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Complex networks have been found to provide a good representation of the structure of knowledge,
as understood in terms of discoverable concepts and their relationships. In this context, the discovery
process can be modeled as agents walking in a knowledge space. Recent studies proposed more
realistic dynamics, including the possibility of agents being influenced by others with higher visibility
or by their own memory. However, rather than dealing with these two concepts separately, as
previously approached, in this study we propose a multi-agent random walk model for knowledge
acquisition that incorporates both concepts. More specifically, we employed the true self avoiding
walk alongside a new dynamics based on jumps, in which agents are attracted by the influence of
others. That was achieved by using a Lévy flight influenced by a field of attraction emanating from
the agents. In order to evaluate our approach, we use a set of network models and two real networks,
one generated from Wikipedia and another from the Web of Science. The results were analyzed
globally and by regions. In the global analysis, we found that most of the dynamics parameters do
not significantly affect the discovery dynamics. The local analysis revealed a substantial difference of
performance depending on the network regions where the dynamics are occurring. In particular, the
dynamics at the core of networks tend to be more effective. The choice of the dynamics parameters
also had no significant impact to the acquisition performance for the considered knowledge networks,

even at the local scale.

I. INTRODUCTION

Understanding how science works and evolves has be-
come an important subject of study over the last few
years. Science itself can be regarded as being a complex
system, which can be approached through concepts from
many disciplines such as physics, statistics, linguistics,
and information science. The knowledge achieved by hu-
manity can be understood as a subset of the knowledge
in nature. Moreover, the knowledge is constantly evolv-
ing and growing with new discoveries. Such evolution
have been studied, for instance in [Il, 2]. In particular,
scientometry [3] emerged as a new research area inves-
tigating how science evolves. Among such studies are
those related to the modeling of the discovery process [4-
0], which are, in general, based on investigations of the
structure and dynamics existing in a knowledge space.
Such dynamics usually involves researchers acquiring in-
formation while exchanging information. Furthermore,
the discovery process must take into account how knowl-
edge is organized [3, [7HI].

The study of how knowledge acquisition takes place
allow us to identify the effects influencing the efficiency
of such a dynamics and, consequently, to better under-
stand how they can improve or constrain the process of
learning. An example of such study was conducted by
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Silva et al [I0], in which it was shown that discoveries in
mathematics, in particular theorems, are more likely to
be incorporated at the borders of the respective knowl-
edge space. In order to understand the knowledge ac-
quisition dynamics, some key elements should be con-
sidered: (i) how researchers choose their own research
topic; (ii) the way in which they spread the obtained
results; (iii) how fast the information spreads; (iv) the
visibility of specific researchers and (v) the organization
of the knowledge itself. Some of these elements were
previously considered in literature, such as a model of
spreading ideas in a group of multiple agents [I1]. Other
studies addressed techniques to optimize the exploration
of a knowledge space [12HI4]. Another important as-
pect of interest is knowing how the interactions among
researchers impacts the discovery process. For instance,
what would be the effects implied in case researchers were
strongly influenced by their more famous colleagues.

Many works tackled the characterization and modeling
of science by using complex networks (e.g. [6, 10, [T4HI9]).
Typically, each node represents a concept while the edges
stand for the relationship between them. The dynamics
of learning in such networks can be modeled as random
walks, in which an agent randomly moves along the net-
work through its edges [I5,[17]. In this context, the nodes
already visited by an agent represent the already learnt
concepts. For example, in the methodology proposed by
Costa [15], an agent performs a random walk along a
multilayer network, which represents the hierarchy of the
knowledge structure. Additionally, the movement among
layers is only permitted if a certain milestone of learned
concepts is reached. Other characteristics can be incor-
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porated in the random walk, such as memory, in which
the agent tends to move to places already known in a net-
work [I7]. Apart from single agent dynamics, some pa-
pers studied the collective discovery process, in which the
interactions among multiple researchers are taken into
consideration [0 14 16, [18]. For example, Forsman et
al |I8] suggests that social and academic networks, as
well as their dynamics, are influenced by the relation-
ships among university-level students.

