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Abstract

Cloud database services represent a great opportunity for companies and organizations in terms of management and cost
savings. However, outsourcing private data to external providers leads to risks of confidentiality and integrity violations.
We propose an original solution based on encrypted Bloom filters that addresses the latter problem by allowing a cloud
service user to detect unauthorized modifications to his outsourced data. Moreover, we propose an original analytical
model that can be used to minimize storage and network overhead depending on the database structure and workload.
We assess the effectiveness of the proposal as well as its performance improvements with respect to existing solutions by
evaluating storage and network costs through micro-benchmarks and the TPC-C workload standard.
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1. Introduction

Cloud database services represent an important oppor-
tunity for many enterprises and organizations attracted
by high availability and scalability guarantees. However,
their adoption is limited by the perceived risks about data
confidentiality and integrity that can be violated by insid-
ers and external attackers [32]. In this paper we consider
the problem of data integrity in cloud databases, and we
propose an efficient solution to assess the integrity of out-
sourced data while minimizing network and storage over-
head.

We should consider that cloud service contracts do not
oblige providers to notify tenants about data corruption,
hence verifying data integrity remains a tenant’s burden.
Existing verification solutions are affected by prohibitive
computational, storage and bandwidth overhead that have
an impact on costs because additional network and stor-
age usage increases cloud service expenses [22]. We pro-
pose a novel solution for integrity verification that allows a
tenant to efficiently detect unauthorized modifications on
outsourced data at reduced storage and network overhead.
The contribution of this paper is threefold:

• it defines a novel integrity protocol and analyzes the
guarantees that it offers;

• it proposes an analytical model that allows the ten-
ant to optimize the parameters of the proposed in-
tegrity protocol with the goal of minimizing storage
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and network overhead as a function of database work-
load characteristics;

• it evaluates the performance of the proposed protocol
through micro-benchmarks and the TPC-C standard
database benchmark.

The literature on database outsourcing faces three types
of correctness guarantees: integrity, completeness and
freshness [10, 30, 46, 50]. Completeness and integrity are
satisfied if the result of a query includes all and only the
relevant data that an authorized party inserted in the da-
tabase, thus guaranteeing that tenant’s data is not altered,
deleted or ignored by the outsourced database. Freshness
ensures that a client receives the latest version of the re-
quested data. This paper focuses on integrity and proposes
a novel scheme that allows efficient detection of unautho-
rized modifications of data stored in cloud databases.

Existing solutions to guarantee data integrity leverage
cryptographic digests that can be based on asymmetric
or symmetric primitives. Asymmetric cryptographic accu-
mulators [7, 39] ensure optimal asymptotic complexity in
storage, computation, and network usage [35], but their ex-
cessive computational costs prevent their adoption in most
database scenarios [15]. Symmetric Message Authentica-
tion Codes (MAC) can guarantee the integrity of tenant
files stored in the cloud [2], but their adoption in cloud
database services poses several challenges related to the
granularity of the protected data: if every value is pro-
tected by a MAC, the database storage increases consider-
ably; if the entire set of rows/tables are protected by one
MAC, then the verification of each value requires to fetch
an entire row/table, thus imposing an excessive network
overhead that renders verification unfeasible.

The proposed scheme relies on a variant of Bloom fil-
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ters [8] for the detection of unauthorized modifications
to outsourced data. This choice guarantees two benefits:
the processes of integrity verification and update of the
authentication structures cause low network and storage
overhead; all cryptographic operations are based on sym-
metric schemes that do not introduce significant computa-
tion overhead. The performance of the proposed scheme
depends on Bloom filter sizes that should be chosen on the
basis of the integrity guarantees required by the tenant.
We enrich the proposal by offering an analytical model
that takes as its input the integrity requirement, the data-
base characteristics and workload, and evaluates the opti-
mal size of the Bloom filters that minimize overheads and
related cloud service costs.

Our proposal is orthogonal to data encryption strategies
for data confidentiality proposed in literature [20, 21, 23,
43], and can be integrated with encryption algorithms to
achieve both confidentiality and integrity of data stored
in cloud databases. Moreover, it can be used to design
solutions that aim to ensure data completeness and fresh-
ness [47].

To the best of our knowledge, the proposed scheme
is the most efficient solution for detecting unauthorized
modifications in cloud database services. We demonstrate
its benefits through micro-benchmarks and the standard
TPC-C benchmark. All results show that the proposed
scheme greatly reduces network and storage footprint with
respect to existing proposals.

The remaining part of the paper is organized as fol-
lows. Section 2 describes the considered cloud database
scenario and the threat model. Section 3 outlines theo-
retical background on Bloom filters. Section 4 presents
the proposed solution and its security guarantees. Sec-
tion 5 describes how the tenant must size the protocol
parameters to achieve the required security level. Sec-
tion 6 presents the analytical method to minimize over-
head. Section 7 discusses performance in terms of storage
and network overhead, and compare results against state-
of-the-art schemes. Section 8 compares our solution with
existing proposals. Finally, Section 9 concludes the paper
by summarizing its main contributions and future work.
For further implementation details, security analyses and
proofs please refer to the Appendices.

2. Scenario and threat model

We consider a scenario where a tenant stores large
amounts of data into a cloud database through clients that
issue read and write operations. The tenant benefits from
pay-per-use cloud prices with the goal of reducing his op-
erational costs, but his data at rest, in motion and in use
are subject to different security threats.

Our proposal aims to improve security of data in use
against internal malicious attackers, and can be combined
with additional solutions to protect other attack surfaces.
For example, clients and database servers should adopt
the SSL/TLS protocol suite to protect confidentiality and

integrity of data in motion as well as the ability to detect
replay and reflection attacks. The cloud provider must
own a valid PKI certificate that avoids man-in-the-middle
attacks. All clients must own valid credentials (e.g., API
tokens, client-side PKI certificates) that allow the provider
to identify and authenticate them, as well as grant proper
access on the resources stored in the database.

In the proposed scheme, we assume that all clients share
the same secret key, that can be distributed according to
known key distribution schemes [9], as well through more
efficient strategies that are specific to the field of cloud
database services [16, 20]. We assume that the secret key
is not known by the cloud provider nor by any other part
that is not authorized to manipulate tenant data. We
assume that all clients are trusted and will never send cor-
rupted data to the cloud database, nor will leak confi-
dential information to unauthorized parties (including the
cloud provider). On the other hand, we assume that the
cloud provider is not trusted and could alter tenant’s data.
Modification may be caused by hardware or software fail-
ures, as well as by deliberate attacks coming from external
adversaries or from insiders within the cloud organization.
From the tenant’s point of view, any unauthorized modi-
fication represents a data integrity violation.

Data integrity and authenticity is a prominent re-
search area of the cryptography community, and is usu-
ally guaranteed by means of message authentication codes
(MAC) [5]. A MAC applied to arbitrary data together
with a secret key produces a (cryptographic) digest (also
called tag), that is a compressed representation of the in-
put data. An attacker can violate integrity by forging a
digest on behalf of the authorized users. The security level
of a MAC depends on the key and digest sizes. The key
size determines the security level against off-line brute-
force attacks, in which the attacker knows some plaintext
data and the corresponding digest, and tries to guess the
key. Key length should always comply with standards rec-
ommendations [4]. The digest size, that is constant with
regard to the size of the input, determines the probability
of guessing a valid digest. Since only an authorized party
can verify a digest, this attack can only be executed by
participating to the secure protocol and interacting with
the authorized parties.

The security threats against the integrity of data out-
sourced to a remote database are peculiar to this context.
In other scenarios, such as protocols for secure commu-
nications, protecting data integrity requires scheme that
withstand adaptive attacks, where attackers can adopt a
trial-and-error strategy and attempt a large number of un-
successful attacks. On the other hand, in the outsourced
database scenario, the attackers cannot access the verifi-
cation function because there is no reason to expose this
service. As a consequence, one unsuccessful attack is suffi-
cient for the tenant to detect an integrity violation. Hence,
for this scenario it is sufficient that integrity solutions with-
stand non-adaptive attacks.

Among all proposed security models, our scheme must
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protect data against the so called chosen ciphertext at-
tacks (CCA) assuming that an attacker tries to forge a
ciphertext corresponding to a valid plaintext. The litera-
ture distinguishes between non-adaptively chosen cipher-
text attacks (CCA1) and adaptively chosen ciphertext at-
tacks (CCA2) depending on attacker capabilities. Crypto-
graphic schemes are CCA1-secure or CCA2-secure if they
are resistant against CCA1 and CCA2 attack models, re-
spectively. We design a novel cryptographic scheme that
ensures integrity of data outsourced to a cloud provider by
allowing a tenant to detect whether data has been modi-
fied without authorization. The adopted scheme is robust
against CCA1 attacks. While it is possible to improve
its security guarantees, the proposed scheme should not
be used to protect integrity in scenarios requiring CCA2-
security guarantees.

