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Abstract

In the last years, multi-objective evolutionary algorithms (MOEAs) have been extensively used to

generate sets of fuzzy rule-based classifiers (FRBCs) with different trade-offs between accuracy and

interpretability. Since the computation of the accuracy for each chromosome evaluation requires

the scan of the overall training set, these approaches have proved to be very expensive in terms of

execution time and memory occupation. For this reason, they have not been applied to very large

datasets yet. On the other hand, just for these datasets, interpretablity of classifiers would be very

desirable. In the last years the advent of a number of open source cluster computing frameworks

has however opened new interesting perspectives. In this paper, we exploit one of these frameworks,

namely Apache Spark, and propose the first distributed multi-objective evolutionary approach to

learn concurrently the rule and data bases of FRBCs by maximizing accuracy and minimizing

complexity. During the evolutionary process, the computation of the fitness is divided among

the cluster nodes, thus allowing the designer to distribute both the computational complexity

and the dataset storing. We have performed a number of experiments on ten real-world big

datasets, evaluating our distributed approach in terms of both classification rate and scalability,

and comparing it with two well-known state-of-art distributed classifiers. Finally, we have evaluated

the achievable speedup on a small computer cluster. We present that the distributed version can

efficiently extract compact rule bases with high accuracy, preserving the interpretability of the rule

base, and can manage big datasets even with modest hardware support.
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1. Introduction

In the last decades, Fuzzy Rule-Based Classifiers (FRBCs) have been widely employed in several

engineering applications. This success is mainly due to three factors. First, FRBCs generally

achieve accuracy comparable with other types of state-of-the-art classifiers. Second, the intrinsic

nature of FRBCs allows them to deal with vague and noisy data. Third, the structure of FRBCs

permits to explain how the classification task is performed. This factor is particularly relevant

when the classifier is automatically generated from data rather than from the human experience

on the specific application domain: the interpretability of the classifier increases the confidence on

the classifier outputs and is considered to be of the utmost importance in contexts such as finance,

fault detection and medicine.

The structure of an FRBC consists of a rule base (RB) and a data base (DB): the DB contains

the definition in terms of fuzzy sets of the linguistic values used in the fuzzy rules.

Since interpretability is a subjective concept, it is hard to find a worldwide agreed definition

and consequently a universal measure of interpretability. In [27] a taxonomy of the interpretability

measures for fuzzy rule-based models has been proposed by considering two different dimensions,

namely semantic and complexity, at RB and DB levels. As regards the DB, the semantic inter-

pretability is usually evaluated in terms of integrity of the fuzzy partitions, whereas the complexity

is evaluated in terms of number of fuzzy sets. As regards the RB, the interpretability is mostly ana-

lyzed in terms of complexity and one of the most used metrics is the total rule length (TRL) [13, 31],

that is, the total number of conditions used in the RB.

A number of methods have been proposed in the literature to generate the DB and RB of

an FRBC from data [11]. At the beginning, these methods have mainly focused on maximizing

the accuracy, thus typically generating FRBCs characterized by a high number of rules and low

interpretability of the DB [14]. However, in the last years, multi-objective evolutionary algorithms

(MOEAs) have been widely used with the aim of generating FRBCs characterized by good trade-

offs between accuracy and interpretability [4, 14, 21]

Independently of the approach used to produce the DB and the RB of the fuzzy rule-based

systems, the computation of the accuracy of each individual generated in the evolutionary process

requires the scan of the overall training set. When the size of the dataset is very large, the appli-

cation of MOEA-based approaches to the fuzzy rule-based system generation is very critical. The

solutions proposed so far in the literature have mainly focused on reducing the number of instances

in the training set [5], by using some instance selection method, and on adopting techniques for
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speeding-up the convergence of the MOEA [7]. The first type of solutions, although effective, rises

the problem of determining how much the dataset can be reduced without loosing information

relevant to the evolutionary generation of the FRBCs. The second type reduces the number of

evolutions and therefore the number of evaluations, but does not solve the problem of managing

very large datasets. Indeed, these datasets could be so large that it would be impossible to store

them in a single machine.

Thus, the natural way for managing very large datasets would be to adopt the second type of

solution in order to speed up the computation, but exploiting a distributed implementation on a

computer cluster. In this paper, we adopt this approach and propose the first distributed imple-

mentation of an MOEA to learn concurrently the rule and data bases of FRBCs, by maximizing

accuracy and minimizing complexity. In particular, we propose DPAES-RCS, a distributed version

of PAES-RCS [7]. PAES-RCS has proven to be very efficient in obtaining satisfactory approxima-

tions of the Pareto front using a limited number of iterations [7]. This result has been obtained by

learning the RB through a rule and condition selection strategy, which selects a reduced number

of rules from a heuristically generated set of candidate rules and a reduced number of conditions,

for each selected rule, during the evolutionary process. We implemented DPAES-RCS on Apache

Spark.

We would like to point out that DPAES-RCS introduces a design model for making the dis-

tributed evolutionary FRBC generation independent of how the dataset is split into chunks. Indeed,

DPAES-RCS distributes the computation of the accuracy among the computing units, but runs the

evolutionary scheme sequentially on a single unit, thus making it independent of the data distribu-

tion, although still efficiently generating FRBCs characterized by good trade-offs between accuracy

and complexity. We show the effectiveness of DPAES-RCS by evaluating the generated FRBCs in

terms of classification rate, interpretability and scalability on ten real-world big datasets. We com-

pare the results achieved by DPAES-RCS with the ones obtained by two state-of-art approaches

to big data classification, namely a distributed decision tree learning algorithm and a distributed

implementation of the well-known Chi et al. algorithm for generating FRBCs [17]. The compar-

ison shows that DPAES-RCS outperforms the other two algorithms in terms of interpretability.

As regards the accuracy, DPAES-RCS outperforms the distributed Chi et al. algorithm and is

statistically equivalent to the distributed decision tree learning algorithm. Furthermore, results

achieved by DPAES-RCS are independent of the number of computing units, data chunks and

how the dataset is distributed among the machines of the cluster. Finally, we highlight that the

proposed approach allows handling big datasets even with modest hardware support.

The paper is organized as follows. In Section 2, we briefly describe some contributions regarding
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the use of MOEAs for generating FRBCs and regarding recent distributed implementations of

evolutionary algorithms. Section 3 introduces some preliminaries on FRBCs and on the distributed

computing framework for big data. Section 4 describes PAES-RCS in short and therefore DPAES-

RCS. In Section 5, we illustrate the experimental results and in Section 6 we draw some final

conclusion.

2. Related Works

In the last years, the generation of FRBCs from data has been modeled as a multi-objective

optimization problem, taking accuracy and interpretability as the conflicting objectives to be

optimized. To this aim, MOEAs have been widely used as optimization technique and the term

Multi-Objective Evolutionary Fuzzy Classifiers (MOEFCs) has been coined [4, 14, 21].

In the first works proposed in the literature for generating fuzzy rule-based systems, MOEAs

have been used to select [32] or learn [13, 18] fuzzy rules, and to perform the tuning [10] of the DB

with prefixed DB and RB, respectively. The most recent works perform the learning [1, 3, 4, 6] or

the selection [20, 26, 39] of the rules concurrently with the learning of some elements of the DB,

namely the granularity and the membership function parameters of the fuzzy partitions. While in

rule selection, rules are selected from an initial set of candidate rules generated from data by some

heuristic, in rule learning, rules are created during the evolutionary process.

In the last years, different classifiers have been proposed for dealing with a huge amount of

data [9, 12, 16, 44]. As regards FRBCs for big data, as discussed in a recent contribution pub-

lished in [22], some approaches, which investigate performance in terms of accuracy and scalability

without considering interpretability, have been recently proposed in the literature [17, 19, 23, 37].

These approaches mainly focus on the accuracy of the models and employ a high number of rules,

thus making them not interpretable. To the best of our knowledge, in the framework of evolution-

ary fuzzy systems (EFSs), that is, fuzzy rule-based systems generated by means of evolutionary

algorithms, only two papers address big datasets [24, 40]. In [24] the authors propose a distributed

implementation of the 2-tuple lateral tuning for FRBCs by using the CHC algorithm. The work

in [40] discusses the results achieved by a distributed implementation of a rule learning method

for subgroup discovery based on an MOEA, namely NSGA-II. Both the implementations use the

MapReduce programming model, which was introduced by Google in 2004 for simplifying the dis-

tribution of the computation flow across large-scale clusters of machines [15]. However, the results

of the two implementations depend on how the data are distributed among the computing units.

