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Abstract

Quality function deployment (QFD) is widely acknowledged as a customer-oriented prod-

uct design tool, which is generated by translating consumer demands into design attributes of

a product. In order to depict the internal ambiguous factors in the development process more

appropriately, uncertain variables with a specialized kind of regular uncertainty distributions

based on uncertainty theory are applied. Subsequently, two uncertain chance-constrained

programming (CCP) models used for formulating the QFD procedure are set forth, whose

objectives are maximizing the consumer satisfaction and minimizing the design cost, respec-

tively. To demonstrate the feasibility of the proposed modelling approach, an example of the

motorcycle design problem is illustrated, in which the new target levels of design attributes are

selected and analyzed according to the decision-makers’ subjectivity and preference at differ-

ent confidence levels. Additionally, a comparative study between the uncertain CCP approach

and another uncertain expected value modelling approach is conducted. The results indicate

that uncertain CCP models are more suitable for optimization in the QFD procedure.
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1 Introduction

Nowadays, the burgeoning demands of diversified and personalized products have pushed manufac-

turing industries to chase consumers’ continuous and changeable needs in a faster pace. Therefore,

dynamic and fierce competition emerges from the global market. To break this situation, many

companies have adopted various product development tools to seek for permanent competence in

seizing benefits. Quality function deployment (QFD) is a popular one among these tools, which

can be traced back to the late 1960s [1]. It is a comprehensive method devoting to interpreting

consumer demands (CDs) into design attributes (DAs) of the target product and ensuring the

improved product to gain more customer support.

The house of quality (HoQ) is the core concept of QFD, which consists of several matrices based

on “whats (CDs) - hows (DAs)” [11]. CDs and their relative importance weights are summarized on

the left wall of an HoQ. The ceiling reflects each DA and the roof signifies correlations among DAs.

And the body reveals relationships between CDs and DAs. In addition, the ground is furnished

with the observed data of target levels for DAs, which is denoted by the quantitative technical

specifications of DAs required to satisfy each CD.

As to a new or improved product, the QFD procedure aims at determining a series of target

levels for DAs under resource constraints, whose overall consumer satisfaction is supposed to be

equal to or larger than that of any other potential competitors in the market. In real-life appli-

cations, definitely multiple variables, trade-offs and contradictions will be involved. To deal with

this complex operation course, an increasing number of programming models with different ob-

jectives have been arisen. Before establishing the optimization model, it is significant to confirm

the relative importance weights of CDs and the internal relations and correlations in the HoQ.

In the former literature, generally these elements were determined to be crisp, stochastic or fuzzy

variables in a subjective way [7, 12, 27], or objectively determined from fuzzy linear regressions

[3, 4, 19] or non-linear regressions [20].

As a crucial branch of the QFD research, abundant fuzzy modelling studies regarding how to

get a series of target levels for DAs have been carried out. It seems quite reasonable to absorb

fuzziness to express the inner indeterminate factors in HoQ with the aid of the fuzzy set theory. For

example, Chen et al. [5] brought up a fuzzy expected value model to determine DAs’ target levels,
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which was separately in consideration of the maximum consumer satisfaction or the minimum de-

velopment expense. Erginel [9] set forth a fuzzy multi-objective decision model which contains the

information from design failure and effect analysis. The means-end chain notion was incorporated

by Chen and Ko [4] to establish a fuzzy linear modelling approach in calculating the contribution

of individual “how” to the whole consumer satisfaction. Sener and Karsak [24, 25] suggested some

fuzzy mathematical programming models to determine target levels of DAs, including a fuzzy non-

linear regression and optimization method, and an approach of combining a fuzzy linear regression

and a fuzzy multiple objective programming. Liu et al. [20] embedded the compensation degree

among CDs into QFD, which was realized by integrating the minimum fuzziness benchmark into a

non-linear regression. A fuzzy least-square regression approach to depicting relationships in QFD

was considered by Kwong et al. [14], which took both the fuzziness and randomness into account.

Zhong et al. [29] set up a fuzzy chance-constrained programming in determining target levels of

DAs, which was solved by a hybrid intelligent algorithm. Recently, Liu et al. [17] proposed an

exact expected value-based method to prioritize DAs in fuzzy QFD, in which the expected values

of the importance weights of DAs were obtained through the inverse credibility distribution of

fuzzy numbers.

It is observed that the parameters involved in the QFD procedure are usually set as crisp or

fuzzy values. Nevertheless, it is not very appropriate since either the probability theory or the fuzzy

set theory may lead to counterintuitive outcomes under some circumstances [16]. Consequently,

some researches based on uncertainty theory [16] were accomplished to mend this defect, such as

uncertain finance [23], uncertain risk aversion [30], uncertain risk and reliability analysis [15], and

uncertain minimum spanning tree problems [31], etc. Besides, uncertain chance-constrained pro-

gramming (CCP) model was employed in project scheduling problems [13] and job shop scheduling

problems [26] or other practical applications. With respect to the application of uncertainty theory

to QFD, relevant studies are very limited. Liu et al. [18] utilized an uncertain expected value-based

method to determine the importance weights of DAs. On this basis, Yang et al. [28] generalized it

to the strategic management of logistics services in prioritizing several strategic actions. Miao et

al. [21] proposed an uncertain expected value modelling (EVM) approach to setting target levels

of DAs. It can be seen that uncertainty theory has gained extensive support and acknowledgement
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from other fields as mentioned, but it has not been widely applied to QFD yet.

