example: for each document

di in the unselected document set Dq, the diversity scores f(q, di, Dq) can be

computed by the Eq.(9):

fMMR(q, di, Dq) = λf1(q, di) − (1 − λ)maxdj∈Dqf2(di, dj) (9)

where f1(q, di) denotes the relevance score of document di, and f2(di, dj) rep-

resents the similarity score of documents di and dj . However, this model does
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not meet the above score-rank consistency rule, as illustrated below.

Let document di be the ith document in the final diversity ranking list. In345

the re-ranking process, the unselected document set Dq contains documents

di and di+1 when the selected document set already has i− 1 documents. The

reason why the model selects di for the position i is that the diversity score sdi of

document di is the largest in the unselected document set Dq. Therefore, we can

obtain the model score of document di in this iteration (mdi=sdi) according to350

the definition of model score. Similarly, we can obtain the model score mdi+1 of

di+1 in the next iteration which is the biggest diversity score in the unselected

document set Dq \ di. However, the model score mdi (the biggest diversity

score within the unselected document set Dq in the previous iteration) is not

necessarily bigger than the model score mdi+1
, because of the absence of the355

clear relation between the score mdi and the score mdi+1 . Thus the “score-rank

consistency” rule may be violated by the MMR model.

Among the existing diversity ranking approaches, we find that AR [28] and

QPRP [30] satisfy this rule, as detailed below.

For the AR approach [28], a directed link graph, namely Affinity Graph, is

used to produce the information coverage score (InfoRich(di)) for each docu-

ment i. Then an iterative sequential selection algorithm is used to re-rank the

result list by the novelty information coverage score (AR(di)). Specifically, the

document with the highest novelty information score is selected at each rank

position. The novelty information score for the document i in the unselected

document set is computed by the following equation:

fAR(q, di, Dq) = InfoRich(di) −
∑

dj∈Dq

M̂jiInfoRich(dj) (10)

where InfoRich(di) and M̂ji are produced by the Affinity Graph, and Dq is360

the set of already selected documents. Additionally,
∑

dj∈Dq
M̂jiInfoRich(dj)

is the penalty term, which exerts a penalty score for the candidate document

by all the selected documents in Dq.

Zuccon and Azzopardi [30] proposed the quantum probability ranking prin-
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ciple (QPRP) which extends the probability ranking principle (PRP) by con-365

sidering the influence of other documents when scoring a candidate document.

They used Eq.(11) to compute the document ranking score, which can be seen

as the novelty information score for a candidate document di compared with

the selected documents Dq for the query q.

fQPRP (q, di, Dq)

= p(di) − 2
∑

dj∈Dq

√
p(di)

√
p(dj)f(di, dj)

(11)

where p(di) denotes the relevance score of document di being relevant to the370

query, and f(di, dj) denotes the similarity score between document di and doc-

ument dj . The interference term 2
∑

dj∈Dq

√
p(di)

√
p(dj)f(di, dj) is used to

penalize the information redundancy of a candidate document compared with

the selected documents.

The above two methods also use the iterative sequential selection process375

to rank documents. However, for each iteration, they impose a penalty to the

diversity score of the previous iteration to update the current diversity score,

rather than combine the original score and dissimilarity score. Here, we give

a brief proof to show that the selected diversity models (i.e., AR and QPRP)

satisfy the “score-rank consistency” rule.380

For this purpose, we need to prove that the model score for the document at

position k is greater than that at position k + 1, which is formalized as mdk
≥

mdk+1
. When selecting a document for the rank position k, the unselected

document set Dq contains the documents dk and dk+1. The reason why dk is

selected for the position k is that dk has the maximum diversity score in Dq, so385

the diversity score of dk is larger than the diversity score of dk+1, formalized as

sdk
≥ sdk+1

. In addition, we can obtain the model score mdk
of document dk in

this iteration (mdk
= sdk

). This proof process is the same as that for the MMR

model. However, the next step is different, which determines the suitability of

the AR and QPRP models for diversity features.390

For the next rank position k + 1, the current document is selected accord-

18



ing to equation dk+1 = arg maxdi∈{Dq\dk}{sdi
− penalty(dk, di)}, where sdi

is the diversity score in the last iteration, penalty(dk, di) ≥ 0 is a penalty

score of the current document considering the previously selected document k.