Indeed, the entire dataset is split into data chunks: each mapper of the MapReduce model, which
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is executed on a specific data chunk, generates an independent set of rules. Then, a reduce stage

is used for merging all the generated rules. Thus, the results of the two approaches depend on

the number of data chunks and the actual distribution of the data among them: each mapper

generates a different set of rules depending on the specific data chunk.

As regards evolutionary algorithms applied to Big Data, several approaches have been proposed

for parallelizing and distributing their execution [8, 30], by studying and experimenting different

models [8, 30], such as master-slaves, island, cellular, hierarchy, pool, co-evolution and multi-agent

models.

A recent survey [30] has shown and discussed some different research challenges of distributed

evolutionary algorithms. Several algorithms have been reviewed and classified according to the

parallelism level, the adopted model and the infrastructure employed in their implementation

(MPI, grid computing, P2P network, cloud computing and MapReduce, GPU and CUDA).

The most popular execution environment for the distributed implementation of evolutionary

algorithms has been so far Apache Hadoop [45], which supports the MapReduce programming

paradigm. A number of distributed implementations on Hadoop of genetic algorithms [29, 36, 43],

ant colony optimization [46] and differential evolution [48] have been proposed and applied to

different domains, achieving good performance in terms of scalability and proving the effectiveness

of Hadoop in dealing with big data [36].

As shown in [48], however, the extra costs of the Hadoop distributed file system I/O operations

and of the system bookkeeping overhead significantly reduce the benefits of parallelism. Thus,

new distributed cluster computing frameworks, such as Apache Spark [47], which implement the

concept of in-memory cluster computing, should be employed. Indeed, in [41], the authors have

proposed a pairwise test generation based on parallel genetic algorithm and Apache Spark.

3. Preliminaries

In this section, we first introduce some basic concepts and notations regarding FRBCs. Then,

we briefly introduce the distributed computing frameworks for big data.

3.1. Fuzzy Rule-Based Classifiers

Instance classification consists of assigning a class Cm from a predefined set C = {C1, . . . , CK}

of K classes to an unlabeled instance. Each instance can be described by both numerical and

categorical attributes. Let X = {X1, . . . , XF } be the set of attributes. In case of numerical

attributes, Xf is defined on a universe Uf ⊂ <. Let Pf = {Af,1, . . . , Af,Tf
}, f = 1, . . . , F , be a

fuzzy partition with Tf fuzzy sets of the universe Uf . We associate a label Lf,j with each fuzzy set
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Af,j . In case of categorical attributes, Xf is defined on a set Lf = {Lf,1, . . . , Lf,Tf
} of categorical

values. The m-th rule Rm, m = 1, . . . ,M, of an FRBC is typically expressed as:

Rm : If X1 is L1,jm,1
and . . . and XF is LF,jm,F

then Y is Ckm
(1)

where Y is the classifier output, Ckm
is the class label associated with rule Rm, jm,f ∈ [1, Tf ]

identifies the index of the label, which has been selected for Xf in rule Rm. The label identifies

one among the Tf fuzzy sets of the partition Pf of a continuous attribute or among the set of

values of a categorical attribute. To take the “don’t care” condition into account, a fictitious

label Lf,0, f = 1, . . . , F , is added as possible value of each attribute Xf . This label identifies a

set characterized by a membership function equal to 1 on the overall universe, thus making the

attribute irrelevant in the inference process. The label Lf,0 allows therefore generating rules that

contain only a subset of the attributes.

Let TR = {(x1, y1), (x2, y2), ..., (xN , yN )} be the training set of N instances, where (xn, yn) is

the n-th input-output pair, with xn a vector of F values, which can be both real and categorical,

and yn ∈ C. The matching degree of the rule Rm with the input xn represents the strength of

activation of the rule and is calculated as:

wm(xn) =
∏F

f=1 µLf,jm,f
(xn,f ) (2)

where µLf,jm,f
(xn,f ) is either the membership value of xn,f to the fuzzy set Af,jm,f

represented by

label Lf,jm,f
in case of continuous attributes, or 1 if xn,f = Lf,jm,f

in case of categorical attributes.

We adopt the maximum matching method as reasoning method : an instance is classified into

the class corresponding to the rule with the maximum matching degree calculated for the instance.

In the case of tie, we classify the instance with the class of the first rule in the chromosome that

has the maximum association degree. If no rule is fired, we classify the instance with the most

frequent class.

3.2. Big Data and cluster computing frameworks

The term Big Data refers to datasets whose size is beyond the ability of typical database

software tools to capture, store, manage and analyze [34]. With the aim of dealing with big data

effectively and timely, different ad-hoc solutions at different levels have been proposed [25]:

• Distributed file systems (for instance, the Apache Hadoop distributed file system (HDFS) [45])

and databases for massive data management and storage (such as MongoDB 1 and Apache

1www.mongodb.com

6



Hive 2 );

• Programming models such as MapReduce [15] and Pregel [38] for the parallelization of com-

putational flow on a cluster of machines;

• cluster computing frameworks such as Apache Hadoop [45] and Apache Spark [47] for inte-

grating data storage, data processing and system management.

Currently, the most popular cluster computing framework is Apache Hadoop, an open-source

implementation designed directly upon the MapReduce programming paradigm and framework

proposed by Google in 2004 [15]. The success of this framework is mainly due to the MapReduce

paradigm simplicity [44]. Hadoop takes care of communication, network bandwidth, disk usage

and possible failures. Hadoop, however, is optimized for one-pass batch processing of on-disk

data, which makes it slow for interactive data exploration and more complex multi-pass analytics

algorithms. Moreover, due to a poor inter-communication capability and inadequacy for in-memory

computation [35, 47], Hadoop is not suitable for those applications that require iterative and/or

online computations.

Recently, Apache Spark [47], an open-source framework originally developed in the AMPLab

at UC Berkley, has emerged as the next generation big data processing tool due to its enhanced

flexibility and efficiency. Indeed, Spark allows employing different distributed programming mod-

els, such as MapReduce and Pregel, and has proved to perform faster than Hadoop [47], especially

in case of iterative and online applications. Unlike the disk-based MapReduce paradigm supported

by Hadoop, Spark employs the concept of in-memory cluster computing, where datasets are cached

in memory to reduce their access latency.

At high level, a Spark application runs as a set of independent processes on the top of the

dataset distributed across the machines of the cluster and consists of one driver program and

several executors [47]. The driver program, hosted in the master machine, runs the user’s main

function and distributes operations on the cluster by sending several units of work, called tasks, to

the executors. Each executor, hosted in a slave machine, runs tasks in parallel and keeps data in

memory or disk storage across them.

The main abstraction provided by Spark is the resilient distributed dataset (RDD) [47]. RDD

is a fault-tolerant collection of elements partitioned across the machines of the cluster that can be

processed in parallel. These collections are resilient, because they can be rebuilt if a portion of

the dataset is lost. RDDs support two types of operations: transformations, which create a new

2hive.apache.org
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RDD from an existing one, and actions, which return a value to the driver program after running

a computation on the RDD. The applications developed using the Spark framework are totally

independent of the file system or the database management system used for storing data. Indeed,

there exist connectors for reading data, creating the RDD and writing back results on files or on

databases.

Another abstraction provided by Spark is the shared variable, which is a variable shared across

tasks, or between tasks and the driver program. shared variables can be used in parallel operations.

To reduce the communication cost, Spark supports two types of shared variables for the two

common usage patterns: broadcast variables, which can be used to cache a read-only variable in

memory on each machine, and accumulators, which are variables for associative operations such

as counting, addition and multiplication.

4. The PAES-RCS algorithm

In this section, first we introduce the PAES-RCS algorithm we proposed in [7]. Then, we

describe in detail its distributed implementation, denoted as DPAES-RCS, on the Apache Spark

framework.

4.1. PAES-RCS

The PAES-RCS algorithm employs an MOEA for generating a set of FRBCs with different

trade-offs between accuracy and complexity measured in terms of classification rate and TRL,

respectively. The FRBC generation process selects rules and conditions from a set of candidate

rules, and concurrently learns the parameters that define the fuzzy sets associated with the labels

used in the conditions of the rules. To this aim, PAES-RCS adopts a chromosome C composed

of two parts (CRB , CDB), which define the RB and the membership function parameters of the

continuous attributes, respectively. We apply both crossover and mutation operators to each part

of the chromosome independently. The set of candidate rules is extracted from a decision tree

obtained by applying the well-known C4.5 algorithm to the training set.

