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Abstract

We introduce a new, semi-supervised classification method that extensively exploits knowledge.
The method has three steps. First, the manifold regularization mechanism, adapted from the
Laplacian support vector machine (LapSVM), is adopted to mine the manifold structure embedded
in all training data, especially in numerous label-unknown data. Meanwhile, by converting the
labels into pairwise constraints, the pairwise constraint regularization formula (PCRF) is designed
to compensate for the few but valuable labelled data. Second, by further combining the PCRF with
the manifold regularization, the precise manifold and pairwise constraint jointly regularized
formula (MPCJRF) is achieved. Third, by incorporating the MPCJRF into the framework of the
conventional SVM, our approach, referred to as semi-supervised classification with extensive
knowledge exploitation (SSC-EKE), is developed. The significance of our research is fourfold: 1)
The MPCJRF is an underlying adjustment, with respect to the pairwise constraints, to the graph
Laplacian enlisted for approximating the potential data manifold. This type of adjustment plays
the correction role, as an unbiased estimation of the data manifold is difficult to obtain, whereas
the pairwise constraints, converted from the given labels, have an overall high confidence level. 2)
By transforming the values of the two terms in the MPCJRF such that they have the same range,
with a trade-off factor varying within the invariant interval [0, 1), the appropriate impact of the
pairwise constraints to the graph Laplacian can be self-adaptively determined. 3) The implication
regarding extensive knowledge exploitation is embodied in SSC-EKE. That is, the labelled
examples are used not only to control the empirical risk but also to constitute the MPCJRF.
Moreover, all data, both labelled and unlabelled, are recruited for the model smoothness and
manifold regularization. 4) The complete framework of SSC-EKE organically incorporates
multiple theories, such as joint manifold and pairwise constraint-based regularization, smoothness
in the reproducing kernel Hilbert space, empirical risk minimization, and spectral methods, which
facilitates the preferable classification accuracy as well as the generalizability of SSC-EKE.
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l. Introduction

Classification, which aims at identifying the data instances in a testing set by using the
discriminant function learned from a training set, is an important branch of pattern
recognition. The effectiveness of conventional classification approaches, such as support
vector machines (SVMs) [6],[14],[20],[28],[36]-[38] and artificial neural networks [11],
[12],[24],[25],[29], is largely dependent on the quantity and quality of training examples.
Most of these approaches can obtain satisfactory results only in ideal situations in which the
information embedded in the training set is sufficient so that the learned classifiers are
insightful. Obtaining informative training examples is sometimes computationally expensive
or labour-intensive. Instead, we often have a limited amount of labelled data but many
unlabelled instances. In response to this challenge, semi-supervised classification technigues
[31.[4],[13].[15]-[18],[20],[30],[39]-[41],[43].[44] have been developed to simultaneously
exploit the prior knowledge existing in numerous, label-unknown examples as well as a
small quantity of label-known ones in the training set to improve the accuracy and
generalizability of the classifier on target data sets. In such cases, the semi-supervised SVMs
(S3VMs), which are derivatives of the classic SVM, have motivated extensive research, and
quite a few approaches have been reported. Representative work can be briefly reviewed as
follows. The transductive support vector machine (TSVM) [13], as one of the pioneering
S3VMs, was initially developed for text classification. By taking the transductive rather than
any inductive strategy, the TSVM takes into account a particular testing set, i.e., the testing
set is used as an additional source of information regarding hyperplane margins, and
attempts to minimize the misclassification of only those particular examples in the testing
set. The 1-norm linear, SVM-based, semi-supervised model [4] constructs a general SVM
model minimizing both the misclassification error and the function capacity by using all of
the available data from both the training and working (namely, testing) sets, in which the 1-
norm linear SVM is converted to a mixed-integer program (MIP) and then exactly solved
using integer programming. Due to the observation that the semi-supervised SVM with
known label means of unlabelled data is closely related to the supervised SVM that has
access to all the labels of the unlabelled examples, two versions of the MeanS3VM [15], i.e.,
MeanS3VM-mk/ and MeanS3VM-jter, were separately proposed by maximizing the margin
between the label means of the unlabelled data. The former is based on multiple-kernel
learning, whereas the latter is based on alternating optimization. The cost-sensitive semi-
supervised SVM (CS4VM) [16] simultaneously considers unequal misclassification costs
and the utilization of unlabelled data. This is a cost-sensitive extension of the MeanS3VM
and likewise is able to closely approximate the supervised, cost-sensitive SVM that has
access to the ground-truth labels of all the unlabelled data when given the label means of the
unlabelled data. The weakly labelled SVM (WeLISVM) [17] studies the problem of learning
using weakly labelled data where labels of the training examples are incomplete. This
includes, e.g., 1) semi-supervised learning where labels are partially known; 2) multi-
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instance learning where labels are implicitly known; and 3) clustering where labels are
completely unknown. Via a convex relaxation of the original MIP, the WeLISVM is solved
by using a sequence of SVM subproblems that are much more scalable than convex, semi-
definite programming relaxations. As such, the WeLISVM obtains improved performance
and practicability when facing large data sets. In addition, the Laplacian SVM (LapSVM)
[3] and Laplacian-regularized least squares (LapRLS) [3], which benefit from the manifold
regularization in which the geometry of the marginal distribution with respect to both
labelled and unlabelled data in the training set is used, feature better classification accuracy
than the classic SVM approach.

Among these existing S3VMs mentioned above, the LapSVM has particularly captured our
interest due to its manifold regularization mechanism, which relies primarily on unlabelled
data. There are three terms in the framework of the LapSVM. Specifically, the first controls
the empirical risk by using the given labelled examples. The other two regularization terms,
respectively, impose the smoothness condition on the possible solutions and the geometric
knowledge of the probability distribution. However, it is clear that the few precious labelled
examples are primarily recruited to constitute the loss function for measuring the empirical
risk in the LapSVM. In other words, the inherent information existing in these given data
labels is not completely mined within the framework of the LapSVM. This is the immediate
motivation of our research.

To create a semi-supervised SVM that makes extensive use of the knowledge embedded in
the entire training data, regardless of the label availability, our strategy is as follows. For the
known data labels, in addition to being used to control the empirical risk, the pairwise must-
link and/or cannot-link constraints are enlisted to construct the pairwise constraint
regularization formula (PCRF) and further the manifold and pairwise constraint jointly
regularized formula (MPCJRF). Additionally, based on all of the training data, the
smoothness condition is imposed on the possible solutions, and the graph Laplacian is used
to embody the geometry structure of the data manifold. The optimization issue of our
method can also be reformulated as a solvable quadratic programming problem. We
designate our method as semi-supervised classification with extensive knowledge
exploitation (SSC-EKE). In summary, the contributions of our work are as follows:

1. The MPCJRF is not merely a simple combination of the manifold and pairwise
constraint regularizations. It uses the implicit adjustment of pairwise constraints
to the graph Laplacian to facilitate the unbiased approximation of the true data
manifold. This is particularly valuable because the pairwise constraints generated
from known data labels are known with a high degree of confidence.

2. In terms of the Min-Max theorem-based transformation, the two terms in the
MPCJRF have the same magnitude. Therefore, with a trade-off factor varying
within a fixed interval [0, 1) and by adopting cross-validation, the extent of the
impact of the pairwise constraints on the graph Laplacian can be flexibly
determined in any semi-supervised classification scenario.

3. SSC-EKE pursues, as much as possible, knowledge exploitation regarding both
the labelled and unlabelled data in a training set. The labelled examples are used
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not only to minimize the empirical risk but also to develop the significant
MPCJRF. Moreover, all of the data in the training set, particularly the numerous,
unlabelled data instances, are involved in controlling the model smoothness as
well as in depicting the underlying data manifold.

4. By incorporating the strengths of multiple theories, including the empirical risk
minimization, the smoothness condition in an ambient space, joint manifold and
pairwise constraint-based regularization, the spectral graph, and the Min-Max
theorem, SSC-EKE features preferable classification effectiveness as well as
generalizability.

The remainder of this manuscript is organized as follows. The work related to our research,
such as the SVM, Representer Theorem, the manifold regularization, the LapSVM, the
knowledge existing in the supervision, and the conversion between data labels and pairwise
constraints, are briefly reviewed in Section II. Our proposed PCRF and MPCJRF, the
formulation as well as the algorithm of SSC-EKE, and several relevant theorems are
specifically introduced in Section I11. The comparisons of classification performance with
regard to our proposed SSC-EKE and several other state-of-the-art S3VM approaches on
both synthetic and real-world data sets are presented in Section IV. The conclusions
regarding our work are given in Section V.

Il. Related Work

To facilitate comprehension, some common abbreviations used throughout this paper are
first listed in Table I.

A. Support Vector Machine (SVM)

The SVM, proposed by Vapnik et al. [6],[36],[37], is a well-accepted technique for
classification in pattern recognition. Instead of pursuing empirical risk minimization, the
SVM is devoted to the overall risk minimization by minimizing the upper bound of the
generalization error. By using a certain Mercer kernel, the SVM maps the data in the original
feature space into those in a high-dimensional feature space to seek the optimal separating
hyperplane in terms of maximizing the margin between two classes.

