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Abstract

The discovery of a formal process model from event logs describing real process

executions is a challenging problem that has been studied from several angles.

Most of the contributions consider the extraction of a model as a one-class su-

pervised learning problem where only a set of process instances is available.

Moreover, the majority of techniques cannot generate complex models, a cru-

cial feature in some areas like manufacturing. In this paper we present a fresh

look at process discovery where undesired process behaviors can also be taken

into account. This feature may be crucial for deriving process models which are

less complex, fitting and precise, but also good on generalizing the right behav-

ior underlying an event log. The technique is based on the theory of convex

polyhedra and satisfiability modulo theory (SMT) and can be combined with

other process discovery approach as a post processing step to further simplify

complex models. We show in detail how to apply the proposed technique in

combination with a recent method that uses numerical abstract domains. Ex-

periments performed in a new prototype implementation show the effectiveness

of the technique and the ability to be combined with other discovery techniques.
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1. Introduction

The digital revolution that is taking place in the last decade is abruptly

changing the way organizations, industry and people access, store and analyze

the vast amount of digital information currently available. The challenge is to

be able to extract value from this information in an effective way. Process Min-

ing is considered to be a viable solution to this problem: by using the event log

containing the footprints of real process-executions, process mining techniques

aim at discovering, analyzing and extending formal process models revealing

the real processes in a system [23]. Process discovery, the main focus of this

paper, is a family of techniques for deriving process models expected to be good

in four quality dimensions: fitness (ability of the model to reproduce the traces

in the event log), precision (ability of the model to avoid reproducing undesired

behavior), generalization (ability of the model to reproduce desired behavior not

found in the event log) and simplicity (the well-known Occam’s Razor princi-

ple). Process discovery is a learning technique: given a set of training examples

(traces denoting process executions) the goal is to derive a process model which

encloses the behavior underlying the training set. Most techniques that have

been proposed for process discovery so far assume a positive label for each given

trace, i.e. the example is an instance of behavior that must be in the process

model to be derived. In that sense, most discovery algorithms can be regarded

as one-class supervised learning. Very few techniques have been presented that

consider the discovery problem as a binary, two-class supervised learning task,

i.e. using the real process executions as positive examples, but also traces rep-

resenting behavior that is forbidden in the underlying system and should hence

not be accepted by the process model to be derived. Clearly, the use of negative

information can bring significant benefits, e.g. enable a controlled generaliza-

tion of a process model: the patterns to generalize should never include the

forbidden behavior. Another benefit is the ability to reduce the complexity of

a model on those parts that do not contribute to differentiate between positive
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and negative examples. We ground our binary-class supervised approach on the

duality between the marking equation of a Petri net [21] and the domain of

convex polyhedra, which has been already exploited for process discovery in [5].

Remarkably, this approach is among the few that can discover the full class of

pure P/T-nets, i.e. those with arbitrary arc weights and tokens. This aspect

makes the approach well suited for domains where systems are complex (e.g.

manufacturing). Even if the theory of polyhedra allows to capture non-unitary

relations, it might make the model unnecessarily complex. In order to avoid

this issue, it is necessary to remove or simplify the parts of the net that may

nor be essential for the underlying process. The technique based on the theory

of polyhedra suffers from three main limitations, namely (i) it may discover

large arc weights and tokens, (ii) it may allow for unwanted behavior, and (iii)

it only uses heuristics to simplify the model. Hence, our previous work [19]

extended the technique from [5] by an extra step to reduce the complexity of

the polyhedron. This step focuses on half-spaces representing complex restric-

tions that can be relaxed while preserving the initial solutions, i.e. the positive

traces. Additionally, forbidden traces can be encoded as negative points which

must not be enclosed by the polyhedron, thus preventing some of the previously

mentioned problems. Remarkably, in contrast with the work of [5], this step is

automated with the help of satisfiability modulo theory (SMT): constraints ex-

pressed as formulas in first-order-logic that enable to derive an optimal rotation

and shift of the polyhedron half-spaces.

Example 1. Consider the three models (Petri nets) of Figure 1 and the logs

L+ and L− representing respectively the observed and the undesired behavior of

the system. The model on the left (N1) represents a system where an action c

can only be fired once and when it is preceded by action a3. N1 can replay all

the traces in L+, but not those in L−; we can conclude that it is fitting and

3Notice that there is a safe Petri net which includes L+ and excludes L−: we are using

the unsafe models in Figure 1 just as an illustrative example.
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Figure 1: Three process models to illustrate supervised process discovery.

precise. N2 is also fitting, but it is too imprecise since it accepts some of the

undesired behavior in L−, e.g. action c can be fired independently of the firing

of a. Using the approach by [5] the first net is discovered while the second one

can be discovered by the algorithms from [19] and this article using only positive

information. It can be considered that the structure of the latter is less complex

since it has less arcs and smaller weights. The problem with the transformation

from N1 into N2 is that it introduces undesired behavior. Then net N3 can

be discovered using also negative information; it does not accept any undesired

behavior and it is still less complex than N1.

This paper extends our previous work [19]; the main contributions are: (i)

an improved SMT-encoding that reduces the complexity of the net globally

rather than locally, i.e. it simplifies the whole incidence matrix rather than one

half-space at a time, (ii) an automatic post processing step to remove complex

half-spaces when possible, (iii) a new prototype tool that unifies the results

from [5, 19] and the contributions of this article, and (iv) an experimental set

up using k-fold cross validation.
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2. Preliminaries and Problem Statement

2.1. Event Logs and their Parikh Representation

The behavior of a process is observed as sequences of events from a given

alphabet T of activities. A trace is a word σ ∈ T ∗ that describes a finite sequence

of events, i.e. occurrences of an activity4. A log L is a set of traces from a given

alphabet5. By abuse of notation we say that σ ∈ L if σ is the prefix of some

trace of L. In other words, a log L is a finite set of traces over a certain alphabet

representing the footprints of the real process executions of a system that is only

(partially) visible through these runs.

We use |σ|a to represent the number of occurrences of a in a trace σ. Given

an alphabet of events T = {t1, . . . , tn}, the Parikh vector of a sequence of events

is a function ̂: T ∗ → Nn defined as σ̂ = (|σ|t1 , . . . , |σ|tn). For simplicity, we will

also represent |σ|ti as σ̂(ti). Given a log L, the set of Parikh vectors of L is

defined as Π(L) = {σ̂ | σ ∈ L}. Given the trace σ = abababac, its Parikh

representation is σ̂ = (4, 3, 1). Notice that a trace is in a log if it is a prefix

of a log trace. Then, Π({σ}) = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0), . . . , (4, 3, 1)}.

This implies that Π({ab}) 6= Π({ba}).

2.2. Petri Nets

A Petri net [18] is a tuple (P, T, F,M0) where P and T represent respectively

finite and disjoint sets of places and transitions, the weighted flow relation is

given by F : (P × T ) ∪ (T × P )→ N. A marking M is a function M : P → N.

The initial marking M0 defines the initial state of the Petri net.