Before applying the C4.5 algorithm, each continuous attribute Xf is transformed into a cate-

gorical and ordered variable by using a fuzzy uniform partition Pf of Tf triangular fuzzy sets: the

categorical values of the variable are the labels corresponding to the fuzzy sets in Pf . The training

set is therefore discretized by associating a categorical value with each continuous value xn,f . The

categorical value is determined by the index of the fuzzy set of the partition Pf to which xn,f

belongs at maximum grade; in case of tie, we choose randomly.
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Let RBC4.5 and MC4.5 be the set of candidate rules extracted from the decision tree generated

by the C4.5 algorithm and the cardinality of this set, respectively. Especially when dealing with

large and high dimensional datasets, the C4.5 algorithm could generate RBs composed of a high

number of rules. Since we are interested in compact and interpretable RBs, as proposed in [7], we

permit that the RBs of the solutions contain M̂ = min(MC4.5,MMAX) rules, where MMAX is a

user parameter. In the experiments, we have set MMAX = 100. We have verified that this value

allows us to achieve a reasonable accuracy maintaining the complexity at an adequate level.

The CRB part of the chromosome is a vector of M̂ pairs pm = (km,vm), where km ∈

[0, . . . ,MC4.5] identifies the index of the rule in RBC4.5 selected for the current RB and vm =

[vm,1, . . . , vm,F ] is a binary vector which indicates, for each condition in the rule, if the condition

is present or corresponds to a “don’t care”. In particular, if km = 0, the mth rule is not included

in the RB. Thus, we can generate RBs with a lower number of rules than M̂ . Further, if vm,f = 0,

the f th condition of the mth rule is replaced by a “don’t care” condition; otherwise it remains

unchanged.

The CDB part of the chromosome consists of F̂ vectors of real numbers, where F̂ <= F is

the number of continuous attributes (we recall that the C4.5 algorithm can perform an attribute

selection): the f th vector contains the [bf,2, ..., bf,Tf−1] cores, which define the positions of the

membership functions for the continuous attribute Xf . We adopt triangular fuzzy sets Af,j defined

by the tuple (af,j ,bf,j ,cf,j), where af,j and cf,j correspond to the left and right extremes of the

support of Af,j , and bf,j to the core. Since we adopt strong fuzzy partitions with, for j = 2, ..., Tf−

1, bf,j = cf,j−1 and bf,j = af,j+1, in order to define each fuzzy set of the partition it is sufficient to

fix the positions of the cores bf,j throughout the universe Uf of the f th attribute. Since bf,1 and

bf,Tf
coincide with the extremes of the universe, the partition of each attribute Xf is completely

defined by Tf − 2 parameters. To ensure a good integrity level of the fuzzy partitions in terms of

order, coverage and distinguishability, we force bf,j to vary in
[
bf,j − bf,j−bf,j−1

2 , bf,j +
bf,j−bf,j−1

2

]
,

∀j ∈ [2, Tf − 1]. The integrity can be measured by using the paritition integrity index Iint proposed

in [3]. Index Iint is defined as:

Iint = 1− 1

F̂+1

∑F̂
f=1

Df

DMAX
f

(3)

where Df =
∑Tf−1

j=2

∣∣∣bf,j − b̃f,j∣∣∣ is a dissimilarity measure which expresses how much, on average,

the partitions generated by the evolutionary membership function parameter learning are different

from the initial partitions, DMAX
f =

Tf−2
2 is the possible maximum value of Df , and F̂ is the

number of attributes used actually in the rule base of the solution. The value of Iint ranges in

[0,1]. If the partitions are equal to the initial uniform partitions, then Iint = 1. The higher the
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difference between the initial uniform partitions and the final partitions, the lower the value of Iint

(at the minimum, Iint = 0). Since the uniform partition is considered among the most interpretable

partitions, values of Iint close to 1 indicate a high level of partition interpretability [3].

We apply the two-point crossover to the CRB part and the BLX-α crossover, with α = 0.5, to the

CDB part with probabilities PCRB
and PCDB

, respectively. As regards the mutation, for the CRB

part, we apply two well-known operators, namely, random mutation and flip-flop mutation with

probabilities PMRB1
and PMRB2

, respectively. The first step of each mutation operator randomly

selects a pair pm , i.e. a rule, in the chromosome. The random mutation operator replaces the

value of km in the selected pair with an integer value randomly generated in [1, . . . ,MC4.5]. If km

was equal to 0, the values of vm are randomly chosen. The flip-flop mutation operator modifies

the antecedent vm of the selected rule by complementing each gene vm,f with a probability equal

to Pcond (Pcond = 2/F in the experiments). After applying the two mutation operators, we

remove the duplicate rules in the RB. Random mutation is also applied to the CDB part with

probability PMDB
. The operator, first, randomly chooses an attribute Xf , f ∈ [1, F ], and a fuzzy

set j ∈ [2, Tf − 1] and then replaces the value of bf,j with a value randomly chosen within the

definition interval of bf,j .

As MOEA we use the (2+2)M-PAES algorithm that has been successfully employed in our

previous works [3, 5]. (2+2)M-PAES, which is a modified version of the well-known (2+2)PAES

introduced in [33], is a steady state MOEA, which uses two current solutions and stores the non-

dominated solutions in an archive. Unlike the classical (2+2)PAES, which maintains the current

solutions until they are not replaced by solutions with particular characteristics, we randomly

extract, at each iteration, the current solutions.

4.2. The Distributed Approach

In this section we describe DPAES-RCS, the distributed implementation of the PAES-RCS

algorithm [7] employed for dealing with Big Data. For the sake of clarity, we directly refer to its

implementation on Apache Spark; as stated before, since Spark is particularly suitable for managing

iterative computations, we exploit such framework as distributed data processing environment.

DPAES-RCS consists of the following two phases, carefully designed to take advantages of the

potentialities of the distributed approach:

• distributed candidate rule generation: the candidate rule base RBC4.5 is generated by exploit-

ing both a distributed discretization of the training set and a distributed implementation of

the C4.5 algorithm;
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• distributed evolutionary optimization: a set of FRBCs with different trade-offs between ac-

curacy and complexity is determined by using a distributed MOEA.

In the Apache Spark environment, the training set is split into V chunks and distributed on

the cluster. We assume that the dataset is uniformly partitioned so that each chunk chunkv, with

v ∈ [1 . . . V ], contains a subset of Nv = |N/V | instances (xv
t , y

v
t ) of the training set.

Figure 1 shows the overall distributed candidate rule generation process, which consists of three

steps. In the figure, we have highlighted the operations performed on a single machine (the master)

by the driver program and on the cluster of slave machines by the executors.

Input Data

Training Set (V chunks)

chunk1 chunkv chunkV...
Uniform

 Fuzzy Partitions
Uniform

 Fuzzy Partitions
Uniform

 Fuzzy Partitions

...

Uniform Fuzzy Partitions
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chunk1 chunkv chunkV... ...
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ule 
E
xtraction

D
istributed C

andidate R
ule G

eneration

to distributed 
evolutionary optimization...

Figure 1: The distributed candidate rule generation phase.

Algorithm 1 details the pseudo-code of the three steps. Given a uniform fuzzy partition with
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Tf fuzzy sets on each continuous attribute (line 3), first of all, each pattern xvt,f in chunkv is

labeled with the categorical value corresponding to the fuzzy set with the highest membership

degree (line 13). Note that the discretization is applied in parallel on each chunk of the RDD.

Then, a distributed C4.5 algorithm is executed on the discretized training set (line 6). Finally, the

candidate rule base RBC4.5 is extracted from the decision tree generated by the C4.5 algorithm.

As regards the distributed C4.5 algorithm, we have exploited the distributed decision tree

(DDT) implementation provided by MLlib3.

Algorithm 1 Distributed Candidate Rule Generation.
Require: TR split into V chunk, MMAX

1: procedure CandidateRuleGeneration(in: TR, MMAX)

2: for each continuous attribute Xf in X do

3: P [f ]← define fuzzy partition of Tf fuzzy sets on Xf

4: end for

5: disTR← discretize(TR, P)

6: treeC4.5 ← executeC4.5(disTR, P)

7: RBC4.5 ← extractRules(treeC4.5)

8: return RBC4.5

9: end procedure

10: procedure discretize(in: TR, P)

11: for each chunkv in TR do

12: for each continuous value xvt,f in chunkv do

13: disTRv
t,f ← label Lf,j of fuzzy set Af,j ∈ Pf with j = arg( max

1≤j≤Tf

µAf,j
(xvt,f ))

14: end for

15: end for

16: return disTR

17: end procedure

Similar to the CART algorithm, DDT performs a recursive binary partitioning of the attribute

space, where each partition is chosen greedily by selecting the best split from a set of possible

splits, which maximizes the information gain. Such approach is applied to both continuous and

categorical attributes. We have modified the DDT implementation so as to manage categorical

attributes as in the original C4.5. In particular, each parent node generates as many child nodes as

the number of categorical values of the selected attribute. Thus, in case of a discretized continuous

attribute Xf , the parent node generates Tf child nodes. The attribute used in the parent decision

node is selected by exploiting the entropy as impurity measure: the information gain is computed as

difference between the parent node impurity and the weighted sum of the child nodes impurities.