Specifically, penalty(dk, di) = M̂kiInfoRich(dk) in AR and penalty(dk, di) =395 √
p(di)

√
p(dk)f(di, dk) in QPRP. Therefore, the model score mdk+1

of docu-

ment dk+1 equals to sdk+1 − penalty(dk, dk + 1). Then, we have mdk
= sdk

,

sdk
≥ sdk+1

, mdk+1
= sdk+1 − penalty(dk, dk + 1) and penalty(dk, dk + 1) ≥ 0,

so mdk
≥ mdk+1

. Therefore, both the AR and QPRP models satisfy the “score-

rank consistency” rule and the model scores can be used as the diversity features.400

Note that, the computation of aforementioned diversity features do not involve

free parameters.

4. Experimental Setup

In this section, we describe the experimental setup, including data sets,

diversification approaches for comparison, feature extraction, and the details of405

model testing.

4.1. Data Sets

Our experiments are conducted on TREC (Text REtrieval Conference2) di-

versity tasks, including TREC 2009 Web Track (50 topics), TREC 2010 Web

Track (48 topics), and TREC 2011 Web Track (50 topics). For each topic410

(query), TREC assessors identify 2 to 8 subtopics (or aspects). In Figure 3,

we report the distribution of queries over different numbers of subtopics. The

relevance judgments for documents are conducted at the subtopic level. Specif-

ically, TREC assessors label a relevance degree for a document with respect

to each identified subtopic. We use the ClueWeb09 category-B as the docu-415

ment collection3 which comprises 50 million English documents. The collection

2http://trec.nist.gov/tracks.html
3http://boston.lti.cs.cmu.edu/Data/clueweb09
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Figure 3: Distribution of query number on the number of subtopic number queries contain.

is indexed by the Indri toolkit (version 5.6)4. The indexing process involves

basic pre-processing, including word stemming (with the Porter stemmer) and

stopword removal (with standard English stopwords).

4.2. Diversification Approaches for Comparison420

We evaluate our our proposed model (denoted as DRM), in comparison

with a baseline language model (LM) used for initial relevance-based ranking

and a number of state of the art diversity search models, including MMR [4],

RankScoreDiff [11], QPRP [30], AR [28] and LambdaMART (with diversity

optimization target) [3]. They are described as follows:425

• LM is the initial ranking model which is implemented by the Indri search

engine. All the following diversity models are achieved by re-ranking the

initial results returned by LM.

• DRM is the proposed Document Repulsion Model which is extended from

the LambdaMART approach.430

• MMR is an implicit novelty-based approach, which considers both rele-

vance and similarity factors of documents for ranking. The ranking pro-

cess of MMR is implemented with the greedy algorithm, i.e., an iterative

sequential selection of documents for each ranking position from a candi-

date document set considering the influence of previously selected docu-435

ments. We choose it as a baseline for comparison because it is the first

4http://lemurproject.org/indri
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implicit novelty-based diversification approach in the literature and is a

representative diversity search approach.

• RankScoreDiff is an implicit coverage-based approach, which combines the

initial relevance ranking list and the diversity ranking list. The diversity440

ranking is based on the difference between the initial rank scores (e.g., the

query likelihood score) of adjacent documents. Note that, this is an non-

greedy approach. The combination of the relevance features and diversity

features in our approach is inspired by this method. Moreover, our final

ranking function (DRM) is also non-greedy. Therefore, we select it as445

another baseline.

• QPRP is an implicit novelty-based approach which considers the inter-

relationships between documents for the re-ranking purpose. It is also

a greedy method which computes the ranking probability for each docu-

ment by considering the penalty given by all documents in the selected450

document set.

• AR is an implicit hybrid-based approach which utilizes a document-document

relationship graph to compute the information coverage score for each doc-

ument. The diversity score of a document is obtained by combining the

information coverage score and the penalty scores exerted by all documents455

in the set of already selected document. For the purpose of ranking, AR

combines the initial relevance score and diversity score together as the fi-

nal rank score. Some diversity features used in our approach are extracted

based on AR, therefore it is also used as a baseline.

• LambdaMART is a successful listwise learning-to-rank algorithm to deal460

with the ranking problem, which can directly optimize any IR evaluation

metric. Here, we use the α-NDCG as the optimization target for the

diversity retrieval task in this paper. Our model is extended from this

approach, so we select it as a baseline.