Notice that the same symbol T will be used to denote the transitions of the

Petri net and the alphabet of events for the traces in the log, i.e. each transition

in the net corresponds exactly to one activity in the log. For the same reason

4The language operators ()∗ and ()+ represent sequences of any length and length at least
one respectively.

5 Logs can be defined more generally as multi-sets where some traces can be observed
multiple times. Since we do not consider frequency of traces, we abstract from this and only
consider the presence or absence of certain behavior by using sets.
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silent transitions are not allowed in the net and two different transitions cannot

represent the same action.

The preset and postset of a place p are respectively denoted as •p and p•

and defined by •p = {t ∈ T | F (t, p) > 0}, p• = {t ∈ T | F (p, t) > 0}. A Petri

net is called pure if it does not have any self-loop, i.e. ∀p ∈ P : •p ∩ p• = ∅.

Henceforth, we will assume that all Petri nets referred to in the paper are pure.

This is a restriction on (i) the output (Petri net) produced by the discovery

technique, but not on the input (log) and (ii) a restriction on the Petri net

input in case the technique is used for simplification. In the latter one would

however be able to apply a pre-processing step on the Petri net to resolve this.

The dynamic behavior of a Petri net is defined by its firing rules. A transi-

tion t ∈ T is enabled in a marking M if M(p) ≥ F (p, t) for any p ∈ P . Firing

an enabled transition t in a marking M leads to the marking M ′ defined by

M ′(p) = M(p)− F (p, t) + F (t, p), for any p ∈ P , and is denoted by M
t−→M ′.

A sequence of transitions σ = t1t2 . . . tn is fireable if there is a sequence of mark-

ings M1,M2, . . . ,Mn such that M0
t1−→ M1

t2−→ M2 · · ·
tn−→ Mn. Given a Petri

net N , L (N) denotes the language of N , i.e. the set of fireable sequences of

transitions. The set of markings reachable from the initial marking M0 is called

the Reachability Set of N and denoted as RS(N).

Consider a place p with •p = {x1, . . . , xk}, p• = {y1, . . . , yl} and a flow re-

lation F . Assume that the place contains M0(p) tokens in its initial marking.

Then, the following equality holds for any sequence of events σ

M(p) = M0(p) +
∑

xi∈•p

F (xi, p)× σ̂(xi)−
∑

yi∈p•
F (p, yi)× σ̂(yi).

If we formulate the previous equation for all places in a Petri net, we can

compress it using a matrix notation: M = M0 + A × σ̂, where M and M0

are vectors and A is the incidence matrix with |P | rows and |T | columns that

represents the flow relation of the net. The previous equation is called the

Marking Equation of the Petri net [18]. The set of solutions for which the
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following inequality holds

M = M0 +A× σ̂ ≥ 0 (1)

is called the Potentially Reachable Set (PRS(N)). All reachable markings of a

Petri net fulfill (1). However the opposite is not always true. In general there

can be unreachable markings for which (1) also holds, i.e. RS(N) ⊆ PRS(N).

The set of inequalities (in its matrix notation) representing the PRS of the

left Petri net in Fig. 2 is the following 1

6

+

 1 −1

−2 3

×
 σ̂(x)

σ̂(y)

 ≥
 0

0

 (2)

2.3. Numerical Abstract Domains and Process Discovery

An n-dimensional convex polyhedron is a convex set of points in Zn. A half-

space is that portion of an n-dimensional space obtained by removing that part

lying on one side of an (n− 1)-dimensional hyperplane. It can be specified by a

linear inequality a1×x1 +a2×x2 + · · ·+an×xn ≥ b. The H-representation of a

convex polyhedron P denotes it as the intersection of a finite set of half-spaces

P = {x ∈ Zn | A× x+ b ≥ 0} (3)

where A ∈ Zk×n and b ∈ Zk are the matrix and vector that represent k half-

spaces. For the sake of brevity, all polyhedra mentioned in this work will be

assumed to be convex.

Several techniques for the discovery of Petri nets from Parikh vectors were

introduced in [5]. Given a log L, the set Π(L) is used to find A and M0 in (1)

such that the associated Petri net is a good approximation of the process be-

havior. Given a Petri net N , by comparing the expressions (1) and (3) we can

observe that PRS(N) is the Z-polyhedron of a convex polyhedron defined by two

matrices: A ∈ Z|P |×|T | and M0 ∈ N|P |. These guarantee that the initial marking

is not negative and only markings with positive token values are reachable.

The link between logs and Petri nets is illustrated in Figure 2. The light

grey area represents a polyhedron covering the points visited by the walks. The
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Figure 2: Convex polyhedra and Petri net.

polyhedron can be represented by the intersection of two half-spaces in Z2:

1 + σ̂(x)− σ̂(y) ≥ 0

6− 2× σ̂(x) + 3× σ̂(y) ≥ 0

The polyhedron can also be represented by equation (2) obtained from the

interpretation of the marking equation for the net on the left in Figure 2. Each

half-space of the polyhedron is represented by a place. In summary, given a set

of Parikh vectors from a log, the techniques by [5] find the polyhedron which

can finally be translated to a Petri net as shown in the example.

2.4. Inducing Negative Information from a Log or Model

Different interpretations exist for the term negative information. In machine

learning, the term refers to a behavior that was observed, but with a negative

label, e.g. from a group of student taking a course, we want to classify what

makes a student pass the course (positive instance) or fail it (negative one). The

notion that we give here to negative traces in the setting of process mining is

somewhat different; a negative trace represents a behavior that is forbidden by

the system and thus it should not be allowd by the model.

Due to the fact that real-life event logs seldom contains forbidden behavior,

scholars have proposed alternative ways to induce negative information to guide

the learning task. A technique to induce so called artificial negative events

based on the positive information contained in the log was proposed in [12].

The obtention of forbidden traces from event logs can be done efficiently in a
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manner which is robust to differing levels of event log completeness [27]. Also,

when a prescriptive, ground-truth process model is known, forbidden traces can

be obtained by replaying the positive traces over the model and querying the

latter to investigate which activities in the activity alphabet are not enabled.

The kind of forbidden traces that we consider in this article are of the form

σ = σ′σ′′ where σ′ is executable in the system (i.e. it is a positive trace), but

after it the system cannot perform σ′′.

Definition 1. Given a log L over the alphabet T , we say that σ = σ′σ′′ is a

forbidden (or prohibited, or negative) trace iff σ′′ ∈ T+ and σ′ ∈ L, but σ 6∈ L.

Notice that our definition is more general than the one from [12, 27] where

negative traces are traces of the log followed by a unique negative event, i.e. σ′′

contains only one event. Even if such traces fulfill Definition 1, we use negative

information that is within a certain distance from positive information. In

practice we use randomly generated postfixes of the prohibited traces obtained

by the algorithm proposed by [27]. The behavior of this trace should still be

considered as forbidden since every postfix of a forbidden trace is also a forbidden

trace according to Definition 1.