3http://spark.apache.org/mllib/

12



Unlike classical C4.5 algorithm [42], no pruning step is performed. Since we aim to ensure a

sufficiently large search space for allowing a good exploration to the MOEA, we decided to consider

all the rules generated by the C4.5 algorithm. Further, during the evolutionary optimization some

conditions in the antecedent of the rules can be replaced by ”don’t care” conditions: this is similar

to perform during the evolutionary optimization a pruning step guided by the increase of the

accuracy and the decrease of the TRL. The complexity of the distributed candidate rule generation

is mainly affected by the complexity of the DDT learning, which is approximately linear in the

number of training instances and in the number of attributes4.

Figure 2 shows the overall distributed evolutionary optimization process. We have distributed

the computation of the accuracy by employing a master-slave model. We have exploited such

approach because it benefits from two advantages. First, it is easy to implement since the master-

slave model represents the most straightforward approach for master-worker architectures, which

are typical of cluster computing frameworks such as Apache Spark and Apache Hadoop. Second

the classification rate and the goodness of the generated solutions are independent of the number

of computing units, chunks and how data has been distributed among the machines of the cluster.

Algorithm 2 shows the pseudo-code of the distributed evolutionary optimization phase. First of

all, we initialize the (2+2)M-PAES archive by generating at least two non-dominated solutions

consisting of M̂ rules randomly selected from RBC4.5. In these solutions, all the conditions in the

antecedents of the rules are maintained. We generate pairs of solutions until at least two solutions

are not present in the archive. A solution is added to the archive only if it is dominated by no

solution contained in the archive; possible solutions in the archive dominated by the solution are

removed. The generation of the pair of solutions and the evaluation of the TRLs of these solutions

are performed by the driver program in a single machine, while the accuracy of the solutions is

calculated by exploiting the cluster.

More specifically, let count1 and count2 be the counters associated with s1 and s2, respectively.

Each executor classifies all the xv
t instances belonging to its chunkv of the training set: if xv

t is

correctly labeled with yvt , then the corresponding counter is incremented by 1. Note that counters

have been implemented as accumulators, which are efficiently managed by Spark. The distributed

evolutionary optimization consists of three main steps. These steps are iteratively executed until

the maximum number of fitness evaluations is achieved.

More in detail, the first step generates two new candidate offspring solutions [o1, o2] by applying

4For a complete description of this implementation and scaling issues, please refer to https://spark.apache.

org/docs/1.4.1/mllib-decision-tree.html
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Figure 2: The distributed evolutionary optimization phase.
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Algorithm 2 Distributed Evolutionary Optimization.

Require: TR split into V chunk, RBC45, prob (probabilities for genetic operators), M̂ , #maxIterations

1: procedure evolutionaryOptimization(in: TR, RBC45, prob, M̂ , #maxIteratons)

2: archive← create empty archive

3: while archive does not contain at least two solutions do

4: [s1, s2]← generateInitialSolutions(RBC45,M̂)

5: [count1, count2]← evaluateAccuracy(TR, [s1, s2])

6: [TRL1, TRL2]← calculateComplexity([s1, s2])

7: archive← updateArchive([s1, s2],[count1, count2],[TRL1, TRL2])

8: end while

9: i← 0

10: while i < #maxIteratons do

11: [s1, s2]← selectRandomlySolutions(archive)

12: [o1, o2]← applyGeneticOperators([s1, s2], prob)

13: [count1, count2]← evaluateAccuracy(TR, [o1, o2])

14: [TRL1, TRL2]← calculateComplexity([o1, o2])

15: archive← updateArchive([o1, o2],[count1, count2],[TRL1, TRL2])

16: i← i+ 1

17: end while

18: return archive

19: end procedure

20: procedure evaluateAccuracy(in: TR, [sol1, sol2], N)

21: [count1, count2]← [0, 0]

22: for each chunkv in TR do

23: for each (xv
t , y

v
t ) in chunkv do

24: [y1, y2]← classify xv
t with [sol1, sol2]

25: if y1 == yv
t then

26: count1 ← count1 + 1

27: end if

28: if y2 == yv
t then

29: count2 ← count2 + 1

30: end if

31: end for

32: end for

33: return [count1, count2]

34: end procedure
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the genetic operators (line 12) to two solutions [s1, s2] randomly extracted from the archive (line

11). This step is performed by the driver program in a single machine. The second step evaluates

the accuracy and the TRL of each offspring solution. The last step updates the archive according

to the new candidate solutions and is performed by the driver program in a single machine. If

o1 and o2 are dominated by no solution contained in the archive, then they are added to the

archive. Obviously, possible solutions in the archive dominated by the candidate solutions are

removed. When the archive is full (the size of the archive is fixed before starting the execution

of the (2+2)M-PAES) and a new solution z has to be added to the archive, if z dominates no

solution in the archive, then we insert z into the archive and remove the solution that belongs to

the region with the highest crowding degree (note that even z itself can be removed). In case the

region contains more than one solution, then, we randomly choose the solution to be removed.

Time complexity of the distributed evolutionary optimization is mainly affected by the second

step, which represents the most time-consuming part of DPAES-RCS since a scanning of the

overall training set for each iteration is required. Since the process is carried out in parallel by

each executor and requires the evaluation of two candidate solutions, time complexity is, in the

worst case, equal to O(dVQe · 2 ·#MaxIterations ·Nv · M̂), where Q is the number of Computing

Units (CUs) available in the cluster, i.e the number of cores in our experiments, and coincides with

the number of tasks that can be executed concurrently. Obviously, if V ≤ Q, then all tasks can

be run simultaneously and the global runtime practically corresponds to the longest of the task

runtimes. In case V > Q, only Q tasks can be executed in parallel and the remaining (V − Q)

tasks are queued, waiting for being executed as soon as one of the running Q tasks terminates.

Thus, in the ideal case where the execution time is the same for all tasks, each core executes at

most dVQe tasks.

5. Experimental Study

In this section, we show the experimental study we performed for evaluating the effectiveness of

DPAES-RCS. The study has been focused on three aspects: i) performance in terms of classification

accuracy, model complexity and interpretability of the solutions contained in the Pareto front; ii)

comparison of these solutions with two state-of-the-art classification models purposely proposed

for managing Big Data; and iii) scalability varying the number of CUs.

As shown in Table 1, we have employed ten real-world big datasets extracted from the UCI5 and

5Available at https://archive.ics.uci.edu/ml/datasets.html
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Table 1: Datasets used in the experiments.
Datasets

Name # Instances # Attributes # Classes # Size
Covertype 2 (COV 2) 581,012 54 (n:10, c:44) 2 75.2 MB
Covertype 7 (COV 7) 581,012 54 (n:10, c:44) 7 75.2 MB
eCO (ECO) 4,178,504 16 (n:16) 10 534 MB
eME (EME) 4,178,504 16 (n:16) 10 535.2 MB
Higgs (HIG) 11,000,000 28 (n:28) 2 8.04 GB
Kddcup 2 (KDD 2) 4,856,151 41 (n:26, c:15) 2 476 MB
Kddcup 5 (KDD 5) 4,898,431 41 (n:26, c:15) 5 480 MB
Kddcup 23 (KDD 23) 4,898,431 41 (n:26, c:15) 23 484 MB
PokerHand (POK) 1,025,010 10 (c:10) 10 24.5 MB
Susy (SUS) 5,000,000 18 (n:18) 2 2.4 GB

the LIBSVM6 repositories. These datasets are characterized by different numbers of input/output

instances (up to 11 millions), attributes (from 10 to 54) and classes (from 2 to 23). Furthermore,

for each dataset, the numbers of numeric (n) and categorical (c) attributes, and the size in terms

of memory occupancy are also reported.

For each dataset, we performed a five-fold cross-validation. DPAES-RCS has been executed

on Apache Spark 1.4.1, using a small computer cluster, i.e., 5 nodes connected by an 1 Gigabit

Ethernet (1 Gbps) that run Ubuntu 12.04. The master node, which hosts the driver program, has

a 4-core CPU (Intel Core i5 CPU 750 x 2.67 GHz), 8 GB of RAM and a 500GB Hard Drive. Each

slave node, which runs an executor, is equipped by a 4-core CPU with Hyperthreading (Intel Core

i7-2600K CPU x 3.40 GHz, 8 threads), 16GB of RAM and 1 TB Hard Drive. The training sets

are stored in the Hadoop Distributed File System.

