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Abstract

After a news event, many different websites publish coverage of that event,
each expressing their own unique commentary, perspectives, and viewpoints.
Websites form around a specific set of interests to cater to different audi-
ences, and discovering these interests can help audiences C especially people
and organizations that are interested in news C select the most appropri-
ate websites to use as their sources of information. This paper presents
three methods for formally defining and mining a websites interests, each of
which is explicitly or implicitly based on a hierarchial structure: website-
webpage-keyword. The first, and most straightforward, method explicitly
uses keyword-layer network communities and the mapping relations between
websites and keywords. The second method expands upon the first method
with an iterative algorithm that combines both the mapping relations and
the network relations from the website-webpage-keyword structure to fur-
ther refine the keyword-layer network communities. In the third method,
a website topic model implicitly captures the mapping relations among the
websites, webpages, and keywords. The performance of three proposed meth-
ods in website interest mining is compared using a bespoke evaluation metric.
The experimental results show that the iterative procedure designed in the
second method is able to improve website interest mining performance, and
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the website topic model in the third method achieves the best performance
among the three methods.

Keywords: Text mining, Web mining, News Event, Website interest

1. Introduction

News events [35] 20] that attract a great deal of attention by the public
(e.g., a terrorist attack or a scandal of a famous star) are typically reported
by numerous websites. phone-hacking of News of the World and 9-11 are
two examples. News events are composed of sub-topics. Take 9-11 as an
example. At any given time, the coverage of this event focused on different
sub-topics: The influence to the US economy, American foreign policy, the
history of World Trade Center, and so on. Collectively, it is these various
sub-topics that constitute what we have come to know the 9-11 event. Al-
though sub-topics focus on different things, and are relatively independent
with each others, they are often mixed together within the webpages of a
news event. For example, a webpage reporting news of 9-11 event which
mainly talks about The influence to the economy of U.S. may also contain
some information about The history of World Trade Center. In another
word, a webpage of a news event is a mixture of its sub-topics. Similarly,
a website is also a (weighted) mixture of sub-topics, and, collectively, these
sub-topics express the website’s interests for this news event. An illustrative
example of a website’s interest is shown in Fig. [Ijusing two pieces of informa-
tion about the Snowden PRISM news event. The Fast Company website is
concerned about Snowden’s education, but the New York Daily News website
focuses on his girlfriend. Websites coalesce around interests mainly to cater
to different audiences. The phone-hacking of News of the World is another
example; www?2.canada. comH mainly focused on Impact on ethics of internet
journalism of this news event, whereas www.guardian. co.ukE|7 centered their
coverage on the Criminal charges and convictions associated with this event.

The ability to identify a website’s interests relating to news events is of
practical significance: 1) website recommendation: Instead of visiting
frequencies, website interests could be used as a criterion for website recom-
mendations to help users and organizations easily find topics of interest for

thttp://www2.canada.com /story.html?id=5074391
http://www.guardian.co.uk /media,/2005/apr/16 /pressandpublishing.crime
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Edward Snowden Doesn't Have a BA--Why That's the Future of the ...
‘ Fast Company - 12/06/2013
¥ NSA leaker Edward Snowden's formal education stopped with a GED, ... for this job, as long as you
‘ 'C "know how to write computer programs.”
-

Edward Snowden left a beautiful dancer qirlfriend behind after ...
. k! New York Daily News - 11/06/2013

» , Edward Snowden, 29, who vanished Monday from the Hong Kong hotel ... Neighbors of Mills' father in
w ) ll¢ Laurel, Md.. confirmed the girl grew up ...

Figure 1: Two webpages about news event Fdward Snowden Leakage from
Google search engine. Two webpages express the interests of two websites on
this news event: one is the education of Snowden; the other is his girifriend.