2.5. Problem Statement

Given a log L+ and a collection of forbidden traces L− (artificially created

or not), the goal of the techniques of this paper is to derive a Petri net N with

the following characteristics: (i) N is a weighted P/T net; (ii) N fits L+; (iii)

for every forbidden trace σ ∈ L−, we have σ /∈ L (N); and (iv) N has the least

complexity with respect to elements, weights and tokens.

The first three items are guaranteed by construction, while for complexity

we will evaluate derived models with respect to a tailored fine-grain complexity

metric which takes into account not only the number of elements but also its

weight. In the evaluation section, we will use current metrics for precision

and generalization to estimate whereas the derived models are in good balance

between underfitting and overfitting the log.
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3. Binary-class Supervised Process Discovery

In this section we show how the approach by [5] can be adapted to use

two classes of traces: positive and negative ones. We additionally show how to

reduce the complexity of models obtained by other discovery techniques.

The idea is to transform the traces in the log into a set of points of an

n-dimensional space and then to find a convex envelope of these points. The

final step is to convert the convex polyhedron into a Petri net using the dual-

ity between the convex polyhedra and the marking equation of nets. One of

the limitations of the algorithm used for computing a polyhedron covering the

set of points is that it actually computes the minimal polyhedron (called mini-

mal convex hull). This minimality generally introduces unnecessary restrictions

that generates complicated models. A post processing step by [5] consists of a

simplification done by manually selecting a subset of the constraints within the

H-representation of the polyhedron computed. However the derived model may

be generalizing too much, i.e. may be imprecise. Since we are only interested

in the information that allows to differentiate between positive and negative

instances, the selection of constraints can be done using negative information

to avoid too much generalization. A half-space is removed only if its removal

does not introduce any negative point. The use of negative information allows

to automatically detect and remove such constraints.

3.1. Stages of the Approach

The proposed approach is illustrated in Figure 3. The upper part of the

figure (enclosed in a black box) represents the approach from [5] from which

this work is grounded. The bottom part of the figure shows how the complexity

of a model can be reduced with the use also of forbidden traces, at the price of

accepting more points (more traces are fireable in the net).

Algorithm 1 formalizes our approach step by step using pseudocode. A set

of allowed and forbidden traces is given as input (event log and negative infor-

mation in Figure 3). Lines 2-7 compute the positive points pp for every prefix

of a positive trace in L+ and the negative points np for the traces in L− (but
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Figure 3: Flow for supervised process discovery (below) compared with the approach in [5]
(enclosed in a black box).

not for its prefixes since some of them correspond to positive traces follow-

ing Definition 1). A polyhedron covering the set of points pp is computed by

ConvexHull using any algorithm that computes the minimal convex hull for

a set of points (e.g., Qhull by [3]). The complexity of the obtained polyhe-

dron is then reduced by Shift&Rotate using the SMT-encoding presented in

Sections 3.2 and 3.3. Since the transformation is encoded as an SMT-instance,

there might be several solutions. The SMT-solver does not necessarily returns

the optimal one (simplest polyhedron) and therefore we follow an iterative ap-

proach to find this optimal solution. The Removal procedure iterates over the

sets of half-spaces and removes all of them for which this does not introduce any

negative point as a solution; this step replaces the manual selection done by [5].

Finally the set of half-spaces is transformed into a Petri net by Hull2Net using

the duality between polyhedra and the marking equation of a Petri net.

Since ConvexHull may depend on sampling and projection techniques

and Shift&Rotate is encoded as an instance of SMT which may have several

solutions and the obtained one depends on the solver, our algorithm is not
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Algorithm 1 Binary-class Supervised Process Discovery

Require: allowed (positive) traces L+ and forbidden (negative) traces L−
Ensure: a Petri net N with ∀σ ∈ L+ : σ ∈ L(N) and ∀σ ∈ L− : σ 6∈ L(N)

1: procedure Discover(L+,L−)
2: pp, np← ∅
3: for σp ∈ L+ do
4: for σ prefix of σp do
5: add σ̂ to pp

6: for σn ∈ L− do
7: add σ̂n to np

8: H = ConvexHull(pp)
9: Hsmt = Shift&Rotate(H,np)

10: H ′ = Removal(Hsmt, np)
11: N = Hull2Net(H ′)
12: return N

deterministic, i.e. given the same set of allowed and forbidden traces, it can

produce different nets.

3.2. Generalization on the Positive Perspective

Section 2.3 explains how to to compute a Petri net containing a set of traces

using the minimal convex hull of its Parikh vectors and then extracting its H-

representation; those corresponds to lines 2-8 in Algorithm 1. However, the

structure of the obtained model might be too complicated due to the fact that

we are not computing any polyhedron covering all the points, but the minimal

convex hull. The minimality constraint generates a complex model and in order

to make sense of real-life process and obtain valuable information, one thus has

to abstract from the particular details, hence simplify.

We propose to first modify the polyhedron to obtain less complex half-

spaces preserving as much as possible the behavior of the obtained polyhedron

(Shift&Rotate procedure detailed in the remainder of this section and Sec-

tion 3.3). If after this step a half-space still needs to be removed, the new poly-

hedron is less restrictive and therefore more points satisfy the set of remaining

constraints; in the obtained Petri net, more traces are possible, thus generalizing

the underlying behavior. We make this removal automatically by checking that
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Figure 4: Individiual half-space reduction vs. matrix reduction.

this step does not introduce forbidden behavior (Remove procedure detailed in

Section 3.4).

Example 2. Figure 2 (left) shows a polyhedron (light grey area) defined by the

H-representation {p0, p1}. A more general polyhedron, i.e. one with larger Z-

polyhedron is defined by {p0, p2} (light and dark grey area). Points marked as

• are solutions of {p0, p2}, but not of {p0, p1}. The figure shows the Petri nets

representing both polyhedra; the sequence xxxyxxx is a trace of the second net,

however it cannot be fireable in the first net. This is represented in the left part

of the figure by the point (6, 1) which is a solution of {p0, p2}, but not of {p0, p1}.

In order to simplify a net, one could try to reduce the complexity of the

H-representation of its corresponding polyhedron by modifying its half-spaces;

this can be achieved by reducing the coefficients of each half-space in isolation.

Each new half-space should accept at least the same solutions as the original one

to avoid loosing fitness. However since the behavior of the model is not defined

by a single half-space, but by the conjunction of them, loosing some solutions

allowed by a single half-space should be tolerated as far as the set of solutions of

the whole system is not reduced. Figure 4 illustrates this idea; the point (9, 4) is

a solution on the left for the half-space (call it p) bounding the grey polyhedron

from below. If we try to simplify p in isolation with the approach by [19], the

half-space x = 8 on the right could not be obtained since the solution (9, 4) of

p is lost. However point (9, 4) is not part of the whole system (the one bounded

by the conjunction of both half-spaces) and therefore this rotation should be

allowed since the solution set on the right contains the solution set on the left.
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We propose then to get a net with lower complexity by transforming the

whole incidence matrix and initial token distribution from the marking equation

rather than its half-spaces individually. Given a system of the form

α1,0 + α1,1 × x1 + . . . + α1,n × xn ≥ 0

α2,0 + α2,1 × x1 + . . . + α2,n × xn ≥ 0
...