The proposed protocol guarantees data integrity with-
out incurring in excessive overheads affecting state-of-the-
art schemes. For this reason, it perfectly suits the cloud
scenario where network and storage overheads are costly
metered resources.

3. Theoretical background

Besides the attack models and cryptographic protocols
discussed in the previous Section 2, the main theoretical
foundations used in this paper are related to Bloom fil-
ters [8, 11, 34], that are space-efficient data structures for
representing sets. A Bloom filter (BF) can be described as
an array of m bits (a bit string) built using k hash func-
tions. Each hash function maps an arbitrary long string
to an integer within the range rms “ 0, . . . ,m ´ 1. To
insert an element in the BF, we compute the hash func-
tions of the element and set to one the corresponding bits
in the BF bit string. A BF supports membership queries
that allow false positives, in the sense that a query may
return a positive answer even if an element is not stored
in the Bloom filter (BF). As an advantage, queries never
return false negatives. To execute a membership query for
a given element, we compute the hash functions of the ele-
ment and verify if all the corresponding bits in the BF bit
string are set to one. A false positive occurs if the bits are
equal to one even if the element was not inserted in the
BF.

The probability of getting a false positive, namely the
false positive rate, depends on the size m of the BF, on the
number of hash functions k and on the number of values n
stored in the BF. The false positive rate function fp¨q can
be computed as following:

fpm,n, kq “
«

1´
ˆ

1´ 1

m

˙knffk
« p1´ e´kn{mqk (1)

The optimal number of hash functions k̄ is the value of
k that minimizes the false positive rate, and can be com-

a1 ac aC

v1,1 . . . v1,C e1

. . . vr,c . . . er

vR,1 . . . vR,C eR

Table 1: Database table enriched with a column containing
cryptographic digests.

puted in terms of m and n [11]:

k̄ “ m

n
¨ lnp2q (2)

Moreover, the optimal false positive rate f̄pm,nq “
fpm,n, k̄q can be computed as following:

f̄pm,nq « p1´ e´k̄n{mqk̄ “ 2´k̄ “ e´
m
n lnp2q2 (3)

Note that if the optimal amount of hash functions k “ k̄
is used, then the estimated amount of bits set to one is
half the size of the BF and the bit string created by the
BF function resembles a randomly generated string [11,
33, 34].

4. Protocol design

We describe the solution based on encrypted BF to guar-
antee integrity of data outsourced in outsourced databases
while minimizing computational, storage and network
overhead. Let us consider a table having R rows and C
columns. We denote as vr,c the value stored in the r-th
row and c-th column of the table, where r “ r1, . . . , Rs
and c “ r1, . . . , Cs. Similarly, Vr is defined as the set of all
values that belong to the r-th row, that is pvr,1, . . . , vr,Cq.

We add to all database tables a new column storing a
short control structure, namely a cryptographic digest (or
just digest), that allows the tenant to verify the integrity
of all the data stored in the corresponding row. The no-
tation er identifies the digest associated to the r-th row
of a table. Table 1 shows the modified database schema,
where ac is the name of column c. We assume that the
tenant database administrator generates a secret key and
distributes it to authorized clients and that the algorithms
used in the protocol are public. We now describe how an
authorized client executes insert, read and update opera-
tions.

4.1. Insert operation

An authorized client issues an insert operation by send-
ing a tuple of values Vr and the associated digest er to the
cloud database. The client computes er according to the
following equation:

er “ Eskpiv, brq, (4)
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where Eskp¨q is an IND-CPA-secure symmetric encryption
algorithm, sk is the secret key and iv is the random ini-
tialization vector. The encryption algorithm takes as input
the value br, that is a bit string computed as following:

br “
Cł

c“1

Bm
τ pac, vr,cq, (5)

where ac is the label of the column associated to the value
vr,c,

Ž
is the bitwise OR operator and Bm

τ p¨q is a BF func-
tion that outputs a bit string of size m that is independent
of the size of the input values. The function Bm

τ p¨q is com-
puted by using keyed hash functions (e.g., HMAC algo-
rithms [5]) that accept multiple inputs [36] and the secret
key τ . For the sake of clarity in the rest of the paper we
will refer to function Bm

τ p¨q and to its outputs as secret BF
function and secret BFs, respectively. As an example, we
say that the value br is the secret BF associated to the row
r and, as expressed by equation (5), that it stores the set
of elements tpac, vr,cquc Pr1,...,Cs. We propose a candidate

implementation in Appendix A.
The use of keyed hash functions is uncommon, since BFs

are usually implemented through public hash functions.
However, in our protocol this is not a viable option. Let
us consider an adversary that tries to insert a fake value
in the row r. If BFs are based on public hash functions,
an attacker that knows Vr can compute br and randomly
generate fake values until a false positive is obtained. The
average amount of trials that are necessary to find a valid
fake value depends on the false positive rate of the BF and
not on the security level of the encryption function Eskp¨q.

We observe that any data given in input to the function
should be binary encoded as it is typical for most protocols
in symmetric cryptography. The proposed protocol also
supports missing (null) values inserted in the database.
Whenever a client inserts a null value in the database,
he inserts an encoding convention in the corresponding
digest. All encoding functions and conventions are public
and known to all the parties. They are also used in the
verification phase.

4.2. Read operations

Let us assume that the client wants to retrieve one value
vr,c from the cloud database and to verify its integrity.
This can be accomplished by fetching the required value
together with the corresponding digest er through a select
query. We note that there is no need to retrieve all the
other values of the row r because the BF supports effi-
cient set membership. The client then decrypts er using
sk as decryption key and obtains br. Now he can execute
a membership test of the value vr,c on br by means of the
secret key τ (see Appendix A for a candidate implemen-
tation). If the membership test fails, then an integrity
violation has been detected. If it occurs, then one of the
following is true:

• the value vr,c has not been tampered with and in-
tegrity holds;

• the integrity of vr,c has been compromised, but the
membership test returned a false positive.

False positives are a well known drawback of BFs, but they
can be limited by a careful choice of the BF parameters.
A thorough analysis of the attacks against BFs and of how
they can be prevented is proposed in Section 4.4.

We recall that the elements stored in the secret BF are
a concatenation of values stored in the database and of
the labels associated to their column. This design choice
prevents attacks based on columns scrambling. As an ex-
ample, we consider a table with two columns c1 and c2.
An authorized client inserts two values vr,c1, vr,c2 and the
digest er computed through Equations (5) and (4). The
values inserted in the secret BF are obtained by concate-
nating the labels c1 and c2 to the corresponding values vr,c1
and vr,c2. Now, let us assume that an adversary swaps the
two values. When the tenant requests any of the two val-
ues, he executes integrity checks. He obtains the values
vr,c1 and vr,c2 for the columns c2 and c1, respectively. To
verify integrity he concatenates the values with the asso-
ciated columns and tests the membership of the results in
the secret BF. Since the resulting elements are different,
he detects an integrity error. This strategy can also be
used with databases with complex hierarchical schema by
substituting the name of the column with the unique path
or identifier used to retrieve the value.

Another threat is represented by attacks based on rows
scrambling. As an example, consider a client that issues
the following select query: SELECT c2 FROM tablename
WHERE c1 “ x. Let us assume that only row r2 sat-
isfies the WHERE clause, hence a correct cloud provider
should return vr2,c2 together with e2. An adversary cloud
provider may reply with a value of column c2, but belong-
ing to a row that does not satisfy the WHERE clause.
Suppose that the cloud provider replies with vr1,c2 and
e1. Our protocol is able to detect this incorrect result,
because the client verifies that both pc2, vr1,c2q and pc1, xq
are stored in e1. While the first check succeeds, the second
fails, and the client is able to detect the row scrambling
attack of the cloud provider. This design choice protects
the database against row scrambling for any type of query,
and similar examples may be provided for range queries.

4.3. Update operations

When a client issues an update operation to modify one
or more values belonging to row r, he must also update the
digest er. We distinguish two methods to issue update op-
erations: the always renew strategy, and the greedy renew
strategy.