news events; 2) precision advertising: Since news events attract a great
deal of public attention, targeted advertising on carefully selected websites
with correlating interests could help companies increase sales; 3) malicious
websites detection: If libellous information about a news event is being
disseminated through one particular website, or a website generally only re-
ports libellous information, it is possible the website may be malicious. The
vast number of websites E| makes the task of manually identifying website
interests, and their intentions, impossible. However, the ability to automat-
ically infer this information would assist with malicious website detection.
This paper presents three novel methods to automatically mine website
interests based on the website-webpage-keyword hierarchical structure. Be-
yond the mapping relationships in this hierarchical structure, the association
relations between keywords offer further significant information [24], which
are hidden but can be mined from webpages. These association relations
could have an impact on subtopic discovery and, as a consequence, on web-
site interest mining. For example, if the terms terrorist and attack often
co-occur, there is a high probability they relate to the same subtopic. De-
pending on whether this association relation is explicit or not, we propose
three methods: two explicit and one implicit. The first method is straight-
forward, relying on the association relations in complex networks. All the
keywords are linked together according to their association relations to form
a keyword network. For a given news event, the keyword communities in

3 To the December of 2012, there are about 634 million websites on the web
http://royal.pingdom.com/2013/01/16/internet-2012-in-numbers/
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this keyword network are considered to the subtopics of the news event. The
website interests are mined with the help of mapping relations between the
websites, keywords, and the discovered keyword communities. The second
method builds on the first method and incorporates the mapping relations
between the websites, webpages, and keywords to constrain the formation of
keyword communities from the keyword network. This constraint is imple-
mented through an iterative procedure. Its efficiency in improving website
interest mining is verified in the experiments presented in Section 7. Unlike
the above methods, which rely on explicit association relations, the third
method uses the same information by building a website topic model from
the website-webpage-keyword structures. A subtopic is considered to be a
keyword distribution, and a website interest is considered to be a subtopic
distribution. The performance of three proposed methods in website interest
mining were evaluated and compared using real-world data.

The remainder of this paper is organized as follows. The problem and
our basic idea are introduced in the next section. In Section 3, we review
some related work. The three proposed methods are presented in Section 4,
5 and 6. In Section 7, the bespoke evaluation metric is described and the
performance of three methods in website interest mining are quantitatively
compared using real-world data. Section 8 concludes this study and discuses
possibilities for further research.

2. Problem definition and basic idea

In this section, we first formally define our problem. We then introduce
the basis for resolving this problem: website-webpage-keyword hierarchy:.

2.1. Problem definition

Definition 1 (News Event). Consider a news event that is composed of
sub-topics,
€= {t()’tla"' 7tT71} <1>

where t; is i-th sub-topic of a news event e and 7" is the number of sub-topics
related to this news event. Each sub-topic has its own relatively independent
semantics,

t; =< Wiy s Whos "+ Wiy, > (2)

where k; is the i-th keyword of a news event, NV is the total number of a news
event, and wy, is the weight of keyword k; in this sub-topic.
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Definition 2 (Website Interest). A website interests in a given news even-
t is the distribution of all sub-topics relating to this news event and can be
represented as,

‘Ds6 =< Wi, Wy + 0y Wiy >, Wy € [07 1] <3>

where wy, is the degree of website s concerning on the sub-topic ¢; of a news
event e. With the exception of some learge comprehensive websites, a website
will normally only focus on limited number of sub-topics.

Taking 9-11 as an example again, a huge number of webpages across a
number of websites reported on this news event. And, as discussed in the
Introduction, a webpage may cover several subtopics, which means the web-
site may also relate to many subtopics. However, a website generally has
its own special interests, so a website specializing in economic issues has a
higher probability of reporting on the economic impacts of 9-11 and, there-
fore, the weight of the economic impact subtopic is likely to be greater than
the weight of the other subtopics. Hence, the distribution of weights across
different subtopics is simply a reflection of the website’s specific interests in
news events.

The final goal of this paper is to mine a website interests for
a given news event.

2.2. Website-webpage-keyword hierarchy
In this paper, the information about a news event is organized as a three-
layered network, comprising a website layer, a webpage layer and a keyword
layer. Initially, keywords are linked by their association relations,
Py 1.
K i
Thik; — P - (4)

where 74, 1, is the association relation between the keywords k; and kj; Py, x;
is the number of webpages containing the keywords k; and k;; P is the total
number of webpages. An association relation [37] is a type of weak semantic
relation between keywords, which implies the possibility of two keywords
both appearing within same webpages. Connecting all the keywords by their
relations generates the keyword layer network shown in Fig. ALNg,

K K K K
70,0 To,1 To ¢ 7o,k -1
K K K K
10 1 M2 M Kk-1
ALNg = | ' . . . (5)
K K K K
k10 Tk-11 Tk-12 " Tk-1,K-1

5



(¢) keyword layer network

Figure 2: An example of a three-layered network (representing the Japan
Farthquake news event).