Let X={x;€ R j=1,... denote the training set, /be the number of training examples, and
yi€{+1, -1} (/= 1,... signify the labels of the corresponding data instances in X. Suppose
that f{.) represents the decision function and that Hy denotes the reproducing kernel Hilbert
space associated with one Mercer kernel K. The framework of the SVM can then be
formulated as

1 L 2

min 72 L=yif (x), +7llf Nz} @

JeH |

where (). is the hinge loss function, (1-y7(x))= max(0,1-y7(x)), and >0 is the
regularization parameter.

Inf Sci (Ny). Author manuscript; available in PMC 2019 January 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Qian et al.

Page 5

Theorem 1 (Representer Theorem [3])—Suppose that Hy denotes the corresponding
RKHS. Then, the solution to the SVM optimization problem in the form of (1) can be
expressed as

!
fxx)= Z al.K(xi, x) 2

i=1

For the proof of Theorem 1, please refer to Appendix B.1.

Based on Theorem 1, and following the SVM expositions, i.e., with an unregularized bias
term b being added to (2), the formulation of the SVM in the form of (1) can be equivalently
rewritten as

l
1
7 Z §i+ya Ka

i=

min
aeR,éieR

>

1
sy D aKx)+b) 21 =& i=1,...1 (3)
i=1

where K /sthe A&/Gram matrix with K;=K(x; X)); K{(.,.) is the enlisted kernel function.

Theorem 2 [3]—Let B=[B1,....B1" € R’be the Lagrange multipliers, Q = Y (K/25)Y, Y =
diag()4,..-.y), and diag(.) signify the generating function of the diagonal matrix. Then, the
dual form of (3) is

max
peR

5

1 [ 1,T
17.21/%,.—# 0p

1=

)
s.t. Z By =0, (4)

i=1

~ =

For the proof of Theorem 2, please refer to Appendix B.2.
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Using the optimum B* of (4), the eventual solution of (3) can be obtained, i.e., a* = YB*/2y.

B. Manifold Regularization and LapSVM

Manifold regularization is essentially devoted not only to the smoothness of possible
solutions but also to the utilization of knowledge from all available data instances. Its
framework, developed by organically incorporating the theories of manifold learning and the
spectral graph into the common regularization formulation of the SVM, was systematically
discussed and presented in [3]. Let S= {x;€ R? j=1,...,1+u} denote the training set
consisting of /labelled examples and ¢ unlabelled data instances, W) signify the loss
function, and the other notations be the same as those in (1); the framework of manifold
regularization can then be generalized as

min ZV xp Vo [(6)) + Al Al + 717 )

rem |1

where ¥4 and y,are the parameters of the second and third regularized terms.

As was previously mentioned, there are three terms in (5). The first one controls the
empirical risk by using a certain loss function, the second avoids the overfitting issue by
imposing the smoothness condition on possible solutions in the RKHS, and the last exploits
the intrinsic geometric distribution of all data instances based on the manifold learning. To
embody the intrinsic manifold nature of the data distribution, the structure of the data
adjacency graph was used in [3], i.e.,

[+u

1
190 = gz 2 ()= (e W, = e

l]—l

where f = [Ax1),...,AXx )], Wi €W (7, j=1,...,u+ /) are the edge weights in the data
adjacency graph, L=D-W is termed the graph Laplacian, and D is the degree matrix of

which the diagonal entries D, = Zl tu W, and the others equal to 0.
Jj=

If W) is the hinge loss function, (5) can be expressed as

l
1 _ 2 I T
Fup |7 2 (=), +rall i+ o f | )

Theorem 3 [3]—Let H denote the corresponding RKHS. The solution to the LapSVM in
the form of (7) can be expressed as
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[+u

fxx)= Z al.K(xi, x) (8)

i=1

For the proof of Theorem 3, please refer to Appendix B.3.

Based on Theorem 3, the problem of (7) is reduced to the optimization of coefficients a; over
the finite (4 u)-dimensional space. Following the SVM expositions and incorporating a bias
term binto (8), the formulation of the LapSVM is subsequently obtained by reformulating
(7) as

!
min %Z §i+}/AaTKa+ ! 2ocTKLKaz,
ack' T er| S w+1)
l+u
s.t.yi(zlajK(xi,xj)w)z1—51.,i:1,...,z, 9)
J:

Theorem 4 [3]—Let 8= [B1,....01" € R/be the Lagrange multipliers, Q =YJK(2y4 |

+ 2y /(- HALK)LITY, I=[1 0] be a /x(/+ 1) matrix, with | being the /x /identity matrix,
Y =diag()4,)s,---.¥), and K be the (/+ 4) x (/+ 4) kernel matrix. Then, the dual form of (9)
can be expressed as

max
l

peR | i=1

1 L 1,T
72 P ot Qﬁ)’

1
s.t. ) By;=0, (10)
i=1

=

For the proof of Theorem 4, please refer to Appendix B.4.

As such, by using the solution of (10), the solution in (9) can be obtained using a*=(2y 4l
+2y (- )LK) L ITY B~
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C. Knowledge Existing in the Supervision

In semi-supervised learning, class labels belong to the most common category of
supervision, and the straightforward usage of class labels can be the least sophisticated form
of knowledge exploitation. However, as another usual form of prior information, pairwise
constraints, also referred to as must-link or cannot-link constraints, are usually of greater
complexity. Depending on the specific cases offered by users, pairwise constraints can be in
the form of a must-link set, in which the couples of any entry must be assigned to the same
label, a cannot-link set, where the numbers in each entry must come from separate groups,
or both.

The supervision in the form of class labels or pairwise constraints is interdependent, and
there actually exist conversions between them. According to the different data labels existing
in the supervision, the labelled examples can be divided into several groups. Only one group
exists, as a special case, if and only if all the given labels are consistent. Suppose that the
data number in each group is more than one; then, any two examples within one group can
certainly be used to constitute the must-link set, and any example pair of which the members
are separately from two inconsistent groups should certainly be an entry in the cannot-link
set. In the special case of only one group, the must-link set is available but the cannot-link
set is not.

As an example, Fig. 1 illustrates the feasible conversion from class labels to pairwise
constraints, where there are five data instances in each of the positive and negative classes,
respectively, as shown in Fig. 1(a). The attainable entries in the must-link/cannot-link set
generated by these labelled examples are specifically indicated in Fig. 1(b). Intuitively,
regarding the knowledge exploitation, the prior information in the form of must-link/cannot-
link constraints appears to be more informative than that of class labels.

lll. Semi-Supervised Classification via Extensive Knowledge Exploitation

Before introducing our own work, we present the following three aspects of comprehension
with regard to existing semi-supervised classification techniques.

1. The accuracy and generalizability performance of conventional classifiers
depends on the quality and quantity of training examples. However, due to the
limited amount of labelled data, many semi-supervised classification methods are
designed to effectively exploit the knowledge embedded in many label-unknown
data instances rather than in the few labelled examples.

2. In many existing S3VMs, such as the LapSVM, LapRLS [3], MeanS3VMs [15],
and CS4VM [16], the few but precious label-known examples are primarily used
to control the empirical risk, which usually neglects to make extensive use of this
form of supervision data.

3. To utilize the label-unknown data instances, many semi-supervised classifiers
work based on certain assumptions. For example, the LapSVM relies on the
premise that the extracted graph structure of marginal distributions can
effectively depict the ground truth of the data manifold. Such assumptions,
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nevertheless, are sometimes difficult to guarantee and verify, particularly in a
situation where much interference information, such as noise or outliers, exists.

Motivated by such challenges, we develop our own scheme, based on the LapSVM, for
semi-supervised classification, as follows:

A. Pairwise Constraint Regularization

As described in Section 11-C, because the given data labels can easily be converted into the
must-link/cannot-link constraints and because the latter appears to be more insightful than
the former, we first devise the following pairwise constraint regularization mechanism.

Definition 1—Let f = [£,..., f; fu1..., fw, " and 7:(i=1,..., /+ 1) denote the prediction
results of the data instances in = {x;€ R j=1,... via the discriminant function £ Suppose
that MSand CS signify the must-link set and cannot-link set, respectively, derived from the
given, insufficient labelled examples and that |.| signifies the entry number in the MSor CS.
The pairwise constraint reqularization formula (PCRF) can then be defined as

(F-r) X (f-t)

<i,j> €MS _<pg> €CS
0S| i3] - (1D

min
f

where 7, j, p, g € [1,/+ d]; </, /> denotes any entry in the MS, and 7and jare their individual
data indices in S. Similarly, <p, g> indicates any entry in the CS, with pand g being the
corresponding data indices.

In light of the fact that any two examples x;and x;, corresponding to </, />€MS, should
have the same label, i.e., either +1 or -1, the ideal decision function fshould at least keep
the signs of 7=A(x;) and 7; =Ax)) the same. Such a condition can actually be achieved by

minimizing (f,-—lj)z, which inductively minimizes ¥ _ ij> eMS(fi_fj> . In contrast, for
any two examples X, and X, corresponding to <p, g>€CS, the goal is to have opposite signs,
which is equivalent to minimizing —(#, - f)?and thusalso ¥, _ , . ¢ CS(_(fp —fq)z). In
view of the potential capacity gap between the MSand CS, the averages of

2 , 2 . .
Y oiis eMs(fi‘fj) and Y _, .5 c cs(‘(fp‘fq) )are listed in (11).