The always renew strategy is the simplest one and im-
plies the execution of update operations as insert oper-
ations. The client fetches all the row values from the
database, even those that are not modified by the up-
date, and computes a digest that stores the updated tuple
as described in the previous paragraph, by using Equa-
tions (4), (5). The main drawback of this simple update
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strategy is that the tenant retrieves unnecessary values
every time he updates even one value, thus causing high
network overhead.

The greedy renew method requires the execution of up-
date operations without having to download unnecessary
data from the cloud database service, thus reducing the
network overhead. In this strategy, the client that up-
dates some values V 1r Ă Vr retrieves only the values V 1r
and the associated digest er. First, the clients verifies the
integrity of the values. Then, it computes the new secret
BF b1r associated to the updated values by decrypting the
retrieved digest er into br and adding the new values. Fi-
nally, it re-encrypts the value by using the secret key sk
and a new random initialization vector iv1. The update of
er can be summarized as following:

e1r “ Esk
`
iv1,Bmτ pV 1r q _Dskperq

˘
, (6)

where _ denotes the bitwise OR operator.

Here we propose an informal description of the issues
that must be addressed when sizing the protocol param-
eters, while a precise evaluation is proposed in Section 5.
The false positive rate of the secret BFs increases after
each update operation. Hence, when using the greedy re-
new strategy the following design choices must be taken
into account. The digest must be able to store a num-
ber of values higher than the cardinality of columns with-
out affecting security. Moreover, renew update operations
must be executed periodically before affecting the secu-
rity guarantees. In particular, since bigger BFs have lower
false positive rates, the greedy renew strategy requires to
oversize the digest stored in the database. By knowing
the maximum amount of values that can be stored in the
digests, one can estimate when to execute renew opera-
tions. Increasing the size of the BF introduces a trade-off
between the storage and network overhead. We propose
an analytical methodology to choose the best protocol pa-
rameters in Section 6.

4.4. Security analysis

We analyze the security guarantees of the proposed
scheme by identifying possible attacks and by evaluating
the sizing requirements to defend against them. All se-
curity analyses are discussed under the threat model de-
scribed in Section 2. We distinguish two types of attacks.

Attacks on the plaintext values. The attacker modi-
fies an existing tuple by inserting fake values without mod-
ifying the associated digest. In this case the attacker can
leverage the BFs false positives by guessing an element
whose membership query is answered positively even if the
element was not inserted by the tenant.

Attacks on the digests. The attacker generates new
digests for existing or new tuples without any knowledge
about the secret key. In this case the attacker aims to
take advantage of the malleability intrinsic to IND-CPA
encryption functions to manipulate the underlying BF.

The straightforward design choice to defend against at-
tacks on the digests is to protect their integrity. This is
usually accomplished by attaching a MAC computed on
the encrypted digest or by using an authenticated encryp-
tion scheme [37] instead of the IND-CPA encryption as
described in Section 4.1. Both design strategies increase
storage and bandwidth overhead. In Appendix B we
demonstrate that in the considered scenario, the attacks
on the digests are always less convenient than the attacks
on plaintext values. As a result, the protocol parameters
must be sized to defend against attacks on plaintext values
and there is no need to protect the encrypted BF with a
MAC or to use an authenticated encryption scheme.

we recall that the proposed approach does not work
when an adversary can execute adaptive attacks (see Sec-
tion 2), because he could exploit the malleability of the
IND-CPA encryption to efficiently forge fake digests.

5. Sizing boundaries

In this section we show how to size the protocol param-
eters to guarantee the security levels required by the cloud
tenant. To this purpose, we define the acceptable false pos-
itive rate ε as the highest false positive probability that a
cloud tenant wants to tolerate. For example, if the cloud
tenant deems ε “ 0.01 acceptable, then the attacker has
only 1 chance out of 100 to modify a value without being
detected. We also observe that the probabilities of de-
tecting modifications of different values are independent
of each other. Hence, if the attacker alters t values of the
database, the probability of not being detected is equal to
εt. In the previous example, if ε “ 0.01 and the attacker
modifies 3 values, the probability of not being detected
drops to 10´6. The proposed model takes as its input the
acceptable false positive rate chosen by the cloud tenant
and the database workload, and then computes the small-
est BF size that still satisfies the constraints on the false
positive rate.

Starting from the Equation (3) we propose a model that
can be used to compute the lower bound on the BF size
satisfying the acceptable false positive rate ε. We distin-
guish two typical workload scenarios:

• a database in which values are only created, read, and
deleted (CRD);

• a database in which values may be created, read, up-
dated, and deleted (CRUD).

As in the CRD scenario there are no updates, only whole
rows can be inserted or deleted. Hence, the number of ele-
ments n inserted in the BF is always equal to the number
of columns c. In this scenario the goal is to minimize stor-
age and network overhead by using the smallest BF that
satisfies the upper bound on the acceptable false positive
rate. We define mmin as the optimal value for m in the
CRD scenario. By using the inverse of Equation (3) with
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f̄ “ ε and n “ c, the tenant can compute mmin as follow-
ing:

mmin “
S
´c ¨ lnpεq

lnp2q2
W

(7)

Then, the cloud tenant can compute k̄ by substituting
mmin and c for m and n in Equation (2).

In the CRUD scenario, we also need to handle update
operations that represent authorized modifications of ten-
ant data stored in the cloud database. As discussed in
Section 4.3, update operations can be executed according
to two strategies: always renew and greedy renew.

5.1. Always renew

When a value needs to be updated in the always re-
new case, the tenant retrieves all the other values of the
same row and recomputes the corresponding encrypted
BF. Since the BF for a row is rebuilt from scratch after
any update query, it always contains a number of values
(n) that is equal to the number of columns of the table
(c). As the value of n does not change over the lifetime of
a BF, the false positive rate f remains constant and the
computation of mmin falls back to Equation (7).

5.2. Greedy renew

The main goal of the greedy renew strategy is to exe-
cute updates without having to always renew the digest,
thus reducing network overhead. If we want to perform
several updates while avoiding that the false positive rate
f exceeds the acceptable false positive rate ε, we need to
accommodate for a larger BF, having m ą mmin. After
inserting a row, the number of values stored in the BF n
is equal to the number of columns c. Whenever a tenant
updates a value, he also needs to add the new value to
the BF attached to the row. This implies that n increases
over the BF lifetime, thus causing an increase of f that
may eventually become higher than ε. To avoid that an
update causes f ą ε, the tenant has to renew the BF to
reset f to its original value. We define u as the maximum
number of values that the tenant can update while keeping
f ď ε, and we propose a method that the tenant can use
to compute u as a function of c, ε and m.

A fresh BF includes c values and, by definition, can
tolerate up to u insertions before needing a renew. Thus,
the maximum number of elements that can be inserted is
nmax “ c`u. By using the inverse of Equation (3), where
f̄ “ ε, the tenant can compute nmax as follows:

nmax “
[
´m ¨ lnp2q

2

lnpεq

_
(8)

Then, the tenant can compute k̄ by substituting nmax to
n in Equation (2). The number of updates left until the

greedy renew is u “ nmax ´ c. Through Equation (8) we
obtain:

u “
[
´m ¨ lnp2q

2

lnpεq

_
´ c (9)

The only other parameter required to build the BF is m.
A lower bound for m is represented by mmin, as computed
from Equation (7). For m “ mmin, the tenant has to per-
form a greedy renew for every update, thus falling back
to the always renew strategy. Values of m higher than
mmin reduce the network overhead for update operations,
but they increase storage and network overhead for select
and insert operations. The choice of the best value for m
depends on the acceptable false positive rate, the work-
load, the database structure, and on the trade-off between
storage and network overhead. In the following section we
propose an analytical method to estimate the optimal BF
size with respect to the tenant requirements.

6. Analytical model for overhead minimization

We have shown that a greedy renew strategy requiring
larger BFs reduces network overhead in an update sce-
nario at the cost of additional storage overhead. Now we
propose an analytical model that takes as its inputs the
acceptable false positive rate ε, the database characteris-
tics and the database workload, and computes the best
BF size, namely mbest, that minimizes the costs faced by
a tenant. In Section 6.1, we introduce the cost models
for cloud database services. In Section 6.2, we describe
our cost minimization methodology for a proxy-based ar-
chitecture. In Section 6.3, we extend the minimization
methodology for an alternative architecture that does not
leverage any proxy. Table 2 summarizes the main param-
eters used in the models.