Based on the keyword layer network and the mapping relations between
keywords and webpages, the relations, 7’2 ;) between the webpages can be

constructed [24],
Ti,dj = Z Tlfn,kn (6)
km edi 7kn edj

us  where k,,, and £, are the keywords in webpage d; and d;, respectively. Then,
the webpage layer network shown in Fig. is, ALNp,

D D D D
70,0 7“%1 To2 " T%DA
r r r e
1,0 11 1,2 1,D—-1
ALNp = | . ) A . (7)
D D D D
p-10 "D-11 "pD-12 " Tb-1,p-1

Similar to the webpages, the relations between the websites are computed

6
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Figure 3: A three layered network for a news event e, comprising the website,
webpage, and keyword layers. The red nodes in the top layer represent
websites s, the orange nodes in the middle layer represents webpages p, and
the yellow nodes in the bottom layer represent keywords k. A website may
contain many webpages and a webpage may contain many keywords.

as,

T;S;‘,Sj - Z Tc?m,dn (8>

dm€5i7dn€5j

where d,, and d,, are the webpages in websites s; and s;, respectively. Then,
the website layer network shown in Fig. is, ALNg,

S S S S

T%,o 7’%1 7“%,2 T 7"%,5—1
r r T e
1,0 11 1,2 1,5—1
ALNS — ) b ) k] (9)
s S s s
s—10 Ts-11 7TS-12 "7 Ts-1,5-1

To filter out the noisy relations in each layer of the network, a pruning
method [24] is used to post-process all three layers. Only the spanning tree
and some of its neighboring nodes are kept. An example is shown in Fig. [2]

2.3. Basic idea

Our idea to resolve the former problem is to use the three-layered network,
comprising a website layer, a webpage layer and a keyword layer (from top

7
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Table 1: Notations used in this paper

Symbol Description
e a news event
S a website
S the number of websites of a news event
d a webpage
D the number of webpages of a news event
k a keyword
K the number of keywords of a news event
P, interest of a website s

to bottom), respectively. As shown in Fig. [3| a website may contain many
webpages, and a webpage may contain many keywords relating to a news
event. At the same time, a keyword can appear in many webpages. And,
moreover, a webpage could be published by many websites in this setting
because multiple webpages with extremely similar content have been merged.
The reason for the merger is that similar webpages ofen result when websites
reprint or forward content.

There are interdependent relations between the websites, webpages and
keywords of a news event. The interest of a website for a given news event
needs to be expressed by its webpages, and the content covered by a webpage
about a news event need to be expressed by its keywords. In turn, the
existence of keywords relies on the existence of webpages, and the existence of
webpages relies on the existence of websites. So, three layered networks need
to be considered in their entirety. In the next sections, different strategies
are introduced that utilize these three layered networks to mine the interests
appearing in news events on websites.

Some frequently used symbols in this paper are listed in Table [T}

3. Related works

In this section, we review related works on three parts. The first part is
about the existing researches on websites; The second and third parts are
about community detection and topic model which are basic tools used in
this paper.
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3.1. Websites

The first part of researches on website is the website evaluation. Shan-
shan Qi [30] suggests that a website should be evaluated from three aspects:
usefulness, service quality and physical accessibility. The qualities of content
and structure of websites will impact on their usage interests which means
the efficiency of using these websites. And the content is more important
than structure in the long run [8]. The content and structure of website is
evaluated to fit better the needs of visitors by reorganizing the documents|[29].

The second part of researches on website is to generate website overview. A
recommender system, Pharos, is proposed to help new users understand the
contents of the website by giving a overview of the whole content-centered
website [39]. For contextual advertising, website hierarchies are learned by
URL [13]. Different from keywords [13], the key-phrases [22] are extracted
to label the website topic hierarchy [21] for providing a site-map to users.