Theorem 5—Let us define a matrix Qs yx(#) having elements

1/IMS|, YV<i,j> e MSor < j,i> € MS;
Qij:le: —-1/|ICS|, V<i,j> €CSor <j,i> €CS; (12)
0 default,

and use the same notations as those in Definition 1. Then, the proposed PCRF in the form of
(11) can be reformulated as
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min (fTzf). (@3-1)
Z=H-0Q, (13-2)

H = diag(Q - 1 (13-3)

I+ u)x 1)’

where 1(4)x1 denotes one (/+ ¢)x1 constant vector of which the elements are all 1.

Proof: As discovered in (6),

. 2 . , . .
min (iji 1(f(xt.) —f(xj)) Wij) = min (fTLf) = min (fT(D - W)f). With this
transformation as a reference, the above theorem can be easily proven. Here, the roles of Q,

H, and Z are similar to those of W, D, and L in (6), respectively. O

As is evident, by converting the given labels into pairwise constraints and by means of the
PCRF, not only do we obtain a novel regularization mechanism, but the information existing
in the insufficient labelled example is further expanded and exploited.

B. Manifold and Pairwise Constraint Jointly Regularized Formula

The LapSVM is closely associated with estimating the manifold structure || f||%. However, it

is not guaranteed that the enlisted data adjacency graph in (6) can always depict an unbiased
estimate of the ground truth of the underlying manifold, which significantly impacts the
performance of the LapSVM. To resolve this problem in our work, we put forward the
dedicated countermeasure below.

Because (6) and (13) have a similar composition, with one parameter 8> 0, it is reasonable
to combine them as

min (f'Lf + pf 2f) = minf L+ p2)f . (14)

Theorem 6—Let W and Q be the same as those in (6) or (12), respectively. Then, (14)
implies that there is a generalized matrix W' = W + 8Q, which embodies the adjustment of
the pairwise constraints to the estimated manifold structure.

Proof: Because L + fZ = D-W + f(H-Q) = D +BH-(W +£Q) = diag(W - L4 x1) +

Bdiag(Q - 1 (4 yx1)—(W + AQ) = diag((W + BQ) - L(pyx2)—(W + BQ), withW’ =W + Q,
ie.,
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Wl.j+[}/|MS|, V<i,j> eMSor <ji> €MS,
W.. = Wl.j—/}/|CS|, V<i,j> €CSor <j,i> €CS, (15)

tj

Wi ; otherwise,

we arrive at L + Z = diag(W" - 1(4x1—)W’ immediately.

Intuitively, (15) exhibits the manipulation, with respect to the pairwise constraints, of the
original data adjacency measurements for the graph Laplacian, i.e., the estimated manifold
structure.

In (15), the parameter g balances the overall impact of the pairwise constraints on the
original adjacency weights. However, we have observed that the appropriate scale of the
parameter 3 is sometimes difficult to estimate, particularly when fTLf and fTZf in (14) have
different orders of magnitude. To address this, we apply Theorem 7.

Theorem 7—Suppose that M is any (/+ &)x(/+u) symmetric matrix and that f is the same
as that in Definition 1. For fTMf, the range of which was previously uncertain, by using the
. M =2 nin_ Mt
transformation M’ = =

7 , Where Amin v and Amax_m refer to the minimal and

max_M ~ Amin_M

maximal eigenvalues of M, respectively, and | is the identity matrix, one can arrive at

o<f™™Mf<fTF. (16)

Proof: According to the Rayleigh quotient [31],[32] and the Min-Max theorem [21], one can
obtain the following inequality:

fTmf
A < <
min_M fT f

(A7)

max_M

Furthermore, (17) equals to

iyt F SFME <o if F O FME = A ' f <ol f (18)
- Amin_Mfo <0< fT(M - Amin_MI)-f < (/lmax_M - Amin_M)fo :

Therefore, this theorem can be proven by rearranging (18). O

Because both L and Z are symmetric, based on Theorem 7 and by using
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L-2_. .1
L'=—"5— (19)
max_L min_L
and
Z—-2_. I
7= —mL ()
max_Z min_Z

where Amin L and Amax_ are the minimal and maximal eigenvalues of L, respectively, and
Amin_z and Amax_ are those of Z, we can attain fTL Fand fT Z %, which have the same
range.

Thus far, we can propose the significant manifold and pairwise constraint jointly regularized
formula as follows.

Definition 2—Derived from (14), by using (19) and (20), the manifold and pairwise
constraint jointly regularized formula is defined as

min (@ppesrpH =0 =f 'L f+2f'Z f = f{(1 =L +72))f). (21)
Differing from fTLf and fTZf in (14), the ranges of fTL fand f7Z F in (21) are now

consistent. Thus, a simple trade-off coefficient, = €]0,1), can self-adaptively control their
individual significance in any data scenario.

C. Semi-Supervised Classification Based on Extensive Knowledge Exploitation

1) The framework of SSC-EKE—Now, incorporating the MPCJRF in the form of (21)
into (1), we can derive our method for semi-supervised classification as follows.

Definition 3: Using the same notations as those in (1) and (7) and following the principle of
minimum structure risk of the SVM, the formulation of our semi-supervised classification
with extensive knowledge exploitation can be finally defined as

yif (xi))+ +r4ll7 ||%< +7,Pypcire(f) (22)

<
oz
ai=]
~
—_—
~|—
—_
—
|

k)

o
%Z (1=if (), + 74l +7, 871 =L +2Z))f

where y;> 0 is the regularization parameter for the term of the MPCJRF.
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Likewise, referring to Theorem 3 and following the SVM expositions, we can reformulate
(22) as
i

% 3 &4y 0 Katy o K(1 - oL +1Z)Ka|.
i=1

min

acR T er

Ky Ky - vy

i . v, K v, K . yK
Theorem 8: Let us define a matrix P = 2 2722 e

, Where Kj;

YK @+ 2K+ YK+ 0|40 <1
=K X)), 1€[L, [}, JE€[L, I+ d]. Suppose that = (B, B, ...,B) denotes the Lagrange
multipliers. Then, (23) is equivalent to the following optimization problem:

L 1,T
T - 4"
i=1

max
peR

B

[

where S=PT(y4K + ¥ K((1-79)L"+ 2" )K)"1 P.

Proof: By using the Lagrange multipliers 8= (81, Bo,....0) and ¥ = (y1, y2,-..,¥)), we first
obtain the Lagrange function:

1
L@, bt f.7) = % Y&+ a(r K +7,K(1 - 0L + 20K (25)
i—1
[

- Zyié:i‘

i=1

[+u

1
- Z ﬁi(yi( Z ajK(xi,xj)+b
i=1 ji=1

—1+¢
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According to the KKT conditions, we have

PyiKi

1
oL ) , : -
e =09 2,K+7,K(1-0L +7Z )K)ac—i;1 : =0

ﬂiyiKi(l+u) U+u)x1

! ! 1 ! ! -
& 2(y,K+7,K(1-0L' +1Z)K)a =P a = z(;/AK +7,K((1 = 7L +7tZ")K) 'pg;

(26)

oL L
S=0e -21 By, =0; (27)
=

—

L ped-p—y=0s0<p<

7 .

Substituting (26)—(28) into (25), the dual of (23) is achieved, i.e., (24). O

In terms of the solution B* of (24), the original solution of (23) can be given by

1 / K™
o = (1K +7,K( - DL +22)K)'Pg", (29-1)

poly
-3

1

[+u
(yf Z“}*K(xi,x,)), (292

J=1

and the final classification decision function can be expressed as
[+u

f@ = Y aK(x x)+b". (30)

i=1
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2) Other explanations with respect to SSC-EKE—To facilitate comprehension, we
describe the meanings and origins of the components in the formulation of SSC-EKE in Fig.
2. The SVM and LapSVM are two of the foundations of our work. Except for the newly
devised MPCJRF, SSC-EKE inherits the manifold regularization from the LapSVM and the
other components from the SVM.

It should be noted that with the overall framework in the form of (22) or (23), SSC-EKE
manifests a significant advantage: the knowledge embedded in the two categories of training
data for semi-supervised classification, i.e., few label-known examples and numerous label-
unknown data instances, is extensively exploited. The detailed explanations are as follows.

i. Explicit usages regarding the labelled and unlabelled data for training in SSC-
EKE: The labelled examples are recruited to control the empirical risk (see

Zf _ (1= f(xl.))+ in (22)) and to impose the pairwise constraint regularization (see f7Z ¥

in (22)) on the objective function. Meanwhile, many unlabelled data instances, along with

few labelled ones, are involved in estimating the underlying manifold structure (see fTL fin
(22)) and controlling the model smoothness in the reproducing kernel Hilbert space in terms

of I £IIz-

ii. Implicit efficacies regarding the labelled and unlabelled data for training in SSC-
EKE: Because the MPCJRF in the form of (21) is derived from (14), as revealed in
Theorem 2, by using the implicit, generalized adjacency matrix W =W + 8Q, the
underlying adjustment of the pairwise constraints to the estimated manifold structure occurs.
In addition, based on Theorem 3, we are able to transform L and Z into L” and Z’,
respectively, and then we obtain the same range for fTL fand fTZf, i.e., [0, f'f]. Thus, with
the trade-off factor rtaking values between 0 and 1, it is viable for us to flexibly determine
the individual impacts of 'L fand fTZ ¥ in (21). As such, the manifold and pairwise
constraint jointly regularized mechanism is achieved.