6.1. Costs and network usage models

We assume that the tenant uses a typical pay-per-use
cloud database service, where the costs are a function of
storage, ingoing network and outgoing network traffic. We
assume service costs that are independent of each other,
that is, where the total cost of the service can be modeled
by the following equation:

Cost “ CostpStorageq ` CostpNetInq ` CostpNetOutq
(10)

We denote as ϕs, ϕi and ϕo the cost weights related to
storage, ingoing and outgoing network, respectively. We
define them as coefficients that are normalized with respect
to the total cost (ϕs ` ϕi ` ϕo “ 1):

ϕs “ CostpStorageq
Cost

(11)

ϕi “ CostpNetInq
Cost

(12)

ϕo “ CostpNetOutq
Cost

(13)
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Symbol Description

ε Acceptable false positive rate.

f False positive rate of the bloom filter.

c Number of columns.

t Average tuple size.

m Size of the encrypted Bloom filter.

d Size of the initialization vector attached to the
Bloom filter.

ω Normalized frequency of execution of an opera-
tion.

p Percentage of tuple size that is read or updated
by select and update operations.

o Amount of values updated in each update oper-
ation.

µ Frequency of execution of a Bloom filter renew
operation.

u Amount of values that can be stored in Bloom
filters before a renewal operation.

λ Amount of greedy update operations between
two renew operations.

ϕo Percentage of costs that are due to outgoing net-
work usage.

Table 2: Model parameters.

If the database is already deployed in the cloud, the ten-
ant can determine ϕs, ϕi and ϕo by using the real costs
of the basic service without our extensions. Otherwise,
he can compute the costs and the corresponding weights
by using estimation methodologies proposed in literature
(e.g., [17, 22, 48]). In any case, it is important to evalu-
ate the network usage that depends on type and number
of operations executed on the database. We consider the
most common operations: select, update and insert. We
are not interested in delete operations because they do not
transfer data between the tenant and the cloud provider.

We define the global workload W as the tuple
ppωS , Sq, pωU , Uq, pωI , Iqq, where S,U, I are workload de-
scriptions for select, update and insert operations, and
ωS , ωU and ωI represent the normalized execution fre-
quencies of the operations within the workload W . We
introduce the ingoing and outgoing network usage I and
O for a given workload. For example, OSpSq is the outgo-
ing network usage for the select workload S, while IIpIq
is the ingoing network usage for the insert workload I.

Select operations affect only the outgoing network usage,
since they only fetch data from the database service. On
the other hand, insert operations affect only the ingoing
network usage, because they push data to the database
service. Finally, update operations affect both ingoing and
outgoing network usage. Ingoing network usage is due to
the upload of a new value; outgoing network usage is due
to the download of the digests and, possibly, of all the
other row values (in case of a digest renew).

We define the total outgoing (NetIn) and ingoing net-

work usage (NetOut) as:

NetIn “ ωI ¨ IIpIq ` ωU ¨ IU pUq (14)

NetOut “ ωS ¨OSpSq ` ωU ¨OU pUq (15)

We model IIpIq by assuming that any insert operation
creates a new tuple whose average size is the sum of three
components: the average size t of the tuple in the original
database, the size of the digest m, and the size d of the
initialization vector used to encrypt the BF. Hence, the
ingoing network usage IIpIq can be computed as follows:

IIpIq “ t`m` d (16)

The formula for the ingoing network usage IU pUq due
to updates is more complex. We assume that each up-
date operation will push on average to the database an
amount of data that is the sum of three components: the
average amount of values transmitted, the size of the BF
m, and the size d of the initialization vector used to en-
crypt the BF. We can define the workload U as a set of
tuples pω, p, oq, each describing a single class of update op-
erations. The parameter ω is the normalized frequency of
execution (

ř
ωPU ω “ 1), p is the ratio between the size of

the updated values and the size of the updated row, and
o is the number of updated values (o ď c). The average
ratio of data modified by an update operation p̄u can be
computed as the weighted average of the sizes of updated
values across the different classes of update operations,
that is:

p̄u “
ÿ

pω,p,oqPU
ω ¨ p (17)

Multiplying p̄u by the average tuple size t yields the aver-
age amount of data transmitted by all update operations.
Thus, the ingoing network usage IU pUq can be written as:

IU pUq “ m` d` t ¨ p̄u (18)

Note that the o values modeled in the pω, p, oq tuple is used
later to quantify the amount of values that can be updated
without requiring a greedy renew.

To define OSpSq we model the workload of select opera-
tions S as a set of tuples tpω, pqu, each describing a single
class of select operations. The parameter ω is the normal-
ized frequency of execution and p is the ratio between the
average size of the retrieved data and the size of a row.
We estimate the average outgoing network usage due to
select operations as the weighted average of network usage
of the different types of select operations, that is:

OSpSq “ m` d` t ¨
ÿ

pω,pqPS
ω ¨ p (19)

Finally, for the model of the outgoing network usage
OU pUq due to update operations we must consider the
greedy renew strategy used to periodically renew the BFs.
An update operation that does not renew the digest only
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retrieves the subset of the row that will be updated.
An update operation that renews the digest retrieves the
whole row. We model the average outgoing network usage
of update operations as the following weighted average:

OU pUq “ m` d` t ¨ r1´ p1´ µq ¨ p1´ p̄uqs , (20)

where µ is the average frequency rate of the renew opera-
tions, that is directly proportional to the amount of values
u that we can insert in the BFs (see Section 4) and in-
versely proportional to the amount of values o updated in
each update operation. As u is inversely proportional to
the BF size m (see Equation (9)), choosing greater values
of m allows us to reduce the frequency of renew operations.
However, this choice increases the network usage of both
greedy and renew operations. The aim of our methodol-
ogy is to estimate the value m “ mbest that minimizes
Equation (20). Then, by using this optimal solution, we
are able to minimize Equation (10). To optimize Equa-
tion (20) we must denote µ in terms of m. In this paper,
we propose two variants of the protocol.

• The stateful variant assumes that the states of BFs
are known. This scheme can be deployed on architec-
tures based on a proxy that tracks the update opera-
tions issued by all clients. We discuss the scheme in
Section 6.2.

• The stateless variant assumes that distributed clients
operate on the cloud database without any interme-
diary servers and without knowing the states of BFs.
This scheme can be easily deployed on client-side ap-
plications without any intermediate server, but offers
weaker security guarantees in presence of some ad-
vanced attack scenarios. We discuss the scheme and
its security guarantees in Section 6.3.

6.2. Stateful protocol

We initially consider a stateful protocol that is able to
track the number of values inserted in all the encrypted
BFs. A possible architecture leverages a trusted proxy
that intercepts all operations issued to the cloud database
service. This proxy manages a counter for each digest to
track the number of values stored in each of them. A
similar architecture is characterized by two drawbacks:

• it increases the tenant costs due to infrastructure
management;

• if the tenant has geographically distributed clients,
this scheme is not efficient because all client requests
must pass through the proxy.

For these reasons, we also propose the optimization
methodology for an alternative distributed architecture in
Section 6.3.

Let λ be the number of greedy update operations be-
tween two consecutive renewals. The renew frequency rate
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Figure 1: Estimated average network usage for each update operation
as a function of the BF size m.

µ can be expressed as a function of λ as following:

µ “ 1

1` λ (21)

The parameter λ can be estimated as the ratio between
the amount of values that can be inserted in the BF, that
is u (see Equation (9)), and the expected amount of values
modified by each update operations, namely ōu:

λ “ u

ōu
(22)

where:

ōu “
ÿ

pω,o,pqPU
ω ¨ o (23)

is the weighted average of the number of values updated
in each update operation for each class. To obtain a good
approximation of u in the most general scenario in which
the update workload includes many classes of update op-
erations, we define the following constraint: u should be
chosen as the maximum linear combination of the values
tou that is lower or equal to the maximum amount of val-
ues that can be stored in the BF. Hence, we adjust the
definition of u in Equation (9) as following:

u “ max
 
x P N0|x ď ´m ¨ lnp2q

2

lnpεq ´ c, x “
ÿ

pd,oqPN0ˆU
d ¨ o(

(24)

The outgoing network usage due to update operations can
be estimated by substituting Equations (24), (22) and (21)
in (20).