Last part of researches on website is to compute similarity between web-
sites. Different from SiteRank [I] and AggregateRank [10], a new content
sensitive method, STRank [15], is proposed to consider the semantic and
time relevance of websites rather than considering link property. Similarly,
Pablo N. Mendes [25] measures the website similarity by connect the query
logs with entities. In this way, semantic relatedness is added to the similarity
computation rather than only considering keyword match.

3.2. Community detection

Recently, complex network is of significance to model the complex system
which has been used in many fields, including biological area, physical area,
information area, and so on. Community is a very important feature of
complex network. A community is a subgraph of a network and a network
can be seen as the union of different communities in turn. The basic principle
to detect communities is to minimizing the number of links between different
communities and maximizing the number of links in single community. Two
classical strategies are: Aggregation and Division [I2]. There are also some
other methods, including spectral-based method [26], statistical method [3§].
Some works [I1], 18, 19] can be read For more information on community
detection,

3.3. Topic model

First topic model is probabilistic Latent Semantic Indexing (pLSI) [16],
which is a probability extension of Latent Semantic Indexing (LSI) [9]. The

9
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original idea of them is from the sparse document-keyword matrix. LSI uses
Singular Value Decomposition (SVD) from the dimension reduction view and
pLSI builds a generative model to find the latent classes (topics). However,
there is a over-fitting problem in the pLSI model, which is addressed by La-
tent Dirichlet Allocation (LDA) [6] using a Dirichlet prior for all the topic
distributions of documents. There are also many extensions of LDA which
have considered different aspects of documents. For example, the labels of
document [5], time of documents [34], authors of documents [33], emotions of
documents [3],32], and so on. There are also some works trying to release the
independent of documents and discovered topics by considering the citation
relations between documents [7, 27], relations of words [36], and relations
of topics [4]. However, all these works are still based on 'bag-of-words’ as-
sumption and the relations of keywords within documents are ignored. Some
researchers were ware of this gap. Thomas Griffiths [I4] tries to fill this
gap by add syntactic relations of words in a sentence to the model. Hid-
den Markov Model (HMM) [2] is combined with topic model by assuming
that the keywords in a document are generated under a inherent linguistic
sequence.

4. Intuitive method

In this paper, the communities of keyword layer network are adopted as
sub-topics of a given news event. Since each keyword is a semantic atom
of a news event, the community composed of a number of keywords which
have relatively close relations with each others can be seen as a sub-topic of
a news event.

After giving the definitions in Section 2, the most straightforward method
to obtain the interests of websites would be to detect the communities of
keyword layer network and then these detected communities could be seen
as the different sub-topics of a news event. The interests of websites could
be computed as the membership degree on each community. The procedure
of this method is as follows,

1. Construct keyword network of a number of webpages published on a
number of websites;

2. Do community detection on this keyword network;

3. Compute the membership degree of each website on the detected com-
munities.

10
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Figure 4: Intuitive method to discover the interests of websites. In this figure,
there are three sample websites and related three communities in keyword
layer network. It is the keywords that connect the communities with websites.

Algorithm 1: Intuitive method website interests mining
Input: Keyword network ALNj and websites-keywords map My
Output: The community of three layer networks: {CX} {CP} and
{C7}
set {CK} = communitydetection(ALN);
return {CX} {CP} and {C?};

An example is given in Fig. [l There are three communities in keyword
layer network of a given news event. Website S; has relations with two
communities C; and Cy, website S5 has relations with two communities Cy
and ('3, and website S3 has a relation with community C.

Pgl =< Wc,, We, >
PS2 =< We,, Wey > (10)
Pg, =< we, >

where we, is the membership degree of each website on a community/sub-
topic. This method has considered the relations between keywords and
the website-keyword mapping relation which is summarized in Algorithm
[[l However, the relations between keywords, websites with webpages are
ignored.