...

αm,0 + αm,1 × x1 + . . . + αm,n × xn ≥ 0

we need to find new coefficients β1,0, β1,1, . . . , βm,n such that

m,n∑
i,j=1

βi,j > 0 and

m∑
i=1

βi,0 > 0 (NZ)

for each 0 ≤ i ≤ m and 1 ≤ j ≤ n

|βi,j | ≤ |αi,j | (MIN)

and for all xj ≥ 0 with 1 ≤ j ≤ n
m∧
i=1

(αi,0 +

n∑
j=1

αi,j × xj) ≥ 0 ⇒
m∧
i=1

(βi,0 +

n∑
j=1

βi,j × xj) ≥ 0 (PC)

Constraint (NZ) specifies that (i) at least one of the coefficients should be

different than zero to eliminate trivial solutions and (ii) some place should be

initially marked. The meaning of constraint (MIN) is that the new matrix should

be less complex than the original one, i.e. each transition should consume or

produce less tokens. Finally, every solution of the original system should also

be a solution of the discovered one to preserve fitness (PC).

To obtain the H-representation of a polyhedron representing a simpler and

more general net, constrains (NZ), (MIN) and (PC) can be encoded using sat-

isfiability modulo theory. For the incidence matrix of the left net in Figure 2

the proposed encoding results in

(β1,1 + β1,2 + β2,1 + β2,2 > 0) ∧ (β1,0 ≥ 0) ∧ (β2,0 ≥ 0) ∧

(|β1,1| ≤ 2) ∧ (|β1,2| ≤ 3) ∧ (|β2,1| ≤ 1) ∧ (|β2,2| ≤ 1) ∧

∀σ̂(x), σ̂(y) : (6− 2× σ̂(x) + 3× σ̂(y) ≥ 0 ∧ 1 + σ̂(x)− σ̂(y) ≥ 0)

⇒ (β1,0 + β1,1 × σ̂(x) + β1,2 × σ̂(y) ≥ 0 ∧ β2,0 + β2,1 × σ̂(x) + β2,2 × σ̂(y) ≥ 0)
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which has as a solution for example β1,0 = 6, β1,1 = −1, β1,2 = 2, β2,0 = 1, β2,1 =

1, β2,2 = −1 corresponding to the marking equation of the right net in Figure 2.

The method that we propose does not sacrifice fitness of the model since the

polyhedron obtained by the transformations is a superset of the original one.

Theorem 1. Let L be a log, N a fitting model of L and N ′ the model obtained

by our method, then N ′ is fitting for L.

Proof: Let P =
m∧
i=1

(αi,0+
n∑

j=1

αi,j×xj) ≥ 0 and P ′ =
m∧
i=1

(βi,0+
n∑

j=1

βi,j×xj) ≥ 0

be respectively the polyhedra obtained by the interpretation of the marking

equation of nets N and N ′. Since N is fitting w.r.t L, all the points in the

Parikh representation of L are solutions of P. By the constraint (PC) all the

points are also solutions of P ′ and thus all the traces in L are fireable in N ′.

Finally N ′ is fitting for L. �

3.3. Improving Generalization via Negative Information

The generalization method proposed in Section 3.2 may introduce extra be-

havior in the discovered model since the new polyhedron covers more points. If

we take into account negative information (forbidden behavior), the proposed

encoding needs to be refined to rule out certain solutions. In order to avoid

forbidden traces to be executable in the final model, each of them (but not its

prefixes since they contain some positive behavior, see Definition 1) is converted

into its Parikh representation. If one intends to reduce the complexity of each

half-space in isolation, the SMT-encoding should be such that each negative

point should not be a solution of the new half-space. However this might be too

restrictive since a solution accepted by a single half-space may be ruled out by

the rest of the system. If we consider Figure 4 (right) as the original model with

(9, 4) as a negative point, it can be seen that one of the half-spaces of the figure

on the left accepts this solution and thus an approach that considers half-spaces

in isolation would not allow this transformation. However this point is still ruled
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out by the other half-space and therefore the new encoding presented in this

article may generate this polyhedron.

As in the case of the positive perspective, the transformation can be im-

proved by considering the complete set of half-spaces (the whole matrix) rather

than one half-space at a time. To avoid forbidden traces, the following encoding

is used; for each negative point (k1, . . . , kn)

m∨
i=1

(βi,0 +

n∑
j=1

βi,j × kj) < 0 (NP)

The encoding above forces for each negative point at least one half-space to

forbid it as a solution. By using negative information we can avoid constraint

(NZ); when using just positive information this constraint is needed to avoid the

trivial solution that removes every half-space. In the case of negative informa-

tion being present, we can remove some places as far as they do not introduce

negative behavior (the trivial solution will never be a solution since it accepts

negative points).

x y

p3

p0

5

1

2 2

Going back to Example 2, if we want to reduce the

complexity of the system while ruling out the point

(6, 1) corresponding to the behavior xxxyxxx, the new

encoding should add the constraint (β1,0 + β1,1 × 6 +

β1,2 × 1 < 0)∨ (β2,0 + β2,1 × 6 + β2,2 × 1 < 0) which

rules out β1,0 = 6, β1,1 = −1, β1,2 = 2, β2,0 = 1, β2,1 =

1, β2,2 = −1 as a solution. The new method using

negative information proposes to replace the first half-

space by 5− 2× σ̂(x) + 2× σ̂(y) ≥ 0 while keeping the second one unchanged.

The simplified net (see above) and does not accept xxxyxxx as a trace.

Limitations of the Negative Information Abstraction. The abstraction of the

negative information based on the Parikh representation of the traces imposes

two limitations in our technique. (i) It is assumed that negative information

can be separated from positive information linearly, i.e. by a set of half-spaces

representing a convex polyhedron. However, geometrically this is not true in
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Algorithm 2 Automatic Half-space Removal

1: procedure Removal(H,np)
2: for h ∈ half -spaces(H) do
3: if ¬SomeInside(H \ h, np) then
4: remove h from H
5: return H

general, i.e. there may be negative points inside the polyhedron constructed.

Due to the prefix-closed nature of the positive points in the convex polyhedron,

negative points must not be inside the polyhedron. (ii) Since we only translate

the whole negative trace into a point, but not its prefixes as in the case of positive

traces, the abstraction “looses precision”. Consider the positive trace ab and

the negative trace ba (where b is allowed, but ba is not). This situation leads to

point (1, 1) (one instance of a and one instance of b) being both a positive and

negative point and therefore any set containing all the positive points using the

Parikh abstraction will also contain a negative point.

3.4. Automatic Half-space Removal

The last step of our approach is an automatic removal of half-spaces done by

the Removal procedure. This procedure takes as an input a polyhedron and a

set of negatives points. It then iterates over all half-spaces and checks if the new

polyhedron obtained by removing such half-space accepts any negative point. If

the answer is no, then the half-space can be removed without introducing any

prohibited behavior to the final net. The pseudo-code of the procedure can be

found in Algorithm 2. SomeInside(H \ h, np) returns true if some point in np

is a solution of H after removing h.

