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Abstract

We introduce a new, semi-supervised classification method that extensively exploits knowledge. 

The method has three steps. First, the manifold regularization mechanism, adapted from the 

Laplacian support vector machine (LapSVM), is adopted to mine the manifold structure embedded 

in all training data, especially in numerous label-unknown data. Meanwhile, by converting the 

labels into pairwise constraints, the pairwise constraint regularization formula (PCRF) is designed 

to compensate for the few but valuable labelled data. Second, by further combining the PCRF with 

the manifold regularization, the precise manifold and pairwise constraint jointly regularized 

formula (MPCJRF) is achieved. Third, by incorporating the MPCJRF into the framework of the 

conventional SVM, our approach, referred to as semi-supervised classification with extensive 
knowledge exploitation (SSC-EKE), is developed. The significance of our research is fourfold: 1) 

The MPCJRF is an underlying adjustment, with respect to the pairwise constraints, to the graph 

Laplacian enlisted for approximating the potential data manifold. This type of adjustment plays 

the correction role, as an unbiased estimation of the data manifold is difficult to obtain, whereas 

the pairwise constraints, converted from the given labels, have an overall high confidence level. 2) 

By transforming the values of the two terms in the MPCJRF such that they have the same range, 

with a trade-off factor varying within the invariant interval [0, 1), the appropriate impact of the 

pairwise constraints to the graph Laplacian can be self-adaptively determined. 3) The implication 

regarding extensive knowledge exploitation is embodied in SSC-EKE. That is, the labelled 

examples are used not only to control the empirical risk but also to constitute the MPCJRF. 

Moreover, all data, both labelled and unlabelled, are recruited for the model smoothness and 

manifold regularization. 4) The complete framework of SSC-EKE organically incorporates 

multiple theories, such as joint manifold and pairwise constraint-based regularization, smoothness 

in the reproducing kernel Hilbert space, empirical risk minimization, and spectral methods, which 

facilitates the preferable classification accuracy as well as the generalizability of SSC-EKE.
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I. Introduction

Classification, which aims at identifying the data instances in a testing set by using the 

discriminant function learned from a training set, is an important branch of pattern 

recognition. The effectiveness of conventional classification approaches, such as support 

vector machines (SVMs) [6],[14],[20],[28],[36]–[38] and artificial neural networks [11],

[12],[24],[25],[29], is largely dependent on the quantity and quality of training examples. 

Most of these approaches can obtain satisfactory results only in ideal situations in which the 

information embedded in the training set is sufficient so that the learned classifiers are 

insightful. Obtaining informative training examples is sometimes computationally expensive 

or labour-intensive. Instead, we often have a limited amount of labelled data but many 

unlabelled instances. In response to this challenge, semi-supervised classification techniques 

[3],[4],[13],[15]–[18],[20],[30],[39]–[41],[43],[44] have been developed to simultaneously 

exploit the prior knowledge existing in numerous, label-unknown examples as well as a 

small quantity of label-known ones in the training set to improve the accuracy and 

generalizability of the classifier on target data sets. In such cases, the semi-supervised SVMs 

(S3VMs), which are derivatives of the classic SVM, have motivated extensive research, and 

quite a few approaches have been reported. Representative work can be briefly reviewed as 

follows. The transductive support vector machine (TSVM) [13], as one of the pioneering 

S3VMs, was initially developed for text classification. By taking the transductive rather than 

any inductive strategy, the TSVM takes into account a particular testing set, i.e., the testing 

set is used as an additional source of information regarding hyperplane margins, and 

attempts to minimize the misclassification of only those particular examples in the testing 

set. The 1-norm linear, SVM-based, semi-supervised model [4] constructs a general SVM 

model minimizing both the misclassification error and the function capacity by using all of 

the available data from both the training and working (namely, testing) sets, in which the 1-

norm linear SVM is converted to a mixed-integer program (MIP) and then exactly solved 

using integer programming. Due to the observation that the semi-supervised SVM with 

known label means of unlabelled data is closely related to the supervised SVM that has 

access to all the labels of the unlabelled examples, two versions of the MeanS3VM [15], i.e., 

MeanS3VM-mkl and MeanS3VM-iter, were separately proposed by maximizing the margin 

between the label means of the unlabelled data. The former is based on multiple-kernel 

learning, whereas the latter is based on alternating optimization. The cost-sensitive semi-

supervised SVM (CS4VM) [16] simultaneously considers unequal misclassification costs 

and the utilization of unlabelled data. This is a cost-sensitive extension of the MeanS3VM 

and likewise is able to closely approximate the supervised, cost-sensitive SVM that has 

access to the ground-truth labels of all the unlabelled data when given the label means of the 

unlabelled data. The weakly labelled SVM (WeLlSVM) [17] studies the problem of learning 

using weakly labelled data where labels of the training examples are incomplete. This 

includes, e.g., 1) semi-supervised learning where labels are partially known; 2) multi-
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instance learning where labels are implicitly known; and 3) clustering where labels are 

completely unknown. Via a convex relaxation of the original MIP, the WeLlSVM is solved 

by using a sequence of SVM subproblems that are much more scalable than convex, semi-

definite programming relaxations. As such, the WeLlSVM obtains improved performance 

and practicability when facing large data sets. In addition, the Laplacian SVM (LapSVM) 

[3] and Laplacian-regularized least squares (LapRLS) [3], which benefit from the manifold 

regularization in which the geometry of the marginal distribution with respect to both 

labelled and unlabelled data in the training set is used, feature better classification accuracy 

than the classic SVM approach.

Among these existing S3VMs mentioned above, the LapSVM has particularly captured our 

interest due to its manifold regularization mechanism, which relies primarily on unlabelled 

data. There are three terms in the framework of the LapSVM. Specifically, the first controls 

the empirical risk by using the given labelled examples. The other two regularization terms, 

respectively, impose the smoothness condition on the possible solutions and the geometric 

knowledge of the probability distribution. However, it is clear that the few precious labelled 

examples are primarily recruited to constitute the loss function for measuring the empirical 

risk in the LapSVM. In other words, the inherent information existing in these given data 

labels is not completely mined within the framework of the LapSVM. This is the immediate 

motivation of our research.

To create a semi-supervised SVM that makes extensive use of the knowledge embedded in 

the entire training data, regardless of the label availability, our strategy is as follows. For the 

known data labels, in addition to being used to control the empirical risk, the pairwise must-

link and/or cannot-link constraints are enlisted to construct the pairwise constraint 

regularization formula (PCRF) and further the manifold and pairwise constraint jointly 

regularized formula (MPCJRF). Additionally, based on all of the training data, the 

smoothness condition is imposed on the possible solutions, and the graph Laplacian is used 

to embody the geometry structure of the data manifold. The optimization issue of our 

method can also be reformulated as a solvable quadratic programming problem. We 

designate our method as semi-supervised classification with extensive knowledge 
exploitation (SSC-EKE). In summary, the contributions of our work are as follows:

1. The MPCJRF is not merely a simple combination of the manifold and pairwise 

constraint regularizations. It uses the implicit adjustment of pairwise constraints 

to the graph Laplacian to facilitate the unbiased approximation of the true data 

manifold. This is particularly valuable because the pairwise constraints generated 

from known data labels are known with a high degree of confidence.

2. In terms of the Min-Max theorem-based transformation, the two terms in the 

MPCJRF have the same magnitude. Therefore, with a trade-off factor varying 

within a fixed interval [0, 1) and by adopting cross-validation, the extent of the 

impact of the pairwise constraints on the graph Laplacian can be flexibly 

determined in any semi-supervised classification scenario.

3. SSC-EKE pursues, as much as possible, knowledge exploitation regarding both 

the labelled and unlabelled data in a training set. The labelled examples are used 
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not only to minimize the empirical risk but also to develop the significant 

MPCJRF. Moreover, all of the data in the training set, particularly the numerous, 

unlabelled data instances, are involved in controlling the model smoothness as 

well as in depicting the underlying data manifold.

4. By incorporating the strengths of multiple theories, including the empirical risk 

minimization, the smoothness condition in an ambient space, joint manifold and 

pairwise constraint-based regularization, the spectral graph, and the Min-Max 

theorem, SSC-EKE features preferable classification effectiveness as well as 

generalizability.

The remainder of this manuscript is organized as follows. The work related to our research, 

such as the SVM, Representer Theorem, the manifold regularization, the LapSVM, the 

knowledge existing in the supervision, and the conversion between data labels and pairwise 

constraints, are briefly reviewed in Section II. Our proposed PCRF and MPCJRF, the 

formulation as well as the algorithm of SSC-EKE, and several relevant theorems are 

specifically introduced in Section III. The comparisons of classification performance with 

regard to our proposed SSC-EKE and several other state-of-the-art S3VM approaches on 

both synthetic and real-world data sets are presented in Section IV. The conclusions 

regarding our work are given in Section V.

II. Related Work

To facilitate comprehension, some common abbreviations used throughout this paper are 

first listed in Table I.

A. Support Vector Machine (SVM)

The SVM, proposed by Vapnik et al. [6],[36],[37], is a well-accepted technique for 

classification in pattern recognition. Instead of pursuing empirical risk minimization, the 

SVM is devoted to the overall risk minimization by minimizing the upper bound of the 

generalization error. By using a certain Mercer kernel, the SVM maps the data in the original 

feature space into those in a high-dimensional feature space to seek the optimal separating 

hyperplane in terms of maximizing the margin between two classes.