Lastly, let us come back to the drawbacks of existing semi-supervised classification
techniques, which we mentioned at the beginning of Section Il1. All of them are addressed
by means of our SSC-EKE schema. Specifically, the first two problems are resolved by
converting labels into many must-link and cannot-link constraints and further presenting the
pairwise constraint regularization mechanism. The third problem is resolved by devising the
MPCJRF in the form of (21) to obtain an effective pathway to flexibly correct the estimated
data manifold structure by using the given labels.

D. The Algorithm of SSC-EKE

In this section, we detail the algorithm of the proposed SSC-EKE method.
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Algorithm
Semi-Supervised Classification with Extensive Knowledge Exploitation (SSC-EKE)

Input:

i l+u
! and v unlabelled data instances {x }

/labelled example [(xl-,yi)]l Hj=1+1

i=

Output:  Decision function £(x).

Step 1: Construct the data adjacent graph via the (4¢) data instances and then generate the edge weight matrix W as
well as graph Laplacian matrix L;

Step 2: Generate the must-link and cannot-link sets (i.e., MSand CS) in terms of the /labelled examples, referring
to Section 1I-C;

Step 3: Constitute the pairwise constraint matrix Q and further the matrix Z in terms of MSand CS, according to
Theorem 5;

Step4:  Transform Land Zinto L” and Z” so that fTL and fZ f have the same range—[0,fT ], according to (19)
and (20), respectively;

Step 5: Compute the optimum solution B* of (24), and then generate the optima, a* and &*, of (23) via (29);
Step 6: Output the discriminant function £(x) using (30).

IV. Experimental studies

A. Setup

To evaluate the performance of our proposed SSC-EKE approach, we systematically
compare it with eight other state-of-the-art methods, including the classic SVM (see (3)),
LapSVM (see (9)), LapRLS [3], CS4VM [16], TSVM [13], WeLISVM [17], and two
versions of the MeanS3VM — MeanS3VM-/ter and MeanS3VM-mk/ [15]. Among these,
the TSVM is one of the predecessors in semi-supervised classification; the LapRLS and
LapSVM are two representatives of manifold regularization-based S3VMs, with the
LapSVM also being the foundation of our SSC-EKE approach; and the other four, as
introduced in Section I, are well-established S3VMs of which the semi-supervised
mechanisms differ from our SSC-EKE strategy. Except for the classic SVM, the others are
all semi-supervised classification methods.

To measure the realistic classification performance of all enlisted algorithms, the
conventional accuracy index (ACC) [7],[19] is used. Moreover, to specifically differentiate
the performances of different algorithms, the well-established F1 score [46] is also
investigated in standard binary classification issues in our experiments. Each approach is
performed 20 times on each employed data set using inconsistent supervision subsets, which
will be subsequently described. To achieve a balance between good readability and
appropriate manuscript length, we separate our experimental content into two parts. The
classification performance measured using the ACC and the statistical analysis metric of all
methods on all data sets are listed in this section, and some comments regarding the
experimental outcomes are also presented in this section. The supplemental content, such as
the F1 scores of all algorithms on some binary classification data sets, are reported in the
Appendix.
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The parameter settings of all nine algorithms are given as follows. Both the linear and
Gaussian RBF kernels were used in our experiments, with the width o in the Gaussian RBF
kernel, K(x; xj) = exp(=lix;— xj|I2/2ch), being set to the average distance among all data
instances. Both parameters C; and G, were selected to be within {0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1} in the WeLISVM, whereas the trial ranges were {0.1, 0.5, 0.7, 1, 10, 50, 100,
200} in the TSVM, MeanS3VM-jter, MeanS3VM-mkl, and CS4VM. The KNN was used in
the LapSVM, LapRLS, and SSC-EKE to constitute the data adjacency graph, and the
number of nearest neighbours was sought within {1, 3, 5, 7, 9} throughout our experiments.
The parameter values of 4 and y;in the LapSVM and LapRLS, y4and y;in SSC-EKE,
and y in the SVM were chosen to be within {107, 1075, 1074, 1073, 1072, 0.1, 1, 10, 102}.
In addition, zin SSC-EKE varied from 0.05 to 1, with the step size being 0.05. These
parameters in related algorithms were eventually determined using the cross-validation
strategies. More specifically, the leave-one-out cross-validation [2],[5] was adopted when
labelled data sizes were less than or equal to 20; otherwise, the fivefold cross-validation was
used.

All enlisted data sets were normalized before they were used in our experiments by using the
Xig~ min {xld’ ...de}

max {x gy} = min {x) g xy)

instance and dimension, respectively. Moreover, all experiments were conducted using a PC

with an i5-4590 3.30 GHz CPU, 4 GB of RAM, Microsoft Windows 7 (64 bit), and

MATLAB R2013a (64 bit).

formula Xy = , Where 7and d denote the indices of the data

B. Experiment on Synthetic Data Set

We first verify the performance of all of the involved approaches using synthetic data
wherein the true answer is known. To this end, as shown in Fig. 3, we artificially generated
one two-dimensional, two-moon-shaped data set denoted as DS1, in which the data size was
16,040. To simulate the situation of (semi-)supervised classification, the original DS1 was
arbitrarily divided into two groups, with the data numbers being 7,000 and 9,040. The group
of 7,000 records was selected to act as the training set, while the other as the testing set. The
100 examples randomly selected from the training set were enlisted as the supervision
subset, i.e., the labelled data, and only the RBF kernel was used during our experiment
because DS1 is apparently non-linearly separable.

We separately ran the nine algorithms on DS1, and the classification accuracies, in the form
of ACC means and standard deviations, are listed in Table I1, where the ranks achieved by all
algorithms are shown in the parentheses. For the detailed classification correctness of each
algorithm with respect to the positive and negative classes in the testing set, one can refer to
Table A.1, which is additionally listed in the Appendix.

In addition, because DS1 is two-dimensional, we illustrate the learning performance of all
approaches in terms of their learned classification hyperplanes. Due to the limited
manuscript length, here we only show one of the scenes of the SVM, LapSVM, and our
SSC-EKE in Fig. 4, where the 100 labelled examples in the positive and negative classes are
shown in red and blue, respectively, and the classification hyperplanes are shown in bright
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green. Our SSC-EKE algorithm ranks first on DS1. This is due to the benefits of the
extensive exploitation of knowledge contained in both labelled and unlabelled training data.
Moreover, the classification hyperplane of SSC-EKE shown in Fig. 4(c) creates a more
natural separation between the groups than those of the other methods.

C. Experiments on Benchmark/UCI/KEEL data sets

Next, eighteen well-established data sets from three famous repositories, i.e., the Benchmark
gata setst, UCP, and KEEL (Knowledge Extraction based on Evolutionary Learning)3, were
used in our experiments. The details of these data sets are listed in Table I11. Please note that
the last two data sets in Table 111, i.e., irisand balance-scale, contain three classes.

Therefore, the voting strategy [1],[9],[10],[33],[42],[45] was recruited in our studies to solve
multiclass classification problems. Specifically, regarding the given labelled examples, we
first divided them into different groups according to their labels. Then, with any two
different groups acting as the positive and negative classes, respectively, we separately
trained multiple classifiers. Last, the labels of the data instances in the testing set were
determined according to the majority principle.

To compose the (semi-)supervised classification scenes and evaluate the classification
performance of different approaches with respect to different supervision capacities, i.e.,
different numbers of labelled examples, we randomly sampled each original training set of
each data set twenty times, with the sample sizes being 10, 20, 30, 40, and 50, respectively.
In this way, we obtained twenty inconsistent subsets matching each sampling capacity on
each data set. With the twenty subsets of each sample size acting separately as the
supervision for (semi-)supervised learning, we ran the nine classification approaches on each
data set and obtained twenty classification outcomes from each of them.

We report the classification performance of these nine algorithms in Tables IV and V. The
accuracies of the nine algorithms on each data set with the 20 and 40 sample sizes are shown
in Tables IV and V, respectively, in the form of ACC means and standard deviations. The
best accuracy on each data set is denoted using bold font. Moreover, statistical analyses were
conducted in our experiments, including the average ACCs, ranks of all algorithms, and
paired #test scores [17],[18],[40], i.e., the win/tie/loss counts, of all semi-supervised
approaches versus the classic SVM and of SSC-EKE against the LapSVM, both at the
significance level of 0.05. In addition, the classification accuracies regarding these nine
approaches with respect to multiple supervision capacities are illustrated in Figs. 5 and 6, in
which, due to the limited manuscript length, we only show the representative cases of the
nine algorithms on 10 data sets, i.e., sonar, house, house-votes, mpnk2, diabetes, vehicle,
german, BCI, USPS, and digit1, in the cases of linear and RBF kernels, respectively. In
addition, the specific classification correctness of the positive and negative classes in the
testing sets of all the algorithms on all data sets, measured in terms of the F1 scores, was
also calculated in our experiments. However, due to the limited manuscript length, only the

1http://olivier.chapelIe.cc/ssl—book/benchmarks.html
http://archive.ics.uci.edu/ml/
http://www.keel.es/
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outcomes on twelve binary classification data sets are shown in Tables A.1l and A.1l1 in the

Appendix.