In perspective to the previous studies, we propose a
model for knowledge acquisition that incorporates two
main aspects typically approached separately: knowl-
edge memory and multiple agents. The memory aspect
is encompassed into the proposed dynamics by an spe-
cific type of random walk, the true self-avoiding walk
(TSAW), which was found to be one of the most efficient
models to explore networks [12]. In the TSAW dynamics,
the agent tends to avoid passing through already visited
nodes. The dynamics is based on a set of a random walk-
ers that simultaneously explore the network. Aside from
these two aspects, we also incorporate into the dynamics
the possibility of a researcher to change its research focus
based on discoveries made by others. In particular, the
agents have a probability of performing a jump, which
can be understood as a long-range travel across the net-
work [20]. In the analyzes made by Foster et al [I], the
jump dynamics was found to be related to the risk of re-
search. On the other hand, such kind of risk can produce
innovation with high impact in science.

In this paper, we perform knowledge dynamics for a
set of network models and two real networks: a cita-
tion [9] and a Wikipedia [8] network. In both networks,
the nodes represent articles and the edges, the citations
among them. In particular, for the Wikipedia network,
an edge exists between two nodes if there is a hyperlink
connecting their corresponding articles.

Bearing in mind that our approach simulates collec-
tive discovery, we measure the performance in terms of
the fraction of the total number of explored nodes by the
agents after a certain number of iterations. Through our
approach, we seek to address some important questions
regarding the collective discovery process, such as: if fre-
quent changes of the area of study by researchers can
positively contribute to the performance in the discov-
ery process; investigating influence of researchers with
very high visibility to the dynamics; how important is
the overall organization of knowledge to the dynamics;
and how the dynamics behaves in specific regions of a
network (e.g. its borders).

The current paper is organized as follows: Section II
describes the basic concepts related to the particularities
of the adopted random walk model. In Section III, we
present, in detail, our model for knowledge acquisition as
well as the description of the used dataset. Section IV
describes the results obtained from the proposed method-
ology. Finally, Section V provides the conclusions and
suggestions for further work.

II. TRUE SELF-AVOIDING RANDOM WALK

The problem of random walks was initially proposed
by Karl Pearson, in 1905 [21]], in order to study the dy-
namics of mosquito swarms in forests. Pearson assumed
a mosquito as an agent under a dynamics based on the
walking of a drunkard. Such a process starts with the
agent placed at a point O along a plane. Next, it moves
straight ahead [ yards, then, it turns through a random
angle and moves another [ yards in a straight line. This
process is repeated n times. In a short letter to Na-
ture, Pearson asked for help on solving the problem of
devising the probability distribution P(d,n) of finding
such an agent at a certain distance d from O after a
high amount of n iterations. The solution was found by
Lord Rayleigh [22], who showed that P(d,n) ~ 27‘56*‘12/”
as n — oo, a relationship that is statistically similar to
the behavior of the diffusion dynamics. The established
link between these two concepts (random walks and diffu-
sion), paved the way to the development of the theoretical
approaches to understand the characteristics of matter,
such as the concept of Brownian motion [23], leading to
the discovering of several macroscopic characteristics and
the modeling of many real-world phenomena.

More recently, some variants of the random walk dy-
namics were introduced, which were employed for mod-
eling of many systems in a wide range of disciplines, in-
cluding the analysis of insect movements [24], modeling
of neural activity [25], and other biological processes [26].
Subsequently, random walks were applied in conjunction
with complex networks [27H29], which have been used to
represent several real-world complex systems. Examples
of such developments are: finding influential spreaders in
rumor propagation [30], characterizing proteins [31], text
mining [32] and knowledge representation [3] B3].