Note that we choose a number of representative implicit diversity ranking465
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approaches, which are closely related to ours, as baselines in the evaluation,

since our method is also an implicit model. The explicit approaches are not

empirically compared in this study. Indeed, there exist some recent learning

methods (e.g., R-LTR [29] and PAMM [12]) that have achieved a good perfor-

mance. However, the ranking function of them is still an iterative sequential470

selection process which is different from ours. Moreover, they exploit numerous

external resources in features. Therefore, we do not conduct comparative ex-

periments with them, but we analyze their difference from our approach based

on the results reported in the corresponding papers.

4.3. Feature Extraction475

In order to train and test our document repulsion model, we represent each

query-document pair as a feature vector with n feature elements. All the features

are pre-extracted offline and stored into a text file, and each row corresponds

to a query-document pair. Figure 4 shows an example of extracted features

stored in the feature file. The first K columns before “qid” correspond to the480

relevance judgments for each subtopic of the query (e.g., query q1 contains K = 3

subtopics and qk contains K = 4 subtopics). “qid:q1” represents the query ID,

“n:fkin” is the nth feature value for document di with respect to the query qk,

and “#docid=di” represents the document ID.

Figure 4: An example of feature file which contains k queries.

The feature vector contains both relevance features and diversity features.485

We extract them as follows. The relevance features include various commonly
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Table 1: Relevance features. For more details, please refer to [13].

Feature Description

QueryTF Sum of query term frequency in a document

DocLen Number of words in a document

DocTF-Sum Sum of document term frequency in the collection

DocTF-Min Min of document term frequency in the collection

DocTF-Max Max of document term frequency in the collection

DocTF-Mean Mean of document term frequency in the collection

DocTF-Var Variance of document term frequency in the collection

DocTFIDF-Sum Sum of document tfidf in the collection

DocTFIDF-Min Min of document tfidf in the collection

DocTFIDF-Max Max of document tfidf in the collection

DocTFIDF-Mean Mean of document tfidf in the collection

DocTFIDF-Var Variance of document tfidf in the collection

TFIDF TF×IDF score

BM25 BM25 score

LMIR-ABS LMIR with ABS smoothing

LMIR-DIR LMIR with DIR smoothing

LMIR-JM LMIR with JM smoothing

used features in the literature [13], as summarized in Table 1. The diversity

features shown in the Table 2 are extracted based on QPRP [30] and Affinity

graph [28] (which are detailed in Section 3.2.5. The QPRP based features

are computed using Eq.(11), where f(di, dj) is the Cosine similarity between490

documents di and dj , represented as TF-IDF vectors. The other features are

extracted based on Affinity graph [28].

4.4. Comparative Models

The official evaluation metrics for the diversity search task (α-NDCG [7],

ERR-IA [6] and NRBP [8]) are adopted to evaluate the diversity models. The495

common idea of those metrics is to reward top ranked diversified and relevant

results. Meanwhile they penalize the redundancy in search results by assigning
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Table 2: Diversity features (QPRP based features are computed based on Eq. 11)

Feature Description

QPRP-TF QPRP value based on TF-IDF

QPRP-BM25 QPRP value based on BM25 score

QPRP-ABS QPRP value based on LMIR with ABS smoothing

QPRP-DIR QPRP value based on LMIR with DIR smoothing

QPRP-JM QPRP value based on LMIR with JM smoothing

InfoRich Information richness computed as in [28]

ARScore AR score computed as in [28]

an increased probability of stopping browsing the results when users find the

desired information. We set the related parameters α (for computing α-nDCG)

and β (for computing NRBP ) to 0.5, in order to guarantee the consistency500

with the official TREC evaluation methodology. Additionally, all the metrics

are computed over the top-k ranked search results (k=20).

In order to augment the size of the training data for our learning model,

we combine all the queries in the TREC Web Tracks from 2009 to 2011. The

combined dataset contains 148 queries. All approaches are tested by re-ranking505

the original top 1000 documents retrieved by the Indri search engine (imple-

mented with the query likelihood Language Model (LM)) for each query. For

all approaches with free parameters, 5-fold cross-validation is conducted through

optimizing the α-NDCG (k = 20). The average performance over all test folds

is reported. The significance test (t-test) has been performed for all the com-510

parative diversity ranking approaches compared with the LM baseline.