The analysis results regarding the performances of all tested algorithms are as follows.

1.

The SSC-EKE algorithm generally performs well on most of the involved data
sets. It achieves the best average ACC, highest average rank (Tables IV and V),
and the best overall performance versus the other seven semi-supervised
classification methods according to the #tests (Tables 1V and V). As indicated in
Tables A.ll and A.lll, SSC-EKE generally achieves the highest F1 scores in both
the positive and negative classes of all data sets. On one data set, if one algorithm
achieves the highest F1 scores in both the positive and negative classes, it
certainly achieves the best ACC. This is the reason why our SSC-EKE
outperforms the others.

As one of the theoretical bases of our research, the classification performance of
the LapSVM on these data sets is also compared with that of our SSC-EKE
algorithm. As shown in Table 1V, in which the sample size for the supervision is
20, the win/tie/loss counts of SSC-EKE against the LapSVM are 14/4/0 and
8/10/0 regarding the linear and RBF kernels, respectively. This indicates that
SSC-EKE overcomes the LapSVM overwhelmingly in the case of the linear
kernel, and under the condition of not being defeated, the former outperforms the
latter on nearly half of the recruited data sets in the case of the RBF kernel. For
the experimental results with the supervision size of 40, as listed in Table V, the
superiority of our SSC-EKE versus the LapSVM appears to be more substantial
than in the case with the sample size of 20.

As indicated in Figs. 5 and 6, the overall classification effectiveness of SSC-EKE
is roughly positively proportional to the supervision capacity. Specifically, as the
labelled sample size increases, the number of must-link/cannot-link constraints
increases accordingly; consequently, this strengthens the efficacy of the MPCJRF
in the form of (21) with respect to the whole framework of SSC-EKE (see (22)).

The validity of the MPCJRF in SSC-EKE sometimes cannot be manifested when
the supervision capacity is too small, such as in the cases of data sets with 10
labelled examples. For example, on the sonarand digit1 data sets with the RBF
kernel, as indicated in Figs. 6(a) and 6(j), the accuracies of SSC-EKE are
distinctly less than those of some competitors with the sample size of 10,
whereas SSC-EKE ranks first when the sample sizes are 30, 40, and 50. The
reason is that the MPCJRF cannot obtain relatively sufficient information from
the pairwise constraints when the number of labelled examples is quite small.

It is worth further discussing the outcomes of SSC-EKE on the dlig/t1 data set.
Here, we notice two phenomena: i) As illustrated in Fig. 5(j), in the case of the
linear kernel, neither SSC-EKE nor the LapSVM achieves a desirable rank,
whereas other approaches relying on label means, such as CS4VM and
MeanS3VMs, obtain considerably better scores. ii) As illustrated in Figs. 5(j)
and 6(j), the advantage of SSC-EKE over the LapSVM in terms of the average
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ACC are nearly unobservable, despite the increase of the supervision data sizes
from 10 to 50 in both cases of the linear and RBF kernels. This implies that the
MPCJRF did not play the due role in the entire framework of SSC-EKE in these
cases. We believe that these phenomena occurred due to the data inconsistency
existing in the original data set. In the digit data set, there is much interference
information, e.g., mislabelled data or data pollution due to noise, and this results
in its non-linear separateness. Therefore, the classification accuracies of SSC-
EKE and the LapSVM with the linear kernel are distinctly worse than those with
the RBF kernel (see Figs. 5(j) and 6(j)). Moreover, our proposed MPCJRF
mechanism is shown to depend on the data purity in the supervision subset, i.e.,
only correct labels can offer us beneficial must-link/cannot-link constraints.
Conversely, the mistakes in the given labelled examples negatively impact the
entire performance of SSC-EKE.

D. Experiments on Real-World Data Sets

For the purpose of further verifying the realistic performance of the proposed SSC-EKE, we
have also conducted our experiments in three real-world data scenarios: text data
classification, image recognition, and handwritten digit recognition. To this end, the well-
established 20 Newsgroups text databaseé*[8], Object Categories image repository°[26],
NIPS 2003 feature selection database®, and MINIST handwritten digit database’ were used
in our experiments. The constructions regarding the data sets used in this subsection are as

follows.

1.

For the text data classification scenario, four major text categories in the 20
Newsgroups text database, i.e., comp, rec, sci, and talk, were used. We generated
the six text data sets, which are shown in Table V1, by using all possible pairwise
combinations among these categories. Each data set had 1,000 records by
randomly selecting 250 records from each category. Each data set was evenly
divided into two parts to generate the training and testing sets. To construct the
(semi-)supervised classification scenes, we further randomly subsampled each
training set 20 times, using the sample size of 10, to produce 20 inconsistent
subsets as the supervision data. In addition, the BOW toolkit [23] was used to
reduce the data dimension, as it was originally as high as 43,586. The details of
these data sets used in our (semi-)supervised classification experiments are
summarized in Table VII.

For the image recognition scenario, as also indicated in Table VI, two pairs of
image categories from the Object Categories image repository were used in our
experiments: coast V'S highway and mountain VS street. The number of images
contained in the categories of coast, highway, mountain, and street are 360, 260,
374, and 292, respectively, and the total data sizes of coast VS highway and
mountain VS street are, respectively, 620 and 666. Eight representative examples

4http://www.cs.nyu.edu/~roweis/data.htm|
http://www.vision.caltech.edu/feifeili/Datasets.htm
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html (or http://www.clopinet.com/isabelle/Projects/NIPS2003/)
http://yann.lecun.com/exdb/mnist/
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of each of the four image categories are shown in Fig. 7. We randomly selected
300 images from each data set for training and the remainder for testing. We
further subsampled each training data set 20 times to obtain the supervision data
with the sample size of 10%. Because the number of pixels in each image, i.e.,
256x256=65,536, is too large to be directly used as the data features, we
performed the principal component analysis (PCA) to reduce the input feature
dimensionality to 300.

3. For the handwritten digit recognition scenario, in a case that we term g/sette 4
VS 9, the gisette data set from the N/PS 2003 feature selection database was
used to test the ability to distinguish the handwritten digits ‘4” and ‘9’, which are
often confused for each other. As detailed in Tables VI and VII, there are 3,500
records related to these two digits in gisette _4 VS 9, and the data dimension can
be as high as 5000. We randomly selected 4,000 records as the training set, using
100 arbitrarily selected examples as the labelled data, and used the remainder as
the testing set. Similarly, in a test that we denote as mnist_3 VS 8, we extracted
all records containing the digits ‘3’ and ‘8’ from the well-known MNIST
hanawritten digit database and tested the ability to differentiate these two digits.
As shown in Tables VI and VI, the feature dimension of mnist_3 VS 8is 784,
and the total number of records is 13,966, of which 6,000 were used for training
and the remainder for testing. One hundred randomly selected examples in the
training subset were used as the supervision information. In contrast to our other
experiments, we did not reduce the original data dimensions, as here we
attempted to investigate the classification performance of all competitors against
high-dimensional data.

For each of these real-world, semi-supervised data sets, the performances of all nine
algorithms were tested using twenty inconsistent supervision subsets. The outcomes of these
algorithms, reported in terms of the ACC means and standard deviations, are listed in Table
VI1I1. Due to the limited manuscript length, Table VIII only lists the individual scores of all
candidates and the statistical results of the paired #test associated with the RBF kernel. The
F1 scores of the nine algorithms on partial real-world data sets are presented in Table A.1V
in the Appendix. The results of these tests generally show the performance advantage of our
SSC-EKE algorithm, which is consistent with the findings observed from the
Benchmark/UCI/KEEL (semi-)supervised data sets shown in the previous subsection. In
addition, despite the fact that both gisette 4 VS 9and mnist_3 VS &belong to high-
dimensional data sets, our SSC-EKE algorithm also ranks as the best of all the algorithms.
These results, along with those in the previous subsections, confirm the effectiveness of our
proposed SSC-EKE method. Benefiting from the MPCJRF developed in (21), the knowledge
embedded in both the few, precious labelled examples and plenty of unlabelled data
instances are concurrently, extensively exploited. This exploitation consequently facilitates
the preferable classification performance of SSC-EKE.