Therefore, a novel approach based on uncertainty theory and uncertain chance-constrained

programming is put forward to formulate the QFD procedure in this paper. Analogous to fuzzy

optimization, relative importance weights of CDs, relations between CDs and DAs, correlations

among DAs, along with the variable fulfillment charge for each unit of DA, are predetermined

as uncertain variables by experts. To vividly and specifically describe these vague information,

uncertain variables with a certain kind of regular uncertainty distributions is applied. Afterwards,

two uncertain chance-constrained programming models with two different considerations are pro-

posed to determine target levels of DAs in actual manufacturing. For the sake of enhancing the

company’s competitiveness, the goal of the first model is to maximize the overall consumer sat-

isfaction. In consideration of the company’s current financial condition, the goal of the second

model is to minimize the total design cost. It is noted that fuzzy CCP models are usually difficult

to solve in many applications, whose results are usually obtained with the help of simulations and

heuristic algorithms [8, 29]. However, we transform our models analytically into equivalent de-

terministic models through inverse uncertainty distributions and solve them by MATLAB, which

largely simplifies the calculation procedure.

The rest of the article is arranged as follows. In regards to the imprecise factors in the QFD

procedure, two uncertain CCP models in setting target levels of DAs are set forth in Section 2.

Furthermore, Section 3 demonstrates a case study on a motorcycle design problem to address the

effectiveness of the proposed method. And a comparison between uncertain CCP and EVM is

also generated. Finally, some important conclusions and our major contributions are elaborated

in Section 4.

2 Uncertain Chance-constrained Programming in QFD

In the process of setting target levels of DAs, some indeterminate elements are involved, like rela-

tive importance weights of CDs, relationships between CDs and DAs and correlations among DAs.

These ambiguous factors are usually assumed to be random variables, whose probability distribu-

tions are mostly obtained via statistical estimation. Practically, due to the lack of comprehensive

information, the evaluated probability distribution may significantly disagree with the accumula-
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tive frequency [16]. In order to avoid this deficiency, with the aid of uncertainty theory [16], the

internal indeterminate elements are viewed as uncertain variables in this paper according to their

linguistic meanings.

It is known that the purposes of QFD design procedure are usually twofold. One is to obtain

the maximal overall consumer satisfaction under limited resources. The other is to consume the

minimal expense in terms of a desirable consumer satisfaction degree. To realize these targets, two

uncertain CCP models with satisfaction or cost concerns are separately brought forward in this

section to handle uncertain QFD issues.

2.1 Nomenclature

It is presumed that m CDs, n DAs and g companies are included in a QFD procedure, and the

notion used in this paper is as follows:

− CDi is the ith consumer demand, i = 1, 2, · · · ,m;

− DAj is the jth design attribute, j = 1, 2, · · · , n;

− wi is the uncertain relative importance weight of CDi, which is contained in matrix W =

(w1, w2, · · · , wm)T ;

− rik is the uncertain relationship between CDi and DAk, which is involved in matrix R =

(rik)m×n;

− pkj is the uncertain correlation between DAk and DAj , which is embodied in matrix P =

(pkj)n×n;

− vj is the uncertain importance weight of DAj , which is contained in matrix V = (v1, v2, · · · , vn)T ;

− lj is the target level of DAj , j = 1, 2, · · · , n;

− xj is the fulfillment degree of DAj , which is recorded in matrix X = (x1, x2, · · · , xn)T ;

− Comph is the hth company in the market, h = 1, 2, · · · , g;

− Sh is the achieved overall consumer satisfaction of the hth company, h = 1, 2, · · · , g;

− C is the joint development expense combined by a fixed part Cf and a variable part Cv;
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− Cj is the variable cost demanded for achieving xj , j = 1, 2, · · · , n;

− B is the budget for the whole design procedure.

2.2 Elicitation of the overall consumer satisfaction

Before computing the overall consumer satisfaction, it is critical to calculate the importance weights

of DAs first. Through the multiplication of three matrices W , R and P in [22], the importance

weight of DAj denoted by vj can be formulated as

vj =

m∑
i=1

n∑
k=1

wirikpkj , j = 1, 2, · · · , n. (1)

The obtained importance weights of DAs are illustrated in matrix V . When given a set of fulfillment

degrees of DAs, the overall consumer satisfaction S can be acquired as

S = V TX =

n∑
j=1

vjxj =

n∑
j=1

(
m∑
i=1

n∑
k=1

wirikpkj

)
xj . (2)

In Eq. (2), we characterize the vague linguistic terms wi, rik and pkj by uncertain variables

on the basis of uncertainty theory proposed in [16]. More specifically, uncertain variables with

the following regular uncertainty distributions (called regular uncertain variables) from [21] are

suitable to be employed, i.e.,

Φ(x) =


0, if x < 0

xa, if 0 ≤ x < 1

1, if x ≥ 1,

(3)

where parameter a is a positive real number. This kind of regular uncertainty distributions shares

a similar philosophy with the utility functions in economics by considering marginal values, which

is more consistent with human mentality and intuition.

Taking the assessment of uncertain relative importance weights of CDs in matrix W as an ex-

ample, we suppose that there are three circumstances. If the parameter a > 1, Eq. (3) corresponds

to the meaning of ‘significant’, which is illustrated like a concave pattern in Figure 1(a). When x

increases in the interval [0, 1], the value of Φ(x) =M{wi ≤ x} increases quicker and quicker. Here

wi is the uncertain relative importance weight of CDi, andM is the uncertain measure. Similarly,

the translation of ‘insignificant’ can be reflected as a convex pattern in Figure 1(b) where the

parameter a < 1 in Eq. (3). In this case, the increasing tendency of M{wi ≤ x} is slower and
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slower as x rises in [0, 1]. Besides, the meaning of ‘moderate significant’ is depicted as a linear

pattern in Figure 1(c) where the parameter a is set as 1 in Eq. (3).