5. Results and Discussions

In this section, we report and analyze the experiment results from different

angles. We first report the overall average diversification performance on all

queries in TREC Web Tracks 2009, 2010 and 2011, followed by average perfor-515

mance for different years separately to observe performances of different diver-
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sity models on different TREC data. The re-ranking performance of all models

for different queries with different numbers of subtopics are also reported and

analyzed, from which we can gain insights about the application scope of di-

versification models. Moreover, a robust analysis is conducted. We then carry520

out a component analysis to investigate how different components of our model

contribute to the final diversification performance.

5.1. Overall Diversification Performance

The overall diversification performance of different models with respect to

three official evaluation metrics are reported in Table 3. The relative improve-525

ments of all diversification models over the LM model are shown in the paren-

theses. As shown in the table, our diversification model (DRM) significantly

outperforms the baseline LM model with respect to all evaluation metrics, by

33.58% for the α-NDCG, 52.31% for the ERR-IA and 72.94% for the NRBP

respectively. This result shows that our model is effective for the diversity search530

task.

The proposed model also outperforms the other diversification baselines sig-

nificantly. For example, the widely used MMR model in general does not im-

prove the original ranked results and even brings some harm to the diversifi-

cation results. Similarly, the re-ranking performance of QPRP performs worse535

than LM. MMR and QPRP are rule-based greedy ranking algorithms. The

poor diversification performance shows that simple rule-based methods have a

limitation for web search diversification. RankScoreDiff and AR are diversifi-

cation models that combine the relevance ranking and diversity ranking into

the final ranking. From the experiment results, we find that they gain some540

improvements over the originally ranked results returned by LM. However, the

improvements are not significant for all evaluation metrics. Overall, the di-

versification performances for all the above models (non-learning models) are

rather poor, showing the limitation of non-learning algorithms. Compared with

the non-learning approaches, LambdaMART gains a much larger improvement545

over the LM baseline by 15.1% for the α-NDCG, 27.41% for the ERR-IA and
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Table 3: Overall performance on all queries in TREC 2009-2011. Significance Test has been

conducted for all of the diversity models compared with the baseline LM model with t-test,

where † means p < 0.05 and ‡ means p < 0.01.

Runs α-NDCG ERR-IA NRBP

LM 0.2695 0.1751 0.1371

MMR 0.2681 (-0.52%) 0.1715 (-2.06%) 0.1313 (-4.23%)

QPRP 0.1663 (-38.31%) 0.1266 (-27.69%) 0.1109 (-19.11%)

RankScoreDiff 0.2705 (+0.37%) 0.1767 (+0.91%) 0.1392 (+1.53%)†

AR 0.2711 (+0.59%) 0.1765 (+0.79%) 0.1372 (0.07%)

LambdaMART 0.3102 (+15.10%)‡ 0.2231 (+27.41%)‡ 0.192 (+40.04%)‡

DRM 0.36 (+33.58%)‡ 0.2667 (+52.31%)‡ 0.2371 (+72.94%)‡

40.04% for the NRBP respectively. Even through LambdaMART has achieved

significant improvements, our DRM model still largely outperforms it. The

result shows a superior performance of our proposed model.

5.2. Performance on Different TREC data550

In the above subsection, we report the average evaluation results on all

diversity tasks of TREC Web Track 2009-2011. Furthermore, we would like to

find out the diversification performance on different subsets of the data, one for

a specific year of TREC. The diversity tasks in different years have different

properties. To this end, we report the re-ranking performance for TREC 2009555

(Table 4), 2010 (Table 5) and 2011 (Table 6) respectively.

As shown in the three tables, we find that the relative trend of diversification

performance for different models is consistent with the overall results reported

in previous subsection. DRM is still the most effective one compared with other

baseline diversification models. However, we can still observe some meaningful560

phenomenon by comparing the results for different years of TREC. The perfor-

mances of all re-ranking models on TREC 2009 are largely better than those

on TREC 2010 and 2011. Even the MMR, which did not perform well on the

whole dataset, has got an improvement over the LM baseline on TREC 2009.
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Table 4: Performance on TREC 2009 diversity tasks.