E. Computational Time Comparisons

To compare the computational time of all employed algorithms, we also recorded their
running time including both training and testing on all involved data sets. To reduce the
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manuscript length, their average running time on nine Benchmark/UCI/KEEL data sets with
the RBF kernel and 20 labelled examples and on three larger-scale data sets, i.e., DSZ,
gisette 4 VS 9, and mnist_3 VS 8, with 100 labelled examples are shown in Table IX. As
disclosed, the running time of the conventional SVM slightly varied on these data sets
regardless whether they were small or large, as it only uses a few labelled examples to train
the classifiers. The TSVM is generally the most time-consuming algorithm due to its
iterative trials on testing data points. Specifically, after initially assigning the labels to all
testing data points, the TSVM tried to iteratively correct the assigned labels of any two
points if their assigned labels violated the predicted ones until the termination of the
iterations. Therefore, the TSVM is clearly unsuitable for large-scale data sets. Although the
WeLISVM also assigned the labels for all unlabelled data points during the training of
classifiers, using the cutting plane-based label generation strategy, this issue can be solved
via a sequence of SVM subproblems that are more scalable than conventional convex semi-
definite programming (SDP) relaxations. This facilitates the overall, much shorter
computational time of the WeL1SVM compared with that of the TSVM. The MeanS3VM-
fter, MeanS3VM-mkl, and CS4VM are three time-saving algorithms, as they only use the
means of classes of unlabelled data instead of the unlabelled data themselves to constitute
their formulations derived from the S3VM. Their computing efficiencies are particularly
manifested on larger data sets, such as DSI, gisette 4 VS 9, and mnist_ 3 VS 8in our
experiments. Both the LapRLS and LapSVM are manifold learning-based S3VM methods.
Whereas the LapRLS has an analytical solution that avoids time-consuming quadratic
programming computations that commonly occur in the LapSVM, the former is generally
faster than the latter. Compared with the LapSVM, our proposed SSC-EKE algorithm has
one more regularization term in its objective function, i.e., the pairwise constraint
regularization. Therefore, in theory, the computational cost of SSC-EKE should be higher
than that of the LapSVM. Our experimental results agree with this supposition on most of
the involved data sets. However, on some larger data sets, e.g., data sets of which the
numbers of training examples are more than 1000, SSC-EKE surpasses the LapSVM with
respect to running time. The potential reason is probably due to the delicate MPCJRF in the
form of (21), in which the values of both the manifold learning and pairwise constraint terms
are transformed such that they have the same range; this could eventually benefit the
optimization problem in the form of (23), especially for larger-scale data sets.

V. Conclusions

Our research is motivated by the lack of knowledge exploitation regarding few but valuable
labelled examples in many existing S3VMs. To address this problem, the PCRF is devised
by converting the given data labels into many pairwise constraints. Subsequently, by
merging the PCRF with the manifold regularization term and converting their individual
values such that they have the same range, the MPCJREF is further developed. Key to our
SSC-EKE method is the systematic incorporation of empirical risk minimization,
regularization in the RKHS, joint manifold and pairwise constraint-based regularization,
graph Laplacian, etc., in which the connotation of extensive knowledge exploitation is
embodied. Compared with several other state-of-the-art S3VM approaches on many semi-
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supervised data sets, the proposed SSC-EKE algorithm demonstrates preferable
classification accuracy as well as generalizability.

Regarding our future work, we plan to investigate the countermeasures for our SSC-EKE on
large-scale data sets. In this regard, the strategy regarding the core vector machine [27],[34],
[35] could be one of the countermeasures tested. Also worthy of further study are the
practicable methodologies for prompt, self-adaptive parameter setting in SSC-EKE, which
could facilitate its applicability to real-world problems.
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Appendix

A. Tables
Table A.l

F1 scores of all nine algorithms on the synthetic data set DS1

Dataset | SVM | TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-EKE
- F1 + | 0.8645 | 0.8814 0.9456 0.9147 0.8651 0.8133 0.9193 0.9363 0.9650
D.
F1_- | 0.8810 | 0.8914 0.9482 0.8992 0.8738 0.8292 0.9285 0.9380 0.9645
Table A.ll

F1 scores of all nine algorithms on partial binary classification Benchmark/UCI/KEEL data
sets with 20 labelled examples

Linear kernel

Dataset | SVM | TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-EKE
) F1 + | 0.9523 0.96 0.9206 0.9655 0.9407 0.9404 0.9558 0.8767 0.9852
wine
F1 - | 0.9755 | 0.9795 0.9556 0.9826 0.9659 0.966 0.9775 0.9298 0.9935
F1 + | 0.7063 | 0.7015 0.686 0.7236 0.7256 0.7258 0.7185 0.6853 0.7428
sonar
F1 - | 0.7394 | 0.7743 0.7437 0.7468 0.7897 0.793 0.7903 0.7718 0.7788
5 F1 + | 0.9351 | 0.9377 0.9563 0.9601 0.9062 0.9067 0.9259 0.9355 0.9663
ouse
F1 - | 0.9319 | 0.9374 0.9576 0.9596 0.891 0.891 0.9178 0.9345 0.9671
spectfheart | F1+ | 0.3793 | 0.046 | 0.2799 | 0.1884 | 0.2583 0.3192 | 0.3759 | 0.016 0.1272
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Linear kernel
Dataset SVM TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-EKE
F1 - | 0.8125 | 0.8813 0.8413 0.8597 0.8906 0.8927 0.8909 0.8848 0.8859
F1 + | 0.7168 | 0.7126 0.644 0.7293 0.7734 0.7737 0.7666 0.5971 0.7613
ionosphere
F1 - | 0.8667 | 0.8759 0.8584 0.8773 0.8714 0.8738 0.8854 0.8337 0.8838
F1 + | 0.8994 | 0.9061 0.914 0.9018 0.8859 0.8852 0.9006 0.911 0.9261
house-votes
F1 - | 0.9244 | 0.9328 0.938 0.927 0.9259 0.9255 0.9309 0.9365 0.9487
WDBC F1 + | 0.8424 | 0.8492 0.85 0.871 0.9002 0.8965 0.8979 0.8727 0.8799
F1 - | 0917 | 0.9275 0.9254 0.9327 0.9478 0.9465 0.9464 0.9376 0.9368
- F1 + | 0.3967 | 0.3742 0.3723 0.2398 0.387 0.3946 0.3752 0.0939 0.2654
mon,
F1 - | 0.6392 | 0.6759 0.6701 0.7405 0.6861 0.6949 0.6972 0.7647 0.77
5 F1 + | 0.9658 | 0.9597 0.9332 0.968 0.9665 0.9657 0.9675 0.9188 0.9692
reast
F1 - | 0.9312 | 0.9172 0.8626 0.9358 0.9329 0.9312 0.9356 0.8503 0.9383
F1 + | 0.7952 | 0.8056 0.755 0.7981 0.7964 0.7972 0.805 0.7732 0.8097
diabetes
F1 - | 0.5269 | 0.5104 0.3942 0.5441 0.5811 0.5783 0.5756 0.3188 0.5538
oy F1 + | 0.3335 | 0.3272 0.4393 0.4347 0.4707 0.4727 0.4139 0.0273 0.3281
vehicle
F1 - | 0.8068 | 0.8204 0.8311 0.8327 0.8215 0.8213 0.831 0.8614 0.8664
F1+ | 0.7105 | 0.7458 0.7878 0.7969 0.7949 0.7808 0.7825 0.8139 0.8236
german
F1 - | 0.4107 | 0.3906 0.3415 0.2967 0.457 0.4341 0.4302 0.323 0.2532
RBF kernel
Dataset | SVM TSVM | LapRLS | LapSVM | MeanS3VM-Jter | MeanS3VM-mk/ | CS4vM | WeLISVM | SSC-EKE
) F1 + | 0.9687 | 0.9817 0.9633 0.9743 0.9583 0.9813 0.9764 0.9536 0.9891
wine
F1 - | 0.985 | 0.9921 0.9821 0.9882 0.9767 0.989 0.9889 0.9761 0.9948
F1 + | 0.7096 | 0.6975 0.717 0.7189 0.7448 0.6811 0.7264 0.6808 0.7205
sonar
F1 - | 0.7754 | 0.7845 0.7908 0.7845 0.7991 0.7759 0.7946 0.7816 0.7981
p F1 + | 0.933 | 0.9332 0.9402 0.9382 0.9067 0.9141 0.929 0.9172 0.9428
ouse
F1 - | 0.9304 | 0.9313 0.939 0.9368 0.8938 0.8879 0.9241 0.9169 0.942
F1 + | 0.3101 | 0.2252 0.4009 0.4029 0.3811 0.1496 0.4134 0.1168 0.2776
spectfheart
F1 - | 0.8639 | 0.8883 0.8569 0.8727 0.8901 0.8887 0.8944 0.8876 0.894
F1 + | 0.7855 | 0.7949 0.7609 0.8164 0.8088 0.8081 0.8198 0.7143 0.8078
ionosphere
F1 - | 0.8975 | 0.8973 0.8904 0.9071 0.8894 0.9111 0.9043 0.8719 0.9067
F1 + | 0.8902 | 0.9077 0.8933 0.9044 0.8828 0.8488 0.8966 0.8977 0.9135
house-votes
F1 - | 0.9209 | 0.9354 0.9214 0.9298 0.9232 0.9175 0.9306 0.9289 0.9374
WDBC | F1 + | 0.8326 | 0.8324 | 0.8523 | 0.8553 | 0.8795 0.8348 | 0.8789 | 0.8797 0.8494
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Linear kernel