3.5. Complexity Reduction

We formalize now the notion of complexity reduction used in this article.

The idea is to minimize the coefficients of the incidence matrix of the net.

The complexity of a given net is therefore the sum of the initial tokens and

the tokens consumed or produced by each transition. Given a net with initial

marking (α1,0, . . . , αm,0) and incidence matrix
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
α1,1 . . . α1,n

...
...

αm,1 . . . αm,n


its structural complexity is given by

m∑
i=1

(|αi,0| +
n∑

j=1

|αi,j |). With this definition

the complexity of polyhedra {p0, p1} and {p0, p2} in Figure 2 are 14 and 12 re-

spectively. Therefore we consider the second polyhedron and the corresponding

net simpler since its complexity is smaller, i.e. simplicity is computed as the

inverse of complexity.

3.6. Reducing the Complexity of Arbitrary Models

An important observation can be made at this point: the techniques pre-

sented in the previous section can be applied on top of any Petri net satisfying

our assumption (pure and with neither silent transitions nor two transitions

representing the same action) and hence are not dependent on the discovery

technique from [5]. In Section 2.3, the correspondence between a polyhedron

and a Petri net is shown by observing that the H-representation of P represents

the marking equation of the corresponding Petri net N . In the previous sections

we were using this correspondence in the forward direction, i.e. for computing

N from P. To enable the application of the SMT-based reduction to an arbi-

trary Petri net N , one can simply use the aforementioned correspondence in the

backward direction (to compute P from N) by taking the adjacency matrix of

N and the initial marking and use them as the H-representation of a polyhe-

dron corresponding to N . Hence, a Petri net can be obtained by some discovery

technique and the SMT-encoding can be used to reduce the complexity of the

model as a post processing technique.

4. Evaluation

We run our approach as described in Section 3 on several artificial and real-

life logs. To illustrate the general applicability of the approach as described

in Section 3.6, we also apply our technique on models obtained by ILP miner
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by [25] which can also discover fitting nets. We evaluate the quality of discovered

models using the state-of-the-art techniques by [1] to measure precision and the

approach by [27] to measure generalization; complexity is measured using the

metric described in Section 3.5. We remark that, since the discovery method

based on the theory of polyhedra and the ILP miner generate fitting models,

Theorem 1 guarantees that all the generated nets are fitting.

4.1. The PacH Tool

Algorithm 1 has been implemented in a new command-line tool called PacH

which is written in Python. The ConvexHull procedure is implemented using

the pyhull package, a Python wrapper for Qhull [3] and uses the sampling and

projection techniques introduced by [5]. All the encodings (Shift&Rotate

procedure) are implemented using the SMT-solver Z3 [8]. The tool supports

not only the SMT-encoding presented in this article, but also the encoding to

reduce the complexity of half-spaces in isolation. The tool is available from

http://github.com/lucionardelli/PacH

It reads logs (containing allowed and forbidden traces) in XES format and gen-

erates Petri nets in PNML format. A detailed list of commands for the tool can

be found on its web site.

4.2. Supervised Process Discovery

Here we report on the results on the discovery time together with the com-

plexity, precision and generalization of the obtained nets. The set of bench-

marks (allowed and forbidden traces) is introduced in Table 1 where we report

the number of traces in the log |L|, its number of events |E| (i.e. the sum of

the lengths of the traces) and the total number of activities |T |. Forbidden

traces were generated using the algorithm by [27] with an additional random

postfix added to the end of each generated forbidden trace, with the length of

the postfix equal to the length of the forbidden trace (effectively doubling the

length of each resulting forbidden trace).
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Positive Traces Negative Traces

Benchmark |L| |E| |T | |L| |E| |T |
A(32) 100 2483 32 100 3134 32
A(42) 100 3308 42 100 3484 42
Choice 300 2400 12 300 3144 12
ConfDimB 500 3725 11 500 5476 11
Cycles(5) 100 4000 20 100 3728 20
DbMut(2) 500 8204 32 500 11904 32
DocumentFlow 1000 5328 59 1000 7570 59
FHMexample 1000 13837 13 1000 19188 13
Incident 1000 4931 18 1000 9168 18
Receipt 1434 8577 27 1434 13968 27
Svn 765 7959 13 765 24612 13
T(32) 100 3766 33 100 3716 33
Telecom 17812 83286 42 17812 159090 42

Table 1: The set of logs included in the benchmark and their corresponding sizes.

In Tables 2-5, for each benchmark we report results for the following exper-

imental set up (the results highlighted with a grey background corresponds to

the new methods introduced by this paper)

• Polyhedra: the net was mined using the theory of polyhedra with no

complexity reduction.

• Half-space: the net was mined using the theory of polyhedra and the

SMT-encoding that reduces the complexity of half-spaces in isolation.

• Matrix: the net was mined using the theory of polyhedra and the SMT-

encoding which that reduces the complexity of the whole incidence matrix.

• Removal: the Removal procedure was run on top of the net obtained in

the 1st column (Baseline) or on top of the net obtained in the 2nd column

(SMT).

To calculate the results, we apply a ten-fold cross-validation strategy: for

each input event log, we split the log in ten equally sized new logs. Models are

discovered and simplified over nine out of ten sub-logs, leaving out the remaining

10 percent of traces, repeated ten times (e.g. in the first fold, a net is discovered

whilst leaving out log number 1, in the second fold, a net is discovered whilst

leaving out log number 2, and so on). To obtain conformance checking results,

each originally left-out sub-log in each of the ten folds is replayed over the

discovered net, hence obtaining out-of-fold results. At the end of the run, final
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Positive Positive/Negative Removal

Benchmark Polyhedra Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 40.07 273.65 9.11 15.73 9.57 317.28 366.59
A(42) 3.82 182.78 7.18 11.63 9.97 363.10 357.57
Choice 0.10 0.41 0.73 0.29 0.75 0.64 0.62
ConfDimB 0.05 0.32 0.46 0.26 0.73 0.56 0.58
Cycles(5) 0.16 1.37 0.88 0.59 0.98 2.09 1.87
DbMut(2) 0.26 3.35 1.13 0.97 1.39 10.57 10.52
DocumentFlow 0.19 0.62 1.01 0.53 1.20 1.27 1.23
FHMexample 0.21 5.95 0.93 0.69 0.84 17.97 17.60
Incident 0.12 15.03 1.13 1.07 1.19 7.94 8.36
Receipt 0.23 10.48 1.35 1.50 1.70 42.45 55.61
Svn 0.22 63.96 2.10 3.26 1.53 341.09 372.00
T(32) 871.47 610.30 22.08 38.95 30.06 3451.96 2101.92
Telecom 1.66 21.48 1.47 1.46 2.00 77.10 61.31

Table 2: Computational times (in secs) of PacH.

values are obtained by averaging the results over all folds.