11



Algorithm 2: Iterative method website interests mining

Input: Three layer networks: ALNy, ALNp and ALNg
Output: The communities of three layer networks: {CX} {CP} and
{C7}

set cong = max_value; cong™" = mazr_value — 1;
set {tCF} = {CK} = communitydetection(AL N );
while (cong — cong™") > 0 do
cong = cong"™®";
for s; =0;s5, <S—1do

for s; =0;5; < S—1do

‘ ALNZ[s;][s;] = cos(ng,'uSCjK)'

’

new

end
end
ALNg = pALNg + (1 — p) ALNz<w;
{C?P} = communitydetection(ALNs) ;
for d,=0;d; <D —1do
for d; =0;d; <D —1do
| ALNpd][d) = cos(v§ 00);
end
end
ALNp = pALNp + (1 — p)ALNJ;
{CP} = communitydetection(ALNDp) ;
for k£, =0;k; < K —1do
for k; =0;k; < K —1do
| ALNER ][Ry = cos(l”, vC”);
end
end
ALNg = pALNg + (1 — p)ALNE;
{CEY = communitydetection(ALNy) ;
cong™ = [{CI*} = {tC}* };
{tC*} ={Cl'}:
end
return {CE} {CP} and {CF};

12
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5. Iterative method

The communities of keyword layer network are only based on the keyword
relations between each other, a horizontal relation in Fig. [8] This relation
implies that the keywords, which have close association relations with each
others, will be more likely to describe same sub-topic of a news event. Actual-
ly, the webpage layer network will also influence the formation of communities
at keyword layer. When the keywords are in the same webpage by the map-
ping relations between keywords and webpages, it is also possible that they
are talking about same sub-topic of a news event. However, the relations
in the keyword layer network, ALNg, do not take the mapping relations
into consideration, which only consider the statistical values of association
relations on all the webpages. For example, two keywords, k; and k;, have
a small association relation which means that they do not frequently show
in the webpages simultaneously. However, if two webpages which contain
keywords, k; and k;, respectively and they are in the same community of
webpage layer network, keywords, k; and k;, have also a large probability
to talk about same sub-topic of a news event. Similarly, the communities of
webpage layer are also influenced by the mapping relations between webpages
and websites. Inspired by their inter-dependency and inter-limitation rela-
tions of websites, webpages and keywords, an iterative algorithm is proposed
to optimize the formation of keyword communities/sub-topics, as shown in
Algorithm [2]

At first, the communities of keyword layer network, tCX = CF = {s},s €
ALNg, are detected as the initialization. Then, by the mapping relations
between keywords with websites, each W(ibsite is represented as a vector of

communities of keyword layer network, U,(;;S,
_'K
'USC; =< 603(’60{(7...’5051@71 > (11)

where nk is the number of communities of keyword layer network and 5Cf< is
indicator function that shows whether this website s; is in community C¥.

The similarity between two websites which are represented as keyword
community vectors is computed through the cosine method. This similarity
reflects the mapping relations between keywords and websites. Based on
these new mapping relations, a new website network, ALNZ®" is constructed
and incorporated into ALNg,

ALNg = (1 — p)ALNg + pALNZe" (12)

13
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where p is the ratio of community-based website network ALNZ®. This
combination can revise the communities of this network. It can be seen from
Eq. that the communities detected from ALNg are based on two kinds
of relations between websites:

e Association relation
e Mapping relation

Similar to the mapping relation between websites and keywords, there are
also mapping relations between websites and webpages. So, the communities
of webpage layer network are also influenced by the structure of website layer
network. Each webpage can also be represented as a vector of communities
of website layer network,

Ug;s =< 5005,505,...,505 > (13)

ns—1

where ns is the number of communities of website layer network and d.s is

indicator function that shows whether this webpage d; is in community C?.
Then, the combination of new webpage network from the similarity of vector
representation and original webpage network is,

ALNp = (1 — p)ALNp + pALN® (14)

Similar with websites and webpages, a keyword can also be represented
as,

v(” =< dup.00p.. .. 0cn > (15)

k—1
where nk is the number of communities of website layer network. Then, the
combination of new keyword network from the similarity of vector represen-
tation and original keyword network is,

ALNg = (1 — p)ALNg + pALN<v (16)

Apparently, this is an iterative procedure. The difference between com-
munities of keyword layer networks of two iterations is computed. When this
difference does not reduce, the stopping criteria is reached. The condition
can ensure that it reaches the local optimization, which is enough from the
experimental results.

Finally, the communities of keyword network are considered as different
sub-topics like first strategy: Intuitive Method. The website interests are

14
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computed by the mapping between websites and keyword communities. Note
that the different values of p denote different ways of combination of network
structures with mapping relations between them. When p = 0, Iterative
Method (denoted as nw) degenerates to Intuitive Method (denoted as iw).