Let X = {xi ∈ Rd, i = 1,… denote the training set, l be the number of training examples, and 

yi ∈ {+1, −1} (i = 1,… signify the labels of the corresponding data instances in X. Suppose 

that f(.) represents the decision function and that HK denotes the reproducing kernel Hilbert 

space associated with one Mercer kernel K. The framework of the SVM can then be 

formulated as

min
f ∈ Hk

1
l ∑

i = 1

l
1 − yi f xi + + γ f K

2 , (1)

where ( )+ is the hinge loss function, (1−yf (x))= max(0,1−yf (x)), and γ>0 is the 

regularization parameter.
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Theorem 1 (Representer Theorem [3])—Suppose that HK denotes the corresponding 

RKHS. Then, the solution to the SVM optimization problem in the form of (1) can be 

expressed as

f ∗ x = ∑
i = 1

l
αiK xi, x (2)

For the proof of Theorem 1, please refer to Appendix B.1.

Based on Theorem 1, and following the SVM expositions, i.e., with an unregularized bias 

term b being added to (2), the formulation of the SVM in the form of (1) can be equivalently 

rewritten as

min
α ∈ Rl, ξi ∈ R

1
l ∑

i = 1

l
ξi + γαTKα ,

s . t . yi( ∑
j = 1

l
α jK(xi, x j) + b) ≥ 1 − ξi, i = 1, …, l, (3)

ξi ≥ 0, i = 1, …, l,

where K is the l×l Gram matrix with Kij=K(xi, xj); K(.,.) is the enlisted kernel function.

Theorem 2 [3]—Let β = [β1,…,βl]T ∈ Rl be the Lagrange multipliers, Q = Y (K/2γ)Y, Y = 

diag(y1,…,yl), and diag(.) signify the generating function of the diagonal matrix. Then, the 

dual form of (3) is

max
β ∈ Rl

1
l ∑

i = 1

l
βi − 1

2 βTQβ ,

s . t . ∑
i = 1

l
βiyi = 0, (4)

0 ≤ βi ≤ 1
l , i = 1, …, l .

For the proof of Theorem 2, please refer to Appendix B.2.
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Using the optimum β* of (4), the eventual solution of (3) can be obtained, i.e., α* = Yβ*/2γ.

B. Manifold Regularization and LapSVM

Manifold regularization is essentially devoted not only to the smoothness of possible 

solutions but also to the utilization of knowledge from all available data instances. Its 

framework, developed by organically incorporating the theories of manifold learning and the 

spectral graph into the common regularization formulation of the SVM, was systematically 

discussed and presented in [3]. Let S = {xi ∈ Rd, i = 1,…,l+u} denote the training set 

consisting of l labelled examples and u unlabelled data instances, V() signify the loss 

function, and the other notations be the same as those in (1); the framework of manifold 
regularization can then be generalized as

min
f ∈ Hk

1
l ∑

i = 1

l
V xi, yi, f xi + γA f K

2 + γI f I
2 , (5)

where γA and γI are the parameters of the second and third regularized terms.

As was previously mentioned, there are three terms in (5). The first one controls the 

empirical risk by using a certain loss function, the second avoids the overfitting issue by 

imposing the smoothness condition on possible solutions in the RKHS, and the last exploits 

the intrinsic geometric distribution of all data instances based on the manifold learning. To 

embody the intrinsic manifold nature of the data distribution, the structure of the data 

adjacency graph was used in [3], i.e.,

f I
2 = 1

u + l 2 ∑
i, j = 1

l + u
f xi − f x j

2W i j = 1
u + l 2 f TL f , (6)

where f = [f(x1),…,f(xl+u)]T, Wij ∈ W (i, j = 1,…,u + l) are the edge weights in the data 

adjacency graph, L=D−W is termed the graph Laplacian, and D is the degree matrix of 

which the diagonal entries Dii = ∑ j = 1
l + u W i j and the others equal to 0.

If V() is the hinge loss function, (5) can be expressed as

min
f ∈ Hk

1
l ∑

i = 1

l
1 − yi f xi + + γA f K

2 +
γI

u + l 2 f TL f (7)

Theorem 3 [3]—Let HK denote the corresponding RKHS. The solution to the LapSVM in 

the form of (7) can be expressed as
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f ∗ x = ∑
i = 1

l + u
αiK xi, x (8)

For the proof of Theorem 3, please refer to Appendix B.3.

Based on Theorem 3, the problem of (7) is reduced to the optimization of coefficients ai over 

the finite (l+u)-dimensional space. Following the SVM expositions and incorporating a bias 

term b into (8), the formulation of the LapSVM is subsequently obtained by reformulating 

(7) as

min
α ∈ Rl + u, ξi ∈ R

1
l ∑

i = 1

l
ξi + γAαTKα +

γI

u + l 2αTKLKα ,

s . t . yi( ∑
j = 1

l + u
α jK xi, x j + b) ≥ 1 − ξi, i = 1, …, l, (9)

ξi ≥ 0, i = 1, …, l .

Theorem 4 [3]—Let β = [β1,…,βl]T ∈ Rl be the Lagrange multipliers, Q =YJK(2γA I 
+ (2γI/(u+l)2)LK)−1JTY, J=[I 0] be a l ×(l + u) matrix, with I being the l × l identity matrix, 

Y = diag(y1,y2,…,yl), and K be the (l + u) × (l + u) kernel matrix. Then, the dual form of (9) 

can be expressed as

max
β ∈ Rl

1
l ∑

i = 1

l
βi − 1

2 βΤQβ ,

s . t . ∑
i = 1

l
βiyi = 0, (10)

0 ≤ βi ≤ 1
l , i = 1, …, l .

For the proof of Theorem 4, please refer to Appendix B.4.

As such, by using the solution of (10), the solution in (9) can be obtained using α*=(2γAI
+(2γI/(u+l)2)LK)−1 JTYβ*.
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C. Knowledge Existing in the Supervision

In semi-supervised learning, class labels belong to the most common category of 

supervision, and the straightforward usage of class labels can be the least sophisticated form 

of knowledge exploitation. However, as another usual form of prior information, pairwise 

constraints, also referred to as must-link or cannot-link constraints, are usually of greater 

complexity. Depending on the specific cases offered by users, pairwise constraints can be in 

the form of a must-link set, in which the couples of any entry must be assigned to the same 

label, a cannot-link set, where the numbers in each entry must come from separate groups, 

or both.

The supervision in the form of class labels or pairwise constraints is interdependent, and 

there actually exist conversions between them. According to the different data labels existing 

in the supervision, the labelled examples can be divided into several groups. Only one group 

exists, as a special case, if and only if all the given labels are consistent. Suppose that the 

data number in each group is more than one; then, any two examples within one group can 

certainly be used to constitute the must-link set, and any example pair of which the members 

are separately from two inconsistent groups should certainly be an entry in the cannot-link 

set. In the special case of only one group, the must-link set is available but the cannot-link 

set is not.

As an example, Fig. 1 illustrates the feasible conversion from class labels to pairwise 

constraints, where there are five data instances in each of the positive and negative classes, 

respectively, as shown in Fig. 1(a). The attainable entries in the must-link/cannot-link set 

generated by these labelled examples are specifically indicated in Fig. 1(b). Intuitively, 

regarding the knowledge exploitation, the prior information in the form of must-link/cannot-

link constraints appears to be more informative than that of class labels.

III. Semi-Supervised Classification via Extensive Knowledge Exploitation

Before introducing our own work, we present the following three aspects of comprehension 

with regard to existing semi-supervised classification techniques.

1. The accuracy and generalizability performance of conventional classifiers 

depends on the quality and quantity of training examples. However, due to the 

limited amount of labelled data, many semi-supervised classification methods are 

designed to effectively exploit the knowledge embedded in many label-unknown 

data instances rather than in the few labelled examples.

2. In many existing S3VMs, such as the LapSVM, LapRLS [3], MeanS3VMs [15], 

and CS4VM [16], the few but precious label-known examples are primarily used 

to control the empirical risk, which usually neglects to make extensive use of this 

form of supervision data.

3. To utilize the label-unknown data instances, many semi-supervised classifiers 

work based on certain assumptions. For example, the LapSVM relies on the 

premise that the extracted graph structure of marginal distributions can 

effectively depict the ground truth of the data manifold. Such assumptions, 
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nevertheless, are sometimes difficult to guarantee and verify, particularly in a 

situation where much interference information, such as noise or outliers, exists.

Motivated by such challenges, we develop our own scheme, based on the LapSVM, for 

semi-supervised classification, as follows:

A. Pairwise Constraint Regularization

As described in Section II-C, because the given data labels can easily be converted into the 

must-link/cannot-link constraints and because the latter appears to be more insightful than 

the former, we first devise the following pairwise constraint regularization mechanism.

Definition 1—Let f = [f1,…, fl, fl+1,…, fl+u]T and fi (i = 1,…, l + u) denote the prediction 

results of the data instances in S = {xi ∈ Rd, i = 1,… via the discriminant function f. Suppose 

that MS and CS signify the must-link set and cannot-link set, respectively, derived from the 

given, insufficient labelled examples and that |.| signifies the entry number in the MS or CS. 
The pairwise constraint regularization formula (PCRF) can then be defined as

min
f

∑
< i, j > ∈ MS

f i − f j
2

MS −
∑

< p, q > ∈ CS
f p − f q

2

CS , (11)

where i, j, p, q ∈ [1,l + u]; <i, j> denotes any entry in the MS, and i and j are their individual 

data indices in S. Similarly, <p, q> indicates any entry in the CS, with p and q being the 

corresponding data indices.