Among the proposed variations of random walk dy-
namics on networks, there are those based on self-
avoiding random walks (SAW) [34, [35]. In such a walking
dynamics, each agent behaves identically as it would do
in a traditional random walk; however, the same agent
is not allowed to return to the same node. Because at
each iteration the agent always visit a new node, this dy-
namic is particularly suitable for optimally exploring a
network with no a priori information of its global struc-
ture. By definition, paths generated from SAWs are finite
in length [36], thus a path restart mechanism is needed
for exploring the whole network. A drawback associated
with SAWs is the creation of discontinuous paths, as a
consequence of the path restart mechanism. To over-
come this pitfall, variations of the self-avoiding random
walk have been proposed, including the true self-avoiding
walk (TSAW) [12] B7H39]. In such dynamics, also known
as myopic walk, the probability of visiting a neighbor
is higher if it has not already been frequently accessed.
Note that the TSAW resembles the SAW dynamics, with
the difference of not being fully restrictive with regard to
neighbors already accessed in the previous visits.

In a typical TSAW dynamics, the next node v**+1) to



be taken by an agent must lie in its current neighbor-
hood v; € N(v®). The selection of v(*+1) is conditioned
to a probability P; that diminishes exponentially with
the number of times v; have already been visited, f(v;).
Thus, the probability P; is proportional to

w; = a_f(v'i)7 (1)

where « is a constant. Given w;, the probability P; of
visiting the next node v; can be computed as
w;
Pi=———, (2)
> wj
v; EN(v(®)

Henceforth, a = 2.

Since both TSAW and SAW dynamics must maintain
a memory of the path already taken by the agent, the an-
alytical study of such both processes becomes very com-
plex. The TSAW dynamics; nonetheless, is more ana-
lytically tractable than SAW because the former does
not depend on a path restart mechanism [I3]. Recently,
Kim et al [I2] showed that the TSAW dynamics is an
efficient way to explore complex networks with agents
having only the knowledge of the local structure of the
network.

III. KNOWLEDGE ACQUISITION MODELING

The process of collective discovery can be modeled as
a population of agents exploring the knowledge space
under certain dynamics, which should also incorporate
the interactions among the agents. In this context, the
knowledge space can be represented by a complex net-
work [3] [33] where potential discoveries are indicated by
nodes, while relationships between such discoveries are
represented as edges. Examples of such networks include
citation or co-citation networks [7, [0 40H42], Wikipedia
networks [8], [43], and learning objects [44].

In this study we consider the organization of the knowl-
edge as a complex network, and simulate the researchers
as agents under a TSAW dynamics. An example of the
proposed TSAW dynamics for an agent is illustrated in
Figure [I} where three situations of an agent under such
dynamics are shown. Such example illustrates an agent
and its respective transitions in the network, where we
show how the transition probabilities modifications along
some iterations.

In addition to the TSAW mechanism, we also incor-
porate the concept of stochastic flight [45] [46] to the
proposed dynamics. Such a modification is needed to
account for a scientific environment of multiple inter-
acting agents, which is usually done by reading each
other papers, by attending conferences, or via collabo-
rations [, 47H50]. In particular, the flight dynamics is
employed to simulate the events when a agent changes
its object of study based on the discoveries made by an-
other agent. In summary, the TSAW accounts for the

local exploration of the knowledge network by a agent,
while the stochastic flight allows agents to reach nodes
farther away through jumps to knowledge entities close
to the recent discoveries.

A variety of flight dynamics exists in the literature, in-
cluding the Lévy, Cauchy and Rayleigh flights [45]. In
our model, we use a flight mechanism with a probability
. If this mechanism is activated, the agent does not per-
form the TSAW dynamics at the current time step. As an
alternative, the agent jumps to an arbitrary destination
node in the network. The destination node is stochas-
tically determined according to an influence field ema-
nating from the other agents. In our model, each agent
v; emits a field E, (i) along the topological structure of
the network to simulate knowledge dissemination. Such
a field is defined in a way so that dissemination decays
exponentially with the topological distance d(i,j) from
an observation vertex v; to v;. Thus, for each agent, a,
this field is computed as

By(i) =Y miexp(—d(i, j)7), 3)

JjeV

with V' being the set of nodes in the knowledge network
and 7 a constant of the dynamics. The set of values n;
constitutes another parameter of the dynamics and mod-
els the fitness of each agent, which allows us to simulate
different fields magnitudes emanating from each agent.
In other words, by considering this parameter, it is pos-
sible to emulate a case where the influence of the agents
is not homogeneous. Here, the reduction of the influence
field was modeled in terms of exponential decay instead
of a power law, so as to constrain the spreading of the
influence irrespectively to the network dimension [51H53].