Dataset SVM TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-EKE
F1_- | 0.913 | 0.9128 0.9237 0.9165 0.9362 0.9208 0.9363 0.9391 0.9239
" F1 + | 0.4553 | 0.1892 0.4915 0.4803 0.4574 0.2122 0.4619 0.335 0.4403
mon,
F1 - | 0.7067 | 0.7583 0.7332 0.7468 0.7178 0.773 0.7166 0.719 0.7787
5 F1+ | 0.9563 | 0.9674 0.9679 0.968 0.9668 0.9677 0.9698 0.971 0.9726
reast
F1 - | 0.931 | 0.9348 0.9368 0.9365 0.9343 0.9353 0.9408 0.9427 0.9464
F1+ | 0.7917 | 0.8051 0.7866 0.7798 0.7991 0.8117 0.7994 0.807 0.8103
diabetes
F1 - | 0.5307 | 0.4722 0.4901 0.4805 0.5959 0.4641 0.58 0.5321 0.5025
oy F1 + | 0.4655 | 0.3468 0.3798 0.427 0.4706 0.1025 0.4532 0.3728 0.3223
vehicle
F1 - | 0.8218 | 0.8319 0.8411 0.8426 0.8182 0.8555 0.8252 0.8342 0.8695
F1 + | 0.7882 | 0.8233 0.816 0.8114 0.8166 0.8185 0.8113 0.8231 0.8263
german
F1 - | 03288 | 0.016 0.2817 0.3067 0.3359 0.1696 0.3007 0.2386 0.2593
Table A.llI

F1 scores of all nine algorithms on partial binary classification Benchmark/UCI/KEEL data
sets with 40 labelled examples

Linear kernel

Dataset | svm | Tsvm | LapRLs | LapsvM | Meansavmiiter | Meansavmemki | csavm | weLisvm | sscEkE
_ Fi+ | 09664 | 09718 | 09049 | 09832 0.9449 0.9458 09769 | 09081 0.9938
wine
F1- | 09819 | 0.9854 | 09485 | 09016 0.973 0.9738 09876 | 09525 0.997
Fi+ | 07136 | 07100 | 06628 | 07148 0.7456 0.7434 07455 | o711 0.7311
sonar
F1- | 07496 | 07502 | 07261 | 07613 0.7873 0.7804 0782 | 07666 0.7741
, F1+ | 09499 | 0.9620 | 09533 | 09721 0.9412 0.9392 09555 | 0.9527 0.9766
ouse
F1- | 09461 | 0.9565 | 0.9467 | 0.9667 0.9392 0.937 09508 | 09453 0.9719
Fi+ | 03989 | 0.4425 | 03656 | 0.2119 0.2095 0.36 03907 | 0016 0.2031
spectfheart
F1- | 08321 | 0869 | 07588 | 08817 0.8887 0.8903 08879 | 08831 0.8872
F1+ | 07225 | 07145 | 0643 | 07267 0.7646 0.7775 07723 | 06247 0.7537
ionosphere
F1 - | 08866 | 08903 | 08637 | 0.8923 0.8819 0.8904 08935 | 0.8639 0.8991
Fi+ | 08973 | 09028 | 0918 | o0.9314 0.9155 0.918 09193 | 09227 0.9423
house-votes
F1 - | 09207 | 0.9308 | 09417 | 09504 0.9398 0.9428 09431 | 0.945 0.958
wose | Pt | oo [ oonte | osses | o022 0.9035 0.9023 09220 | 08772 0.9372
F1- | 09516 | 09531 | 09446 | 09567 0.9501 0.9495 09582 | 0.9403 0.9651
monk? | F1+ | 0.1494 | 0.1868 | 0.2513 | 0.2299 | 0.3974 0.4291 0.3029 | 0.1075 0.3295
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Linear kernel
Dataset SVM TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-EKE
F1 - | 0.7738 | 0.7556 0.6854 0.7783 0.7225 0.7275 0.7561 0.7656 0.7897
5 F1+ | 0.9716 | 0.9676 0.9294 0.9721 0.9577 0.9574 0.9641 0.9078 0.9741
reast
F1 - | 0.947 | 0.9394 0.8536 0.9477 0.9165 0.9158 0.9315 0.8296 0.9518
F1+ | 0.802 | 0.8152 0.7435 0.8125 0.8152 0.8175 0.822 0.7646 0.8201
diabetes
F1 - | 0.6134 | 0.5938 0.4381 0.6261 0.63 0.6281 0.6071 0.4058 0.6403
ok F1 + | 0.2243 | 0.3498 0.4369 0.3259 0.4237 0.3922 0.4271 0.0534 0.4359
vehicle
F1 - | 0.8511 | 0.8329 0.8543 0.8571 0.8444 0.846 0.8558 0.8577 0.8644
F1+ | 0.7264 | 0.7519 0.7378 0.8122 0.7796 0.7827 0.7801 0.8068 0.824
german
F1 - | 0.4474 | 0.4021 0.4168 0.2626 0.4821 0.4623 0.4805 0.3878 0.217
RBF kernel
Dataset | SVM | TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-EKE
) F1 + | 0.9862 | 0.9902 0.9808 0.9938 0.9701 0.9835 0.9925 0.9644 0.9954
wine
F1 - | 0.9931 | 0.9945 0.9898 0.997 0.9847 0.9913 0.9961 0.9816 0.9977
F1 + | 0736 | 0.7321 0.7514 0.7515 0.7668 0.7033 0.7645 0.714 0.7762
sonar
F1 - | 0.7792 | 0.7841 0.8008 0.8023 0.8026 0.7497 0.7947 0.7743 0.8147
p F1+ | 0.9415 | 0.9501 0.9508 0.9512 0.9282 0.9636 0.9508 0.944 0.9633
ouse
F1 - | 0.9339 | 0.9405 0.9442 0.9438 0.9254 0.9539 0.9439 0.915 0.957
F1_+ | 0.2042 | 0.1159 0.4882 0.4192 0.3364 0.0482 0.4648 0.2682 0.3706
spectfheart
F1 - | 0.877 | 0.8837 0.8603 0.8842 0.8942 0.8854 0.8944 0.8932 0.8983
F1 + | 0.8507 | 0.8305 0.789 0.8717 0.8363 0.8509 0.8549 0.7757 0.873
ionosphere
F1 - | 0.9279 | 0.9216 0.9071 0.9385 0.9154 0.9331 0.9244 0.8966 0.9397
F1 + | 0.9066 | 0.9068 0.9121 0.9217 0.9152 0.8926 0.9196 0.9075 0.9254
house-votes
F1 - | 0.9322 | 0.9264 0.938 0.944 0.9396 0.9338 0.9443 0.9338 0.9472
C F1 + | 0.8972 | 0.8971 0.8741 0.8994 0.8874 0.8617 0.8997 0.8981 0.9137
WDB
F1 - | 0.9412 | 0.9451 0.9274 0.9421 0.9361 0.9318 0.9439 0.8483 0.9527
2 F1 + | 0.4374 | 0.1453 0.5183 0.515 0.4817 0.2975 0.452 0.3748 0.4508
mon,
F1 - | 0.7594 | 0.7829 0.7548 0.7703 0.7462 0.782 0.7547 0.7641 0.7973
5 F1 + | 0.9706 | 0.9701 0.9655 0.9717 0.9609 0.9601 0.966 0.9692 0.9737
reast
F1 - | 0.9465 | 0.9444 0.9359 0.9484 0.9233 0.9195 0.9365 0.9431 0.9523
diah F1 + | 0.7937 | 0.8151 0.7714 0.7997 0.7898 0.8034 0.8011 0.8172 0.8178
liabetes
F1 - 0.6 0.528 0.554 0.5835 0.6175 0.475 0.6099 0.5808 0.5782
vehicle | F1_+ | 0.1809 | 0.2309 | 0.3701 | 0.3 | 0.4373 0.1125 | 0.4181 | 0.2245 0.2409
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Linear kernel
Dataset SVM TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-EKE
| F1_- 0.85 0.8484 0.8461 0.8555 0.8426 0.8592 0.8492 0.8536 0.864
F1_+ | 0.7954 | 0.8203 0.8066 0.8112 0.8043 0.8189 0.8035 0.8211 0.8243
german
F1 - | 0.359 0.0013 0.3157 0.2923 0.3431 0.2098 0.3725 0.256 0.2564
Table A.IV
F1 scores of all nine algorithms on partial real-world data sets with the RBF kernel
Dataset | SVM | TSVM | LapRLS | LapSVM | MeanS3VM-iter | MeanS3VM-mkl | CS4VM | WeLISVM | SSC-El
F1+ | 0.7468 | 0.7773 0.7378 0.7578 0.7498 0.7424 0.7616 0.7674 0.775
comp VS rec
F1 - | 0.7218 | 0.7593 0.7334 0.732 0.7331 0.7158 0.7383 0.7091 0.772
F1+ 0.685 0.6737 0.674 0.6905 0.6801 0.6389 0.6869 0.6525 0.694
comp VS sci
F1_- | 0.7205 | 0.7337 0.7093 0.7355 0.7097 0.7179 0.7223 0.7371 0.746
F1+ | 0.7194 | 0.7385 0.7213 0.7461 0.741 0.7308 0.7441 0.7457 0.756
comp VS talk
F1_- | 0.7514 | 0.7835 0.7688 0.7681 0.745 0.7367 0.7536 0.7808 0.782
F1 + | 0.6648 | 0.6767 0.6659 0.6866 0.665 0.6394 0.6665 0.6709 0.69-
rec VS sci
F1_- | 0.6831 | 0.6806 0.6743 0.7032 0.6613 0.6529 0.6679 0.7169 0.707
F1 + | 0.6725 | 0.6878 0.6611 0.6865 0.6878 0.6701 0.6873 0.6764 0.681
rec VS talk
F1 - | 0.7332 | 0.7196 0.7237 0.7354 0.7121 0.7275 0.7297 0.7641 0.760
F1+ | 0.6634 | 0.6833 0.6442 0.6819 0.6761 0.6822 0.6702 0.7129 0.684
sci VS talk
F1 - | 0.6633 | 0.6593 0.674 0.6821 0.6665 0.6062 0.6724 0.6287 0.695
F1+ | 0.9083 | 0.9119 0.9128 0.9175 0.9111 0.9101 0.9134 0.9137 0.927
gisette 4 VS 9
F1 - | 0.9112 | 0.9141 0.9155 0.9208 0.9123 0.913 0.9159 0.9159 0.930
F1_+ | 0.9444 | 0.9311 0.9487 0.9479 0.9343 0.9351 0.9483 0.9391 0.956
mnist_ 3 VS8
F1- | 0.9463 | 0.9333 0.9525 0.9518 0.9382 0.9381 0.9505 0.9426 0.959
B. Proofs