0 1

1

x

Φ(x)

(a) Concave pattern

0 1

1

x

Φ(x)

(b) Convex pattern

0 1

1

x

Φ(x)

(c) Linear pattern

Figure 1: Three patterns of regular uncertain variables

In the former applications, the rating of 1-2-3-4-5 or other grading systems are usually adopted

to represent the importance degrees of CDs in matrixW and the strength of relations or correlations

in matrices R and P . The higher the rating is, the more remarkable the importance or strength

will be. Analogously, a new rating is set out in this paper by utilizing uncertain variables. As given

in Table 1, there are nine specific types of regular uncertain variables along with their uncertainty

distributions and linguistic meanings in matrices W , R and P .

Table 1: Linguistic meanings of different regular uncertain variables

Type
Distributions
in x ∈ [0, 1]

W = (wi)m R = (rik)m×n P = (pkj)n×n

1 Φ(x) = x1/9 extreme insignificant extreme weak strong negative

2 Φ(x) = x1/6 quite insignificant quite weak quite negative

3 Φ(x) = x1/4 rather insignificant rather weak rather negative

4 Φ(x) = x1/2 little significant little strong weak negative

5 Φ(x) = x moderate significant medium medium

6 Φ(x) = x2 significant strong weak positive

7 Φ(x) = x4 rather significant rather strong rather positive

8 Φ(x) = x6 quite signifitant quite strong quite positive

9 Φ(x) = x9 extreme significant extreme strong strong positive

2.3 Estimation of the total cost

In practice, a variety of resources are demanded in the product development procedure, such as

technical personnel and sophisticated equipment. Generally, they are measured in financial units

from a strategic perspective. The total development expense C consists of a fixed cost Cf and a
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variable cost Cv as

C = Cf + Cv. (4)

Here Cv merely depends on the fulfillment degrees of DAs, which can be obtained through the

gathering of Cj required for accomplishing DAj . To simplify, assume that Cj is scaled linearly to

the fulfillment degree xj . Thus, we can calculate the variable cost with

Cv =

n∑
j=1

Cj =

n∑
j=1

cjxj , (5)

in which cj is a cost coefficient indicating the unit charge needed for DAj to be improved. A linear

uncertain variable L(aj , bj) is utilized to denote cj because of market fluctuations in raw material

prices, whose uncertainty distribution (see Figure 2) is

Φ(x) =


0, if x < aj

(x− aj)/(bj − aj), if aj ≤ x < bj

1, if x ≥ bj ,

(6)

in which aj and bj represent the lowest and highest raw material prices in the market, respectively.

0 aj bj

1

x

Φ(x)

Figure 2: Uncertainty distribution of a linear uncertain variable L(aj , bj)

Combining Eqs. (4) and (5), we can get the total development expense C as

C = Cf + Cv = Cf +

n∑
j=1

cjxj . (7)

2.4 Two uncertain CCP models for QFD planning

For the sake of rubbing shoulders with the dominant company in the market, one scenario of

QFD is to achieve the objective of maximizing the overall consumer satisfaction S under a cost

constraint. Therefore, the expected value of the overall consumer satisfaction and the chance of

the cost constraint are considered so as to build an uncertain CCP model to handle this issue.
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In real applications, uncertain variables wi, rik and pkj are generally supposed to be mutually

independent. Then, according to the linearity of the expected value operator of independent

uncertain variables proved in [16], the expected value of the overall consumer satisfaction S in

Eq. (2) is expressed to be

E[S] = E[V TX] = E

 n∑
j=1

vjxj

 =

n∑
j=1

E[vj ]xj , (8)

where E[vj ] is the expected value of the uncertain importance weight of DAj and can be further

calculated in regards to Eq. (1) as

E[vj ] = E

[
m∑
i=1

n∑
k=1

wirikpkj

]
=

m∑
i=1

n∑
k=1

E[wirikpkj ], j = 1, 2, · · · , n. (9)

Since uncertain variables wi, rik and pkj are assumed to follow regular uncertainty distributions in

Eq. (3), the inverse uncertainty distributions of wi, rik and pkj are denoted by φ−1i , Ψ−1ik and Φ−1kj

correspondingly. With respect to [16], the calculation of E[vj ] in Eq. (9) can be transformed to

E[vj ] =

m∑
i=1

n∑
k=1

E[wirikpkj ] =

m∑
i=1

n∑
k=1

(∫ 1

0

φ−1i (α)Ψ−1ik (α)Φ−1kj (α)dα

)
, j = 1, 2, · · · , n. (10)

The larger E[vj ] is, the more significant DAj is, which implies that DA with the largest expected

value of importance will be progressed first. In addition, E[vj ] can be standardized to the interval

(0,1) by

Ē[vj ] =
E[vj ]
n∑

j=1

E[vj ]

, j = 1, 2, · · · , n, (11)

in which Ē[vj ] is called the normalized expected value of the importance weight of DAj . To

facilitate the follow-up comparison, through the usage of Ē[vj ] we replace Eq. (8) by

Ē[S] =

n∑
j=1

Ē[vj ]xj , (12)

in which Ē[S] is called the normalized expected value of the overall consumer satisfaction and the

range of the values for Ē[S] is (0,1).