In the proposed model, the field acts as a stochastic
attractor on the agents, inducing them to make a jump.
The parameters 7 and 7; appearing in the definition of
the field (equation can be interpreted, respectively,
as the dissemination decay and the individual fitness of
each agent. The parameter 7 defines the overall locality
of the influence field. On the other hand, n allows distinct
performance to be assigned to each agent. The adopted
influence field is illustrated in Figure [2] (a).

For the simulations, we adopted a binary distribution
of , in which 1 can assume only two possible values:
Neommon a1 Ninfluential. A parameter D, defines the por-
tion of agents having 1 = Minfiuential-

In our model, the fields are combined via superposition,
thus, the total field E(i) acting on a vertex v; can be
calculated as

E@i) =) Ea(i). (4)

acA

where A is the set of agents. An example of this field can
be seen in Figure 2] (b). Note that when the agent jumps
it is attracted to the resultant field £ and tends to go to
a position near the other agents. Finally, the destination
of the jump is chosen among all the nodes of the network
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FIG. 1: Example of the TSAW dynamics on a 2D lattice along three distinct time steps: (a) first iteration, (b) second iteration
and (c) 13th iteration. Node colors indicate the number of times f that a vertex was visited. The colors orange, blue, green,
and red represent f =0, f =1, f = 2, and f = 3, respectively. For each situation the permitted transitions are shown as
arrows between nodes alongside with the transition probability given by equation

FIG. 2: Example of fields emitted by agents. Item (a) repre-
sents the field emitted by a single agent, F,. Note that for a
given agent, the further the node, weaker its respective field
will be. Item (b) shows an example of a resultant field, F,
which is a superposition of the fields generated by agents A
and B. Item (b) also illustrates agent C' being attracted by
the resulting influence field. In this example nc = 0 so agent
C has no influence over the others.

according to a probability II(i):

E()

M0 =BGy

()

In summary, our model starts with a set of |A| agents
randomly displaced over a network representing the
knowledge structure. For each iteration, the agents walk
along the network according to the two proposed dynam-
ics, TSAW or flight, depending on the jump probability
~v. We should emphasize that the TSAW dynamics in
our model is not dependent on the interaction between
agents. Such influence takes place only during the deci-
sion process of a jump.

Network database

In order to characterize the performance of our model
among different knowledge organizations, we put to-
gether a small dataset of networks having many distinct
properties. This selection starts with one of the simplest
network models, a bidimensional lattice (LA), in which
nodes are regularly distributed over a squared grid and
are connected by proximity. In this work, each node in
such a network is connected to its nearest four nodes,
except those lying at the borders of the networks. In
addition, in order to maintain the same degree in the
whole network and to eliminate the boundary effect, we
also incorporate a lattice to our dataset, with the bor-
der nodes being toroidally connected, which is hence-
forth called toroidal Lattice (TLA). In this case, all nodes
of the network become indistinguible among themselves.
We also incorporate some random network models to
the dataset, namely the Watts-Strogatz (WS) [54], the
Barabasi-Albert model (BA) [55], the community model
developed by Lancichinetti et al (CN) [9] and the Wax-
man model (WAX) [56].

The WS model reproduces the small-world phe-
nomenon commonly found in many real-world networks,
e.g. social network [57], food web [58|, brain net-
works [59} 60], among others [61]. In such networks, most
of the nodes can be reached from the other nodes in a
small number of steps [62].

Another important characteristic present in many real-
world networks is their scale-free nature. The BA
model reproduces this characteristic through two mech-
anisms: preferential attachment and network growth.
More specifically, new nodes are progressively added to
the network and are more likely to connect with nodes al-
ready presenting many connections, resulting in a power
law node degree distribution [62].