6. Website topic model method

The above two methods both explicitly use the website-webpage-keyword
structure through the community detection. In this section, we propose
a probabilistic model to mine the website interests by implicitly using the
website-webpage-keyword structure.

6.1. Model description

As shown in Fig. there is a hierarchical structure between websites,
webpages and keywords. In this section, a website topic model (WTM)
is proposed to capture this hierarchical structure. Like other topic models
[0, 5, B3], WTM is also a generative model. In this model, different websites
have different sub-topic distributions and different sub-topics have different
keyword distributions. Each webpage also has its own sub-topic distribution
which is impacted by the website it belongs to. The generative process of
this model can be described as,

1. draw ¢; ~ Dir(f) for each sub-topic;
2. draw 65 ~ Dir(«) for each website;
3. for all webpage of a website:
(a) draw ng ~ Dir(0; - 7);
(b) for all words of a webpage:
i. draw 24, ~ Multi(n,) for each keyword;
ii. draw ws g, ~ Multi(¢.,_, ) for each keyword.

In this model, 6, is the sub-topic distribution of a website s, 74 is the
sub-topic distribution of a webpage d, and ¢; is the keyword distribution of a
sub-topic t. Fig. |5 shows the graphical representation of the model, and the
notations are list in Table[2] It can be directly observed from Fig. [f|that there
is a (three-layer) hierarchy: the outer layer (i.e., website layer), the middle
layer (i.e., webpage layer) and the inner layer (i.e., word layer). Therefore,
this model could use the website-webpage-keyword hierarchy. More specially,
the sub-topic distribution of webpage 7 is influenced by the sub-topic distri-
bution of website #, which is established through 14 ~ Dir(6s-~). This kind

15



Table 2: Notations in website topic model

Symbol  Description

T the number of sub-topics

Dy the number of webpages of website s

Ny a keyword
V the number of different keywords
0, sub-topic distribution of website s

Ns,d sub-topic distribution of webpage d of website s

Zsdn the sub-topic assignment of word n of webpage d of website s
o t-th sub-topic

0,10

J

Figure 5: Graphical Models of website topic model

of dependency is reasonable because the expectation of a webpage is just the
sub-topic distribution of website, and at the same time, a variance does exist
»s around the expectation. Apparently, 6, is just the website interest of website
s and ¢; describes a sub-topic like the keyword communities in the former
two methods.
Although ¢; has same meaning with keyword communities in former two
methods, there are still differences between these two things. One is that
10 there is no overlap between different communities, but different ¢; may have
overlap. The other one is that the communities are detected by considering
the network structure of keyword layer network or other layer networks which
is not considered in WTM.

16
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6.2. Model inference

The posterior distribution of the latent variables in the model is,

p(0,n, 2, dla, B, 7, w) (17)

It is difficult to obtain the analytical solution for this high-dimensional and
multi-variable distribution, so we need to resort to the Monte Carlo method.
In the following, a Gibbs sampling algorithm is designed for the posterior
inference and all the conditional distributions are listed.

Sampling 6 The prior for this variable is a Dirichlet distribution param-
eterized by «, but the likelihood for this variable are Dirichlet distributions
too. Due to the non-conjugate between two Dirichlet distributions, we cannot
obtain a closed-form posterior distribution for this variable,

p(0s] - +) o< | | Dir(nal6sv) - Dir(6s|a)

()

d t

(18)

Since this conditional distribution is not a standard distribution, Metropolis-
Hastings sampling should be adopted to obtain the samples from this distri-
bution.

Sampling 7 Since the prior for this variable is a Dirichlet distribution and
the likelihood is Multinomial distributions, the posterior is still a Dirichlet
distribution but with different parameters.

p(ns,d| e ) 0.8 H MUZti(Zs,d,nMS,d) : DiT’(T]s,dWsV) (19>

77s,d| e NDiT(‘gs,17 + Mg, ‘95,27 + Mmsd2, " 705,T’Y + ms,d,T)

where m; 4, denotes the number of words of webpage d of website s assigned
to sub-topic t (2540 = t).