In light of the fact that any two examples xi and xj, corresponding to <i, j >∈MS, should 

have the same label, i.e., either +1 or −1, the ideal decision function f should at least keep 

the signs of fi=f(xi) and fj =f(xj) the same. Such a condition can actually be achieved by 

minimizing (fi −fj)2, which inductively minimizes ∑ < i, j > ∈ MS f i − f j
2
. In contrast, for 

any two examples xp and xq, corresponding to <p, q>∈CS, the goal is to have opposite signs, 

which is equivalent to minimizing −(fp − fq)2 and thus also ∑ < p, q > ∈ CS − f p − f q
2

. In 

view of the potential capacity gap between the MS and CS, the averages of 

∑ < i, j > ∈ MS f i − f j
2
 and ∑ < p, q > ∈ CS − f p − f q

2
 are listed in (11).

Theorem 5—Let us define a matrix Q(l+u)×(l+u) having elements

Qi j = Q ji =
1/ MS , ∀ < i, j > ∈ MS or < j, i > ∈ MS;

−1/ CS , ∀ < i, j > ∈ CS or < j, i > ∈ CS;
0 default,

(12)

and use the same notations as those in Definition 1. Then, the proposed PCRF in the form of 

(11) can be reformulated as
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min
f

f TZf , (13-1)

Z = H − Q, (13-2)

H = diag Q · 1 l + u × 1 , (13-3)

where 1(l+u)×1 denotes one (l + u)×1 constant vector of which the elements are all 1.

Proof: As discovered in (6), 

min ∑i, j = 1
l + u f xi − f x j

2W i j = min fTL f = min fT D − W f . With this 

transformation as a reference, the above theorem can be easily proven. Here, the roles of Q, 

H, and Z are similar to those of W, D, and L in (6), respectively. □

As is evident, by converting the given labels into pairwise constraints and by means of the 

PCRF, not only do we obtain a novel regularization mechanism, but the information existing 

in the insufficient labelled example is further expanded and exploited.

B. Manifold and Pairwise Constraint Jointly Regularized Formula

The LapSVM is closely associated with estimating the manifold structure f I
2. However, it 

is not guaranteed that the enlisted data adjacency graph in (6) can always depict an unbiased 

estimate of the ground truth of the underlying manifold, which significantly impacts the 

performance of the LapSVM. To resolve this problem in our work, we put forward the 

dedicated countermeasure below.

Because (6) and (13) have a similar composition, with one parameter β > 0, it is reasonable 

to combine them as

min
f

f TL f + β f TZf = min
f

f T L + βZ f . (14)

Theorem 6—Let W and Q be the same as those in (6) or (12), respectively. Then, (14) 

implies that there is a generalized matrix W′ = W + βQ, which embodies the adjustment of 

the pairwise constraints to the estimated manifold structure.

Proof: Because L + βZ = D−W + β(H−Q) = D +βH−(W +βQ) = diag(W · 1(l+u)×1) + 

βdiag(Q · 1(l+u)×1)−(W + βQ) = diag((W + βQ) · 1(l+u)×1)−(W + βQ), with W′ = W + βQ, 

i.e.,
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W i j′ =

W i j + β/ MS , ∀ < i, j > ∈ MS or < j, i > ∈ MS,
W i j − β/ CS , ∀ < i, j > ∈ CS or < j, i > ∈ CS,

W i j otherwise,
(15)

we arrive at L + βZ = diag(W′ · 1(l+u)×1−)W′ immediately.

Intuitively, (15) exhibits the manipulation, with respect to the pairwise constraints, of the 

original data adjacency measurements for the graph Laplacian, i.e., the estimated manifold 

structure.

In (15), the parameter β balances the overall impact of the pairwise constraints on the 

original adjacency weights. However, we have observed that the appropriate scale of the 

parameter β is sometimes difficult to estimate, particularly when fTLf and fTZf in (14) have 

different orders of magnitude. To address this, we apply Theorem 7.

Theorem 7—Suppose that M is any (l + u)×(l +u) symmetric matrix and that f is the same 

as that in Definition 1. For fTMf, the range of which was previously uncertain, by using the 

transformation M′ =
M − λmin_MI

λmax_M − λmin_M
, where λmin_M and λmax_M refer to the minimal and 

maximal eigenvalues of M, respectively, and I is the identity matrix, one can arrive at

0 ≤ f TM′ f ≤ f T f . (16)

Proof: According to the Rayleigh quotient [31],[32] and the Min-Max theorem [21], one can 

obtain the following inequality:

λmin_M ≤ f TM f
f T f

≤ λmax_M . (17)

Furthermore, (17) equals to

λmin_M f T f ≤ f TM f ≤ λmax_M f T f 0 ≤ f TM f − λmin_M f T f ≤ λmax_M f T f
− λmin_M f T f 0 ≤ f T M − λmin_MI f ≤ λmax_M − λmin_M f T f .

(18)

Therefore, this theorem can be proven by rearranging (18). □

Because both L and Z are symmetric, based on Theorem 7 and by using
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L′ =
L − λmin_LI

λmax_L − λmin_L
(19)

and

Z′ =
Z − λmin_ZI

λmax_Z − λmin_Z
, (20)

where λmin_L and λmax_L are the minimal and maximal eigenvalues of L, respectively, and 

λmin_Z and λmax_L are those of Z, we can attain fTL′f and fT Z′f, which have the same 

range.

Thus far, we can propose the significant manifold and pairwise constraint jointly regularized 

formula as follows.

Definition 2—Derived from (14), by using (19) and (20), the manifold and pairwise 

constraint jointly regularized formula is defined as

min
f

ΦMPCJRF f = 1 − τ f TL′ f + τ f TZ′ f = f T 1 − τ L′ + τZ′ f . (21)

Differing from fTLf and fTZf in (14), the ranges of fTL′f and fTZ′f in (21) are now 

consistent. Thus, a simple trade-off coefficient, τ ∈[0,1), can self-adaptively control their 

individual significance in any data scenario.

C. Semi-Supervised Classification Based on Extensive Knowledge Exploitation

1) The framework of SSC-EKE—Now, incorporating the MPCJRF in the form of (21) 

into (1), we can derive our method for semi-supervised classification as follows.

Definition 3: Using the same notations as those in (1) and (7) and following the principle of 

minimum structure risk of the SVM, the formulation of our semi-supervised classification 

with extensive knowledge exploitation can be finally defined as

min
f ∈ Hk

1
l ∑

i = 1

l
1 − yi f xi + + γA f K

2 + γJΦMPCJRF f

= min
f ∈ Hk

1
l ∑

i = 1

l
1 − yi f xi + + γA f K

2 + γJ, f T 1 − τ L′ + τZ′ f ,

(22)

where γJ > 0 is the regularization parameter for the term of the MPCJRF.
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Likewise, referring to Theorem 3 and following the SVM expositions, we can reformulate 

(22) as

min
α ∈ Rl + u, ξi ∈ R

1
l ∑

i = 1

l
ξi + γAαTKα + γJαTK 1 − τ L′ + τZ′ Kα ,

s . t . yi ∑
j = 1

l + u
α jK xi, x j + b ≥ 1 − ξi, i = 1, …l, (23)

ξi ≥ 0, i = 1, …, l .

Theorem 8: Let us define a matrix P =

y1K11 y2K21 .. ylKl1
y1K12 y2K22 .. ylKl2

: : .. :
y1K1 l + u y2K2 l + u .. ylKl l + u l + u × l

, where Kij 

= K(xi, xj), i ∈[1, l], j ∈[1, l + u]. Suppose that β = (β1, β2,…,βl) denotes the Lagrange 

multipliers. Then, (23) is equivalent to the following optimization problem:

max
β ∈ Rl ∑

i = 1

l
βi − 1

4 βTSβ ,

s . t . ∑
i = 1

l
βiyi = 0, (24)

0 ≤ βi ≤ 1
l , i = 1, …, l,

where S = PT(γAK + γJK((1−τ)L′+ τZ′)K)−1 P.

Proof: By using the Lagrange multipliers β = (β1, β2,…,βl) and γ = (γ1, γ2,…,γl), we first 

obtain the Lagrange function:

L α, b, ξ, β, γ = 1
l ∑

i − 1

l
ξi + αT γAK + γJK 1 − τ L′ + τZ′ K α

− ∑
i = 1

l
βi yi ∑

j = 1

l + u
α jK xi, x j + b − 1 + ξi − ∑

i = 1

l
γiξi .

(25)
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According to the KKT conditions, we have

∂L
∂α = 0 2 γAK + γJK 1 − τ L′ + τZ′ K α − ∑

i = 1

l
βiyiKi1

:
:

βiyiKi l + u l + u × 1

= 0

2 γAK + γJK 1 − τ L′ + τZ′ K α = Pβ α = 1
2 γAK + γJK 1 − τ L′ + τZ′ K −1Pβ;

(26)

∂L
∂b = 0 ∑

i = 1

l
βiyi = 0; (27)

∂L
∂ξi

= 0 1
l − βi − γi = 0 0 ≤ βi ≤ 1

l . (28)

Substituting (26)–(28) into (25), the dual of (23) is achieved, i.e., (24). □

In terms of the solution β* of (24), the original solution of (23) can be given by

α∗ = 1
2 γAK + γJK 1 − τ L′ + τZ′ K −1Pβ∗, (29-1)

b∗ = 1
l ∑

i = 1

l
yi − ∑

j = 1

l + u
α j

∗K xi, x j , (29-2)

and the final classification decision function can be expressed as

f ∗ x = ∑
i = 1

l + u
αi

∗K x, xi + b∗ . (30)
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2) Other explanations with respect to SSC-EKE—To facilitate comprehension, we 

describe the meanings and origins of the components in the formulation of SSC-EKE in Fig. 