We also incorporated a geographic model to the



dataset. In this case, we choose the traditional Waxman
model [56], in which nodes are randomly displaced along
a two dimensional space and are connected according to
a probability that decays exponentially with the distance
between each pair of nodes.

In addition to the traditional complex network mod-
els, we also considered the use of networks presenting
community structure, which can be found in many real-
world networks representing knowledge, such as citation
networks [9] and Wikipedia [8]. In order to do so, we gen-
erated benchmark networks of Lancichinetti et al. [63], as
we call Community Networks (CN). This model generates
scale-free networks with a given number of communities.
In addition, there are other parameters in this model,
such as the mixing parameter, p, which defines how often
nodes from a community connect with nodes from other
communities. Furthermore, there are parameters to con-
trol the average degree of the network, k,;, and kez
which are minimum and maximum degree, respectively,
and the minimum and maximum community size, Smin
and S,,qz, respectively, where the condition S, > kmin
and S;ae > kmaz should be enforced. Further informa-
tion about this model can be found in [63].

We also included in our dataset two real-world net-
works representing knowledge: a Wikipedia [8] (WIKIT)
network and a citation network obtained from the Web
of Science [9] (WOS). The WIKI network was obtained
from a subset of the Wikipedia incorporating only arti-
cles from two main categories: Biology and Mathematics.
In such a network, each node represents an article and
the edges indicate a reference between two articles. The
WOS network was obtained from the set of articles and
citations resulting from a query on the Web of Science
encompassing only the complex networks field.

The employed models were configured to have similar
number of nodes as in the selected real networks. In
addition, we considered all networks as unweighted and
undirected. The dataset of networks is summarized in
table[[l Additionally, we also obtained a visualization for
each network, which is shown in Figure

Performance evaluation

In order to characterize the performance of the pro-
posed dynamics for distinct parameters configurations,
we employed a measurement to quantify the learning per-
formance of the agents. The dynamics is evaluated ac-
cording to their collective discovery performance, more
specifically the total number of explored nodes, 7, which
is defined as

ta

ET(ta) = ZE((J}), (6)

t=1

where t, is the actual time (i.e. the current iteration)
and ¢(¢) is the number of newly explored nodes at ¢, not
taking into account those explored on iterations before .

A full understanding of the presented dynamics can be
accomplished by studying how the learning performance
is affected by distinct topological characteristics, such as
by how central a node is in a network, as the dynam-
ics may vary substantially depending on the region of
the network they are being analyzed. Complex networks
can display very distinct local characteristics that may
affect the dynamics arising from their structure. For in-
stance, it is known that a random walk dynamics can
be employed to find the community structure of a given
network [64]. For this reason, we also considered the eval-
uation of the collective discovery for distinct regions of
the networks. In this case, each region corresponds to
sets of nodes sharing a similar property, which can be
quantified by a topological measurement. In this work,
we use the accessibility [65] measurement to characterize
distinct regions of the networks. Such measurement is
known to detect borders and influential nodes in a high
variety of real-world networks [30}, [66H68|. In our study
we estimate the accessibility as in [68]. The accessibility
of a vertex i is defined as

AW = exp | - Zpg»’) logp |, (7)
i

where pg}) is the probability of reaching a vertex j having

departed from i, after h steps. In this study, we consid-
ered h = 3 to avoid the limited size effects as the diame-
ter of some networks in our database can reach very low
values, such as 6 or even 5.

IV. RESULTS AND DISCUSSION

We compared the learning performance of our dynam-
ics among different networks and for many distinct sets
of parameters. Moreover, by considering the structure
of each network, we discuss the performance of the pro-
posed dynamics in different network regions. Henceforth,
the analyses take into consideration 300 realizations for
each combination of parameters. As a result, the per-
formance of the dynamics is measured in terms of the
average total number of explored nodes ({(er)) calculated
over all these realizations.