Table 2 shows the values of the parameters used in the experiments. These values have been

obtained by performing different trials and, for each trial, by evaluating a different configuration

of the parameters, starting from the values used in [7], where the sequential PAES-RCS has been

proposed. Actually, most of the values in Table 2 coincide with the ones employed in [7]. The only

differences relate to the archive size AS, the maximum number MMAX of rules and the probability

PMDB
, which were increased from 32, 50 and 0.2 to 64, 100 and 0.6, respectively. These increases

have been necessary for dealing with a size of the datasets larger than that of the datasets used

in [7]. Regarding the number of evaluations, for most of the datasets, we experimentally verified

that the evolutionary optimization process has a similar behavior as the one discussed in [7], where

we have shown that 50,000 fitness evaluations allow obtaining Pareto fronts statistically equivalent

to the ones achieved after 1 million evaluations. For the sake of brevity, we do not report this

analysis in the paper. Since each iteration of the (2+2)M-PAES requires two fitness evaluations,

6Available at www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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it follows that 50,000 fitness evaluations correspond to 25,000 iterations. The number Tf of fuzzy

sets has been chosen equal to 5 for all the attributes Xf . Obviously, the value of Tf affects the

results achieved by DPAES-RCS. We chose to fix it to 5 for the following reasons. First of all,

in our previous works, we compared different possible values for the number of fuzzy sets and,

in general, the value of 5 has guaranteed the best performance. Second, we aim to generate

interpretable FRBCs. In the literature, it is well-known that the number of linguistic values

(and consequently of fuzzy sets) used for a linguistic variable should be lower than 7 for allowing

human comprehension. Obviously, the lower this number, the higher the interpretability. Thus,

we chose the value of 5, which guarantees good interpretability of the partitions and high modeling

capability. Third, interpretability of an FRBC is also related to the number of rules in the RB:

a high number of fuzzy sets brings to generate a high number of rules. Indeed, since the tuning

of the fuzzy sets during the evolutionary process is constrained for preserving interpretability of

the partitions, high accuracies can only be achieved by using a high number of rules. Finally, we

performed at the beginning of our work on DPAES-RCS some experiment with different numbers

of fuzzy sets for the partitions and we verified that 5 allowed us to have the best trade-off between

modeling capability and complexity.

Table 2: Values of the parameters used in the experiments for DPAES-RCS.
# Fitness Evaluations Maximum number of fitness evaluations 50,000
AS (2+2)M-PAES archive size 64
Tf Number of fuzzy sets for each continuous attribute Xf 5
MMAX Maximum number of rules in an RB 100
PCRB

Probability crossover operator for CRB 0.1
PCDB

Probability crossover operator for CDB 0.5
PMRB1

Probability first mutation operator for CRB 0.1
PMRB2

Probability second mutation operator for CRB 0.7
PMDB

Probability mutation operator for CDB 0.6

Table 3 shows, for each dataset, the values of the parameters used for executing the C4.5

algorithm for generating the initial set of candidate rules, the average number of rules generated

and the average number of attributes selected at the end of the execution. For two datasets, namely

Susy and Higgs, we observed that the C4.5 algorithm generated trees with a large number of leaves

and consequently a large number of rules. Thus, with the aim of limiting the number of candidate

rules and therefore the search space, we have increased the minimum number of instances per leaf

to 0.01% of the number of instances of the whole dataset. On the other hand, for PokerHand, we

have not changed the value of the “minimum number of instances per leaf”. Such dataset contains

only categorical attributes and represents a special application field for DPAES-RCS. Indeed, the

search space is smaller than that of other datasets because no data base learning is performed.

Indeed, in this case, DPAES-RCS is employed only for selecting rules and conditions during the
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optimization process.

Table 3: Values of the parameters used for executing the C4.5 algorithm, and average numbers of rules and attributes

in the rule bases extracted from the generated trees.

Dataset min # instances per leaf Rules Attributes
COV 2 1 290.4 12.0
COV 7 1 18,176.2 53.0
ECO 1 591.4 12.0
EME 1 1,244.0 16.0
HIG 1100 5,270.6 26.4
KDD 2 1 494.6 26.4
KDD 5 1 1,311.0 33.4
KDD 23 1 1,342.4 33.8
POK 1 323,428.2 10.0
SUS 500 2,286.0 18.0

By comparing Table 3 with Table 1, we can observe that, for some dataset, the C4.5 algorithm

performs a significant attribute selection. Indeed, for COV 2, KDD 2, KDD 5 and KDD 23,

percentages of, respectively, 22.22%, 64.39%, 81.66% and 82.43% of the original attributes were

selected.

5.1. Performance analysis of DPAES-RCS

In this section, we analyze the performance of DPAES-RCS in terms of accuracy, model com-

plexity, and interpretability of the different solutions generated during the optimization process.

The analysis is performed by adopting the method used in previous papers [2, 3]. For each of the

five folds, we sort the solutions of the Pareto front approximation obtained by the DPAES-RCS

execution for decreasing accuracy. Then, for each fold, we select the first (the most accurate), the

last (the least accurate) and the median between the first and last solutions. In the following,

we denote these representative solutions as FIRST, MEDIAN and LAST, respectively. The three

solutions allow evaluating the width of the Pareto front and performing statistical tests.

Table 4 shows, for each dataset and for each representative solution, the average values and

the standard deviations of the accuracy achieved on both the training (AccTra) and test (AccTst)

sets, the average values and the standard deviations of the TRL and of the number (NDS) of non-

dominated solutions contained in the archive at the end of the evolutionary process. Furthermore,

to allow the reader visually evaluate the width of the Pareto front approximations obtained by

DPAES-RCS, in Figure 3 we plot on the classification rate/TRL plane the average values achieved

by the three representative solutions, for all the datasets, on both training and test sets.

We observe that, for each representative solution, the average values of the accuracies achieved

on the training set are very close to the ones obtained on the test set. Thus, we can conclude

that the solutions generated by DPAES-RCS are not affected from overtraining. As regards the

interpretability of the solutions, we note that the average values of TRL are not excessively high,
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Table 4: Average values and standard deviations of the accuracy on the training and test sets and of TRL of the

FIRST, MEDIAN and LAST solutions and average values and standard deviations of the number of non-dominated

solutions generated by DPAES-RCS.
FIRST MEDIAN LAST

Dataset AccTra AccTst TRL AccTra AccTst TRL AccTra AccTst TRL NDS

COV 2 75.753± 0.004 75.732± 0.003 74.4± 23.0 74.968± 0.005 74.909± 0.005 38.7± 17.3 72.708± 0.007 72.681± 0.006 10.0± 3.2 27.8± 3.4

COV 7 72.383± 0.003 72.374± 0.003 145.0± 37.0 71.940± 0.004 71.924± 0.004 84.2± 25.1 57.921± 0.106 57.907± 0.106 58.2± 19.9 32.2± 1.5

ECO 77.133± 0.004 77.115± 0.004 168.4± 79.6 74.995± 0.011 74.984± 0.011 117.7± 73.4 56.228± 0.078 56.244± 0.078 54.4± 24.2 30.2± 3.9

EME 80.600± 0.008 80.570± 0.008 187.4± 39.8 78.221± 0.010 78.201± 0.010 112.0± 27.2 61.407± 0.061 61.391± 0.061 75.2± 17.3 35.4± 9.4

HIG 65.008± 0.012 64.998± 0.012 125.2± 40.2 64.389± 0.008 64.370± 0.008 78.7± 28.6 59.825± 0.017 59.849± 0.017 48.6± 21.4 35.2± 9.0

KDD 2 99.948± 0.012 99.947± 0.012 35.4± 8.0 99.933± 0.008 99.934± 0.008 19.5± 4.3 98.508± 0.017 98.514± 0.017 8.2± 1.3 18.8± 2.9

KDD 5 99.740± 0.012 99.734± 0.012 80.0± 17.8 99.717± 0.008 99.711± 0.008 50.4± 13.2 82.920± 0.017 82.925± 0.017 30.2± 12.4 29.8± 3.8

KDD 23 99.802± 0.000 99.803± 0.000 77.8± 21 99.735± 0.000 99.735± 0.000 42.2± 10.9 63.384± 0.354 63.374± 0.354 23.6± 6.3 28.2± 5.2

POK 60.233± 0.006 60.221± 0.006 113.2± 13.3 58.423± 0.008 58.430± 0.009 68.1± 11.8 48.772± 0.031 48.749± 0.032 34.2± 8.4 51.2± 6.7

SUS 78.123± 0.001 78.110± 0.001 80.4± 33.4 77.658± 0.003 77.659± 0.003 45.6± 25.5 68.131± 0.083 68.128± 0.082 22.0± 14.0 29.4± 8.6
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Figure 3: Plots of the average accuracy on the training and test sets and average TRL of the FIRST, MEDIAN and

LAST solutions generated by DPAES-RCS.
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also considering the number of instances and attributes of the datasets. To evaluate more precisely

the interpretability of the solutions, we computed the average number M of rules, the average

number F̂ of attributes used in the rule base, the average rule length (ARL), that is, the average

number of conditions in the rule antecedents, and the average value of the partition integrity index

Iint.