For the sake of clarity, we describe an example by refer-
ring to Figure 1. This figure shows the behavior of Equa-
tion (20), where the y-axis represents the estimated aver-
age outgoing network usage OU pUq for update operations,
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while the x-axis represents the BF size m (in log-scale).
Points represent admissible BF sizes and the correspond-
ing outgoing network usage due to update operations. The
estimation refers to a table of c “ 15 columns and in which
the tuples have an average size of t “ 1KB. The size of
the initialization vector is d “ 64bit. The update work-
load is characterized by two operations updating o1 “ 5
and o2 “ 7 values that transfer p1 “ 30% and p2 “ 60% of
the tuple size. The execution frequencies are ω1 “ 0.7 and
ω2 “ 0.3, respectively. Figure 1 reports also three scenar-
ios that correspond to the acceptable false positive rates
ε “ 1%, 0.1%, 0.01%. For each of them, through Equa-
tion (7), we can compute the minimum BF sizes, that are
mmin “ 144,mmin “ 216 and mmin “ 288 bits, respec-
tively. Choosing these values requires an always renew
strategy and, as previously discussed and confirmed by
the figure, they do not allow to minimize network usage.
We need to compute the value of m for which the outgo-
ing network usage is minimal. To this purpose, in Figure 1
we define “segment” a set of close, aligned points of the
same curve. Each point corresponds to incremental values
of u (the first point occurs for u “ 0, the second one for
u “ 1, and so on). The goal of our analysis is to compute
the local minimum in each segment; then, we compute the
global minimum among all the local minima.

We note that for increasing BF sizes, the network usage
increases within the same segment. We obtain this behav-
ior when increasing the BF size does not incur in additional
greedy update operations, due to the constraint imposed
on u by Equation (24). As an example, let us consider
the first “segment”., where the first value corresponds to
the bandwidth usage for m “ mmin, for which no greedy
update operation is possible. Choosing any other value of
m within the first segment implies an u in range 1, . . . , 4
which is always less then any admissible number of up-
dated values in the considered workload (we recall that
o “ to1 “ 5, o2 “ 7u). Thus, no greedy update operation
can be executed as well. As a result, the local minimum
of segment is the minimum value of m for that segment.

We define M as the set of the local minima:

M “
#
m

ˇ̌
[
´m ¨ lnp2q

2

lnpεq ´ c
_
P  ř d ¨ o(pd,oqPN0ˆU

+

(25)

Here, the goal is to define which value of M is the global
minimum of the estimation function. To this aim, we com-
pute the minimum of the continuous function that inter-
sects the elements of M , namely 9m0. Then, the absolute
minimum of the target function is the nearest neighbor of
9m0 in M .

9m0 “ ´pc´ ōuq ¨ ln ε
ln p2q2 `

a
ōu ¨ t ¨ ln ε ¨ pp̄u ´ 1q

ln p2q (26)

The proposed methodology estimates the best value of
m that reduces outgoing network usage due to the up-
date workload. Computing the value of m that minimizes

the overall cloud service cost is an immediate extension
of Equation (26). As described by the Equations (14)—
(18), ingoing network usage due to insert and update, and
outgoing network usage due to select is linearly depen-
dent on m. Hence, we can use the costs weight ϕo (see
Equation (13)) and the workload frequency ωu (see Equa-
tion (14)) to compute the minimum of the continuous form
of the Equation (10) as following:

m̂0 “ ´pc´ ōuq ¨ ln ε
ln p2q2 `

a
ωu ¨ ϕo ¨ ōu ¨ t ¨ ln ε ¨ pp̄u ´ 1q

ln p2q
(27)

The optimal BF size mbest is the nearest neighbor of m̂0

in the set M , computed through Equation (25).
In Appendix D, we propose a closed-form equation to

compute the optimal value of m in a simple yet com-
mon scenario characterized by an update workload that
includes only one class of update operation.

6.3. Stateless protocol

We now discuss how to minimize the proposed verifi-
cation mechanism in a stateless protocol variant. In this
scenario each client operates directly on the cloud data-
base service with no knowledge about the state of the
BFs. Hence, it is necessary to decide when to renew the
BFs without knowing the actual amount of values inserted
in them. We propose the following implementation: each
update operation is greedy with a given probability, oth-
erwise it renews the BF. This approach suffers from two
drawbacks:

• a client might renew a BF even if the acceptable
amount of update operations has not been reached
yet;

• a client might not renew a BF even if the accept-
able amount of update operations has already been
reached.

The former issue does not impact the ability of a system
to verify integrity, although the outgoing network usage
might be higher than necessary. On the other hand, the
latter issue may lead to a false positive rate higher than
ε. Even worse, this cannot be completely prevented when
using the stateless protocol variant. We assume that the
tenant chooses a probability of not exceeding ε, then we
analyze the behavior of this protocol and minimize its over-
head.

This methodology assumes a weaker security model with
respect to the stateful protocol. By keeping track of the
operations executed by the tenant, the storage provider
knows if the tenant exceededs the amount of acceptable
updates. Thus, he is able to attack the scheme when it
has security guarantees lower than ε. Hence, this variant
is secure only against attackers that have read/write access
to the tenants data for a short amount of time (referring

9
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to literature terminology, we could call it as a snapshot
active adversary [25]).

We define q as the false positive threshold that is the
probability of keeping f ď ε. We assume that a client ex-
ecutes a renew operation with probability µ and a greedy
operation with probability 1 ´ µ. Then, q can be com-
puted as the probability of not exceeding the acceptable
amount of update operations λ that is, the CDF of the
geometric probability distribution with mean µ and num-
ber of failures λ. We note that our construction allows to
estimate the outgoing network usage due to updates by
using Equation (20), however the estimation of µ is dif-
ferent from that of the stateful protocol. The value µ can
be estimated as the inverse of the CDF of the geometric
distribution:

µ “ 1´ λ
a

1´ q (28)

One can obtain the equation estimating the outgo-
ing network usage due to updates by substituting Equa-
tion (28) in (20) as following:

OU pUq “ m` d` t ¨
”
1´ p1´ p̄uq ¨ λ

a
1´ q

ı
(29)

Let us compare the behavior of this function with that
of the stateful protocol in Section 6.2 by referring to Fig-
ure 2. It compares the network usage estimation between
the stateful and the stateless protocols for the following
values of false positive threshold: q “ 0.8, 0.9, 0.99. The
database characteristics and the workload parameters are
the same of the scenario previously proposed in Figure 1.
This figure shows that the performance of the stateless pro-
tocol is similar to that of the stateful protocol for q “ 0.8,
although it is unrealistic to consider q “ 0.8 as an accept-
able choice for a cloud tenant. (It would mean that the
tenant accepts a 20% probability of exceeding the required
ε.) Even more important, we note that the best BF size
changes with respect to the stateful protocol and also for
different values of q.

The optimal BF size mbest can be computed through
the approach already shown for the stateful protocol:

• we first compute the set of local minima M ;

• we compute a continuous function that intersects all
the local minima;

• we identify the global minimum 9m0 of this continuous
function;

• finally we select as mbest the local minimum that is
the nearest neighbor of 9m0.

The evaluation of λ and M use the same models and
equations adopted for the stateful protocol, but for the
estimation of the renew frequency rate µ we use Equa-
tion (28). One can estimate the outgoing network usage
caused by update operations by substituting the Equa-
tion (22) in (29). We can compute the optimum BF size
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Figure 2: Estimated average network usage as a function of the BF
size m for the stateless protocol.

9m0 of the continuous form of the Equation (29) as follow-
ing:

9m0 “ ´c ¨ lnpεq
ln p2q2 ´ ō ¨ lnp1´ qq ¨ lnpεq

2 ¨ lnp2q2 ¨W pxq , (30)

x “ ´1

2
¨
d
ō ¨ lnp1´ qq ¨ lnpεq
t ¨ p1´ p̄q ¨ lnp2q2 , (31)

where W p¨q is the Lambert W function [14].
We can extend this evaluation to compute the best

value of m “ m̂0 to minimize the overall costs (see Equa-
tion (10)) as done for the stateful protocol (see Equa-
tion (27)):

m̂0 “ ´c ¨ lnpεq
ln p2q2 ´ ō ¨ lnp1´ qq ¨ lnpεq

2 ¨ lnp2q2 ¨W px̂q , (32)

x̂ “ ´1

2
¨
d

ō ¨ lnp1´ qq ¨ lnpεq
ϕo ¨ ωu ¨ t ¨ p1´ p̄q ¨ lnp2q2

, (33)

7. Performance evaluation

To analyze the performance of the proposed solution we
compare its storage and network overhead to those of other
two solutions for the integrity of outsourced databases that
are proposed in literature and commonly adopted in prac-
tice.