When it comes to the cost constraint, in view of actual situations, we suppose that the overall

expense C is constrained to a budget B. Then, it can be attained that

Cf +

n∑
j=1

cjxj ≤ B. (13)
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The overall expense C is an uncertain variable on the basis that cj is an uncertain variable. Assume

that the uncertain cost constraint in Eq. (13) will hold at the confidence level α1, and then we can

get

M

Cf +

n∑
j=1

cjxj ≤ B

 ≥ α1, (14)

where α1 is regarded as the confidence level provided as an appropriate safety margin by the

decision-makers. By means of the operational law, the chance constraint in Eq. (14) can be further

converted into

Cf +

n∑
j=1

ϕ−1j (α1)xj ≤ B, (15)

in which ϕ−1j is the inverse uncertainty distribution of cj (denoted by a linear uncertain variable

L(aj , bj)). Then ϕ−1j (α1) can be further calculated by

ϕ−1j (α1) = (1− α1)aj + α1bj . (16)

The first scenario indicates that the design group of the company wishes to maximize the

normalized expected value of the overall consumer satisfaction under a chance constraint of cost.

Based upon the underlying philosophy of uncertain programming, an uncertain CCP model (named

UCCP-1) which aggregates Eqs. (12), (15) and (16) together is built as

max

n∑
j=1

Ē[vj ]xj

subject to:

Cf +

n∑
j=1

(
(1− α1)aj + α1bj

)
xj ≤ B

0 ≤ xj ≤ 1, j = 1, 2, · · · , n,

(17)

in which the calculation of Ē[vj ] refers to Eqs. (10)-(11).

Except for the scenario discussed above, in some conditions, a corporation hopes to acquire an

acceptable overall consumer satisfaction with the minimal design cost. Similar to the establishment

process of UCCP-1, in terms of Section 2.3, the expected value of the total cost C is formulated as

E[C] = E[Cf + Cv] = Cf + E[Cv] = Cf +

n∑
j=1

E[cj ]xj , (18)

in which E[cj ] is calculated by using the inverse uncertainty distribution of cj as

E[cj ] =

∫ 1

0

ϕ−1j (α)dα =

∫ 1

0

(
(1− α)aj + αbj

)
dα =

aj + bj
2

, j = 1, 2, · · · , n. (19)
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Thus we can rewrite the calculation of the expected cost E[C] in Eq. (18) equivalently as

E[C] = Cf + E[Cv] = Cf +

n∑
j=1

(
aj + bj

2

)
xj . (20)

Since Cf is a constant in the above equation, we just need to minimize the expected value of the

variable cost E[Cv].

The uncertain constraint of this scenario changes to a case that the overall consumer satisfaction

of the target product ought to attain an acceptable degree S′, which is expressed as

n∑
j=1

(
m∑
i=1

n∑
k=1

wirikpkj

)
xj ≥ S′. (21)

The chance of the uncertain constraint in Eq. (21) will hold at the confidence level α2 as follows,

M


n∑

j=1

(
m∑
i=1

n∑
k=1

wirikpkj

)
xj ≥ S′

 ≥ α2, (22)

where the confidence level α2 is also an appropriate safety margin predetermined by the decision-

makers. On the basis of the operational law, the chance constraint in Eq. (22) can be transformed

into
n∑

j=1

(
m∑
i=1

n∑
k=1

φ−1i (1− α2)Ψ−1ik (1− α2)Φ−1kj (1− α2)

)
xj ≥ S′. (23)

As a consequence, another uncertain CCP model (named UCCP-2) can be obtained as

minE[Cv] =

n∑
j=1

(
aj + bj

2

)
xj

subject to:

n∑
j=1

(
m∑
i=1

n∑
k=1

φ−1i (1− α2)Ψ−1ik (1− α2)Φ−1kj (1− α2)

)
xj ≥ S′

0 ≤ xj ≤ 1, j = 1, 2, · · · , n,

(24)

where the determination of the values for S′ and α2 are up to the decision-makers’ subjectivity

and prediction on the market.

3 Case Study

The aim of incorporating QFD into the product design procedure is to measure the impacts of

target levels of DAs on both consumer perception and product development expense. In order to

illustrate the feasibility and performance of the proposed uncertain CCP models, an example of
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the motorcycle design is introduced in this section. Based upon the solutions of these models, the

design group will be equipped with a guide map in determining a new series of target levels for

DAs to upgrade the product.

3.1 Building an HoQ for motorcycle design

Our enterprise is developing a new type of motorcycle to enhance its market share. According to the

investigation statistics from the marketing department and the interview feedbacks from customers

of different ages, genders, professions and salaries, five superior CDs are identified through a tree-

like hierarchical structure approach employed from [2, 10]. Meanwhile, on the basis of the design

group’s expertise and knowledge on motorcycles, five crucial DAs are also recognized. All the five

CDs and DAs are given in Figure 3.
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Figure 3: CDs and DAs of the motorcycle design

The relevant information about the HoQ of the motorcycle design is presented detailedly in

Table 2. Through a comprehensive evaluation by experts utilizing the nine types of importance

weights or relation strength enumerated in Table 1, matrices W , R and P in Table 2 are obtained.

And their uncertainty distributions in x ∈ [0, 1] are distinguished by using different lines in Figure 4.

For example, the uncertainty distribution in x ∈ [0, 1] of the relationship between CD1 and DA1 is

assumed to be x6 in Table 2, whose inverse uncertainty distribution is α1/6. It reveals the meaning

of ‘quite strong’ and is depicted as Type 8 in Figure 4. Besides, there are five major companies

in the motorcycle market, i.e., Comp1 (our enterprise), Comp2, Comp3, Comp4 and Comp5. The

observed data of these companies for the five DAs including their corresponding physical limits are

investigated and recorded in the floor of the HoQ in Table 2, in which DAs are measured in units
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of dB, horsepower, gallon, kg and m3, respectively. And the cost coefficient cj of DAj is denoted

by a linear uncertain variable L(aj , bj) as described in Section 2.3.