2. The SVM and LapSVM are two of the foundations of our work. Except for the newly 

devised MPCJRF, SSC-EKE inherits the manifold regularization from the LapSVM and the 

other components from the SVM.

It should be noted that with the overall framework in the form of (22) or (23), SSC-EKE 

manifests a significant advantage: the knowledge embedded in the two categories of training 

data for semi-supervised classification, i.e., few label-known examples and numerous label-

unknown data instances, is extensively exploited. The detailed explanations are as follows.

i. Explicit usages regarding the labelled and unlabelled data for training in SSC-
EKE: The labelled examples are recruited to control the empirical risk (see 

∑i = 1
l 1 − yi f xi +

 in (22)) and to impose the pairwise constraint regularization (see fTZ′f 

in (22)) on the objective function. Meanwhile, many unlabelled data instances, along with 

few labelled ones, are involved in estimating the underlying manifold structure (see fTL′f in 

(22)) and controlling the model smoothness in the reproducing kernel Hilbert space in terms 

of f K
2 .

ii. Implicit efficacies regarding the labelled and unlabelled data for training in SSC-
EKE: Because the MPCJRF in the form of (21) is derived from (14), as revealed in 

Theorem 2, by using the implicit, generalized adjacency matrix W′ = W + βQ, the 

underlying adjustment of the pairwise constraints to the estimated manifold structure occurs. 

In addition, based on Theorem 3, we are able to transform L and Z into L′ and Z′, 

respectively, and then we obtain the same range for fTL′f and fTZf, i.e., [0, fTf]. Thus, with 

the trade-off factor τ taking values between 0 and 1, it is viable for us to flexibly determine 

the individual impacts of fTL′f and fTZ′f in (21). As such, the manifold and pairwise 

constraint jointly regularized mechanism is achieved.

Lastly, let us come back to the drawbacks of existing semi-supervised classification 

techniques, which we mentioned at the beginning of Section III. All of them are addressed 

by means of our SSC-EKE schema. Specifically, the first two problems are resolved by 

converting labels into many must-link and cannot-link constraints and further presenting the 

pairwise constraint regularization mechanism. The third problem is resolved by devising the 

MPCJRF in the form of (21) to obtain an effective pathway to flexibly correct the estimated 

data manifold structure by using the given labels.

D. The Algorithm of SSC-EKE

In this section, we detail the algorithm of the proposed SSC-EKE method.
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Algorithm

Semi-Supervised Classification with Extensive Knowledge Exploitation (SSC-EKE)

Input:

l labelled example xi, yi i = 1
l  and u unlabelled data instances x j j = l + 1

l + u
.

Output: Decision function f (x).

Step 1: Construct the data adjacent graph via the (l+u) data instances and then generate the edge weight matrix W as 
well as graph Laplacian matrix L;

Step 2: Generate the must-link and cannot-link sets (i.e., MS and CS) in terms of the l labelled examples, referring 
to Section II-C;

Step 3: Constitute the pairwise constraint matrix Q and further the matrix Z in terms of MS and CS, according to 
Theorem 5;

Step 4: Transform L and Z into L′ and Z′ so that fTL′f and fTZ′f have the same range—[0,fT f], according to (19) 
and (20), respectively;

Step 5: Compute the optimum solution β* of (24), and then generate the optima, α* and b*, of (23) via (29);

Step 6: Output the discriminant function f (x) using (30).

IV. Experimental studies

A. Setup

To evaluate the performance of our proposed SSC-EKE approach, we systematically 

compare it with eight other state-of-the-art methods, including the classic SVM (see (3)), 

LapSVM (see (9)), LapRLS [3], CS4VM [16], TSVM [13], WeLlSVM [17], and two 

versions of the MeanS3VM — MeanS3VM-iter and MeanS3VM-mkl [15]. Among these, 

the TSVM is one of the predecessors in semi-supervised classification; the LapRLS and 

LapSVM are two representatives of manifold regularization-based S3VMs, with the 

LapSVM also being the foundation of our SSC-EKE approach; and the other four, as 

introduced in Section I, are well-established S3VMs of which the semi-supervised 

mechanisms differ from our SSC-EKE strategy. Except for the classic SVM, the others are 

all semi-supervised classification methods.

To measure the realistic classification performance of all enlisted algorithms, the 

conventional accuracy index (ACC) [7],[19] is used. Moreover, to specifically differentiate 

the performances of different algorithms, the well-established F1 score [46] is also 

investigated in standard binary classification issues in our experiments. Each approach is 

performed 20 times on each employed data set using inconsistent supervision subsets, which 

will be subsequently described. To achieve a balance between good readability and 

appropriate manuscript length, we separate our experimental content into two parts. The 

classification performance measured using the ACC and the statistical analysis metric of all 

methods on all data sets are listed in this section, and some comments regarding the 

experimental outcomes are also presented in this section. The supplemental content, such as 

the F1 scores of all algorithms on some binary classification data sets, are reported in the 

Appendix.
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The parameter settings of all nine algorithms are given as follows. Both the linear and 

Gaussian RBF kernels were used in our experiments, with the width σ in the Gaussian RBF 

kernel, K(xi, xj) = exp(−‖xi − xj‖2/2σ2), being set to the average distance among all data 

instances. Both parameters C1 and C2 were selected to be within {0.001, 0.005, 0.01, 0.05, 

0.1, 0.5, 1} in the WeLlSVM, whereas the trial ranges were {0.1, 0.5, 0.7, 1, 10, 50, 100, 

200} in the TSVM, MeanS3VM-iter, MeanS3VM-mkl, and CS4VM. The KNN was used in 

the LapSVM, LapRLS, and SSC-EKE to constitute the data adjacency graph, and the 

number of nearest neighbours was sought within {1, 3, 5, 7, 9} throughout our experiments. 

The parameter values of γA and γI in the LapSVM and LapRLS, γA and γJ in SSC-EKE, 

and γ in the SVM were chosen to be within {10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 102}. 

In addition, τ in SSC-EKE varied from 0.05 to 1, with the step size being 0.05. These 

parameters in related algorithms were eventually determined using the cross-validation 

strategies. More specifically, the leave-one-out cross-validation [2],[5] was adopted when 

labelled data sizes were less than or equal to 20; otherwise, the fivefold cross-validation was 

used.

All enlisted data sets were normalized before they were used in our experiments by using the 

formula x′id =
xid − min x1d, …xNd

max x1d, …xNd − min x1d, …xNd
, where i and d denote the indices of the data 

instance and dimension, respectively. Moreover, all experiments were conducted using a PC 

with an i5-4590 3.30 GHz CPU, 4 GB of RAM, Microsoft Windows 7 (64 bit), and 

MATLAB R2013a (64 bit).

B. Experiment on Synthetic Data Set

We first verify the performance of all of the involved approaches using synthetic data 

wherein the true answer is known. To this end, as shown in Fig. 3, we artificially generated 

one two-dimensional, two-moon-shaped data set denoted as DS1, in which the data size was 

16,040. To simulate the situation of (semi-)supervised classification, the original DS1 was 

arbitrarily divided into two groups, with the data numbers being 7,000 and 9,040. The group 

of 7,000 records was selected to act as the training set, while the other as the testing set. The 

100 examples randomly selected from the training set were enlisted as the supervision 

subset, i.e., the labelled data, and only the RBF kernel was used during our experiment 

because DS1 is apparently non-linearly separable.

We separately ran the nine algorithms on DS1, and the classification accuracies, in the form 

of ACC means and standard deviations, are listed in Table II, where the ranks achieved by all 

algorithms are shown in the parentheses. For the detailed classification correctness of each 

algorithm with respect to the positive and negative classes in the testing set, one can refer to 

Table A.I, which is additionally listed in the Appendix.

In addition, because DS1 is two-dimensional, we illustrate the learning performance of all 

approaches in terms of their learned classification hyperplanes. Due to the limited 

manuscript length, here we only show one of the scenes of the SVM, LapSVM, and our 

SSC-EKE in Fig. 4, where the 100 labelled examples in the positive and negative classes are 

shown in red and blue, respectively, and the classification hyperplanes are shown in bright 
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green. Our SSC-EKE algorithm ranks first on DS1. This is due to the benefits of the 

extensive exploitation of knowledge contained in both labelled and unlabelled training data. 

Moreover, the classification hyperplane of SSC-EKE shown in Fig. 4(c) creates a more 

natural separation between the groups than those of the other methods.

C. Experiments on Benchmark/UCI/KEEL data sets

Next, eighteen well-established data sets from three famous repositories, i.e., the Benchmark 
data sets1, UCI2, and KEEL (Knowledge Extraction based on Evolutionary Learning)3, were 

used in our experiments. The details of these data sets are listed in Table III. Please note that 

the last two data sets in Table III, i.e., iris and balance-scale, contain three classes. 

Therefore, the voting strategy [1],[9],[10],[33],[42],[45] was recruited in our studies to solve 

multiclass classification problems. Specifically, regarding the given labelled examples, we 

first divided them into different groups according to their labels. Then, with any two 

different groups acting as the positive and negative classes, respectively, we separately 

trained multiple classifiers. Last, the labels of the data instances in the testing set were 

determined according to the majority principle.