Results on the computation time of PacH are reported in Table 2. The first

column reports the time to compute the convex hull; the rest of the columns

reports on the complexity reduction time. In general the Removal procedure

is the most time consuming method since it needs to iterate over all the half-

spaces and all the negative points. Since for the SMT encodings we follow an

iterative approach to obtain the optimal solution, several iterations are usually

needed for the results in the 2nd and 4th columns. This produces a high increase

in times of the 2nd column for nets having several places such as A(32), A(42),

Svn or T(32); the same is not true for the 4th column since the SMT solver

normally returns an unsat solution and then the iterative mode to find the

optimal solution is not used in all the cases. On the other hand, the encoding to

reduce the complexity of the whole matrix obtains an optimal solution after just

a couple of iterations or not solution at all and thus the times are usually low.

From the first column, it can be observed that A(32) and T(32) consume much

more time than the rest; this is due to the fact that the projection technique

needs to be used and this consumes much of the computational time.

In Table 3 we report the results on structural complexity achieved by our

algorithms. Trivially the first column reports the highest values since no reduc-

tion is done. For all the cases the best results (shown in bold font) are obtained
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Positive Positive/Negative Removal

Benchmark Polyhedra Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 13129 10324 7 7 6489 132 130
A(42) 7813 6209 7 7 5009 117 114
Choice 33 29 7 7 7 25 21
ConfDimB 33 31 29 7 30 25 27
Cycles(5) 105 104 7 7 102 45 45
DbMut(2) 134 120 7 7 126 74 72
DocumentFlow 56 52 50 7 52 35 29
FHMexample 297 215 295 7 235 72 43
Incident 406 316 7 7 292 104 75
Receipt 588 412 7 7 462 129 101
Svn 27831 21051 7 7 7399 8778 1562
T(32) 50117 40741 7 7 34389 188 114
Telecom 840 592 7 7 688 197 111

Table 3: Experimental results on the complexity of the models mined by PacH.

after applying the Removal procedure on top of the net obtained after SMT-

half-space reduction with positive information (i.e. the net obtained in the 2nd

column). It can be also observed that no reduction was achieved (entries with a

cross) when using either the matrix reduction with just positive information or

the half-space reduction with negative traces. The former is due to the fact that

the search space for the SMT-solver is big and in most of the cases a timeout

(600 milliseconds) is reached. However by using negative points, new constraints

are used to encode negative points and this reduces the search space as can be

seen by the solutions obtained in the 5th column. The crosses on the 4th column

correspond to the fact that for the half-space reduction, each half-space must

forbid every negative point and the generated encoding is very restrictive (this

is due to the phenomenon explained in Figure 4). In this case the SMT solver

returned either unsat or reached a timeout.

Tables 4 and 5 report on the precision and generalization of the nets mined

by PacH. For the entries marked with N/A, the conformance checking metric

was unable to retrieve a result due to out-of-memory errors. From Table 4,

it can be observed that the SMT-based reduction with only positive informa-

tion drastically decreases precision of the nets in some cases (see Choice or

ConfDimB for example). However, the drop is very small when adding neg-

ative information; in most of the cases the matrix simplification did not even
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Positive Positive/Negative Removal

Benchmark Polyhedra Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 0.16 0.13 7 7 0.15 0.12 0.11
A(42) 0.11 0.10 7 7 0.11 0.08 0.08
Choice 0.95 0.21 7 7 0.95 0.95 0.20
ConfDimB 0.87 0.26 0.41 7 0.87 0.87 0.25
Cycles(5) 0.23 0.23 7 7 0.23 0.22 0.22
DbMut(2) 0.26 0.24 7 7 0.27 0.25 0.23
DocumentFlow 0.04 0.04 0.04 7 0.04 0.04 0.04
FHMexample N/A N/A N/A N/A N/A N/A N/A
Incident 0.13 0.12 7 7 0.11 0.12 0.12
Receipt 0.15 0.13 7 7 0.15 0.14 0.12
Svn 0.15 0.14 7 7 0.15 0.14 0.14
T(32) 0.13 0.12 7 7 0.14 0.11 0.11
Telecom 0.08 0.08 7 7 0.08 0.08 0.08

Table 4: Experimental results on the precision of the models mined by PacH.

Positive Positive/Negative Removal

Benchmark Polyhedra Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 0.65 0.66 7 7 0.66 0.70 0.70
A(42) 0.63 0.64 7 7 0.63 0.71 0.72
Choice 1.00 1.00 7 7 1.00 1.00 1.00
ConfDimB 0.83 0.83 0.83 7 0.81 0.83 0.83
Cycles(5) 0.90 0.90 7 7 0.90 0.90 0.90
DbMut(2) 1.00 1.00 7 7 1.00 1.00 1.00
DocumentFlow 0.97 0.97 0.97 7 0.97 1.00 1.00
FHMexample N/A N/A N/A 7 N/A N/A N/A
Incident 0.98 0.98 7 7 0.98 0.98 0.98
Receipt 0.87 0.87 7 7 0.87 0.86 0.86
Svn 0.99 0.99 7 7 0.99 1.00 1.00
T(32) 0.53 0.54 7 7 0.51 0.56 0.56
Telecom 1.00 1.00 7 7 1.00 1.00 1.00

Table 5: Experimental results on the generalization of the models mined by PacH.

reduce the precision at all. In terms of generalization (see Table 5) minimal

and maximal values are very close. For half of the benchmarks, PacH with

no reduction obtains already the best results; for the remaining cases, the best

generalization is obtained after performing Removal.

To summarize, the 5th and 6th columns from Tables 4 and 5 show that

precision and generalization remain almost the same when using the matrix

complexity reduction with negative information or the Removal procedure;

this combined with the results of Table 3 that show that those methods perform

very well on complexity reduction suggest that these combinations result on the

best trade-off between the quality metrics.
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Positive Positive/Negative Removal

Benchmark ILP Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 15.19 7.16 1.66 2.43 1.62 8.50 18.96
A(42) 67.79 17.95 4.10 6.11 4.12 32.85 98.49
Choice 2.41 0.33 0.16 0.17 0.16 0.06 0.15
ConfDimB 2.20 0.30 0.31 0.20 0.16 0.18 0.26
Cycles(5) 10.33 0.37 0.19 0.31 0.19 0.20 0.79
DbMut(2) 19.92 1.52 0.55 0.72 0.55 N/A N/A
DocumentFlow 549.82 25.61 7.02 9.07 6.93 61.79 76.45
FHMexample 31.29 1.29 0.44 0.57 0.44 1.00 3.40
Incident 8.83 3.10 0.70 0.88 0.70 2.84 3.17
Receipt 8.69 3.36 0.79 1.03 0.76 8.67 10.36
Svn 23.21 1.12 0.37 0.46 0.36 2.16 6.81
T(32) 64.60 10.97 2.44 3.66 2.41 15.01 44.54
Telecom 1347.14 14.43 2.73 3.81 2.73 409.43 528.16

Table 6: Computational times (in secs) of the ILP miner and the reductions made by PacH.