Network dynamics evaluation

We first analyzed the lattice network because of its
simplicity. We found that the knowledge acquisition per-
formance (e7) in LA and TLA did not vary given sev-
eral combinations of parameters (D,, 7, and 7). For
this reason, we only present the results obtained for the
LA network. First, we observed that the variations of
D,, parameter were weakly reflected in (e7), as shown
in Figure 4] (a). We can infer that the variation of the
number of agents with high influence, represented by the



TABLE I: Description of the analyzed networks. The number of nodes (N) and the average network degree (k) are shown.

Network Description N k Parameters Refs.
LA  Bidimensional lattice 10k 3.96 -
TLA Bidimensional toroidal lattice 10k 4.00 -
WS-1  Watts-Strogatz model 10k 4.00 p =0.001 54!
WS-2  Watts-Strogatz model 10k 4.00 p = 0.005 [54]
WAX Waxman model ~10k 6.02 a=1,3=0.015,and L =1 [56]
BA  Barabasi-Albert model 10k 6.00 55
CN  Fortunato model 10k 5.63 2 communities, p = 0.2 [63]

WIKI Subset of wikipedia encompassing articles from =12k 7.29 -
Biology and Mathematics

WOS Citation network obtained for the query "Com- ~11k 17.08 - 9
plex Networks" on the Web of Science

(a) Lattice

() WAX

0) WS-2

FIG. 3: Visualization of all selected networks, with colors representing the accessibility of each node (AZ(-hz?’)).

vector D,,, does not change the dynamics performance. fected by varying 7 or . We also observe that the per-
The evaluated performance of the other parameters, T formance decreases when any of the these two parameters
(the locality of the field) and v (the jump probability),  increases. Regarding the parameters D, and 7, the re-
are shown in Figure (b) and Figure (a), respectively. sults obtained for the spatial models, WS-1, WS-2 and
Even though all the curves present high standard devi- WAX are markedly similar to those obtained by the anal-
ation, the dynamics performance, (er), was greatly af-  ysis of the LA model.
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FIG. 4: Representations of the dynamics executed in LA,
where the items (a) and (b) represent the results of the pa-
rameter changes of D, and 7, respectively.

By focusing the analysis on the v parameter, we found
similarities among the curves of (e7) obtained for the net-
works LA, WS-1, and WS-2, as shown in Figure a—c).
In these cases, we also observed that the standard devi-
ations of (er) are similar among all configurations. In
addition, increasing v was found to improve the dynam-
ics performance significantly for these networks. Despite
these similarities, the impact of increasing «y is diminished
as the probability of rewiring increases for the WS model
(recall that LA also corresponds to a WS model with zero
rewiring probability). This indicates that (e7) tends to
be more sensitive to the v parameter when the network
is more spatial or organized. However, the results ob-
tained for the WAX, shown in Figure [f] indicate that
this behavior is not a direct consequence of the spatiality
of networks. The WAX network, a spatial structure, pre-
sented particularly low performance variation with the
increase of 7. As in the previous cases, it is better to
explore the network without using jumps. Furthermore,
we also observed that varying 7 produced similar results.

We also analyzed how the performance can be affected
by varying the jump probability (v) for the WOS, WIKI
and CN networks. In contrast to the spatial networks
discussed above, these networks are inherently more re-
lated to knowledge structures. The performance curves
obtained for these networks are shown in Figure [5(d-f).
Differently from the results obtained for spatial networks,
increasing « improves the performance. We note, how-

ever, that the effects of changing ~ is much lower than
for the spatial networks. The curves obtained for the
BA network also present this same behavior, as shown
in Figure a). In addition, the WIKI network presented
a general performance substantially lower than the other
models even when compared with the CN network, which
reproduces many of the WIKI network characteristics,
such as the number of nodes, node degree distribution
and its community structure.

Regarding the other parameters, we found no signifi-
cant influence of D,, and 7 to the dynamics performance
for the considered knowledge networks. In these cases,
the curves are very similar to those obtained for the BA
network, which are shown in Figures [fb) and (c).