The first solution is to associate a MAC tag to each
value stored in the database by using HMAC-SHA256.
This solution causes a high storage overhead because a
256-bit digest is bigger than many primitive data types.
Its main benefit is that the cloud tenant can verify the
integrity of a value without having to retrieve other un-
necessary values from the remote cloud database service.
In the performance evaluation we refer to this solution as
VLH (value-level HMAC). The second solution, proposed
in [44], associates an HMAC-SHA256 to all the values of
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Plain
[bytes]

VLH [bytes]
(overhead)

TLH [bytes]
(overhead)

EBF [bytes] (overhead)

ε “ 0.01 ε “ 0.001 ε “ 0.0001

Storage Overhead Tuple size 500 820 (64%) 532 (6.4%) 520 (4%) 526 (5.2%) 532 (6.4%)

Network
overhead

Select p “ 10% 50 82 (64%) 532 (964%) 70 (40%) 76 (52%) 82 (64%)

Select p “ 50% 250 410 (64%) 532 (112%) 270 (8%) 276 (10.4%) 282 (12.8%)

Insert 500 820 (64%) 532 (6.4%) 520 (4%) 526 (5.2%) 532 (6.4%)

Table 3: Storage and network usage comparison for VLH, TLH and EBF integrity solutions.

the same row. The resulting scheme has the same struc-
ture of that shown in Table 1, but the last column is used
to store a HMAC rather than an encrypted BF. We refer to
this solution as TLH (tuple-level HMAC). This approach
has a clear benefit in terms of storage overhead with re-
spect to the VLH solution. However, whenever the tenant
wants to verify the integrity of one value, he has to re-
trieve all the values stored in the same row. The retrieval
of unnecessary values increases the network overhead.

To compare the performance of our approach against
VLH and TLH we compute the optimal BF size mbest

for the acceptable false positive rate ε of the tenant,
and we consider both the stateful and stateless protocols
as a function of different acceptable false positive rates
(ε “ 10´2, 10´3, 10´4) and two maximum false positive
thresholds q “ 0.9, 0.99. We refer to our solution as EBF
(Encrypted BF). We initially analyze the performance re-
lated to micro-benchmarks with different database charac-
teristics and workloads. Then we evaluate the storage and
network overhead of a realistic scenario by referring to the
TPC-C workload.

7.1. Micro-benchmark workloads

We refer to a table in which each row is t “ 500 bytes
long, and contains c “ 10 values. We assume that all
values have the same size. We encrypt the BF by using
a standard Blowfish 64-bit cipher [45] with a d “ 64-bit
initialization vector.

We consider a scenario that includes only select and in-
sert operations. As described in Section 4.4, in this sce-
nario the optimal choice is the minimum BF size m “
mmin. By using Equation (7), we compute mmin` d equal
to 160, 208, 256 bits for ε equal to 10´2, 10´3, 10´4, respec-
tively. For insert operations, all the values of the row and
all the corresponding digests (HMACs for VLH and TLH,
Encrypted Bloom Filters for EBF) have to be transmit-
ted from the client to the cloud database. Moreover, we
consider three types of select operations depending on the
amount of retrieved values.

Table 3 summarizes the number of bytes stored and
transmitted for the different integrity strategies. The first
row shows that VLH has the greatest storage overhead,
while TLH and all EBF configurations have comparable
overhead. The second row reports the bytes downloaded in
the case of a select that retrieves only one value. The per-
formance of EBF and VLH is optimal, because the tenant

needs to retrieve just one value and the associated digest.
If the select accesses only a subset of data, then EBF has a
clear advantage over both TLH and VLH, as shown by the
third row in which the tenant needs 5 out of the 10 values
of a row. When select queries read all the values of a row,
the performance of EBF and TLH is optimal, while VLH
incurs in a high network overhead because the tenant has
to retrieve one control structure for each value.

7.2. Mixed operations of the TPC-C workload

Now we consider the TPC-C standard OLTP bench-
mark, that is commonly adopted for evaluating database
performance. The contribution is twofold: we show how
to leverage the proposed overhead minimization method-
ology described in Section 6; then, we demonstrate the
performance advantages of using EBF in realistic work-
load scenarios.

Using the proposed methodology to estimate the best
BFs size requires to translate database workloads into the
parameters of the proposed model. Let us refer to a TPC-
C compliant database represented in Table 4. We distin-
guish two kinds of parameters: those describing the data-
base schema, and those representing the workload. The
number of columns c and the average size of the tuples
t are described in the first two rows of the table. More-
over, the TPC-C standard defines a workload in which five
transactions are executed with certain probabilities. Each
transaction is a set of mixed operations executed on many
tables. Let us focus on the table district (we limit to it for
space reasons, although the same approach can be applied
to any other table). This table has 11 columns and the
average size of the tuples is 107 bytes. Two update opera-
tions are executed on the table, and both of them update
only one value. The size fraction p of a tuple transferred
by an update can be obtained by computing the ratio be-
tween the sum of the sizes of the columns interested by
the operation, and the average size of the tuple t. The up-
date operations are executed within the new order and the
payment transactions, that have probabilities of execution
equal to 45% and 43%, respectively. The frequencies of
execution tωu within the UPDATE workload can be com-
puted by normalizing their values, that is ω “ 43{p43` 45q
and ω “ 45{p43` 45q. The frequency of execution ωU of the
update workload can be obtained by computing the sum
of all the transaction frequencies of the update operations
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Table warehouse district item customer history stock order new order order line

Number of columns c 9 11 5 21 8 17 8 3 10

Avg. tuple size t{8
[bytes]

99 107 87 681 53 318 34 12 62

# values updated tou 1 1, 1 (none) 1, 4, 3 (none) 1 1 (none) 1

Perc. size tpu [%] 9.1 8.41, 3.7 (none) 1.3, 76.8, 3.38 (none) 1.57 11.8 (none) 6.5

Execution freq. tωu
[%]

100 48.8, 51.2 (none) 8.53, 10.7, 80.8 (none) 100 100 (none) 100

UPDATE freq. ωu [%] 32.8 50 0 33.8 0 47.9 7.02 0 6.56

Table 4: Analysis of the tables of a TPC-C compliant database
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Figure 3: Estimated average network usage for each update operation
in terms of the BF size m.

divided by the frequencies of all the operations executed
on that table.

We now investigate the performance of integrity strate-
gies applied to table customer by limiting the analysis to
Figures 3 and 4 for space reasons. The figures compare
the estimation of average network usage due to update
operations in databases that adopt VLH, TLH and EBF
integrity strategies and with the plaintext database. Fig-
ure 3 details network usage for increasing BF sizes when
the acceptable false positive rate ε is equal to 10´3. Fig-
ure 4 details network usage for decreasing acceptable false
positive rates in the range 2´5, . . . , 2´80. In Figure 3 we
note that the estimated network usage for the VLH, TLH
and plaintext databases is constant, because they do not
leverage BFs. The figure shows also that EBF greatly im-
proves network overhead over TLH. Moreover, the stateful
protocol allows us to achieve results comparable to that of
VLH.

In Figure 4 we note that the proposed protocols are con-
venient even for much stronger security guarantees. The
stateless protocol with a very high false positive threshold
(q “ 0.99) is convenient up to an acceptable false posi-
tive rate equal to about 2´34, and the stateful version is
convenient up to about 2´70. We highlight that the con-
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Figure 4: Estimated average network usage for each update in terms
of acceptable false positive rate ε.

venience of the protocol depends on the workload. In both
Figures 4 and 4 we note that if the tenant chooses an al-
ways renew strategy, then the network usage overhead is
increased both with respect to the greedy renew strategy
(due to the retrieval of all the values of the tuple) and to
the VLH solution (due to bigger BF sizes). Finally, in Fig-
ure 5 we show the sizes of the BFs stored in database as
a function of the acceptable false positive rate ε. We note
that as ε decreases, the choice of the best BF size becomes
closer to the minimum BF size.

8. Related work

Many cloud providers offer database services [26], but
their security in terms of tenant’s data confidentiality
and integrity remains an open research area. Literature
proposes architectures and protocols aimed at improving
service dependability by guaranteeing data confidential-
ity [20, 21, 43]. They typically assume the honest-but-
curious threat model where the main threat, besides exter-
nal attackers, is represented by a cloud provider employee
that may snitch on tenant’s data, without modifying it.
These architectures rely on encryption strategies that al-
low the tenant to execute SQL operations on encrypted
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Figure 5: BF size in terms of the acceptable false positive rate ε.

data. In this paper we consider a different threat model in
which data outsourced to the cloud may become corrupted,
due to incorrect or faulty operations of the cloud provider
or to deliberate attacks. Protocols guaranteeing verifica-
tion of computations over outsourced data [42] are affected
by high computational costs, especially on the server, and
they are not convenient for database supporting CRUD
workloads.