To compose the (semi-)supervised classification scenes and evaluate the classification 

performance of different approaches with respect to different supervision capacities, i.e., 

different numbers of labelled examples, we randomly sampled each original training set of 

each data set twenty times, with the sample sizes being 10, 20, 30, 40, and 50, respectively. 

In this way, we obtained twenty inconsistent subsets matching each sampling capacity on 

each data set. With the twenty subsets of each sample size acting separately as the 

supervision for (semi-)supervised learning, we ran the nine classification approaches on each 

data set and obtained twenty classification outcomes from each of them.

We report the classification performance of these nine algorithms in Tables IV and V. The 

accuracies of the nine algorithms on each data set with the 20 and 40 sample sizes are shown 

in Tables IV and V, respectively, in the form of ACC means and standard deviations. The 

best accuracy on each data set is denoted using bold font. Moreover, statistical analyses were 

conducted in our experiments, including the average ACCs, ranks of all algorithms, and 

paired t-test scores [17],[18],[40], i.e., the win/tie/loss counts, of all semi-supervised 

approaches versus the classic SVM and of SSC-EKE against the LapSVM, both at the 

significance level of 0.05. In addition, the classification accuracies regarding these nine 

approaches with respect to multiple supervision capacities are illustrated in Figs. 5 and 6, in 

which, due to the limited manuscript length, we only show the representative cases of the 

nine algorithms on 10 data sets, i.e., sonar, house, house-votes, mpnk2, diabetes, vehicle, 

german, BCI, USPS, and digit1, in the cases of linear and RBF kernels, respectively. In 

addition, the specific classification correctness of the positive and negative classes in the 

testing sets of all the algorithms on all data sets, measured in terms of the F1 scores, was 

also calculated in our experiments. However, due to the limited manuscript length, only the 

1http://olivier.chapelle.cc/ssl-book/benchmarks.html
2http://archive.ics.uci.edu/ml/
3http://www.keel.es/
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outcomes on twelve binary classification data sets are shown in Tables A.II and A.III in the 

Appendix.

The analysis results regarding the performances of all tested algorithms are as follows.

1. The SSC-EKE algorithm generally performs well on most of the involved data 

sets. It achieves the best average ACC, highest average rank (Tables IV and V), 

and the best overall performance versus the other seven semi-supervised 

classification methods according to the t-tests (Tables IV and V). As indicated in 

Tables A.II and A.III, SSC-EKE generally achieves the highest F1 scores in both 

the positive and negative classes of all data sets. On one data set, if one algorithm 

achieves the highest F1 scores in both the positive and negative classes, it 

certainly achieves the best ACC. This is the reason why our SSC-EKE 

outperforms the others.

2. As one of the theoretical bases of our research, the classification performance of 

the LapSVM on these data sets is also compared with that of our SSC-EKE 

algorithm. As shown in Table IV, in which the sample size for the supervision is 

20, the win/tie/loss counts of SSC-EKE against the LapSVM are 14/4/0 and 

8/10/0 regarding the linear and RBF kernels, respectively. This indicates that 

SSC-EKE overcomes the LapSVM overwhelmingly in the case of the linear 

kernel, and under the condition of not being defeated, the former outperforms the 

latter on nearly half of the recruited data sets in the case of the RBF kernel. For 

the experimental results with the supervision size of 40, as listed in Table V, the 

superiority of our SSC-EKE versus the LapSVM appears to be more substantial 

than in the case with the sample size of 20.

3. As indicated in Figs. 5 and 6, the overall classification effectiveness of SSC-EKE 

is roughly positively proportional to the supervision capacity. Specifically, as the 

labelled sample size increases, the number of must-link/cannot-link constraints 

increases accordingly; consequently, this strengthens the efficacy of the MPCJRF 

in the form of (21) with respect to the whole framework of SSC-EKE (see (22)).

4. The validity of the MPCJRF in SSC-EKE sometimes cannot be manifested when 

the supervision capacity is too small, such as in the cases of data sets with 10 

labelled examples. For example, on the sonar and digit1 data sets with the RBF 

kernel, as indicated in Figs. 6(a) and 6(j), the accuracies of SSC-EKE are 

distinctly less than those of some competitors with the sample size of 10, 

whereas SSC-EKE ranks first when the sample sizes are 30, 40, and 50. The 

reason is that the MPCJRF cannot obtain relatively sufficient information from 

the pairwise constraints when the number of labelled examples is quite small.

5. It is worth further discussing the outcomes of SSC-EKE on the digit1 data set. 

Here, we notice two phenomena: i) As illustrated in Fig. 5(j), in the case of the 

linear kernel, neither SSC-EKE nor the LapSVM achieves a desirable rank, 

whereas other approaches relying on label means, such as CS4VM and 

MeanS3VMs, obtain considerably better scores. ii) As illustrated in Figs. 5(j) 

and 6(j), the advantage of SSC-EKE over the LapSVM in terms of the average 
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ACC are nearly unobservable, despite the increase of the supervision data sizes 

from 10 to 50 in both cases of the linear and RBF kernels. This implies that the 

MPCJRF did not play the due role in the entire framework of SSC-EKE in these 

cases. We believe that these phenomena occurred due to the data inconsistency 

existing in the original data set. In the digit1 data set, there is much interference 

information, e.g., mislabelled data or data pollution due to noise, and this results 

in its non-linear separateness. Therefore, the classification accuracies of SSC-

EKE and the LapSVM with the linear kernel are distinctly worse than those with 

the RBF kernel (see Figs. 5(j) and 6(j)). Moreover, our proposed MPCJRF 

mechanism is shown to depend on the data purity in the supervision subset, i.e., 

only correct labels can offer us beneficial must-link/cannot-link constraints. 

Conversely, the mistakes in the given labelled examples negatively impact the 

entire performance of SSC-EKE.

D. Experiments on Real-World Data Sets

For the purpose of further verifying the realistic performance of the proposed SSC-EKE, we 

have also conducted our experiments in three real-world data scenarios: text data 

classification, image recognition, and handwritten digit recognition. To this end, the well-

established 20 Newsgroups text database4[8], Object Categories image repository5[26], 

NIPS 2003 feature selection database6, and MNIST handwritten digit database7 were used 

in our experiments. The constructions regarding the data sets used in this subsection are as 

follows.

1. For the text data classification scenario, four major text categories in the 20 
Newsgroups text database, i.e., comp, rec, sci, and talk, were used. We generated 

the six text data sets, which are shown in Table VI, by using all possible pairwise 

combinations among these categories. Each data set had 1,000 records by 

randomly selecting 250 records from each category. Each data set was evenly 

divided into two parts to generate the training and testing sets. To construct the 

(semi-)supervised classification scenes, we further randomly subsampled each 

training set 20 times, using the sample size of 10, to produce 20 inconsistent 

subsets as the supervision data. In addition, the BOW toolkit [23] was used to 

reduce the data dimension, as it was originally as high as 43,586. The details of 

these data sets used in our (semi-)supervised classification experiments are 

summarized in Table VII.

2. For the image recognition scenario, as also indicated in Table VI, two pairs of 

image categories from the Object Categories image repository were used in our 

experiments: coast VS highway and mountain VS street. The number of images 

contained in the categories of coast, highway, mountain, and street are 360, 260, 

374, and 292, respectively, and the total data sizes of coast VS highway and 

mountain VS street are, respectively, 620 and 666. Eight representative examples 

4http://www.cs.nyu.edu/~roweis/data.html
5http://www.vision.caltech.edu/feifeili/Datasets.htm
6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html (or http://www.clopinet.com/isabelle/Projects/NIPS2003/)
7http://yann.lecun.com/exdb/mnist/

Qian et al. Page 20

Inf Sci (Ny). Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.nyu.edu/~roweis/data.html
http://www.vision.caltech.edu/feifeili/Datasets.htm
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.clopinet.com/isabelle/Projects/NIPS2003/
http://yann.lecun.com/exdb/mnist/


of each of the four image categories are shown in Fig. 7. We randomly selected 

300 images from each data set for training and the remainder for testing. We 

further subsampled each training data set 20 times to obtain the supervision data 

with the sample size of 10%. Because the number of pixels in each image, i.e., 

256×256=65,536, is too large to be directly used as the data features, we 

performed the principal component analysis (PCA) to reduce the input feature 

dimensionality to 300.

3. For the handwritten digit recognition scenario, in a case that we term gisette_4 
VS 9, the gisette data set from the NIPS 2003 feature selection database was 

used to test the ability to distinguish the handwritten digits ‘4’ and ‘9’, which are 

often confused for each other. As detailed in Tables VI and VII, there are 3,500 

records related to these two digits in gisette _4 VS 9, and the data dimension can 

be as high as 5000. We randomly selected 4,000 records as the training set, using 

100 arbitrarily selected examples as the labelled data, and used the remainder as 

the testing set. Similarly, in a test that we denote as mnist _3 VS 8, we extracted 

all records containing the digits ‘3’ and ‘8’ from the well-known MNIST 
handwritten digit database and tested the ability to differentiate these two digits. 

As shown in Tables VI and VII, the feature dimension of mnist _3 VS 8 is 784, 

and the total number of records is 13,966, of which 6,000 were used for training 

and the remainder for testing. One hundred randomly selected examples in the 

training subset were used as the supervision information. In contrast to our other 

experiments, we did not reduce the original data dimensions, as here we 

attempted to investigate the classification performance of all competitors against 

high-dimensional data.