Dynamics evaluation in network regions

We analyzed above the networks in terms of the av-
erage performance of (er) by measuring the dynamics
performance globally. Now, we consider different net-
work regions. For this purpose, we understand a net-
work region as being defined by a set of nodes presenting
a certain topological characteristic (such as being at the
borders of the network, or presenting similar accessibil-
ity). To measure the performance, we consider the value
of (e7) after 1000 iterations of the dynamics. This num-
ber of iterations was chosen because, if we consider a
small number of iterations, the exploration becomes lo-
cal and, consequently, similar for all considered networks.
On the other hand, for high values, the regions are totally
explored resulting in similar performance.

Considering our database, we start the analysis with
the LA model. The toroidal configuration is not taken
into account because it is impossible to define particular
regions in this network. For the LA model, we calculated
the Chebyshev distance [69], known as maximum value
distance, between the position of each node and the ge-
ographical center of the network, instead of accessibility
measurement. In order to do so, we used the average
position of all network nodes as the geographical center.

The obtained results for the LA simulation can be seen
in Figure 8 in which the performances of different D,
values were not shown because, in this case, there are no
significant variations among (er) performance. The mea-
sured (e7) in different network regions was not found to
present significant variations when the jump probability,
7, is changed (shown in Figure[8{(a)). A similar effect was
observed when a range of D,, values was tested. Further-
more, as in the first analysis, varying the 7 parameter
provides a better performance for the regions near the
geographical center of the network, but when 7 < 0.01
there were no significant variations of (er) (shown in Fig-
ure [§(b)).

A more extensive analysis was done by considering the
accessibility measurement, a® to characterize the net-
works regions. According to this analysis, the variations
of D, vector were distinctly reflected in the dynamics
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FIG. 6: Performance, (er), of our dynamics, varying the val-
ues of v adopted in the WAX networks.

for each network region. Since the results obtained for
the parameter 7 are almost the same as those obtained
for D, the following discussion regarding this parameter
also holds for D,,.

The performance obtained for the considered networks
by varying D, are shown in Figure [J] In most cases,
variations of D,, did not imply in performance variation
for any of the network regions. However, when compar-
ing among regions in the same network, the most central
regions tended to have higher values of (er). Such an
effect was observed in all the considered networks repre-
senting knowledge structure (CN, WOS, WIKI and BA),

as shown in Figures El(c—f). From these results, we con-
clude that the number of visible agents did not signifi-
cantly impact on the network performance. The factor
that most influenced the performance was the centrality
of the region being explored, because normally the net-
work center is easier to be explored. An exception to this
trend is the BA network (f), which did not present sig-
nificant performance variations when considering distinct
network regions.

For the WAX model, we found that no significant dif-
ferences of (er) when D, is changed for regions at the
borders of the network. However, more expressive differ-
ences of (er) were observed in the central region. The
standard deviations were also higher, as shown in Fig-
ure [9b). The simulation for the WS networks showed
that the percentage of influent agents, D,,, is directly re-
lated to (e7). These results are shown in Figure [9c).

The results obtained for the analyses involving jump
probability v variation are shown in Figure For all
curves, the dynamics performance (er) was found to be
higher at the central regions of the networks (i.e. those
with nodes having high accessibility). Except for the
WOS(d) and BA(f) networks, the curves monotonically
increase with the average accessibility of the regions.
Similarly to the results obtained by varying 7, the per-
formance for the BA network does not vary substantially
along the network regions nor by changing v. However,
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FIG. 8: The performance (er) obtained from the dynamics
simulation for each network region. Such regions were defined
according to the distance between each node and the central
position of LA. Two parameters, v (a) and 7 (b), were varied.

it is interesting to note that, for regions presenting very
low accessibility in the BA network, the performance has
an opposite trend to the global behavior, as it decreases
with ~.

In most cases, the influence of varying ~ to the perfor-
mance tends to decrease with the average accessibility of
the considered region. However, in the case of the WOS
network, for a certain range of accessibility values around
1700, the performance have a significantly drop of perfor-
mance. This is interesting because other models did not
present such behavior. Another interesting observation

is that, the standard deviations obtained for the knowl-
edge networks are substantially lower compared to those
obtained for the spatial networks. This indicates that the
peculiar behavior observed for the WOS networks is not
caused by statistical fluctuations but may be the conse-
quence of a more complex topological trait.