The scenario considered in this paper is a case of the
more general data publishing scenario, in which the ob-
jective of the tenant is to leverage some third party in-
frastructure to distribute information to many users. In
the data publishing scenario there are two classes of ac-
tors: owners, that can write data, and users, that only
execute read operations. All solutions for guaranteeing in-
tegrity in this scenario [10, 31, 39] are based on asymmetric
cryptography, and allow users to verify data integrity by
leveraging digital signatures generated by owners. Similar
approaches could guarantee integrity even in our database
outsourcing scenario, but they are affected by high com-
putation overhead [15]. For this reason we propose a novel
protocol ensuring data integrity based on symmetric en-
cryption primitives.

Research efforts on guaranteeing integrity for files in
cloud storage services tend to associate a Message Au-
thentication Code (MAC) to each file stored in the cloud.
In such a way, a cloud tenant can verify data integrity by
downloading a file, recomputing the MAC and comparing
it with the tag stored in the cloud. Since we assume that
only legitimate users know the symmetric key required to
compute a MAC, any adversary that tries to modify data
without authorization cannot compute a new valid MAC.
These approaches could be extended to the cloud database
services by associating a MAC to each attribute stored in
the database (for example, each element in any tuple).
However, the storage size of a MAC is non-trivial (e.g.,
256 bits for HMAC based on SHA256) and bigger than

many primitive data types commonly stored in a data-
base. This causes two problems that make a similar ap-
proach inapplicable to cloud database services: the storage
of a MAC for each database attribute causes an excessive
storage overhead; the transmission of MACs causes an ex-
cessive network overhead. Since storage and network usage
is metered in cloud services, solutions based on MACs lead
to excessive cost increases for the tenant.

Storage overhead can be reduced by using one MAC
to authenticate multiple attributes [41] (for example, one
MAC for each tuple or table), but a similar approach im-
plies that whenever a cloud tenant aims to verify the in-
tegrity of one attribute, he has to retrieve all the other at-
tributes related to the same MAC. For example, it would
be necessary to download all the attributes of a row or of a
table even if the cloud tenant wants to verify the integrity
of only one of them. This approach may be viable for file
storage services [44] because MACs are associated to data
blocks of large sizes that are accessed independently, but
it causes high network overhead in database workloads, es-
pecially when queries often requests a small table subset.

A more intersecting approach relies on provable data
possession protocols [3, 19] and proofs of retrievability [27],
that allow tenants to verify integrity of very large data
stored in outsourced databases when there is no need to
retrieve them. In this scenario, the database provider is
able to prove that he still maintains the tenant outsourced
data by only returning a small amount of data [38]. Prov-
able data possession protocols offer low communication
costs for workloads that involve few or no read operations
and tight integrity guarantees, such as replicated backups
or ledgers. However, they are not convenient for CRUD
workloads involving frequent read and update operations.
Proofs of retrievability cannot be applied on unencrypted
data, thus limiting their scope to specific applications.

The approach most related to our proposal is based on
cryptographic accumulators [7] and asymmetric cryptog-
raphy (e.g., RSA accumulators [24], bilinear accumula-
tors [39], and aggregate signatures [13]). These methods
support membership operations, that is, the tenant can as-
sociate a cryptographic accumulator to each tuple of the
database, and can test the integrity of each value with-
out having to download the entire tuple. Cryptographic
accumulators are effective and efficient in guaranteeing in-
tegrity for some scenarios, such as log databases [31] and
source code repositories [12]. On the other hand, because
of asymmetric cryptography, they introduce a high com-
putational overhead that makes them unsuitable to the
majority of database workloads, especially when data is
managed by cloud providers. In [15] the authors compare
PADs (Persistent Authenticated Dictionaries) built upon
RSA accumulators against PADs built upon other cryp-
tographic data structures such as hashes and traditional
digital signatures. They conclude that RSA accumula-
tors are never the preferable algorithm despite their supe-
rior asymptotic complexity, due to the high computational
costs.
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Other results based on Bloom filters to efficiently de-
tect accidental and malicious modifications of files stored
in the cloud are reported in [1, 49]. The authors of [49]
proposed a scalable checksum algorithm based on Bloom
filters that reduce processing times in highly-parallel en-
vironments. Their solution allows the detection of data
modifications in the case of accidental data corruption,
but it cannot guarantee data authenticity in the case of
adversarial modifications by malicious attackers in a data
outsourcing scenario. The protocol proposed in [1] can be
applied to adversarial scenarios, but it focuses on medium-
to-large file sizes. Hence, it seems not practicable for the
cloud database context that is typically characterized by
a high volume of small-sized data.

The use of Bloom filters as cryptographic data struc-
tures has been investigated by other authors [18, 40].
In [40], the researchers propose the use of Bloom filters
as symmetric cryptographic accumulators, but their com-
putational cost is two orders of magnitude higher than that
of RSA asymmetric accumulators [29]. Recent literature
in the field of secure two-party computation protocols [18]
has proposed a data structure based on Bloom filters and
secret sharing to execute private set intersection protocols
based on oblivious transfer. Since their data structure has
a size much higher than that of common Bloom filters,
their proposal is inapplicable to the cloud database sce-
nario because it causes unacceptable network and storage
overhead.

To the best of our knowledge, this is the first paper that
proposes and evaluates a practical scheme for the verifica-
tion of data integrity in cloud database services with the
guarantee of efficient verification, low computational costs,
and low overhead in terms of extra storage and network
traffic. By combining Bloom filters and symmetric en-
cryption, our scheme protects data against unauthorized
modification by cloud employees and external attackers
while minimizing computational costs related to Bloom
filter verification and update. Moreover, it has the ca-
pability of testing set membership of an element without
retrieving all the other attributes of the same row, thus
minimizing network and storage overhead.

9. Conclusions

Public cloud databases are appealing services that allow
companies to outsource data management infrastructures,
but their adoption is hindered by concerns about confi-
dentiality and integrity of information managed by a third
subject. We propose a novel scheme that allows cloud
tenants to detect unauthorized modifications to data out-
sourced to untrusted cloud providers. We demonstrate
that the solution, based on encrypted Bloom filters, is at-
tractive especially in the case of metered network traffic
and storage, that is common in cloud database service
offers. The proposed solution allows the tenant to tune
the trade-off between the probability of detecting unau-
thorized data modifications and storage and network over-

head. We show that the protocol is applicable to architec-
tures that are based on an intermediate trusted proxy and
to distributed independent clients. We propose analytical
methodologies that allow us to calculate the best size of
the Bloom filters to minimize storage and network over-
head and the cloud service costs. We demonstrate that
the proposed scheme and methodologies are effective and
that they reduce resource usage in realistic scenarios. The
storage overhead of the proposed protocol is comparable or
smaller than that of other solutions for database integrity
and its network overhead is consistently lower.

As future work we are studying the integration of the
proposed Bloom filter strategy with mechanisms for guar-
anteeing data completeness and freshness.
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Appendix A. Implementation of the Secret
Bloom filter function

The secret Bloom filter function Bm
τ p¨q is implemented

through the following formula:

Bm
τ pl, xq “

ł

iPrks

“
1 ! Hm

τi pl ‖ xq
‰
, (A.1)

where Hm
τi p¨q is a keyed hash function that maps arbitrary

length inputs to the range r0, . . . ,m ´ 1s, ! denotes the
bitwise left shift operator, ‖ is an operator for the secure
concatenation of the two inputs [36], and k denotes the
number of functions Hm

τi p¨q used in the computation of
Bm
τ p¨q. The output of the function is deterministic; it de-

pends on the input data l ‖ x and the secret key τi denoting
a portion of the secret key τ distributed to the authorized
clients. All keys τi are independent of each other.

From a security perspective the function Hm
τi p¨q must

act as a pseudo-random function (PRF) that is, a func-
tion whose output distribution is uniform and indepen-
dent of the distributions of the input value x and of the
secret key τi. Candidate implementations are keyed PRFs
that accept variable length inputs [6] such as the truncated
HMAC functions.