Runs α-NDCG ERR-IA NRBP

LM 0.2028 0.1050 0.0743

MMR 0.2080 (+2.56%)† 0.1065 (+1.43%)† 0.0750 (+0.94%)

QPRP 0.1289 (-36.44%) 0.0809 (-22.95%) 0.0676 (-9.02%)

RankScoreDiff 0.2127 (+4.88%)† 0.1114 (+6.10%)† 0.0815 (+9.69%)†

AR 0.2123 (+4.68%)† 0.1168 (+11.23%)‡ 0.0876 (+17.90%)‡

LambdaMART 0.2374 (17.06%)‡ 0.1447 (37.81%)‡ 0.1180 (58.81%)‡

DRM 0.2952 (+45.56%)‡ 0.1958 (+86.48%)‡ 0.1775 (+138.90%)‡

Table 5: Performance on TREC 2010 diversity tasks.

Runs α-NDCG ERR-IA NRBP

LM 0.2078 0.1251 0.0896

MMR 0.2094 (+0.77%) 0.1219 (-2.56%) 0.0834 (-6.92%)

QPRP 0.1314 (-36.77%) 0.0918 (-26.62%) 0.0755 (-15.74%)

RankScoreDiff 0.2094 (+0.77%) 0.1288 (+2.96%)† 0.0944 (+5.36%)†

AR 0.2179 (+4.86%)† 0.1306 (+4.40%)† 0.0935 (+4.35%)†

LambdaMART 0.2356 (+13.37%)‡ 0.1513 (+20.94%)‡ 0.1185 (+32.25%)‡

DRM 0.3036 (+46.10%)‡ 0.2247 (+79.62%)‡ 0.1963 (+119.08%)‡

Table 6: Performance on TREC 2011 diversity tasks.

Runs α-NDCG ERR-IA NRBP

LM 0.3954 0.2932 0.2457

MMR 0.3847 (-2.71%) 0.2842 (-3.07%) 0.2336 (-4.92%)

QPRP 0.2371 (-40.04%) 0.2055 (-29.91%) 0.1885 (-23.28%)

RankScoreDiff 0.3871 (-2.10%) 0.2881 (-1.74%) 0.2401 (-2.28%)

AR 0.3812 (-3.59%) 0.2804 (-4.37%) 0.2287 (-6.92%)

LambdaMART 0.4545 (+14.95%)‡ 0.3703 (+26.29%)‡ 0.3366 (+36.99%)‡

DRM 0.4782 (+20.94%)‡ 0.3780 (+28.92%)‡ 0.3360 (+36.75%)‡
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The performance for TREC 2011 is not as good as for the other two years. All565

the non-learning models become worse after re-ranking the original results of

LM, and the performance of LambdaMART and DRM also become less effective

than that in TREC 2009 and 2010. The possible reason is that the diversity

tasks in TREC 2011 are more difficult than that in TREC 2009 and 2010.

5.3. Performance on Different Queries570

Table 7: Performance for different queries with different numbers of subtopics with respect to

α-NDCG.

Subtopic Num num = 2 num = 3 num = 4 num = 5 num ≥ 6

LM 0.3816 0.3725 0.2404 0.2559 0.1325

MMR
0.3610

(-5.40%)

0.3672

(-1.42%)

0.2439

(1.45%)†

0.2473

(-3.36%)

0.1403

(5.89%)†

QPRP
0.2270

(-40.51%)

0.2200

(-40.93%)

0.1611

(-32.98%)

0.1520

(-40.60%)

0.0794

(-40.07%)

RankScoreDiff
0.3958

(3.72%)†

0.3694

(-0.83%)

0.2420

(0.66%)

0.2426

(-5.19%)

0.1496

(12.90%)‡

AR
0.4076

(6.81%)†

0.3578

(-3.94%)

0.2469

(2.70%)†

0.2520

(-1.52%)

0.1507

(13.73%)‡

LambdaMART
0.5129

(34.41%)‡

0.3813

(2.36%)†

0.2826

(17.55%)‡

0.2563

(0.16%)

0.2382

(79.77%)‡

DRM
0.5407

(41.69%)‡

0.4498

(20.75%)‡

0.3172

(31.95%)‡

0.2944

(15.04%)‡

0.3043

(129.99%)‡

In this subsection, we report and analyze the diversification performance

on different queries with different numbers of subtopics. Intuitively, if a query

has more subtopics, the query tends to be more ambiguous and would need

more diversification. The results are reported in Table 7. DRM outperforms

all other diversification models significantly on all queries. For each model,575

we find that the largest improvement over the baseline LM model is obtained

when the number of subtopic is larger than 6 (num ≥ 6), and the least im-

provement of performance is obtained when subtopic number is 5. This is an
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Table 8: The robustness analysis of diversification performance for TREC 2009-2011.