In general, for the considered networks representing
knowledge structure (WOS, WIKI, CN and BA), in con-
trast with the spatial networks (LA, WS-2 and WAX),
the dynamics do not change much by varying its param-
eters. In the average, the performance increases only by
a small factor, for jump probability and changes even
less for the other parameters. However, for the WOS
network, depending on the network region, the improve-
ment of performance by varying this parameter can be
substantially higher than the other networks.

V. CONCLUSION

The problem of how humans represent and acquire
knowledge has received growing attention along the last
years as a consequence of its potential for understand-
ing and improving the speed of research and learning
(e.g. [I, 2]). These problems are considerably com-
plex because they involve several aspects that can in-
fluence the efficiency of how knowledge is achieved, ex-
changed and disseminated. Such aspects include, for in-
stance, the complexity of the knowledge structure itself,
the visibility of researchers, the available memory, the
strategies adopted for deciding the next possible sub-
jects of research, amongst many others. One particularly
promising approach to understanding knowledge acqui-
sition consists in representing the knowledge as a com-
plex networks, and researchers as agents that move along
such networks. A number of approaches adopting such
a framework have been proposed in the literature [4H6]
to study the learning process, i.e. the discovery of new
concepts by researchers. In this study, we propose a sys-
tematic approach focusing on two important elements in-
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fluencing knowledge acquisition, namely the memory and
visibility of agents, in order to better understand the col-
lective discovery process. The memory aspect was inves-
tigated in terms of true self-avoiding dynamics occurring
in a knowledge space. Additionally, interactions among
researchers were modeled by means of a flight dynamics
biased towards the most visible researchers.

We execute our dynamics in many networks, including
two real networks (WIKI and WOS) and a set of net-
work models with distinctive topological properties. We
observed that the performance of knowledge acquisition
can be distinctly optimized for different characteristics of
the networks. For example, by increasing the jump prob-
ability (7), the speed of learning also rises significantly in
the case of BA networks. This could be a consequence of
the fact that, in such networks, the agents need to pass
through hubs to access other nodes up to the point that
it starts to avoid the hubs completely. This results in
such an agent becoming trapped by a set of nodes be-
cause the majority of the shortest paths go across hubs.
In a BA network, a jumping agent can move without
crossing the hubs, thus having more possibilities to ac-
cess new nodes. On the other hand, such a configuration
was found to be less effective in WAX networks, since
when an agent jumps towards other nodes, it will tend
to navigate through already learned concepts.

We also investigated the performance by considering
distinct network regions, such as the borders and the
center of networks. We found that, in most cases, col-
lective discovery occurs faster at the core of the net-
work and becomes slower at the borders. Regarding the
three parameters controlling the dynamics, in contrast
with the results obtained for the global analysis, some
dynamics configurations can indeed change the learning
performance depending on the properties of regions being
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explored. However, for the networks representing knowl-
edge structure, the average gain in performance is low
irrespectively to the dynamics parameters. An exception
to this trend is the WOS network, which presents a set
of regions where the performance can vary substantially
under influence of the jump probability. In this case, it
is possible to enhance knowledge acquisition by a sub-
stantial factor. These results indicate that, for a typical
knowledge network, the heuristics governing the way re-
searchers seek for new knowledge does not substantially
affect the global performance of the collective discovery,
but still can have influence depending on the properties
of the region of knowledge under investigation.

The current study adopted a random walk approach
incorporating jumps in a multi-agent dynamics. In fu-
ture works, we intend to probe the effects of considering
other network topologies, including directed structures,
on the proposed collective learning model. Additionally,
some dynamic characteristics can also be investigated,
such as other visibility mechanisms and agents with dif-
ferent features (e.g. memory, speed, etc.). Furthermore,
our study can be extended to incorporate two layers: one
representing the knowledge organization, and the other
a network of interactions among researchers.
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