For each of these real-world, semi-supervised data sets, the performances of all nine 

algorithms were tested using twenty inconsistent supervision subsets. The outcomes of these 

algorithms, reported in terms of the ACC means and standard deviations, are listed in Table 

VIII. Due to the limited manuscript length, Table VIII only lists the individual scores of all 

candidates and the statistical results of the paired t-test associated with the RBF kernel. The 

F1 scores of the nine algorithms on partial real-world data sets are presented in Table A.IV 

in the Appendix. The results of these tests generally show the performance advantage of our 

SSC-EKE algorithm, which is consistent with the findings observed from the 

Benchmark/UCI/KEEL (semi-)supervised data sets shown in the previous subsection. In 

addition, despite the fact that both gisette_4 VS 9 and mnist_3 VS 8 belong to high-

dimensional data sets, our SSC-EKE algorithm also ranks as the best of all the algorithms. 

These results, along with those in the previous subsections, confirm the effectiveness of our 

proposed SSC-EKE method. Benefiting from the MPCJRF developed in (21), the knowledge 

embedded in both the few, precious labelled examples and plenty of unlabelled data 

instances are concurrently, extensively exploited. This exploitation consequently facilitates 

the preferable classification performance of SSC-EKE.

E. Computational Time Comparisons

To compare the computational time of all employed algorithms, we also recorded their 

running time including both training and testing on all involved data sets. To reduce the 
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manuscript length, their average running time on nine Benchmark/UCI/KEEL data sets with 

the RBF kernel and 20 labelled examples and on three larger-scale data sets, i.e., DS1, 

gisette_4 VS 9, and mnist_3 VS 8, with 100 labelled examples are shown in Table IX. As 

disclosed, the running time of the conventional SVM slightly varied on these data sets 

regardless whether they were small or large, as it only uses a few labelled examples to train 

the classifiers. The TSVM is generally the most time-consuming algorithm due to its 

iterative trials on testing data points. Specifically, after initially assigning the labels to all 

testing data points, the TSVM tried to iteratively correct the assigned labels of any two 

points if their assigned labels violated the predicted ones until the termination of the 

iterations. Therefore, the TSVM is clearly unsuitable for large-scale data sets. Although the 

WeLlSVM also assigned the labels for all unlabelled data points during the training of 

classifiers, using the cutting plane-based label generation strategy, this issue can be solved 

via a sequence of SVM subproblems that are more scalable than conventional convex semi-

definite programming (SDP) relaxations. This facilitates the overall, much shorter 

computational time of the WeL1SVM compared with that of the TSVM. The MeanS3VM-

iter, MeanS3VM-mkl, and CS4VM are three time-saving algorithms, as they only use the 

means of classes of unlabelled data instead of the unlabelled data themselves to constitute 

their formulations derived from the S3VM. Their computing efficiencies are particularly 

manifested on larger data sets, such as DS1, gisette_4 VS 9, and mnist_3 VS 8 in our 

experiments. Both the LapRLS and LapSVM are manifold learning-based S3VM methods. 

Whereas the LapRLS has an analytical solution that avoids time-consuming quadratic 

programming computations that commonly occur in the LapSVM, the former is generally 

faster than the latter. Compared with the LapSVM, our proposed SSC-EKE algorithm has 

one more regularization term in its objective function, i.e., the pairwise constraint 

regularization. Therefore, in theory, the computational cost of SSC-EKE should be higher 

than that of the LapSVM. Our experimental results agree with this supposition on most of 

the involved data sets. However, on some larger data sets, e.g., data sets of which the 

numbers of training examples are more than 1000, SSC-EKE surpasses the LapSVM with 

respect to running time. The potential reason is probably due to the delicate MPCJRF in the 

form of (21), in which the values of both the manifold learning and pairwise constraint terms 

are transformed such that they have the same range; this could eventually benefit the 

optimization problem in the form of (23), especially for larger-scale data sets.

V. Conclusions

Our research is motivated by the lack of knowledge exploitation regarding few but valuable 

labelled examples in many existing S3VMs. To address this problem, the PCRF is devised 

by converting the given data labels into many pairwise constraints. Subsequently, by 

merging the PCRF with the manifold regularization term and converting their individual 

values such that they have the same range, the MPCJRF is further developed. Key to our 

SSC-EKE method is the systematic incorporation of empirical risk minimization, 

regularization in the RKHS, joint manifold and pairwise constraint-based regularization, 

graph Laplacian, etc., in which the connotation of extensive knowledge exploitation is 

embodied. Compared with several other state-of-the-art S3VM approaches on many semi-
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supervised data sets, the proposed SSC-EKE algorithm demonstrates preferable 

classification accuracy as well as generalizability.

Regarding our future work, we plan to investigate the countermeasures for our SSC-EKE on 

large-scale data sets. In this regard, the strategy regarding the core vector machine [27],[34],

[35] could be one of the countermeasures tested. Also worthy of further study are the 

practicable methodologies for prompt, self-adaptive parameter setting in SSC-EKE, which 

could facilitate its applicability to real-world problems.
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Appendix

A. Tables

Table A.I

F1 scores of all nine algorithms on the synthetic data set DS1

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

DS1
F1_+ 0.8645 0.8814 0.9456 0.9147 0.8651 0.8133 0.9193 0.9363 0.9650

F1_− 0.8810 0.8914 0.9482 0.8992 0.8738 0.8292 0.9285 0.9380 0.9645

Table A.II

F1 scores of all nine algorithms on partial binary classification Benchmark/UCI/KEEL data 

sets with 20 labelled examples

Linear kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

wine
F1_+ 0.9523 0.96 0.9206 0.9655 0.9407 0.9404 0.9558 0.8767 0.9852

F1_− 0.9755 0.9795 0.9556 0.9826 0.9659 0.966 0.9775 0.9298 0.9935

sonar
F1_+ 0.7063 0.7015 0.686 0.7236 0.7256 0.7258 0.7185 0.6853 0.7428

F1_− 0.7394 0.7743 0.7437 0.7468 0.7897 0.793 0.7903 0.7718 0.7788

house
F1_+ 0.9351 0.9377 0.9563 0.9601 0.9062 0.9067 0.9259 0.9355 0.9663

F1_− 0.9319 0.9374 0.9576 0.9596 0.891 0.891 0.9178 0.9345 0.9671

spectfheart F1 + 0.3793 0.046 0.2799 0.1884 0.2583 0.3192 0.3759 0.016 0.1272
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Linear kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

F1_− 0.8125 0.8813 0.8413 0.8597 0.8906 0.8927 0.8909 0.8848 0.8859

ionosphere
F1_+ 0.7168 0.7126 0.644 0.7293 0.7734 0.7737 0.7666 0.5971 0.7613

F1_− 0.8667 0.8759 0.8584 0.8773 0.8714 0.8738 0.8854 0.8337 0.8838

house-votes
F1_+ 0.8994 0.9061 0.914 0.9018 0.8859 0.8852 0.9006 0.911 0.9261

F1_− 0.9244 0.9328 0.938 0.927 0.9259 0.9255 0.9309 0.9365 0.9487

WDBC
F1_+ 0.8424 0.8492 0.85 0.871 0.9002 0.8965 0.8979 0.8727 0.8799

F1_− 0.917 0.9275 0.9254 0.9327 0.9478 0.9465 0.9464 0.9376 0.9368

monk2
F1_+ 0.3967 0.3742 0.3723 0.2398 0.387 0.3946 0.3752 0.0939 0.2654

F1_− 0.6392 0.6759 0.6701 0.7405 0.6861 0.6949 0.6972 0.7647 0.77

breast
F1_+ 0.9658 0.9597 0.9332 0.968 0.9665 0.9657 0.9675 0.9188 0.9692

F1_− 0.9312 0.9172 0.8626 0.9358 0.9329 0.9312 0.9356 0.8503 0.9383

diabetes
F1_+ 0.7952 0.8056 0.755 0.7981 0.7964 0.7972 0.805 0.7732 0.8097

F1_− 0.5269 0.5104 0.3942 0.5441 0.5811 0.5783 0.5756 0.3188 0.5538

vehicle
F1_+ 0.3335 0.3272 0.4393 0.4347 0.4707 0.4727 0.4139 0.0273 0.3281

F1_− 0.8068 0.8204 0.8311 0.8327 0.8215 0.8213 0.831 0.8614 0.8664

german
F1 + 0.7105 0.7458 0.7878 0.7969 0.7949 0.7808 0.7825 0.8139 0.8236

F1_− 0.4107 0.3906 0.3415 0.2967 0.457 0.4341 0.4302 0.323 0.2532

RBF kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

wine
F1_+ 0.9687 0.9817 0.9633 0.9743 0.9583 0.9813 0.9764 0.9536 0.9891

F1_− 0.985 0.9921 0.9821 0.9882 0.9767 0.989 0.9889 0.9761 0.9948

sonar
F1_+ 0.7096 0.6975 0.717 0.7189 0.7448 0.6811 0.7264 0.6808 0.7205

F1_− 0.7754 0.7845 0.7908 0.7845 0.7991 0.7759 0.7946 0.7816 0.7981

house
F1_+ 0.933 0.9332 0.9402 0.9382 0.9067 0.9141 0.929 0.9172 0.9428

F1_− 0.9304 0.9313 0.939 0.9368 0.8938 0.8879 0.9241 0.9169 0.942

spectfheart
F1_+ 0.3101 0.2252 0.4009 0.4029 0.3811 0.1496 0.4134 0.1168 0.2776

F1_− 0.8639 0.8883 0.8569 0.8727 0.8901 0.8887 0.8944 0.8876 0.894

ionosphere
F1_+ 0.7855 0.7949 0.7609 0.8164 0.8088 0.8081 0.8198 0.7143 0.8078

F1_− 0.8975 0.8973 0.8904 0.9071 0.8894 0.9111 0.9043 0.8719 0.9067

house-votes
F1_+ 0.8902 0.9077 0.8933 0.9044 0.8828 0.8488 0.8966 0.8977 0.9135

F1_− 0.9209 0.9354 0.9214 0.9298 0.9232 0.9175 0.9306 0.9289 0.9374

WDBC F1_+ 0.8326 0.8324 0.8523 0.8553 0.8795 0.8348 0.8789 0.8797 0.8494
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Linear kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