Table 5 shows the average values and the standard deviations of M , F̂ , ARL and Iint for the

FIRST, MEDIAN and LAST solutions generated by DPAES-RCS. We can observe that the number

of rules is quite low, also for the FIRST solutions, making the RB very interpretable. Further, the

number of attributes used in the RB is much lower than the original number of attributes, thus

testifying the effectiveness of DPAES-RCS in selecting attributes during the evolutionary process.

Further, since ARL is always very low, we can deduce that DPAES-RCS generates RBs mostly

composed by generic rules. Finally, the values of Iint are higher than 0.92 and do not vary too

much among the three representative solutions. Hence, we can conclude that the evolutionary DB

learning preserves the partition interpretability. We note that for PokerHand Iint = 1 for all the

three representative solutions. We recall that such dataset contains only categorical attributes

and therefore no DB learning is performed by DPAES-RCS during the evolutionary optimization

process.

Table 5: Average values and standard deviations of the number (M) of rules, the number (F̂ ) of attributes, the

average rule length (ARL) and the partition integrity index (Iint) for the FIRST, MEDIAN and LAST solutions

generated by DPAES-RCS.
FIRST MEDIAN LAST

Dataset M F̂ ARL Iint M F̂ ARL Iint M F̂ ARL Iint

COV 2 33.6± 8.4 9.0± 1.7 2.2± 0.1 0.940± 0.004 21.7± 7.3 7.7± 1.3 1.8± 0.1 0.934± 0.007 9.2± 2.6 4.2± 1.2 1.1± 0.0 0.936± 0.006

COV 7 36.2± 7.3 32.0± 2.6 4.0± 0.2 0.945± 0.003 29.4± 6.8 25.9± 2.5 2.9± 0.1 0.945± 0.003 28.0± 6.4 24.0± 3.9 2.1± 0.1 0.945± 0.002

ECO 54.0± 16.5 12.0± 0.0 3.1± 0.3 0.940± 0.007 45.4± 17.3 11.8± 0.4 2.6± 0.3 0.941± 0.006 35.2± 10.9 11.4± 1.2 1.5± 0.1 0.935± 0.007

EME 58.6± 5.7 15.8± 0.4 3.2± 0.3 0.945± 0.005 48.1± 5.9 15.4± 0.5 2.3± 0.1 0.941± 0.003 44.6± 4.6 14.8± 0.4 1.7± 0.1 0.943± 0.004

HIG 30.2± 8.2 19.0± 0.6 4.1± 0.1 0.928± 0.004 25.8± 6.8 15.2± 3.0 3.1± 0.3 0.927± 0.004 23.2± 7.2 14.4± 4.2 2.1± 0.3 0.929± 0.003

KDD 2 21.8± 4.1 12.6± 1.5 1.6± 0.0 0.956± 0.004 13.2± 2.5 8.8± 1.5 1.5± 0.0 0.958± 0.004 8.0± 1.4 5.4± 1.0 1.0± 0.0 0.955± 0.005

KDD 5 34.8± 6.9 17.8± 1.8 2.3± 0.1 0.935± 0.003 26.5± 5.0 14.1± 2.2 1.9± 0.0 0.934± 0.003 23.4± 6.4 13.2± 2.7 1.3± 0.0 0.937± 0.001

KDD 23 33.2± 6.2 20.0± 1.4 2.3± 0.0 0.937± 0.004 23.5± 5.1 15.7± 2.1 1.8± 0.1 0.936± 0.006 20.0± 4.7 11.2± 1.9 1.2± 0.0 0.936± 0.005

POK 50.0± 4.6 5.0± 0.0 2.3± 0.0 1.000± 0.000 35.2± 6.3 5.0± 0.0 1.9± 0.0 1.000± 0.000 25.4± 3.1 5.0± 0.0 1.3± 0.0 1.000± 0.000

SUS 28.0± 8.6 13.6± 1.9 2.9± 0.2 0.923± 0.005 19.9± 7.7 12.1± 2.5 2.3± 0.1 0.927± 0.009 15.0± 6.9 9.6± 3.0 1.5± 0.1 0.925± 0.008

Table 6 shows, for each dataset, the average execution time (in seconds) and the standard

deviation spent by DPAES-RCS on a cluster of 4 slaves with 8 cores per slave (32 cores in total).

For each dataset, we report also the execution time of the distributed evolutionary optimization

phase.

As expected, the distributed evolutionary optimization represents the most time consuming

part of DPAES-RCS. In particular, the runtime is driven by both the number of instances and the

complexity of the two solutions evaluated at each iteration. For instance, ECO and EME have
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Table 6: Average computation times (in seconds) and standard deviations for the distributed evolutionary opti-

mization (DEO) phase and the overall algorithm (Tot).
Execution Time (s)

Datasets DEO Tot
COV 2 3, 602± 234.41 3, 665± 233.69
COV 7 4, 804± 1, 066.74 4, 854± 1, 065.91
ECO 28, 188± 3, 832.29 28, 248± 3, 832.17
EME 39, 722± 2, 410.13 39, 775± 2, 410.15
HIG 76, 811± 8, 797.67 77, 703± 8, 800.06
KDD 2 6, 314± 1, 974.74 6, 464± 1, 977.02
KDD 5 12, 400± 4, 324.83 12, 480± 4, 322.73
KDD 23 11, 305± 2, 272.03 11, 392± 2, 272.02
POK 2, 400± 1, 874.44 2, 428± 1, 878.47
SUS 32, 063± 3, 082.04 32, 230± 3, 057.74

the same number of instances. However, since rules in EME tend to be characterized by a higher

complexity than the ones in ECO, as we can realize by inspecting Tables 4 and 5, the execution

time for EME is longer than that for ECO.

As an example of how much DBs and RBs generated by DPAES-RCS are interpretable, in

the following we show the MEDIAN solution obtained on the first fold of the COV 2 dataset. We

decided to present a MEDIAN solution because it represents the average trade-off between accuracy

and complexity. Indeed, as shown in Table 4, the MEDIAN solution can achieve considerable values

of accuracy (not very far from those obtained by the FIRST solutions) with a quite low TRL. The

COV 2 dataset is derived from a binary classification problem aimed at predicting forest cover type

from cartographic variables only, including four wilderness areas. These areas represent forests with

minimal human-caused disturbances, so that existing forest cover types are a result of ecological

processes rather than of forest management practices. The goal is to classify if the primary species

of the forest in a given area is “Lodgepole Pine” (Type 2) or not (Type 1). Table 7 describes the

attributes that characterize the COV 2 dataset7.

Table 7: Description of the attributes of the COV 2 dataset (n and c stands for numerical and categorical, respec-

tively).
Name Data Type (Unit) Description
Elevation n (meters) Elevation in meters
Aspect n (azimuth) Aspect in degrees azimuth
Slope n (degrees) Slope in degrees
Hor Dist To Hyd n (meters) Horizontal distance to the nearest surface water
Ver Dist To Hyd n (meters) Vertical distance to the nearest surface water
Hor Dist To Roa n (meters) Horizontal distance to the nearest roadway
Hillshade 9am n (0-255) Hill shade index at 9am, summer solstice
Hillshade Noon n (0-255) Hill shade index at Noon, summer solstice
Hillshade 3pm n (0-255) Hill shade index at 3pm, summer solstice
Hor Dist To Fire Pts n (meters) Horz. dist. to the nearest wildfire ignition points
Wilderness Area (4 binary columns) c (0-1) Wilderness area designation
Soil Type (40 binary columns) c (0-1) Soil type area designation

For each continuous attribute of the COV 2 dataset, Figure 4 shows the uniform fuzzy partition

(dashed line) and the fuzzy partition (solid line) of the MEDIAN solution obtained at the end of the

7More details on the COV 2 dataset are available at https://archive.ics.uci.edu/ml/datasets/Covertype.
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Ver_Dist_to_Hyd

Hor_Dist_to_Hyd

Hor_Dist_to_Roa

Hor_Dist_to_Fire_Pts

Slope

Elevation Aspect

Hillshade_9am

Hillshade_3pm

Hillshade_Noon

Figure 4: Uniform fuzzy partitions (dashed line) and learned fuzzy partitions (solid line) of the attributes of the

MEDIAN solution obtained at the end of the evolutionary process on the COV 2 dataset.

evolutionary process. We can appreciate how the final partitions result to be still very interpretable.