B.1 Proof of Theorem 1

Any function € Hy can be uniquely decomposed into a component £ in the subspace

spanned by the kernel functions {K(x;,), 1 </ </} and a component £, perpendicular to this

[+u

subspace. That is, F=f+fi and f = ) aK(x; ).

i=1
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Since the kernel K has the reproducing property, i.e.,

7o) = (7K )y = (o Kl )+ (i Ky o)) = (7 Ky o)) = Zl: aiK(x, ) Kl o))

i=1
I
= Z aiK(xi, xj)
i=1
we know that the term related to the loss function in (1) depends only on the values of the

coefficients {a; 1 <7 </} and the gram matrix of the kernel K. Furthermore, because
I 2
IAIE =11 ak(x, )l + ||fL||?< we can deduce that the minimizer of (1) must have £, =0.
i=1 K

!
Combining these analyses, it is clear that the minimizer of (1) is f*(x) = Z aK(x,x). O
i=1
B.2 Proof of Theorem 2

Using the Lagrange multipliers 8= (81, B,-.., B) and ¥ = (y1, ¥2,...,¥)), We can generate
the Lagrange function:

l l l l
1 1
L(a.b.EB.y) = 21 £+ E“szK“ - 21 ﬂi(yi( -21 a jK(xl., x j) +b|—1+¢&]|- 21 vE;.
11— 1= Jj= 1=
(B1)
Based on the Karush-Kuhn-Tucker (KKT) conditions, we obtain
oL ’
% =0 .Zl ﬁl’yl’ =0 (BZ)
1=
oL _ 1 3 1 : B3
a_fi =0 7= Pi—ri=00< 4, < 7(§i,yiare non-negatwe) (B.3)

Substituting (B.2)-(B.3) into (B.1), we can formulate a reduced Lagrange function:

[ [ l
1 1
LR, p) = 5ocsz Ka — 2 1ﬁi(yi 2 1 aiK(xl., x) - 1) = EaTZy Ka — a"KYp + z 1ﬂi,(B.4)
1= J= 1=

where Y =diag()4, V»,...,y) and K is the K&/kernel matrix.

Setting the derivative of (B.4) to zero with respect to a, we get
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oLk _ 7

Substituting (B.5) into (B.4) and combining (B.2)-(B.3), we can eventually obtain (4). O

B.3 Proof of Theorem 3

Likewise, the function 7&Hx can be uniquely decomposed into a component £ in the

subspace spanned by the kernel functions {K(x;, ),1<i</+ 4} and a component |
[4u
orthogonal to this subspace. Thatis, £= £+ fiand f = )" aK(x, -).

i=1

Based on the reproducing property of the kernel K;
[+u

S = (Kl ) = (oKl o)) (s Kl o)) = (1 K o) = 2, Kl ) Klx; )

= Z al.K (xl., xj)

i=1
We know that the terms related to the loss function and the intrinsic norm ||f||§ in (7) rely
only on the values of the coefficients {a, 1 </ < /+ 4} and the gram matrix of the kernel K.

l+u 2
Furthermore, because ||f||%( = | 2 al.K(xl., .)|| + ||fl||§< we can deduce that the minimizer
i=1 K

of (7) must have 7| = 0. Combining these analyses, we know that the minimizer of (7) must
l+u

be f*(x)= ) aK(x;x). O
i=1

B.4 Proof of Theorem 4
Using the Lagrange multipliers 8= (81, B,....8) and ¥ = (y1,¥2,..., 7)), We can generate the

Lagrange function:

[
4
L(a,b,E B,y) = % Mg+ %aT(Zy K +2—! 1)2KLK)a (B6)
i—1 +

(u
l I+u
_ Z ﬂi(yi( Z ajK(xi, xj) +b

i=1 j=1

l

- Z 71'5,'-

i=1

—1+¢

Based on the Karush-Kuhn-Tucker (KKT) conditions, we get

oL l
5 =0e Zlﬁiyl. =0 (B.7)
1=

Inf Sci (Ny). Author manuscript; available in PMC 2019 January 01.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Qian et al. Page 30
IL_go ! —0e0<p <1 i B.8
a_fi =0e 7~ Pi—ri=00< B, < 7(‘5:" y; are non-neganve) (B.8)
Substituting (B.7)-(B.8) into (B.6), we can formulate a reduced Lagrange function:
/ [+u
R, p) = —a (2}/AK+2( KLK)a— 2 ( 5 aiK(xi,xj)—l (B.9)
+1) - i=1
1 T
2y, K + 22— KLKa aKJY+
—2° ( A <u+l> ) / lzlﬂ
where J =[1 0] is a &(/+ ¢) matrix, with I being the /& /identity matrix, Y = diag(1, J5, ...,
), and Kiis the (/+ 4) x (/+ u) kernel matrix.
Setting the derivative of (B.9) to zero with respect to a, we obtain
oLt _ 2 K+2— KLK|a—KJTYp =0 a= (2 + (27 + l)Z)LK)_leYﬂ
oa A (u+ 1)2 A 1
(B10)
Substituting (B.10) into (B.9) and combining (B.7)—(B.8), we can eventually obtain (10). O
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Pairwise Constraints

Must-Link Set

<1,2> <6,7>
<1,3> <6,8>
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24> <]1.9>
<2,5= <7,10>
<3,4> <8,9>
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<4,5> <9,10>

Cannot-Link Set

Illustration of the conversion from data labels to pairwise constraints

Inf Sci (Ny). Author manuscript; available in PMC 2019 January 01.

<1,6> <4.6>
<1,7> <4,7>

<110> <4.10>
<2,6> <5,6>
Q7> <5.7>

<2.10> <5.10>
<3.6>

£l

<3,7>

43:10>

(b) Attainable entries of pairwise constraints in the must-
link/cannot-link sets from the labelled examples in which
<i,/> denotes the pairwise indices of examples x; and x;
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Components in SSC-EKE

Bl Components inherited from SYM
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The composition of the formulation of SSC-EKE
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(a) The whole data distribution in DS1 (b) The training data in DS1

Fig. 3.
The synthetic data set DS1
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(c) The testing data in DS1
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(a) Classification hyperplane of SVM (b) Classification hyperplane of (c) Classification hyperplane of SSC-

LapSVM EKE

Fig. 4.
Learned classification hyperplanes of SVM, LapSVM, and SSC-EKE
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(d) Street

Fig. 7.
Illustration of the image categories involved in our experiments
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Table |

Common abbreviations used throughout this manuscript

Abbreviation Meaning

SVM Support Vector Machine

S3VM Semi-Supervised Support Vector Machine

LapSVM Laplacian Support Vector Machine

LapRLS Laplacian Regularized Least Square

TSVM Transductive Support Vector Machine

CS4vM Cost Sensitive Semi Supervised Support Vector Machine
WeLISVM Weakly Labelled Support Vector Machine

MeanS3VM-mk/

Label-Mean-Based Semi-Supervised Support Vector Machine Regarding Multiple-Kernel Learning

MeanS3VM-Jjter

Label-Mean-Based Semi-Supervised Support Vector Machine Using Alternating Optimization

RKHS Reproducing Kernel Hilbert Space

PCRF Pairwise Constraint Regularized Formula

MPCJRF Manifold Pairwise Constraint Jointly Regularized Formula

SSC-EKE Semi-Supervised Classification with Extensive Knowledge Exploitation
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Table VI

Details of ten, real-world, (semi-)supervised classification data sets

Training set
Dataset Testing set data size  Dimension
Datasize Labelled example size
comp VS rec 500 50 500 318
comp VS sci 500 50 500 358
comp VS talk 500 50 500 255
rec VS sci 500 50 500 242
rec VS talk 500 50 500 297
sci VS talk 500 50 500 333
coast V'S highway 300 30 320 300
mountain VS street 300 30 366 300
gisette 4 VS 9 4000 100 3000 5000
mnist 3VS 8 6000 100 7966 784
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