F1_− 0.913 0.9128 0.9237 0.9165 0.9362 0.9208 0.9363 0.9391 0.9239

monk2
F1_+ 0.4553 0.1892 0.4915 0.4803 0.4574 0.2122 0.4619 0.335 0.4403

F1_− 0.7067 0.7583 0.7332 0.7468 0.7178 0.773 0.7166 0.719 0.7787

breast
F1 + 0.9563 0.9674 0.9679 0.968 0.9668 0.9677 0.9698 0.971 0.9726

F1_− 0.931 0.9348 0.9368 0.9365 0.9343 0.9353 0.9408 0.9427 0.9464

diabetes
F1 + 0.7917 0.8051 0.7866 0.7798 0.7991 0.8117 0.7994 0.807 0.8103

F1_− 0.5307 0.4722 0.4901 0.4805 0.5959 0.4641 0.58 0.5321 0.5025

vehicle
F1_+ 0.4655 0.3468 0.3798 0.427 0.4706 0.1025 0.4532 0.3728 0.3223

F1_− 0.8218 0.8319 0.8411 0.8426 0.8182 0.8555 0.8252 0.8342 0.8695

german
F1_+ 0.7882 0.8233 0.816 0.8114 0.8166 0.8185 0.8113 0.8231 0.8263

F1_− 0.3288 0.016 0.2817 0.3067 0.3359 0.1696 0.3007 0.2386 0.2593

Table A.III

F1 scores of all nine algorithms on partial binary classification Benchmark/UCI/KEEL data 

sets with 40 labelled examples

Linear kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

wine
F1 + 0.9664 0.9718 0.9049 0.9832 0.9449 0.9458 0.9769 0.9081 0.9938

F1_− 0.9819 0.9854 0.9485 0.9916 0.973 0.9738 0.9876 0.9525 0.997

sonar
F1 + 0.7136 0.7109 0.6628 0.7148 0.7456 0.7434 0.7455 0.7111 0.7311

F1_− 0.7496 0.7592 0.7261 0.7613 0.7873 0.7804 0.782 0.7666 0.7741

house
F1_+ 0.9499 0.9629 0.9533 0.9721 0.9412 0.9392 0.9555 0.9527 0.9766

F1_− 0.9461 0.9565 0.9467 0.9667 0.9392 0.937 0.9508 0.9453 0.9719

spectfheart
F1 + 0.3989 0.4425 0.3656 0.2119 0.2095 0.36 0.3907 0.016 0.2031

F1_− 0.8321 0.869 0.7588 0.8817 0.8887 0.8903 0.8879 0.8831 0.8872

ionosphere
F1_+ 0.7225 0.7145 0.643 0.7267 0.7646 0.7775 0.7723 0.6247 0.7537

F1_− 0.8866 0.8903 0.8637 0.8923 0.8819 0.8904 0.8935 0.8639 0.8991

house-votes
F1 + 0.8973 0.9028 0.918 0.9314 0.9155 0.918 0.9193 0.9227 0.9423

F1_− 0.9207 0.9308 0.9417 0.9504 0.9398 0.9428 0.9431 0.945 0.958

WDBC
F1_+ 0.9129 0.9116 0.8964 0.922 0.9035 0.9023 0.9229 0.8772 0.9372

F1_− 0.9516 0.9531 0.9446 0.9567 0.9501 0.9495 0.9582 0.9403 0.9651

monk2 F1_+ 0.1494 0.1868 0.2513 0.2299 0.3974 0.4291 0.3029 0.1075 0.3295
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Linear kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

F1_− 0.7738 0.7556 0.6854 0.7783 0.7225 0.7275 0.7561 0.7656 0.7897

breast
F1 + 0.9716 0.9676 0.9294 0.9721 0.9577 0.9574 0.9641 0.9078 0.9741

F1_− 0.947 0.9394 0.8536 0.9477 0.9165 0.9158 0.9315 0.8296 0.9518

diabetes
F1 + 0.802 0.8152 0.7435 0.8125 0.8152 0.8175 0.822 0.7646 0.8201

F1_− 0.6134 0.5938 0.4381 0.6261 0.63 0.6281 0.6071 0.4058 0.6403

vehicle
F1_+ 0.2243 0.3498 0.4369 0.3259 0.4237 0.3922 0.4271 0.0534 0.4359

F1_− 0.8511 0.8329 0.8543 0.8571 0.8444 0.846 0.8558 0.8577 0.8644

german
F1 + 0.7264 0.7519 0.7378 0.8122 0.7796 0.7827 0.7801 0.8068 0.824

F1_− 0.4474 0.4021 0.4168 0.2626 0.4821 0.4623 0.4805 0.3878 0.217

RBF kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

wine
F1_+ 0.9862 0.9902 0.9808 0.9938 0.9701 0.9835 0.9925 0.9644 0.9954

F1_− 0.9931 0.9945 0.9898 0.997 0.9847 0.9913 0.9961 0.9816 0.9977

sonar
F1_+ 0.736 0.7321 0.7514 0.7515 0.7668 0.7033 0.7645 0.714 0.7762

F1_− 0.7792 0.7841 0.8008 0.8023 0.8026 0.7497 0.7947 0.7743 0.8147

house
F1 + 0.9415 0.9501 0.9508 0.9512 0.9282 0.9636 0.9508 0.944 0.9633

F1_− 0.9339 0.9405 0.9442 0.9438 0.9254 0.9539 0.9439 0.915 0.957

spectfheart
F1_+ 0.2042 0.1159 0.4882 0.4192 0.3364 0.0482 0.4648 0.2682 0.3706

F1_− 0.877 0.8837 0.8603 0.8842 0.8942 0.8854 0.8944 0.8932 0.8983

ionosphere
F1_+ 0.8507 0.8305 0.789 0.8717 0.8363 0.8509 0.8549 0.7757 0.873

F1_− 0.9279 0.9216 0.9071 0.9385 0.9154 0.9331 0.9244 0.8966 0.9397

house-votes
F1_+ 0.9066 0.9068 0.9121 0.9217 0.9152 0.8926 0.9196 0.9075 0.9254

F1_− 0.9322 0.9264 0.938 0.944 0.9396 0.9338 0.9443 0.9338 0.9472

WDBC
F1_+ 0.8972 0.8971 0.8741 0.8994 0.8874 0.8617 0.8997 0.8981 0.9137

F1_− 0.9412 0.9451 0.9274 0.9421 0.9361 0.9318 0.9439 0.8483 0.9527

monk2
F1_+ 0.4374 0.1453 0.5183 0.515 0.4817 0.2975 0.452 0.3748 0.4508

F1_− 0.7594 0.7829 0.7548 0.7703 0.7462 0.782 0.7547 0.7641 0.7973

breast
F1_+ 0.9706 0.9701 0.9655 0.9717 0.9609 0.9601 0.966 0.9692 0.9737

F1_− 0.9465 0.9444 0.9359 0.9484 0.9233 0.9195 0.9365 0.9431 0.9523

diabetes
F1_+ 0.7937 0.8151 0.7714 0.7997 0.7898 0.8034 0.8011 0.8172 0.8178

F1_− 0.6 0.528 0.554 0.5835 0.6175 0.475 0.6099 0.5808 0.5782

vehicle F1_+ 0.1809 0.2309 0.3701 0.3 0.4373 0.1125 0.4181 0.2245 0.2409
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Linear kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

F1_− 0.85 0.8484 0.8461 0.8555 0.8426 0.8592 0.8492 0.8536 0.864

german
F1_+ 0.7954 0.8203 0.8066 0.8112 0.8043 0.8189 0.8035 0.8211 0.8243

F1_− 0.359 0.0013 0.3157 0.2923 0.3431 0.2098 0.3725 0.256 0.2564

Table A.IV

F1 scores of all nine algorithms on partial real-world data sets with the RBF kernel