4.3. Improving the Complexity of Arbitrary Discovered Nets

To show the broad applicability of our method, we run the ILP miner by [25]

on the same set of benchmarks and fed PacH with the resulting nets to apply

the Removal procedure and SMT-based reductions. For Tables 6-9 we use the

same experimental set up as above, but the baseline discovery method is the

ILP miner instead of the theory of polyhedra.

Results on the computation time of the ILP miner and PacH are reported

in Table 6. The first column reports the time to mine the net; the rest of

the columns reports on the reductions time obtained by PacH. For all the

cases, but those requiring projection, PacH performs much faster than the ILP

miner. For the DbMut(2) benchmark, our tool crashed when trying to apply

the Removal procedure and thus for this combination of methods no answer is

reported in any of the tables.

In terms of complexity (see Table 7), for most of the results the same conclu-

sions can be made as those using the theory of polyhedra. The only difference is

that no reduction was done by matrix reduction with negative information due

either to an unsat answer by the SMT solver or a reached timeout. This coin-

cides with our intuition that the theory of polyhedra generates complex models

due to the fact that it computes not any hull covering the points, but the min-

imal one. Due to this extra complexity, there is a lot of space for improvement
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Positive Positive/Negative Removal

Benchmark ILP Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 396 289 7 7 7 100 97
A(42) 933 678 7 7 7 124 175
Choice 24 21 7 7 7 7 21
ConfDimB 24 23 23 7 7 7 23
Cycles(5) 30 7 7 7 7 7 7
DbMut(2) 92 77 7 7 7 N/A N/A
DocumentFlow 2426 1463 7 7 7 937 695
FHMexample 102 85 7 7 7 7 72
Incident 194 107 7 7 7 150 77
Receipt 183 121 7 7 7 120 89
Svn 82 68 7 7 7 65 47
T(32) 606 441 7 7 7 108 149
Telecom 777 486 7 7 7 341 194

Table 7: Experimental results on the complexity of the models mined by the ILP miner and
simplified by PacH.

in terms of complexity and SMT performs very well.

Positive Positive/Negative Removal

Benchmark ILP Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 0.46 0.08 7 7 7 0.21 0.07
A(42) 0.32 0.09 7 7 7 0.13 0.08
Choice 0.98 0.21 7 7 7 7 0.21
ConfDimB 0.99 0.28 0.62 7 7 7 0.28
Cycles(5) 0.20 0.22 7 7 7 7 7
DbMut(2) 0.22 0.12 7 7 7 N/A N/A
DocumentFlow 0.15 0.12 7 7 7 0.15 0.11
FHMexample 0.27 0.27 7 7 7 7 0.26
Incident 0.24 0.13 7 7 7 0.23 0.12
Receipt 0.22 0.08 7 7 7 0.21 0.08
Svn 0.11 0.10 7 7 7 0.10 0.10
T(32) 0.39 0.09 7 7 7 0.22 0.08
Telecom N/A 0.03 7 7 7 0.22 0.20

Table 8: Experimental results on the precision of the models mined by the ILP miner and
simplified by PacH.

Precision results for the ILP miner are reported in Table 8. Here the results

differ from the ones of the theory of polyhedra. The best values are obtained

from the ILP miner (as expected since a reduction in complexity usually de-

creases precision) and the closest ones are still obtained by applying Removal

on top of baseline; however the drop in precision is higher than in the case of

polyhedra. For the first two benchmarks, precision drops to half and one third
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Positive Positive/Negative Removal

Benchmark ILP Halfspace Matrix Halfspace Matrix Baseline SMT

A(32) 0.63 0.77 7 7 7 0.68 0.80
A(42) 0.60 0.68 7 7 7 0.68 0.75
Choice 1.00 1.00 7 7 7 7 1.00
ConfDimB 0.83 0.83 0.83 7 7 7 0.83
Cycles(5) 0.90 0.90 7 7 7 7 7
DbMut(2) 0.42 0.56 7 7 7 N/A N/A
DocumentFlow 0.88 0.91 7 7 7 0.91 0.93
FHMexample 0.88 0.96 7 7 7 7 0.96
Incident 0.97 0.99 7 7 7 0.97 0.99
Receipt 0.67 0.84 7 7 7 0.66 0.84
Svn 1.00 1.00 7 7 7 1.00 1.00
T(32) 0.48 0.63 7 7 7 0.53 0.68
Telecom 1.00 1.00 7 7 7 1.00 1.00

Table 9: Experimental results on the generalization of the models mined by the ILP miner
and simplified by PacH.

respectively where in the case of polyhedra the difference between these two

columns were always below 5%. In terms of generalization (Table 9), the best

results are always obtained after applying Removal on top of the half-space

reduction. However for most of the cases the same results are already obtained

in the 2nd column.

4.4. Comparison with an Unfolding-based Simplification Techniques

Our complexity reduction can be seen as a simplification technique; we now

compare the results of PacH with respect to a recently introduced simplification

method based on unfoldings by [10] which is implemented in the Uma package of

the ProM framework. Since the latter cannot be applied to the models mined

using the theory of polyhedra (due to the restriction that unfolding techniques

must be applied to safe nets with no weight arcs6) we only apply both algorithms

on the models mined by the ILP miner and use the same ten-fold cross-validation

strategy as in the previous experiments. Since this simplification technique is

complementary to our method, we also evaluate the results of applying them

both, i.e. we mine the net with the ILP miner, we make a first simplification

6The safeness restriction can be relaxed following [13] to apply unfoldings to general Petri
nets, however we are not aware of any tool implementing such general approach.
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Figure 5: Results on the complexity of the nets generated by our method and an unfolding-
based simplification one (optimal values are the lowest ones).

Figure 6: Results on the precision of the nets generated by our method and an unfolding-based
simplification one (optimal values are the highest ones).

using Uma and then we apply PacH. Figures 5-7 display the results of both

methods in terms of complexity, precision and generalization. We report on

the original values (no simplification), the values after applying Uma, the ones

after applying the Removal procedure from PacH and the results of applying

both methods together. Surprisingly, even if Uma does not consider negative

traces, for this set of benchmarks and the automatically generated negative

information, the resulting models do not accept any negative trace.

From Figure 5 it can be observed that the Removal procedure from PacH

is the one obtaining the best results in terms of reducing the complexity of the
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Figure 7: Results on the generalization of the nets generated by our method and an unfolding-
based simplification one (optimal values are the highest ones).

net (lowest values correspond to the best results). However this procedure can

be applied on top of the results obtained by Uma resulting in the optimal re-

sults. Figure 6 shows what can be considered as a drawback of our technique:

the degradation of precision (specifically when using the Removal procedure

which is the most aggressive one in terms of simplification). This happens in

both set ups where the Removal procedure is applied (“ILP + PacH” and

“ILP + Uma + PacH”). This is not a surprise considering that reducing com-

plexity and improving generalization normally imply a reduction in precision.

In terms of generalization (Figure 7) most of the scores are similar, however

for some benchmarks the combination “ILP + Uma + PacH” reports the op-

timal results. From the three figures it can be concluded that both techniques

are complementary and the use of both of them together guarantees a good

compromise in terms of the three quality metrics.