Table 2: The HoQ of the motorcycle design

DA1 DA2 DA3 DA4 DA5

x1 x2 x3 x4 x5

DA1   x
6       

(α
1/6

)   x
1/9       

(α
9
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)

DA2   x
1/9       

(α
9
)   x

6       
(α

1/6
)   x

2       
(α

1/2
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)

DA3   x
1/9       

(α
9
)   x

2       
(α

1/2
)   x

6       
(α

1/6
)   x

4       
(α

1/4
)   x

1/9       
(α

9
)

DA4   x
1/9       

(α
9
)   x

1/9       
(α

9
)   x

4       
(α

1/4
)   x

6       
(α

1/6
)   x

1/9       
(α

9
)

DA5   x
1/9       

(α
9
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)   x

6       
(α

1/6
)

Uncertain Weights of

Consumer Demands W

x
4       

(α
1/4

)   x
6       

(α
1/6

)   x
1/9       

(α
9
)   x

2       
(α

1/2
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)

x
2       

(α
1/2

)   x
1/9       

(α
9
)   x

4       
(α

1/4
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)

x
2       

(α
1/2

)   x
1/9       

(α
9
)   x

1/9       
(α

9
)   x

6       
(α

1/6
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)

x
6       

(α
1/6

)   x
1/9       

(α
9
)   x

1/9       
(α

9
)   x

1/9       
(α

9
)   x

6       
(α

1/6
)   x

1/9       
(α

9
)

x
1/4       

(α
4
)   x

1/9       
(α

9
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Comp1 80 75 0.042 23 0.18

Comp2 65 70 0.034 24 0.20

Comp3 65 80 0.028 23 0.18

Comp4 75 60 0.032 15 0.14

Comp5 95 80 0.030 20 0.19

Min 60 60 0.027 15 0.14

Max 95 90 0.042 25 0.21
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3.2 Standardizing target levels of DAs

It can be seen that DAs are classified into two categories in Table 2, in which the positive mark

indicates ‘Larger-the-better type’ (L-type) and the negative mark indicates ‘Smaller-the-better

type’ (S-type). The performance of an L-type DA is positively proportional to its target level,

whereas the performance of an S-type DA is negatively proportional to its target level.

Mostly, target levels of DAs are accumulated in units and they usually have wide ranges. To

eliminate the influence of multiple measurements, in terms of Chen et al. [6], the target level of

the jth DA lj can be converted into the fulfillment degree xj , j = 1, 2, · · · , n, as

xj =


lmax
j − lj

lmax
j − lmin

j

(S-type)

lj − lmin
j

lmax
j − lmin

j

(L-type)

(25)

where 0 ≤ xj ≤ 1. For S-type DAs, lmax
j is the maximum target level of DA that matches the

performance of the competitors and lmin
j is the minimum physical limit. On the contrary, for L-type
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Figure 4: Regular uncertain variables listed in the HoQ of the motorcycle design

DAs, lmin
j is the minimum target level of DA that matches the performance of the competitors and

lmax
j is the maximum physical limit.

Then, by utilizing Eq. (25), the observed data matrix of DAs of the five companies in Table 2

can be standardized to fulfillment degree matrix X as

X = (xhj)g×n =



0.43 0.50 0 0.80 0.57

0.86 0.33 0.53 0.90 0.86

0.86 0.67 0.93 0.80 0.57

0.57 0 0.67 0 0

0 0.83 0.80 0.50 0.71

 , (26)

where xhj is the fulfillment degree of DAj of Comph, and 0 ≤ xhj ≤ 1.

3.3 The solutions of UCCP-1

Before optimizing the target product, an evaluation of the five companies about their current

overall consumer satisfaction Sh is generated so as to determine the position of our enterprise.

Firstly, according to Eqs. (10)-(11), the expected values of the importance weights E[vj ] for the

five DAs, their normalized values Ē[vj ] and priorities can be obtained, which are demonstrated in

Table 3. We can see that the importance weight of DA3 0.27 is the largest, which implies that the

increase of the fulfillment degree of DA3 will greatly help improve the consumer satisfaction.

Secondly, in regards to Ē[vj ] displayed in Table 3 and the present fulfillment degrees of DAs

xhj in Eq. (26), we can attain the normalized expected values of the overall consumer satisfaction
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Table 3: E[vj ], Ē[vj ] and priorities for the five DAs

DA1 DA2 DA3 DA4 DA5

E[vj ] 2.18 2.91 3.67 3.17 1.78

Ē[vj ] 0.16 0.21 0.27 0.23 0.13

Priorities 4 3 1 2 5

Ē[Sh] of our enterprise (Comp1) and each competitor company via Eq. (12). The results are listed

in Table 4 together with the rankings of five companies. Our enterprise scores 0.4319 and ranks the

4th, whereas Comp3 occupies the highest overall consumer satisfaction 0.7875. It is clear that our

enterprise lacks competitiveness in the market and the weakness of the existing design is urgent to

be enhanced to chase the other three rivals except Comp4.

Table 4: Ē[Sh] and rankings for the five companies

Comp1 Comp2 Comp3 Comp4 Comp5

Ē[Sh] 0.4319 0.6688 0.7875 0.2721 0.5976

Ranking 4 2 1 5 3

The first objective is to progress the current design procedure in the perspective of maximizing

the overall consumer satisfaction with a limited budget. After taking the financial situation of

our enterprise into account, the budget B is set by project managers as 100 units and the steady

part of the design cost Cf is set as 50 units. In the variable cost Cj of DAj , we adopt five linear

uncertain variables to denote the cost coefficient cj as expressed in Table 2.