Runs α-NDCG ERR-IA NRBP

MMR 63/55 59/59 55/59

QPRP 32/96 20/108 43/85

RankScoreDiff 69/55 66/58 68/55

AR 75/50 70/55 74/50

LambdaMART 80/51 76/55 82/49

DRM 87/41 86/42 86/42

unexpected phenomenon. From Table 7, we observe that the performance of

initial search results decreases with the increase of the number of subtopics ex-580

cept for num = 5. This shows that the more subtopics a query has, the more

difficult to return diversified results based on the original LM. If the original

performance is low (e.g., num ≥ 6), there will be much room for improvement.

If the original performance is already good (e.g., num = 5), there is little room

for improvement that the diversification models can lead to.585

5.4. Robustness Analysis

In addition to the effectiveness of diversification models that have been an-

alyzed in the above subsections, we believe the robustness also needs to be

analyzed. We use the Wins/Losses to measure the robustness of performance

[23]. Wins is the number of queries which gain improvements over LM, and590

Losses is the number of queries whose performance are worse than LM. The

queries with no difference in performance from LM were not considered. As

shown in Table 8, our model is the most robust with respect to all evaluation

metrics.

5.5. Components Analysis595

Our diversity search model consists of three components, i.e., the optimiza-

tion of diversity metric, the diversity features and the document repulsion al-

gorithm. In this subsection, we analyze how different components contribute
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Table 9: Component analysis for our proposed model on TREC 2009-2011.

Runs α-NDCG ERR-IA NRBP

LM 0.2695 0.1751 0.1371

LambdaMART 0.3102 (+15.10%)‡ 0.2231 (+27.41%)‡ 0.192 (+40.04%)‡

LambdaMARTDR 0.3021 (+12.10%)‡ 0.2066 (+17.98%)‡ 0.1736 (+26.62%)‡

LambdaMARTDF 0.3386 (+25.64%)‡ 0.2493 (+42.37%)‡ 0.2186 (+59.44%)‡

DRM 0.36 (+33.58%)‡ 0.2667 (+52.31%)‡ 0.2371 (+72.94%)‡

to the final diversification performance. To this end, we test four sub-models

composed of different components. They are “LambdaMART” (LambdaMART600

model with diversity evaluation metric α-NDCG as the optimization target,

without diversity features), “LambdaMARTDR” (LambdaMART with docu-

ment repulsion learning algorithm), “LambdaMARTDF ” (LambdaMART with

diversity features) and “DRM” (the complete DRM diversification approach).

From Table 9, we can find that “LambdaMARTDF ” significantly outper-605

forms LambdaMART, which shows that adding extra diversity features to the

basic learning-to-rank model is beneficial. In addition, we can further improve

the diversification performance by implementing the document repulsion model

(DRM). However, we find “LambdaMARTDR”, which does not consider the di-

versity features, does not outperform the initial LambdaMART model. This is610

a meaningful phenomenon, which reveals that the proposed learning algorithm

based on Document Repulsion Theory works only when diversity features are

considered in the ranking function. To conclude, the combination of diversity

features and document repulsion learning algorithm is the major contributor to

improvement of the diversity search performance.615

5.6. Discussion: Comparison with Recent Learning-to-Rank Approaches

We have shown the superiority of our approach compared with a number of

implicit baseline approaches. These comparative approaches all belong to the

same class of diversity search model with implicit aspect representation (See
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Table 10: Comparison with some recent learning approaches with respect to α-NDCG@20.