If we do not combine both approaches, it is clear that for this set of bench-

marks Uma outperforms PacH. However for complex systems like found in

manufacturing, the safeness assumption made by Uma would generate models

with low precision values and which miss important relations between activities.

Consider the following set of traces (taken from [5]) which shows a non-unitary

synchronic distance between the firing of activities a and b.

a b b a a b b a a b a a b a b b a a a a
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a a a b b b a a b a b b b a a b b a b a
b a a b a a a a b a b b b b b a a b a b
b a b a a b b a a b a b a a a a b a b a
a a a b a b b a a b a b b a b b a a a a
b a a a a b a a b b a a a b a b a a b b
b a b a b a a b a a a a b b a b a a b a
b a b a b a b a b a a a b b a b b a b a
a b b a a a b b b a b a a a a a a a b b
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In this case, it is possible to have three a’s without any b, so the relation between

them is non-unitary. This represents a typical situation in manufacturing sys-

tems where manufacturing a product requires several parts, each being repeated

several times. Uma generates a model that cannot capture these relations be-

tween a and b and instead overuses duplicate labels. On the contrary, the theory

of polyhedra is general enough to produce the whole class of P/T nets which

can capture the non unitary relation between activities a and b.

4.5. Discussion

In summary, the evaluation performed in this section shows important ten-

dencies that we would like to explicit now. First, it is clear that some of the

methods presented in this paper tend to alleviate the complexity of the derived

net. This capability can be boosted when the techniques are combined with

state-of-the art simplification techniques like [10]. Second, precision is often

negatively correlated with respect to the complexity alleviation, a drawback of

the techniques proposed in this paper. In contrast, generalization is positively

correlated with the produced complexity alleviation, showing a clear benefit of

using the techniques of this paper. Finally, the computation overhead is accept-

able given the quality impact in the derived nets.

5. Related Work

Several techniques exist for the discovery of workflow nets [23], a very re-

stricted class of Petri nets. Other techniques which focus on similar formalisms

(heuristics/causal nets [28] or fuzzy nets [24]) are again restricted in terms of

expressivity, making them unsuitable for capturing the type of general behavior
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considered in this paper. In terms of expressive power and capability to generate

fitting models, the only approaches in the literature closer to ours are grounded

on the theory of regions: the works by [4, 26, 6, 22] can discover unrestricted

models but do not incorporate negative information as we report in this paper.

Very few approaches exist towards binary, two-class supervised process dis-

covery, compared to the multitude of process discovery techniques that work in

a one-class setting where only one class of traces is given. Among the first to

investigate the use of binary-class supervised techniques to predict dependency

relationships between activities is [16], in which a binary classification algorithm

is trained on a table of metrics for each activity. Inductive logic programming

and partial-order planning techniques are applied to derive a process model

in [11]. Here, negative information is collected from users and domain experts

who indicate whether a proposed execution plan is feasible or not, iteratively

combining planning and learning to discover a process model. An extension of

logic programming (SCIFF) is applied towards supervised declarative process

discovery by [14, 15] and [2], i.e. the process model is represented as a set of

logic constraints and not as a visual process model as done in this work. The

authors assume the presence of negative information. Similarly, [12] represent

the process discovery task as a multi-relational first-order classification prob-

lem and apply inductive logic programming in their AGNEsMiner algorithm to

learn the discriminating preconditions that determine whether an event can take

place or not, given a history of events of other activities. To guide the learn-

ing process, an input event log is supplemented with induced artificial negative

events, similar as in this work.

A recent discovery technique that also uses negative information is presented

by [20]. The intuitive idea is to obtain an unfolding from an event log using some

independence information between activities which is given as input. Then a

folding step is performed to derive a process model that further generalizes the

behavior in a controlled manner, e.g., including cycles, but without introducing

any forbidden behavior. Unfortunately, an artifact of using the unfolding as

intermediate representation is the restriction to safe Petri nets, i.e., nets with
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at most one token per place. This contrasts with the general models considered

in this paper.

In terms of simplicity, several metrics have been proposed in the literature

(see for example the work of [17]), most of them related to the visualization of

the final model, i.e. its graphical representation. However those metrics were

usually defined for more restricted classes of Petri nets where the main objective

is the representation of the workflow of the process. The kind of nets we consider

(P/T nets) are more general and allow to represents concepts such as resources

and costs.

Murata mentioned in his survey about Petri nets [18] several simplification

rules which preserve liveness and reachability of the system; however they do

not necessarily preserve the behavior of the net (i.e. fitness). Redundant places

(those that do not restrict transition firing) can be detected and removed fol-

lowing [7]. Some more recent techniques are alto worth mentioning. First, the

simplification technique presented by [10] also describes an automatic method

to simplify a Petri net that relies on the computation of the unfolding of the net

in order to preserve only the paths that lead to a sound generalization. Since

this technique is based on unfoldings, it has the same limitation as the tech-

nique introduced by [20], i.e. it can only be applied to safe nets which restricts

its applicability. Additionally, this technique does not consider negative infor-

mation at all and cannot thus guarantee that certain unwanted behavior is not

introduced in the simplification step.

Another recent simplification technique is presented by [9]. This technique

makes a trade-off between the graphical representation and the quality metrics

of the net and decides what arcs to remove by encoding the problem as an

optimization problem. They approach can be used in combination with the

methods of this paper to further simplify a model.

6. Conclusions and Future Work

We have presented a process discovery approach based on numerical ab-

stract domains and SMT which is able to reduce the complexity and generalize

31



discovered process models based on negative information found in event logs,

derived artificially or supplied by domain experts. We believe this contribution

opens the door for binary-class discovery techniques and argue that this feature

may be crucial for deriving process models which are less complex, fitting and

precise, but also good on generalizing the right behavior underlying an event

log. Experiments performed in our implementation show the effectiveness of the

techniques both as a discovery algorithm or a post processing technique.

Regarding future work, we plan to pursue to following avenues. First, we

have made use of an artificial negative event induction technique in order to

derive negative information for a given event log; we plan to investigate the

possibilities towards incorporating domain knowledge to simplify and general-

ize models using our technique. Second, as mentioned above, we have assumed

that negative information can be separated from positive information in a linear

fashion, i.e. by a set of half-spaces representing a convex polyhedron. However,

there may be negative points inside the polyhedron constructed. As such, the

learning task can be oriented to not one but a set of convex polyhedra covering

only the positive points, for which merging methods would need to be investi-

gated. Related to this issue is the aspect of noise, which also forms an interesting

avenue for future work. The following strategies can be identified as possible

ways to tackle noise. First, using existing frequency-based pre-processing filters

on the event log to remove “outlier”-activities (i.e. activities occurring in a very

rarely seen context in the event log). Second, the removal of halfspaces even

if they lead to the inclusion of negative information also forms an interesting

possibility. If the number of negative points that would be included are few,

one might still consider the removal as the negative points might be due to

noise being present in the negative information. These are potentially useful

improvements worth exploring in follow-up work. Finally, we plan to set up

a thorough experiment in to investigate the effects of our approach on models

mined by various miners and plan to continue developing PacH.
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