Afterwards, through substituting the values of Ē[vj ], the budget B, the fixed cost Cf and the

lower and upper limits (aj , bj) in the cost coefficient cj into UCCP-1 in Eq. (17), we obtain

max Ē[S] = 0.16x1 + 0.21x2 + 0.27x3 + 0.23x4 + 0.13x5

subject to:

(8 + 4α1)x1 + (9 + 3α1)x2 + (24 + 2α1)x3 + (14 + 2α1)x4 + (7 + 3α1)x5 ≤ 50

0 ≤ xj ≤ 1, j = 1, 2, · · · , 5.

(27)

In model (27), the confidence level α1 decides the level of attainment of the uncertain event that the

total design cost C is constrained to the budget B, which is an important parameter predetermined

by the decision-makers. So as to assist the decision-makers in choosing a proper confidence level,

we divide the values of α1 from 0 to 1 by the scale 0.1 to study the three relationships between
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α1 and fulfillment degrees of DAs, target levels of DAs and the normalized expected values of the

overall consumer satisfaction, respectively. First, we draw the relationship between different values

of α1 and the fulfillment degree xj of DAj , which is illustrated in Figure 5. Next, through the

reverse transformation in Eq. (25), we are able to obtain target levels of DAs from their fulfillment

degrees. Consequently, target levels of DAs and the normalized expected values of the overall

consumer satisfaction Ē[S] at different confidence levels are listed in Table 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
1

x
j

 

 

x
1

x
2

x
3

x
4

x
5

Figure 5: The relationship between α1 and xj in model (27)

Table 5: Target levels of DAs and relevant Ē[S] at different confidence levels in model (27)

α1 l1 l2 l3 l4 l5 Ē[S]

0 60 90 0.0345 25 0.21 0.8650

0.1 60 90 0.0353 25 0.21 0.8505

0.2 60 90 0.0361 25 0.21 0.8362

0.3 60 90 0.0369 25 0.21 0.8222

0.4 60 90 0.0376 25 0.21 0.8084

0.5 60 90 0.0384 25 0.21 0.7948

0.6 60 90 0.0391 25 0.21 0.7814

0.7 60 90 0.0399 25 0.21 0.7683

0.8 60 90 0.0406 25 0.21 0.7553

0.9 60 90 0.0413 25 0.21 0.7426

1 60 90 0.0420 25 0.21 0.7300

16



From Figure 5 and Table 5, it is obvious that the fulfillment degrees and target levels of DA1,

DA2, DA4 and DA5 stay unchanged as the increasing of α1, whereas the fulfillment degree and

target level of DA3 vary in a decreasing or increasing tendency, respectively. The reason of this

inconsistent trend between DA3 and other DAs lies in the relationship of the input cost and the

output benefit. Taking the confidence level α1 = 0.8 as an example, this cost/benefit analysis

about DAs is calculated by the ratios between parameters of xj in the first constraint and the

objective function in model (27), and the results are listed in Table 6. It is explicit that the score

of ϕ−13 (α1)/Ē[v3] is much larger than others, which means the extent of the cost increase of DA3 is

much higher than that of benefit and explains why DA3 is the only one to be optimized. Moreover,

it is observed in Table 5 that the normalized expected values of the overall consumer satisfaction

Ē[S] at all confidence levels have been enhanced a lot compared with the previous satisfaction

degree 0.4319. Additionally, as the value of α1 increases, the relevant Ē[S] decreases, which is very

intuitive in terms of the mathematical meaning of α1 as a safety margin.

Table 6: Cost/benefit analysis at the confidence level α1 = 0.8 in model (27)

DA1 DA2 DA3 DA4 DA5

ϕ−1
j (α1) 11.2 11.4 25.6 15.6 9.4

Ē[vj ] 0.16 0.21 0.27 0.23 0.13

ϕ−1
j (α1)/Ē[vj ] 70.0000 54.2857 94.8148 67.8261 72.3077

Ranking 3 5 1 4 2

Through the above results, some suggestions are provided for the decision-makers in our en-

terprise. Since the cost constraint is critical in UCCP-1, the solutions of model (27) at higher

confidence levels are more rational in view of its meaning. On this basis, target levels of DAs at

confidence levels 0.8, 0.9 and 1 for our enterprise (Comp1) in Table 5 are selected and summarized

in Table 7 together with the calculations of respective E[Cv]. The original target levels of DAs

for Comp1 and Comp3 are extracted from Table 2, and both of their E[Cv] are also calculated

and displayed in Table 7. We can see that the prior-period investment of Comp1’s 26.3950 is not

enough compared with Comp3’s 55.7300, which may be the key reason leading to its low consumer

satisfaction. After applying target levels of DAs at confidence levels 0.8, 0.9 and 1 to the upgraded

motorcycle, Comp1 is able to beat Comp2 and becomes the second place among the five companies
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from the perspective of satisfaction degree. Meanwhile, the variable expenses invested at higher

confidence levels are lower than Comp3. The above analysis implies that by using UCCP-1 we

can realize pretty good satisfaction degrees and greatly enhance the market position of our enter-

prise under a tight financial budget. As far as a situation that if the decision-makers want to be

dominant in the market, a larger budget is necessary.