Dataset SVM TSVM LapRLS LapSVM MeanS3VM-iter MeanS3VM-mkl CS4VM WeLlSVM SSC-EKE

comp VS rec
F1 + 0.7468 0.7773 0.7378 0.7578 0.7498 0.7424 0.7616 0.7674 0.7757

F1_− 0.7218 0.7593 0.7334 0.732 0.7331 0.7158 0.7383 0.7091 0.7726

comp VS sci
F1 + 0.685 0.6737 0.674 0.6905 0.6801 0.6389 0.6869 0.6525 0.6948

F1_− 0.7205 0.7337 0.7093 0.7355 0.7097 0.7179 0.7223 0.7371 0.7462

comp VS talk
F1 + 0.7194 0.7385 0.7213 0.7461 0.741 0.7308 0.7441 0.7457 0.7564

F1_− 0.7514 0.7835 0.7688 0.7681 0.745 0.7367 0.7536 0.7808 0.7824

rec VS sci
F1_+ 0.6648 0.6767 0.6659 0.6866 0.665 0.6394 0.6665 0.6709 0.692

F1_− 0.6831 0.6806 0.6743 0.7032 0.6613 0.6529 0.6679 0.7169 0.7075

rec VS talk
F1_+ 0.6725 0.6878 0.6611 0.6865 0.6878 0.6701 0.6873 0.6764 0.6819

F1_− 0.7332 0.7196 0.7237 0.7354 0.7121 0.7275 0.7297 0.7641 0.7608

sci VS talk
F1 + 0.6634 0.6833 0.6442 0.6819 0.6761 0.6822 0.6702 0.7129 0.6847

F1_− 0.6633 0.6593 0.674 0.6821 0.6665 0.6062 0.6724 0.6287 0.6957

gisette_4 VS 9
F1 + 0.9083 0.9119 0.9128 0.9175 0.9111 0.9101 0.9134 0.9137 0.9274

F1_− 0.9112 0.9141 0.9155 0.9208 0.9123 0.913 0.9159 0.9159 0.9304

mnist_3 VS 8
F1_+ 0.9444 0.9311 0.9487 0.9479 0.9343 0.9351 0.9483 0.9391 0.9568

F1 − 0.9463 0.9333 0.9525 0.9518 0.9382 0.9381 0.9505 0.9426 0.9596

B. Proofs

B.1 Proof of Theorem 1

Any function f ∈ HK can be uniquely decomposed into a component fs in the subspace 

spanned by the kernel functions {K(xi,·), 1 ≤i ≤l} and a component f⊥ perpendicular to this 

subspace. That is, f = fs+f⊥ and f s = ∑
i = 1

l + u
αiK xi, ⋅ .
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Since the kernel K has the reproducing property, i.e., 

f x j = f , K x j, ⋅ = f s, K x j, ⋅ + f ⊥, K x j, ⋅ = f s, K x j, ⋅ = ∑
i = 1

l
αiK xi, ⋅ , K x j, ⋅

= ∑
i = 1

l
αiK xi, x j

, 

we know that the term related to the loss function in (1) depends only on the values of the 

coefficients {αi, 1 ≤ i ≤l} and the gram matrix of the kernel K. Furthermore, because 

f K
2 = ‖ ∑

i = 1

l
αiK xi, ⋅ ‖

K

2
+ f ⊥ K

2 , we can deduce that the minimizer of (1) must have f⊥ =0. 

Combining these analyses, it is clear that the minimizer of (1) is f ∗ x = ∑
i = 1

l
αiK xi, x . □

B.2 Proof of Theorem 2

Using the Lagrange multipliers β = (β1, β2,…, βl) and γ = (γ1, γ2,…,γl), we can generate 

the Lagrange function:

L α, b, ξ, β, γ = 1
l ∑

i − 1

l
ξi + 1

2αT2γKα − ∑
i = 1

l
βi yi ∑

j = 1

l
α jK xi, x j + b − 1 + ξi − ∑

i = 1

l
γiξi .

(B1)

Based on the Karush-Kuhn-Tucker (KKT) conditions, we obtain

∂L
∂b = 0 ∑

i = 1

l
βiyi = 0 (B.2)

∂L
∂ξi

= 0 1
l − βi − γi = 0 0 ≤ βi ≤ 1

l ξi, γi are non‐negative (B.3)

Substituting (B.2)–(B.3) into (B.1), we can formulate a reduced Lagrange function:

LR α, β = 1
2αT2γ Kα − ∑

i = 1

l
βi yi ∑

j = 1

l
αiK xi, x j − 1 = 1

2αT2γ Kα − αTKYβ + ∑
i = 1

l
βi,(B.4)

where Y = diag(y1, y2,…,yl) and K is the l×l kernel matrix.

Setting the derivative of (B.4) to zero with respect to α, we get
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∂LR

∂α = 2γ Kα − KYβ = 0 α = Yβ
2γ (B.5)

Substituting (B.5) into (B.4) and combining (B.2)–(B.3), we can eventually obtain (4). □

B.3 Proof of Theorem 3

Likewise, the function f∈HK can be uniquely decomposed into a component fs in the 

subspace spanned by the kernel functions {K(xi, ·),1≤i≤l + u} and a component f⊥ 

orthogonal to this subspace. That is, f = fs + f⊥ and f s = ∑
i = 1

l + u
αiK xi, ⋅ .

Based on the reproducing property of the kernel K, 

f x j = f , K x j, ⋅ = f s, K x j, ⋅ + f ⊥, K x j, ⋅ = f s, K x j, ⋅ = ∑
i = 1

l + u
αiK xi, ⋅ , K x j, ⋅

= ∑
i = 1

l + u
αiK xi, x j

. 

We know that the terms related to the loss function and the intrinsic norm f I
2 in (7) rely 

only on the values of the coefficients {αi, 1 ≤i ≤ l + u} and the gram matrix of the kernel K. 

Furthermore, because f K
2 = ‖ ∑

i = 1

l + u
αiK xi, ⋅ ‖

K

2
+ f ⊥ K

2 , we can deduce that the minimizer 

of (7) must have f⊥ = 0. Combining these analyses, we know that the minimizer of (7) must 

be f ∗ x = ∑
i = 1

l + u
αiK xi, x . □

B.4 Proof of Theorem 4

Using the Lagrange multipliers β = (β1, β2,…,βl) and γ = (γ1,γ2,…,γl), we can generate the 

Lagrange function:

L α, b, ξ, β, γ = 1
l ∑

i − 1

l
ξi + 1

2αT 2γAK + 2
γI

u + l 2 KLK α

− ∑
i = 1

l
βi yi ∑

j = 1

l + u
α jK xi, x j + b − 1 + ξi − ∑

i = 1

l
γiξi .

(B6)

Based on the Karush-Kuhn-Tucker (KKT) conditions, we get

∂L
∂b = 0 ∑

i = 1

l
βiyi = 0 (B.7)
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∂L
∂ξi

= 0 1
l − βi − γi = 0 0 ≤ βi ≤ 1

l ξi, γi are non‐negative (B.8)

Substituting (B.7)–(B.8) into (B.6), we can formulate a reduced Lagrange function:

LR α, β = 1
2αT 2γAK + 2

γI

u + l 2 KLK α − ∑
i = 1

l
βi yi ∑

j = 1

l + u
αiK xi, x j − 1

= 1
2αT 2γAK + 2

γI

u + l 2 KLK α − αTKJTYβ + ∑
i = 1

l
βi,

(B.9)

where J = [I 0] is a l×(l + u) matrix, with I being the l×l identity matrix, Y = diag(y1, y2,…, 

yl), and K is the (l + u) × (l + u) kernel matrix.

Setting the derivative of (B.9) to zero with respect to α, we obtain

∂LR

∂α = 2γAK + 2
γI

u + l 2 KLK α − KJTYβ = 0 α = 2γAI + 2γI / u + l 2 LK −1JTYβ

(B10)

Substituting (B.10) into (B.9) and combining (B.7)–(B.8), we can eventually obtain (10). □
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Fig. 1. 
Illustration of the conversion from data labels to pairwise constraints
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Fig. 2. 
The composition of the formulation of SSC-EKE
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Fig. 3. 
The synthetic data set DS1
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Fig. 4. 
Learned classification hyperplanes of SVM, LapSVM, and SSC-EKE
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Fig. 5. 
Performance curves of the nine algorithms with respect to the varied labelled data sizes on 

partial Benchmark/UCI/KEEL semi-supervised data sets with the linear kernel.
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Fig. 6. 
Performance curves of the nine algorithms with respect to the varied labelled data sizes on 

partial Benchmark/UCI/KEEL semi-supervised data sets with the RBF kernel
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Fig. 7. 
Illustration of the image categories involved in our experiments
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Table I

Common abbreviations used throughout this manuscript

Abbreviation Meaning

SVM Support Vector Machine

S3VM Semi-Supervised Support Vector Machine

LapSVM Laplacian Support Vector Machine

LapRLS Laplacian Regularized Least Square

TSVM Transductive Support Vector Machine

CS4VM Cost Sensitive Semi Supervised Support Vector Machine

WeLlSVM Weakly Labelled Support Vector Machine

MeanS3VM-mkl Label-Mean-Based Semi-Supervised Support Vector Machine Regarding Multiple-Kernel Learning

MeanS3VM-iter Label-Mean-Based Semi-Supervised Support Vector Machine Using Alternating Optimization

RKHS Reproducing Kernel Hilbert Space

PCRF Pairwise Constraint Regularized Formula

MPCJRF Manifold Pairwise Constraint Jointly Regularized Formula

SSC-EKE Semi-Supervised Classification with Extensive Knowledge Exploitation
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Table VII

Details of ten, real-world, (semi-)supervised classification data sets

Dataset
Training set

Testing set data size Dimension
Data size Labelled example size

comp VS rec 500 50 500 318

comp VS sci 500 50 500 358

comp VS talk 500 50 500 255

rec VS sci 500 50 500 242

rec VS talk 500 50 500 297

sci VS talk 500 50 500 333

coast VS highway 300 30 320 300

mountain VS street 300 30 366 300

gisette_4 VS 9 4000 100 3000 5000

mnist_3 VS 8 6000 100 7966 784
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