Appendix B. Attacks on the digest

This attack refers to a scenario where an adversary
tries to attack the integrity of some data by forging its
cryptographic digest. This attack is formally modeled
in symmetric encryption literature as chosen plaintext
forgery [28]. Intuitively, the attacker has to generate a
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couple of plaintext-ciphertext values such that the plain-
text is the decryption of the ciphertext. We identify two
types of attacks on the digests that are relevant to our
protocol:

• creation of a new digest : an adversary tries to insert
a forged tuple in the database and to generate a new
digest that includes all values of the tuple;

• modification of an existing digest : an adversary tries
to update an existing tuple through a forged value
and to modify the existing digest by adding the new
value to it.

Creation of a new digest. In the former attack scenario,
the adversary creates a new tuple and a new digest. The
digest will be decrypted by an authorized client and the
resulting secret Bloom filter will be used to verify the val-
ues. The proposed protocol always uses BFs built with the
optimal number of hash functions, hence the probability of
having a bit equal to zero is the same of having a bit equal
to one for all the bits [34]. As a result, whenever a single
value is tested against a completely random bit string, the
false positive rate is exactly the same of a proper Bloom
filter of the same length that does not contain the tested
value. The success of this attack requires that the adver-
sary generates a new digest associated to all the values in
a database row. Since the false positive probability of all
the values are independent of each other, the probability of
having false positives for all values in the row against the
same random bit string is equal to the conjunction of the
false positive rates. Hence, the success probability of this
attack decreases exponentially with the number of values
within a row.

Modification of an existing digest. In the latter type of
attack, the adversary alters one value of an existing row
and tries to tamper with the existing digest to increase
the false positive rate. This can be achieved by flipping
some bits of a Bloom filter from zero to one. Since secret
Bloom filters are built through keyed hash functions and
encrypted through an IND-CPA algorithm, the attacker
does not know which bits in the Bloom filter are set to zero
and which bits are set to one. However, since we do not
authenticate the digest, flipping a bit at a certain position
in the ciphertext may cause some bits at random position
in the plaintext to flip as well, and these modifications
cannot be detected.

Let us consider the worst case scenario where the secu-
rity is guaranteed by the IND-CPA encryption algorithm
based on stream ciphers that is the most malleable cipher.
(We advise against the use of stream ciphers in the pro-
posed protocol due to known implementation issues that
could make it vulnerable to other attacks.) Let us also
assume that the attacker knows all the algorithms and the
parameters used in the protocol but the secret keys. In
this scenario, by flipping a bit at a given position in the
ciphertext, the attacker knows that he is flipping the bit at

the same position in the plaintext Bloom filter. However,
the attacker still does not know the values of the plaintext
Bloom filter. In Appendix C we give an algebraic proof
showing that an adversary gains no benefits from modify-
ing a digest. As any other IND-CPA encryption algorithm
is less malleable than stream ciphers, our proof holds for
all IND-CPA algorithms.

Appendix C. Digest modification attack

The objective of the attacker is to increase the false pos-
itive rate of an existing digest by flipping from 0 to 1 one
or more bits of the secret Bloom filter. We analyze how the
false positive rate of the BF varies if an attacker modifies
one or more bits of the digest. We are especially interested
to compute which is the number of bits that the adversary
should modify to gain the best advantage.

Let s be the amount of bits that the adversary modifies.
The value of s is in r0, . . . ,m ´ 1s, where s “ 0 denotes
that the adversary does not modify the digest thus falling
back to a plaintext attack, and s “ m´1 denotes that the
attacker modifies the whole digest except for a bit. Since
the attacker is only interested in flipping bits from 0 to 1,
and since at least 1 bit in the BF is always set to one, it
makes no sense for the attacker to try to flip all m bits. As
described in Section 3, in this paper we always consider an
optimal number of hash functions k̄ to compute the secret
Bloom filter.

The adversary does not know which are the positions of
the bits that correspond to the fake value, thus he chooses
them at random. The false positive rate of the BF with s
different random bits flipped by the attacker can be com-
puted as following:

Prrfp |# mod. bits = ss “

“
m´sÿ

i“1

pPrrfp | s succ mods¨

¨Prrs succ mod | #1bits = is¨
¨Prr#1bits = isq (C.1)

where:

• Prrfp | s succ mods denotes the false positive rate of
the BF after s successful modifications (that is, s bits
have been flipped from 0 to 1). It can be computed as
the false positive rate of a BF with s additional bits
equal to one. We denote it as:

Prrfp | s succ mods “

“ Prrfp | #1bits=(i+s)s “
ˆ
i` s
m

˙k̄
(C.2)

where i is the number of bits set to 1 in the original
BF.
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• Prrs succ mod | #1bits = is denotes the probability
of not flipping any bit from one to zero that is, the
probability of randomly selecting s bits equal to 0 in
the secret Bloom filter. We highlight that flipping just
one bit from 1 to 0 would allow an authorized client to
detect the integrity violation because at least one of
the values in the row would fail verification against the
tampered Bloom filter. Intuitively, this probability
decreases as the original amount of bits equal to one
i and the number of modifications s increase. We
denote this probability as:

Prrs succ mod | #1bits = is “

“
s´1ź

j“0

pm´ i´ jq
m´ j “ pm´ iq! pm´ sq!

pm´ i´ sq!m!
(C.3)

• Prr#1bits = is denotes the probability of having ex-
actly i bits set to 1 in the Bloom filter bit string.
As we use the optimal number of hash functions k̄
to build the secret Bloom filters, then the probability
distribution of zeros and ones in the unmodified BF
bit string is uniform (see Section 3), and it can be
computed as:

Prr#1bits = is “
`
m
i

˘

2m
“ m!

2mi!pm´ iq! (C.4)

By substituting Equations (C.2), (C.3) and (C.4)
in (C.1), we obtain the following formula:

Prrfp | # mod. bits = ss “

“
m´sÿ

i“1

ˆ
i` s
m

˙k̄ pm´ iq! pm´ sq!
pm´ i´ sq!m!

m!

2mi! pm´ iq! “

“ 1

2mmk̄

m´sÿ

i“1

pi` sqk̄ pm´ sq!
pm´ s´ iq! i! “

“ 1

2mmk̄

m´sÿ

i“1

pi` sqk̄
ˆ
m´ s
i

˙
“

“ 1

2mmk̄

mÿ

j“1`s
jk̄
ˆ
m´ s
j ´ s

˙
(C.5)

This function is monotonic decreasing. It can be veri-
fied by observing that the following has always a negative
value:

Prrfp | # mod. bits = s + 1s ´ Prrfp | # mod. bits = s s “

“ 1

2mmk̄

«
mÿ

i“2`s
ik̄
ˆ
m´ s´ 1

i´ s´ 1

˙
´

mÿ

i“1`s
ik̄
ˆ
m´ s
i´ s

˙ff
“

“ ´ 1

2mmk̄

«
p1` sqk̄ `

mÿ

i“1`s
ik̄
ˆ
m´ s´ 1

i´ s
˙ff

(C.6)

Thus, the false positive rate of a manipulated digest is
always lower than the false positive rate of the original

BF. For example, let us compute how the false positive
rate changes after modifying one bit (s “ 1):

Prrfp | s “ 0s ´ Prrfp | s “ 1s “

“ 1

2mmk̄

«
1`

mÿ

i“1

ik̄
ˆ
m´ i
i

˙ff
(C.7)

This appendix shows that an adversary cannot gain any
advantage by tampering with the encrypted Bloom filter.
Hence a rational adversary will never try to tamper with
the encrypted Bloom filter because any modification de-
creases the attack success rate.

Appendix D. Scenario with one class of update

We detail how to define a closed-form equation to com-
pute the optimal Bloom filter size mbest if the database
operations include only one class of update. In this case,
the number of values inserted in the BF for each update
operation is constant, and the amount of operations be-
tween two renewals λ is constant as well. As a result, λ
can be computed as following:

λ “
Yu
o

]
(D.1)

where o is the amount of values updated by the operation.
Thanks to Equation (D.1), the set of the local minima

M can be defined by:

M “
#S
´pλ ¨ o` cq ¨ ln ε

lnp2q2
W+

λPN0

(D.2)

This equation is obtained by substituting Equations (9)
and (22) in (20) and inverting it.

As expected, the first element of the sequence M is equal
to mmin. The optimal BF size mbest can be computed as
the BF size belonging to M that minimizes the update
outgoing network usage. This occurs at the element λbest
of the sequence M . The value of λbest can be computed
through the closed-form equation obtained by substituting
the Equation (27) in (D.2) and computing the inverse as
following:

λbest “
wwwww´

m̂0 ¨ ln p2q2
ωu ¨ ϕo ¨ o ¨ ln ε `

c

ōu

wwwww (D.3)

where ‖ represents the round operator.
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