Table 7: Before and after target levels of DAs for Comp1 by using UCCP-1

UCCP-1 l1 l2 l3 l4 l5 Ē[S] E[Cv]

Comp1 (before) 80 75 0.0420 23 0.18 0.4319 26.3950

Comp3 (current leader) 65 80 0.0280 23 0.18 0.7875 55.7300

Comp1 (after, α1 = 0.8) 60 90 0.0406 25 0.21 0.7553 46.3426

Comp1 (after, α1 = 0.9) 60 90 0.0413 25 0.21 0.7426 45.1667

Comp1 (after, α1 = 1) 60 90 0.0420 25 0.21 0.7300 44.0000

3.4 The solutions of UCCP-2

Different from UCCP-1 considering the maximum overall consumer satisfaction under the cost con-

straint, UCCP-2 aims at minimizing the variable cost Cv and getting a desirable overall consumer

satisfaction S′. There exist two predetermined parameters in UCCP-2, the confidence level α2 and

the preferred consumer satisfaction S′. In this section, by fixing the confidence level α2 to be a

higher value 0.9 and substituting the relevant known values of UCCP-2 in Eq. (24), we obtain the

following model, 

minE[Cv] = 10x1 + 10.5x2 + 25x3 + 15x4 + 8.5x5

subject to:

0.17x1 + 0.21x2 + 0.25x3 + 0.21x4 + 0.16x5 ≥ S∗

0 ≤ xj ≤ 1, j = 1, 2, · · · , 5.

(28)

In model (28), the parameter before each xj (called parameterj) in the first constraint is normalized

artificially for the sake of standardizing S′ into S∗ in the interval (0,1). This normalization is

convenient for the decision-makers to choose a proper S∗ in the follow-up process. Similarly,

through varying S∗ from 0.1 to 1 by the scale 0.1, it allows us to observe the relationship between

S∗ and the fulfillment degrees of DAs in model (28), the results of which are demonstrated in

Table 8 as well as the corresponding values of E[Cv] and Ē[S].

18



Table 8: The fulfillment degrees of DAs and relevant E[Cv] in model (28) when S∗ alters

S∗ x1 x2 x3 x4 x5 E[Cv] Ē[S]

0.1 0 0.4762 0 0 0 5.0000 0.1000

0.2 0 0.9524 0 0 0 10.0000 0.2000

0.3 0 1 0 0 0.5625 15.2813 0.2831

0.4 0.1765 1 0 0 1 20.7647 0.3682

0.5 0.7647 1 0 0 1 26.6471 0.4624

0.6 1 1 0 0.2857 1 33.2857 0.5657

0.7 1 1 0 0.7619 1 40.4286 0.6752

0.8 1 1 0.2000 1 1 49.0000 0.7840

0.9 1 1 0.6000 1 1 59.0000 0.8920

1 1 1 1 1 1 69.0000 1.0000

From Table 8, undoubtedly the larger S∗ is, the more the design cost is consumed. It is noted

that the calculated normalized expected values of the overall consumer satisfaction Ē[S] is a little

lower than S∗ in most cases, which is attained by the combination of Ē[vj ] and xj through Eq. (12).

Furthermore, there is a changing order of the five DAs being fulfilled, which is more explicit for

visualization in Figure 6. The reason of this priority is also explained by the benefit/cost analysis

in Table 9, in which DA2 is on the top of the ranking. It is optimized first in Table 8 and Figure 6,

while other DAs are optimized in accordance with the rankings in Table 9. Besides, we can see

that the extent of variation among parameterj/E[cj ] in Table 9 is much smaller in contrast to

that among ϕ−1j (α1)/Ē[vj ] in Table 6, which leads all DAs in model (28) to be optimized orderly

when S∗ increases.

Table 9: Benefit/cost analysis at the confidence level α2 = 0.9 in model (28)

DA1 DA2 DA3 DA4 DA5

parameterj 0.17 0.21 0.25 0.21 0.16

E[cj ] 10 10.5 25 15 8.5

parameterj/E[cj ] 0.0170 0.0200 0.0100 0.0140 0.0188

Ranking 3 1 5 4 2

By utilizing model (28), the before and after target levels, the normalized expected values of

the overall consumer satisfaction, together with the variable cost of our enterprise Comp1 and

the current leader Comp3 are calculated and listed in Table 10. If our enterprise intends to play
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Figure 6: The fulfillment degrees of DAs with respect to different S∗ in model (28)

a dominant role in the market defeating all rivals, the desirable overall consumer expectation is

meant to be greater than that of Comp3 (0.7875), who is the present leader from the aspect of

gaining consumer satisfaction. That is to say, we should choose the solutions of model (28) with

at least Ē[S] = 0.7875 in Table 8. It can be seen that our expected satisfaction degree 0.7840 at

S∗ = 0.8 is approaching Comp3, but still cannot reach the target of being the leader. For further

efforts of realizing this, after implementing model (28) in the design procedure of our enterprise

with Ē[S] = 0.7875 or S∗ = 0.8032, the variable cost of our company is 49.3241, which is lower

than 55.7300 of Comp3.

Table 10: Before and after target levels of DAs for Comp1 by using UCCP-2

UCCP-2 (α2 = 0.9) l1 l2 l3 l4 l5 E[Cv] Ē[S]

Comp1 (before) 80 75 0.0420 23 0.18 26.3950 0.4319

Comp3 (current leader) 65 80 0.0280 23 0.18 55.7300 0.7875

Comp1 (after, S∗ = 0.8) 60 90 0.0390 25 0.21 49.0000 0.7840

Comp1 (after, S∗ = 0.8032) 60 90 0.0388 25 0.21 49.3241 0.7875

In summary, QFD is a useful tool that helps enhance competitiveness or save money. The

applications of the aforementioned two uncertain CCP models in this QFD procedure have given the

decision-makers some advice on choosing an appropriate model in particular cases. By comparing
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the solutions of the two models, firstly, if the company is on a tight budget, UCCP-1 is more

suitable to help improve the overall consumer satisfaction under a cost constraint. Secondly, if the

budget is sufficient, the decision-makers are suggested to adopt UCCP-2 to compete with rivals

in expanding the market share of the target product. In addition, through the adjustment of

the confidence levels in these uncertain CCP models, the decision-makers could make reasonable

tradeoffs according to the risk tolerances of their companies.