Sampling z This variable denotes sub-topic assignment to word n of
webpage d of website s, which prior distribution is Multinomial distribu-
tion parameterized by the sub-topic distribution 7, 4. At the same time, its
likelihood is also Multinomial distribution but different parameters.

p(zs,d,n = t| o ) X Ns,dt gbt,ws,d,n (2())

17
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Algorithm 3: Gibbs sampling for website topic model

Input: All the webpages of a news event; the sub-topic number K
Output: {0}, {n}, {z}, {¢}
initialization;
while iter < maz., do
for s=1;s < S do
Update 65 by Eq. (18));
for d=1;d < D, do

Update 7,4 by Eq. ;

for n=1;n < Ny do

| Update z,4, by Eq. (20));

end
end
end
Update ¢1.x by Eq. (21));
iter + +;
end

Sampling ¢ This variable is just what the sub-topics are. A sub-topic is
a distribution on different words, and in turn, we can see all the sub-topics
as the sub-topic distributions of words.

p(dul--) o I Multi(wsan|én) - Dir(é]5)
n:{zs,qn=t} (21)

(bt""NDir(ﬁ_leaB—i_mQa"' 7ﬁ+mV)

where m,, is the number of word v in all the webpages.

The whole procedure for the Gibbs sampling is summarized in Algorithm
. Each iteration could obtain one sample of the distribution in Eq. .
After ignoring the first burn-in stage, a number of samples are extracted to
compute the expectation of the distribution as the final result.

7. Experiments

In this section, an evaluation metric was designed to facilitate compar-
isons between three methods based on the nature of the website interest,
which is explained first, followed by the performance evaluations of three
methods with comparisons using real-world news event data.
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Figure 6: The evaluation metric used to compare the three methods. The
left subfigure shows the similarity calculation between the interests of two
websites, S; and §j;, through their sub-topics. The right subfigure shows
the similarity calculation between two sub-topics, t; and ¢;, through their
keywords.

7.1. Ewvaluation metric

To compare the performance of the three methods, an evaluation metric
was designed on the assumption that a website’s interest for a news event
would remain stable as the event unfolded. For example, if a website initially
forced on Economic effect of 9-11, there was a high probability they would
continue reporting information on 9-11’s Economic effect rather than other
sub-topics of the event.

In line with this assumption, the similarity Sim, between a website’s in-
terests at different time stamps of a news event are evaluated to measure their
stability of website interest under the chosen method. It appears that the
method with largest similarity has the best performance on website interest
mining. Similarity is evaluated by

7:3nd

: 1 . _ : _
Simg = T E g Sim(t] ', t7) - min{wy], l,thj}
end = /start r=Tatart41 (i,j)€TT—1xTT

(22)
where T4+ and Te,q are the start and end time stamps of a news event. T
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Figure 7: The number of websites, webpages, and keywords relating to a
particular news event per day. Note that the actual number of keywords is
ten times the numbers in the figure.

is the sub-topic number of this news event at time 7 and wy, s the weight of
website s on sub-topic ¢; at time 7. Sim(t[’l,t;-) is the similarity between
two sub-topics of a news event at two different time stamps,

Sim (71, t7) = Z min{wgi_l, wy. } (23)
ki:kj,kiEN"'*l&k?]‘ ENT

where N7 is the keyword set at time te and wy, 18 the weight of a sub-topic
on keyword k;. The similarity evaluation is also illustrated in Fig. @

7.2. Dataset and setting

The Japan Nuclear Leakage showcases the website interest mining per-
formance of the three proposed methods. The data (i.e., webpages) of this
news event were collected from the largest Chinese search engine, Baiduﬁ.
Note that although these webpages are published in Chinese, the methods
proposed in this paper could be used for any language. The collected data
comprised webpages about this news event published over the course of 35
days. The webpages were pre-processed using word segmentation and lemma-
tization, and stop-words were removed to result in 81 websites, 99 webpages

4http://www.baidu.com

20



400

405

410

415

420

425

430

and 790 keywords after merging similar webpages. The statistics of each day
are shown in Fig. . The experiment settings were as follow: 1) the website
interests for this event were mined using three methods at all time stamps;
2) the methods were compared using the metric Simg developed in Eq. ;
and 3) the parameter p in Iterative Method was adjusted it from {0.1} to
{1.0} in steps of {0.1}.