Runs TREC 2009 TREC 2010 TREC 2011

LM (Baseline) 0.2028 0.2078 0.3954

DRM
0.2954

(+45.56%)

0.3036

(+46.10%)

0.4782

(+20.94%)

QL (Baseline) 0.269 0.302 0.453

R-LTR
0.3964

(+47.21%)

0.4924

(+62.91%)

0.6297

(+39.07%)

R-LTR-NTNdoc2vec

0.4503

(+67.40%)

0.5376

(+78.01%)

0.6555

(+44.70%)

PAMM
0.4271

(+58.74%)

0.524

(+73.51%)

0.643

(+41.94%)

PAMM+NTNdoc2vec

0.4555

(+69.33%)

0.5407

(+79.04%)

0.6566

(+44.94%)

Section 2 - Related Work, for detailed classification). It is worth noting that620

recently there have been various learning-to-diversify approaches that make use

of explicit aspect representation, i.e., R-LTR [29] and PAMM [12]. More re-

cently, Xia et al. [26] proposed to model the document novelty with neural

tensor network and applied it to existing learning framework for search result

diversification. Our proposed approach is intrinsically different from them in625

the taxonomy of search diversification approaches (i.e., ours is an implicit ap-

proach, while R-LTR and PAMM are explicit approaches). Therefore, we do not

directly conduct comparative experiments with them in the same experimental

environment. Instead, we look at the experimental results reported in their pa-

pers [12][29][26]. As shown in Table 10 (in which, LM is the baseline used in630

this paper. Query Likelihood (QL) model is the baseline used in [12][29][26].),

there is still a room for our approach to improve, compared with these recent

explicit and learning based approaches. However, we would like to highlight

their fundamental differences from ours as follows:

(i) The design of the ranking model is different. Specifically, they use a635
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greedy ranking function based on the iterative sequential selection principle in

both learning and testing processes, which leads to a high computational cost.

Specifically, they need to update the weight values for a large number of times

in learning process, and for each time, it is an iterative sequential selection

process. On the other hand, we only use one greedy process to extract the640

diversity features, instead of using the unpredictable greedy process repeatedly,

so that the learning and ranking in our approach would be more efficient. The

time complexity for computing document scores in the learning process for R-

LTR [29] and PAMM [12] is O(M · (N+1)N
2 ), while ours is O(M · N), where

M is the number of iterations5, and N is the number of documents. Thus,645

our approach is more efficient than existing learning-to-diversify methods. Note

that, we use the non-learning approaches (e.g., MMR, QPRP and AP, etc.)

as diversity features and use the training algorithm to learn their weights, so

that the computational complexity of our approach is larger than that of the

non-learning approaches.650

(ii) They extract a large number of features from various external sources

of explicit knowledge (e.g., ODP, pagerank and anchor text), while we only

use some representative features from queries and documents without requiring

any external knowledge. Moreover, from the results reported in their papers

[12, 29], we find that the initial relevance-based baseline search performance is655

different from ours, possibly due to different experimental setups and different

pre-processing methods of the document collection, etc. In this sense, a direct

empirical comparison of our model with the models proposed in [12, 29] would

not be applicable nor meaningful. However, we are inspired to further improve

our approach by utilizing some good features from these models.660

5We assume that the number of iterations for R-LTR, PAMM and our DRM are the same,

since they all use the gradient descent algorithm to reach a convergence for the cost function.
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6. Conclusions and Future Work

In this paper, we have proposed a novel learning-to-diversify approach that

directly optimizes the diversity metric to improve the effectiveness, robustness

and efficiency of search diversification. A Document Repulsion Theory (DRT)

is proposed, which assumes that two documents covering similar query aspects665

should be mutually repulsive. To implement DRT, an efficient learning algo-

rithm is developed. Based on DRT and by extending a widely used learning-to-

rank framework, i.e., LambdaMART, we propose a document repulsion model

(DRM) for search results diversification. The inter-relationships between doc-

uments are captured by the diversity features, which are then combined with670

traditional relevance features to balance relevance and diversity in document

ranking. Extensive experiments have shown that our approach is effective and

robust in comparison with a number of existing learning-to-diversify approaches

that also build upon LambdaMART.

Our model can be seen as an implicit diversity ranking approach based on675

the assumption that the similar documents cover similar query aspects. There

have been recent work in explicitly modelling query aspects as diversity features.

We are inspired to incorporate the explicit aspects into the DRM in the future.
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