3.5 Comparative study

Except for demonstrating the solutions of UCCP-1 and UCCP-2, a comparative study is also

generated between our work and another work, an uncertain expected value modelling (EVM)

approach for setting target levels of DAs in QFD planning, which was brought up by Miao et al.

[21].

Firstly, for the purpose of obtaining the maximum expected overall consumer satisfaction sub-

ject to an expected cost constraint, an EVM model (named UP-1) was set forth in [21], which is

expressed as 

max

n∑
j=1

Ē[vj ]xj

subject to:

Cf +

n∑
j=1

E[cj ]xj ≤ B

0 ≤ xj ≤ 1, j = 1, 2, · · · , n.

(29)

By setting the same parameters, the solution of Eq. (29) to improving the current motorcycle

design of our enterprise (Comp1) is displayed in Table 11. Likewise, when the confidence level

α1 = 0.5, we can figure out the same result by using UCCP-1. It is not a coincidence since we can

get the following equation about a linear uncertain variable cj ∼ L(aj , bj) as

E[cj ] =

∫ 1

0

ϕ−1j (α)dα =
(aj + bj)

2
= ϕ−1j (0.5), (30)

the calculation of which can be found in [16]. It is explicit that the form of model (27) at the

confidence level α1 = 0.5 via Eq. (30) will be identical to Eq. (29) numerically. Even so, the inner

meanings they represent are not the same. UP-1 is designed out of a risk-neutral consideration,

which is constrained to an expected cost limit, while UCCP-1 makes decisions under the chance

constraint of the design cost with a safety margin. Moreover, as depicted in Table 5, model (27)
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can achieve different combinations of target levels of DAs and satisfaction degrees with the altering

of the confidence level α1, which provides the decision-makers with more choices.

Table 11: Comparison between UCCP-1 and UP-1

Comp1 l1 l2 l3 l4 l5 Ē[S]

UCCP-1 (α1 = 0.5) 60 90 0.0384 25 0.21 0.7948

UP-1 60 90 0.0384 25 0.21 0.7948

Secondly, when switching to the goal of obtaining the expected minimum variable design cost,

another EVM model (named UP-2) was put forward in [21] as follows,

minE[Cv] =

n∑
j=1

E[cj ]xj

subject to:

n∑
j=1

Ē[vj ]xj ≥ S′′

0 ≤ xj ≤ 1, j = 1, 2, · · · , n,

(31)

in which the overall consumer satisfaction S′′ is divided from 0 to 1 by 0.1. With respect to

UCCP-2 in model (28), the confidence level α2 is set to be 0.9 and the altering of S∗ is similar

to S′′ in UP-2. The comparison results of UCCP-2 and UP-2 with the same satisfaction degree

Ē[S] = 0.7875 defeating all rivals are presented in Table 12. It is observed that UP-2 consumes the

same variable cost 49.3241 with UCCP-2 due to the identical objective functions. Additionally,

apart from the confidence level α2 = 0.9, the decision-makers can set it to be other crisp values

from 0 to 1 in UCCP-2, which will lead to various results.

Table 12: Comparison between UCCP-2 and UP-2 with Ē[S] = 0.7875

Comp1 l1 l2 l3 l4 l5 Ē[S] E[Cv]

UCCP-2
60 90 0.0388 25 0.21 0.7875 49.3241

(α2 = 0.9, S∗ = 0.8032)

UP-2(S′′ = 0.7875) 60 90 0.0388 25 0.21 0.7875 49.3241

The relations and differences between uncertain CCP and EVM are elaborated as follows. Both

of them are feasible solutions for optimizing the QFD procedure. Although these two approaches
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share the same objective functions, they are based upon distinct modelling ideas and risk decisions.

Expected value models are designed on the basis that the decision-makers are neutral, whose target

is to obtain the mean values of objective functions and constraints. In our chance-constrained

programming models, it is very natural and intuitive to consider the levels of attainment of different

constraints in practice. From the above comparison results, it is more suitable to adopt uncertain

CCP models in QFD because the outcomes of them not only cover the results of uncertain EVM

models but also have a wider selection range. The decision-makers can choose their preferred

decisions out of diversified results at different confidence levels according to individual subjective

evaluations and preferences.

4 Conclusions

In this paper, an uncertain CCP approach based on uncertainty theory was applied to formulating

the QFD development procedure under uncertain circumstances. Two novel models with separate

considerations were set forth in determining target levels of DAs, endeavoring to make trade-offs

between the overall consumer satisfaction and the design cost.

To sum up, our major contributions lay in several parts as follows. Firstly, from the strategic

management perspective, we considered both the competitiveness and the financial condition of a

company, formulating two uncertain CCP models to assist the decision-makers in making proper

decisions in product development. Secondly, the case of a motorcycle design demonstrated that

the proposed method was able to model the product design procedure effectively and efficiently.

By altering the confidence levels or the acceptable overall consumer satisfaction in uncertain CCP

models, diversified solutions were figured out. Finally, we conducted a comparative analysis be-

tween our proposed uncertain CCP approach and a former uncertain expected value modelling

approach. It was concluded that although they had different application ranges, uncertain CCP

model was more suitable to deal with the QFD optimization procedure owing to its underlying

philosophy and various choices provided for the decision-makers.
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