7.3. Results

The intuitive and iterative methods were compared first. The results for
four different websites are shown in Fig. [§ Clearly, not all the different com-
binations of mapping relations and association relations (different p values)
help to improve website interest mining performance. However, the iterative
method reached its peak on four websites with p = 0.4, which suggests that
website interests are preserved across the evolution of news events at this val-
ue. Here, one natural question arises: Was p’s value the result of our website
selection? To answer this question, we evaluated all the websites at different
values of p. The average results are shown in Fig. [9 and, interestingly, the
iterative method still reached its peak at p = 0.4. The Sim, results for all
websites using the iterative method with p = 0.4 compared to the intuitive
method are shown in Fig. [10l These results demonstrate that p = 0.4 is
the perfect combination of the three-layered network structures with their
mapping relations for this news event. It is worth noting that we believe the
value of p is influenced by the evolution of the news event, but this kind of
influence is not visible here because the two methods were compared using
the same news event. For some news events, the evolution between consecu-
tive days can be intense, then the value of p tends to be small, and vice versa.
Overall, we conclude that the iterative procedure, if appropriately designed,
is capable of improving website interest mining performance.

Next, we compare the iterative method and website topic model. Each
of these methods is based on a different idea. The iterative method uses
association relations implicitly; the website topic model uses them explicitly.
The average results from all websites were 0.3575 for the iterative method
and 0.4120 for the website topic model. These results demonstrate that the
website topic model performs better than the iterative method and, hence,
has the best performance of the three methods. However, it should be noted
that the iterative method is with the best parameter (p = 0.4) in this com-
parison. We attribute the advantage of the website topic model to its soft
assignment of words to different subtopics, which is a distinct feature among
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Figure 8: The Simg values of four different websites, i.e., www.chinavalue.net,
www. huanguan.com, world.people.com.cn, and news.xinhuanet.com, of news
event Japan Nuclear Leakage from our proposed methods with different p.
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Figure 10: Comparison between the intuitive method (blue) and iterative
method (red) on of all websites in terms of Sim,. The iterative method
outperforms the intuitive method.
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community-based methods including overlap community detection methods.
This feature detects subtopics more accurately and, consequently, the mined
website’s interests are more accurate as well.

In terms of the computational complexity, the most expensive operation
in one iteration of the iterative method is detecting the communities for
the three layers. The complexity of community detection for one network is
O(V?+E) (eigenvector-based algorithm[28]) to O(V + E) (label propagation-
based algorithm[31]), where V' is the node number and E is the edge number
in the network. Considering all three layers, the smallest complexity for one
iteration of the iterative method is O(S+ D+ N + Es+ E4+ E,). The most
expensive operation in the website topic model is sampling. Using Gibbs
sampling inference, the complexity for one iteration is O(S + D + N + K),
which means sub-topic distributions need to be updated. Since the scale of
links is normally greater than the nodes, the complexity of the website topic
model is likely to be relatively small. This is mainly because, rather than
explicitly computing the links, they are considered through the probabilistic
dependencies between latent variables.

8. Conclusions and further study

This paper proposes three different methods to resolve the problem of
mining website interests relating to news events. All methods are based on
the website-webpage-keyword hierarchy and the association relations between
keywords. Two different strategies are used to take advantage of different
kinds of information: one explicit, through the community detection; the
other implicit, through a probabilistic graphical model. Two alternative
methods are proposed within the explicit strategy - an intuitive method and
an iterative method. Compared to the intuitive method, the iterative method
additionally incorporates the dependencies between websites, webpages, and
keywords to iteratively optimize the website interest mining process. The
experimental results indicate that this iterative procedure is able to improve
upon the performance of the intuitive method. Within the implicit strategy,
a website topic model is built from the data to infer a website’s interests.
Compared to the explicit methods, this model softly assigns keywords to
subtopics, which results in the best performance of all three methods. The
ability to mine website interests could support personalized news services
and malicious website detection.
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In future, we will collect, evaluate, and compare more news events using

the proposed methods to further our empirical knowledge. It would be also
very interesting to design some advertising strategies [17, 23] as a practical
application for these website interest mining approaches.
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