We assume that the five fuzzy sets are labeled, from the leftmost to the rightmost, as very low,

low, medium, high and very high, respectively. Figure 5 describes the final RB of the FRBC. We

can realize that the RB generated by DPAES-RCS is highly interpretable. Indeed, the RB consists

of only 20 rules and each of these rules contains at most three conditions in the antecedent. If

we consider the number of instances and of attributes, which characterize the COV 2 dataset, the

complexity of the FRBC generated by DPAES-RCS is actually very low.

IF	Elevation	IS	'low'	THEN	Y	IS	Type_1	
IF	Elevation	IS	'very_low'	THEN	Y	IS	Type_1	
IF	Hor_Dist_To_Hyd	IS	'very_low'	AND	Hor_Dist_To_Roa	IS	'low'	THEN	Y	IS	Type_1	
IF	Hor_Dist_To_Roa	IS	'low'	AND	Hor_Dist_To_Fire_Pts	IS	'medium'	THEN	Y	IS	Type_2	
IF	Elevation	IS	'medium'	THEN	Y	IS	Type_2	
IF	Hor_Dist_To_Hyd	IS	'high'	AND	Hor_Dist_To_Roa	IS	'low'	THEN	Y	IS	Type_1	
IF	Hor_Dist_To_Hyd	IS	'very_high'	THEN	Y	IS	Type_2	
IF	Hor_Dist_To_Roa	IS	'very_high'	THEN	Y	IS	Type_2	
IF	Elevation	IS	'high'	AND	Aspect	IS	'low'	AND	Hor_Dist_To_Hyd	IS	'low'	AND	Ver_Dist_To_Hyd	IS	'low'	THEN	Y	IS	Type_1	
IF	Elevation	IS	'high'	AND	Slope	IS	'low'	AND	Hor_Dist_To_Hyd	IS	'low'	AND	Hillshade_Noon	IS	'low'	THEN	Y	IS	Type_1	
IF	Hor_Dist_To_Hyd	IS	'low'	AND	Ver_Dist_To_Hyd	IS	'high'	AND	Hillshade_3pm	IS	'very_low'	THEN	Y	IS	Type_1	
IF	Ver_Dist_To_Hyd	IS	'very_high'	AND	Hillshade_3pm	IS	'low'	THEN	Y	IS	Type_1	
IF	Elevation	IS	'high'	AND	Hor_Dist_To_Fire_Pts	IS	'low'	AND	THEN	Y	IS	Type_1	
IF	Elevation	IS	'high'	AND	Hor_Dist_To_Roa	IS	'low'	AND	THEN	Y	IS	Type_2	
IF	Hor_Dist_To_Roa	IS	'medium'	AND	Hor_Dist_To_Fire_Pts	IS	'low'	THEN	Y	IS	Type_1	
IF	Elevation	IS	'high'	AND	Hor_Dist_To_Fire_Pts	IS	'medium'	THEN	Y	IS	Type_1	
IF	Hor_Dist_To_Hyd	IS	'very_low'	AND	Hor_Dist_To_Roa	IS	'medium'	AND	Hor_Dist_To_Fire_Pts	IS	'very_low'	THEN	Y	IS	Type_2	
IF	Hor_Dist_To_Hyd	IS	'very_low'	AND	Hor_Dist_To_Roa	IS	'high'	THEN	Y	IS	Type_2	
IF	Elevation	IS	'high'	AND	Hor_Dist_To_Fire_Pts	IS	'high'	THEN	Y	IS	Type_1	
IF	Elevation	IS	'very_high'	THEN	Y	IS	Type_1	

Figure 5: RB of the MEDIAN solution obtained on the COV 2 dataset.

23



5.2. Comparison with two state-of-the-art classifiers for big data

In this section, we evaluate the performance of DPAES-RCS in comparison with the DDT

implementation available in MLlib and with a distributed version of the Chi et al. algorithm [17],

denoted as Chi-FRBCS-BigData in the following, for generating FRBCs. These two algorithms can

be considered as two recent state-of-the-art classification models purposely designed for handling

Big Data.

As described in Section 4.2, DDT splits the attribute space by performing a recursive binary

partitioning. We used the default parameters suggested in the guidelines provided by MLlib for

executing DDT: the maximum depth of the tree is set to 5 and the number of bins used to discretize

continuous attributes is set to 32. As regards the Chi-FRBCS-BigData, we exploited the Hadoop

implementation available on Gitub 8. We set the values of the parameters as suggested in [17].

We recall that Chi-FRBCS-BigData generates a set of rules for each chunk of the training set and

then adopts a reduce stage for fusing the rules by using two different methods. Once all the rules

generated by each mapper are grouped together, both methods search for the rules with the same

antecedent. Among these rules, the first method selects only the rule with the highest weight and

maintains it in the final RB. The second method computes the average weight of the rules, which

have the same consequent, and keep in the final RB the rule with the highest average weight. We

have chosen the last method because it achieves the best results.

Table 8 shows the average values and the standard deviations of the accuracy on the training

(AccTra) and test (AccTst) sets for the FIRST solution generated by DPAES-RCS, for DDT and

for the FRBC generated by Chi-FRBCS-BigData. Further, we show the number M of rules and

the TRL for the FIRST solution generated by DPAES-RCS and for the FRBC generated by Chi-

FRBCS-BigData. For DDT, we present the number of nodes (NN) and of leaves (NL). We

observe that the values of accuracy achieved by DDT are comparable with the FIRST solution

obtained by DPAES-RCS. As regards the comparison with Chi-FRBCS-BigData, we highlight that

the accuracies achieved by the FIRST solution of DPAES-RCS are almost always higher.

To statistically validate this observation, we generate, for each comparison algorithm, a distri-

bution consisting of the average values of accuracy obtained on the test set on all datasets. Then,

we apply non-parametric statistical tests. First, we perform the Friedman test in order to compute

a ranking among the distributions and the Iman and Davenport test to evaluate whether there

exists a statistical difference among the distributions. If the Iman and Davenport p-value is lower

than the level of significance α (in the experiments α = 0.05), we can reject the null hypothesis

8https://github.com/saradelrio/Chi-FRBCS-BigData-AVE

24



and affirm that there exist statistical differences among the multiple distributions associated with

each approach. Otherwise, no statistical difference exists. If there exists a statistical difference, we

apply a post-hoc procedure, namely the Holm test. This test allows detecting effective statistical

differences between the control approach, i.e. the one with the lowest Friedman rank, and the

remaining approaches. Details on the aforementioned tests may be found in [28].

Table 9 summarizes the results of the statistical tests. We observe that the null hypothesis of

the Iman and Davenport test is rejected for the accuracy on the test set. Thus, we performed the

Holm post-hoc procedure by considering DPAES-RCS (FIRST) as control approach. By analyzing

Table 10 we can conclude that the accuracies achieved by the FIRST solution generated by DPAES-

RCS are statistically equivalent to the ones achieved by DDT. On the other hand, the tests confirm

that DPAES-RCS outperforms Chi-FRBCS-BigData in terms of accuracy. We performed the same

statistical tests using the MEDIAN solution instead of the FIRST solution and we got the same

results. Indeed, the accuracy achieved by the MEDIAN solutions are statistically equivalent to the

ones achieved by DDT and are statistically higher than the ones achieved by Chi-FRBCS-BigData.

Regarding the complexity, as shown in Table 8, we would like to point out that the complexity

of the rule bases generated by Chi-FRBCS-BigData is at least one order of magnitude higher than

that of the solutions generated by DPAES-RCS.

As regards DDT, with the aim of comparing the complexity of the generated solutions with

the ones associated to DPAES-RCS, we can extract two-valued logic rules from the decision tree

generated by the DDT learning algorithm: the number of rules is equal to the number of leaves.

The number of rules of the FIRST solutions (the most complex) generated by DPAES-RCS is

comparable with the number of rules extracted from the decision tree, with the exception of ECO,

EME and POK datasets. We recall that the DDT learning, however, performs a binary split at

each node. Thus, the rules extracted from the decision tree are different from those in the FRBCs

generated by DPAES-RCS. Indeed, they have conditions that are expressed by using intervals in

case of continuous attributes and “or” of linguistic values in case of categorical attributes. Figure

6 shows an example of rules generated by the DDT learning algorithm. Here, X1 and XF are

numerical and categorical attributes, respectively. Furthermore, l1,m and u1,m are the lower and

the upper bounds of the interval defined in U1 for the m-th rule and LF,1, LF,2 and LF,3 are the first

three categorical values defined on XF . Thus, a comparison considering TRL is not meaningful

because the rules exploited in the solutions of DPAES-RCS are different from those extracted from

the decision tree generated from the DDT learning algorithm. It is worth noting that these rules

are more complex and hardly interpretable than the ones in the FRBCs generated by DPAES-RCS.

In Table 11, we show, for each dataset, the average computation times (in seconds) and stan-
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Table 9: Results of the Friedman and of the Iman and Davenport tests on the accuracy computed on the test set

.

Algorithm Friedman rank Iman and

Davenport

p-value

Hypothesis

DPAES-RCS (FIRST) 1.4
DDT 1.8 0.0013526 Rejected

Chi-FRBCS-BigData 2.8

Table 10: Results of the Holm post hoc procedure for α = 0.05
i algorithm z-value p-value alpha/i Hypothesis
2 Chi-FRBCS-BigData 3.130495 0.001745 0.025 Rejected
1 DDT 0.894427 0.371093 0.05 Not Rejected

dard deviations spent by the DDT learning algorithm and the Chi-FRBCS-BigData algorithm for

generating the classification models. As expected, the computation times of the DDT learning

algorithm are considerably shorter than the ones of the DPAES-RCS and Chi-FRBCS-BigData

algorithms. On the other hand, DPAES-RCS performs 50,000 evaluations by using the overall

dataset during the evolutionary optimization, which allows us to generate FRBCs with a limited

number of rules and conditions, thus making them interpretable.

Table 11: Average computation times (in seconds) and standard deviations for the DDT learning algorithm and the

Chi-FRBCS-BigData algorithm.
Execution Time (s)

Datasets DDT Chi-FRBCS-BigData
COV 2 9± 2.998 110± 7.968
COV 7 13± 6.628 2, 810± 1, 030.255
ECO 16± 4.038 1, 263± 320.382
EME 15± 3.683 1, 276± 433.667
HIG 126± 4.272 19, 889± 4, 327.076
KDD 2 19± 4.869 2, 756± 440.825
KDD 5 23± 6.744 3, 615± 135.106
KDD 23 23± 7.294 6, 551± 226.477
POK 7± 1.750 18, 918± 5, 919.047
SUS 49± 8.114 1, 444± 375.832

Finally we want to highlight that, unlike DPAES-RCS, both the accuracy and the complexity

of the FRBCs generated by the Chi-FRBCS-BigData depend on how the training set is split into

the chunks.

5.3. Scalability

In this section, we investigate the behavior of the proposed approach by employing an increas-

ing number of CUs. To this aim, we use the speedup σ, which is the main metric used in parallel

computing for evaluating scalability. The speedup calculates the efficiency of a program, which

uses multiple CUs, comparing the execution time of the parallel implementation with the corre-

sponding sequential version. Due to the high number of instances in the datasets considered in our
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RDDT
m : IF X1 is in [l1,m , u1,m] and . . . and XF is LF,1 or LF,2 or LF,3 then Y is Ck,m

Figure 6: Example of the m-th rule extracted by the DDT.

experiments, the sequential implementation of the algorithm would take an unreasonable amount

of time. To overcome this drawback, we adopt a slightly different definition for the speedup taking

as reference a run over Q identical CUs, with Q > 1. Thus, we redefine the speedup on Q CUs as

follows:

σQ∗(Q) =
Q∗ · τ(Q∗)

τ(Q)
(4)

where τ(Q) is the runtime using Q CUs and Q∗ is the number of CUs used to run the reference

execution. In practice, Q∗ · τ(Q∗) allows us to estimate an ideal single-CU runtime. Note that

τ(Q∗) accounts also for the basic overhead due to the Apache Spark platform.

In our experiments, we assumed Q∗ = 8 so as to have 1 working slave available in the cluster and

thus considering in σ8(Q) also the basic overhead due to thread interference. Horizontal scalability

has been studied by varying the number of switched-on CUs: we vary the number of slaves from

1 to 4, each with one executor with 8 cores. Considering the structure of our approach, we split

the RDD into a number of partitions equal to the total number of cores available on the cluster.

Obviously, due to the overhead from the Spark procedures and the contention of shared resources

among cores, we expect that the speedup is sub-linear.

Table 12 presents the average execution time, speedup σ8(Q) and utilization σ8(Q)/Q obtained

on the COV 2 dataset in five trials. Figures 7 and 8 show, respectively, the average execution time

and speedup against the number of CUs. Considering the structure of DPAES-RCS, we split the

RDD into a number of partitions equal to the total number of cores available on the slaves. We

observe that the speedup does not excessively differ from the ideal linear trend. The overhead is

mainly due to the time required to send the solutions (CRB , CDB) from the master to each slave

node and, of course, to the necessary sequential parts performed on the master.

Table 12: Average execution time, speedup σ8(Q) and utilization σ8(Q)/Q obtained on the COV 2 dataset in five

trials
# Cores Time (s) σ8(Q) σ8(Q)/Q

8 13,297.264 8.0 1.0
16 6,901.795 15.4131 0.9633
24 4,858.456 21.8955 0.9123
32 3,704.587 28.7152 0.8974

As described in Section 4.2, the distributed evolutionary optimization phase is the most time-

consuming part of the algorithm since it involves the scanning of the overall training set at each
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Figure 7: Average execution time on the COV 2 dataset

for increasing number of cores

Figure 8: Average speedup on the COV 2 dataset for in-

creasing number of cores

iteration. The execution time of this phase is strongly affected by the complexity of the solutions

since, for each instance in the training set, the matching degree for each rule in the RB of the

solution has to be computed. With the increase of the number of iterations, we expect that the

complexity of the current solutions of DPAES-RCS decreases and therefore the execution time of

the iterations at the end of the evolutionary process is lower than that at the beginning. As an

example, every 1,000 iterations we computed the sum of the TRLs of the two current solutions

and the execution time for computing the accuracy of the two solutions on the first fold of the

COV 2 dataset. Figures 9 and 10 show the trend of the sum of the TRLs and of the execution time

against the number of iterations, respectively. As expected, the execution time is proportional to

the complexity and tends to decrease during the evolutionary optimization.

Figure 9: Sum of the TRLs of the two current solutions

against the number of iterations.

Figure 10: Execution time for computing the accuracy of

the two current solutions against the number of iterations.
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6. Conclusions

The objective of developing classifiers, which are both accurate and interpretable, is certainly

very appealing, especially in some application domains. Fuzzy rule-based classifiers (FRBCs) have

proved to be both effective and interpretable models for classification problems. However, the

desire of increasing the accuracy has often led to generate FRBCs with a high number of rules and

fuzzy sets in the attribute partitions that did not correspond to the intuitive meaning of the related

linguistic values. With the aim of generating accurate and interpretable FRBCs, multi-objective

evolutionary algorithms (MOEAs) have been extensively employed in the last years. Although the

MOEA-based approach has proved to be very effective in determining sets of FRBCs with different

trade-offs between accuracy and interpretability, the evaluation of each solution, however, requires

the scan of the overall training set and typically a large number of solutions are generated and

evaluated before achieving the convergence. When dealing with big datasets, the effort can be

too high for a unique computational unit. In this paper, we have proposed the first distributed,

scalable and effective implementation of an MOEA which learns concurrently the rule and data

bases of FRBCs by maximizing accuracy and minimizing complexity. We have adopted Apache

Spark, which is one of the most promising open source cluster computing frameworks for iterative

and on-line applications, thanks to its in-memory computation. Spark has permitted us to both

efficiently parallelize the computation flow across a computer cluster and provide a robust and

transparent environment, taking care of communications and possible failures.

In the experimental study, we have adopted ten real-world big datasets and have compared the

solutions generated by our approach with the decision tree available in the MLlib library on Spark

and with a state-of-the-art algorithm for generating FRBCs for big data. We have highlighted

that our approach generates accurate classifiers with very low complexity. In order to evaluate

the scalability performance of the proposed algorithm, we have tested the speedup on one of the

big datasets, by using personal computers connected by a Gigabit Ethernet. The experiments

highlight that the speedup is close to the ideal achievable targets.

As future work, we intend to investigate the use of distributed fuzzy discretizers for generating

the initial fuzzy partition, instead of using a uniform partition with a pre-fixed number of fuzzy

sets. Further, we aim to experiment distributed fuzzy decision trees for generating the initial set

of candidate rules. Finally, we would like to integrate into DPAES-RCS a set of strategies that

will allow us to learn concurrently the rule base, the fuzzy set parameters and also the granularity

of the fuzzy partitions.
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