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Optimized, Direct Sale of Privacy in
Personal-Data Marketplaces

Javier Parra-Arnau

Abstract—Very recently, we are witnessing the emergence of a number of start-ups that enables individuals to sell their private data directly
to brokers and businesses. While this new paradigm may shift the balance of power between individuals and companies that harvest data, it
raises some practical, fundamental questions for users of these services: how they should decide which data must be vended and which data
protected, and what a good deal is. In this work, we investigate a mechanism that aims at helping users address these questions. The
investigated mechanism relies on a hard-privacy model and allows users to share partial or complete profile data with broker companies in
exchange for an economic reward. The theoretical analysis of the trade-off between privacy and money posed by such mechanism is the
object of this work. We adopt a generic measure of privacy although part of our analysis focuses on some important examples of Bregman
divergences. We find a parametric solution to the problem of optimal exchange of privacy for money, and obtain a closed-form expression and
characterize the trade-off between profile-disclosure risk and economic reward for several interesting cases.

Index Terms—user privacy, disclosure risk, data brokers, privacy-money trade-off.
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1 INTRODUCTION

O VER the last recent years, much attention has been paid to
government surveillance, and the indiscriminate collec-

tion and storage of tremendous amounts of information in the
name of national security. However, what most people are not
aware of is that a more serious and subtle threat to their privacy
is posed by hundreds of companies they have probably never
heard of, in the name of commerce.

They are called data brokers, and they gather, analyze and
package massive amounts of sensitive personal information,
which they sell as a product to each other, to advertising com-
panies or marketers, often without our knowledge or consent.
A substantial chunk of this is the kind of harmless consumer
marketing that has been going on for years. Nevertheless, what
has recently changed is the amount and nature of the data
being extracted from the Internet and the rapid growth of a
tremendously profitable industry that operates with no control
whatsoever. Our habits, preferences, our friends, personal data
such as date of birth, number of children or home address, and
even our daily movements, are some examples of the personal
information we are giving up without being aware it is being
collected, stored and finally sold to a wide range of companies.

A majority of the population understands that this is part
of an unwritten contract whereby they get content and services
free in return for letting advertisers track their behavior; this
is the barker economy that, for example, currently sustains the
Web. But while a significant part of the population finds this
tracking invasive, there are people who do not give a toss about
being mined for data [1].

Very recently we are witnessing the emergence of a number
of start-ups that hope to exploit this by buying access to our
social-networks accounts and banking data. One such com-
pany is Datacoup, which lets users connect their apps and
services via APIs in order to sell their data. Datacoup and
similar start-ups, however, do not provide raw data to potential
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Fig. 1: Screenshot of Datacoup which allows users to earn money by sharing
their personal data.

purchasers, among others, retailers, insurance companies and
banks. Rather, they typically build a profile that gives these
companies an overview of a user’s data.

The emergence of these start-ups is expected to provide
a win-win situation both for users and data buyers. On the
one hand, users will receive payments, discounts or various
rewards from purchasing companies, which will take advan-
tage of the notion that users are receiving a poor deal when
they trade personal data in for access to “free” services. On the
other hand, companies will earn more money as the quality
of the data these start-ups will offer to them will be much
greater than that currently provided by traditional brokers —
the problem with the current brokers is often the stale and
inaccurate data [2].

The possibility that individuals may vend their private data
directly to businesses and retailers will be one step closer with
the emergence of companies like Datacoup. For many, this can
have a liberating effect. It permeates the opaque data-exchange
process with a new transparency, and empowers online users to
decide what to sell and what to retain. However, the prospect
of people selling data directly to brokers poses a myriad of new
problems for their owners. How should they manage the sale
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Fig. 2: Conceptual depiction of the data-purchasing model assumed in this
work. In this model, users first send the data broker their category rates,
that is, the money they would like to be paid for completely exposing their
actual interests in each of the categories of a profile. Based on the rates
chosen for each category, data buyers decide then whether to pay the user
for learning their profile and gaining access to the underlying data. Finally,
depending on the offer made, the disclosure may range from portions of
their profile to the complete actual profile.

of their data? How should they decide which elements must be
offered up and which data protected? What is a good deal?

1.1 Contribution and Plan of this Paper
In this paper, we investigate a mechanism that aims at helping
users address these questions. The investigated mechanism
builds upon the new data-purchasing paradigm developed by
broker companies like Datacoup, CitizenMe and DataWallet,
which allows users to sell their private data directly to busi-
nesses and retailers. The mechanism analyzed in this work,
however, relies on a variant of such paradigm which gives
priority to users, in the sense that they are willing to disclose
partial or complete profile data only when they have an offer
on the table from a data buyer, and not the other way round.
Also, we assume a hard-privacy model by which users take
charge of protecting their private data on their own, without
the requirement of trusted intermediaries.

The theoretical analysis of the trade-off between disclosure
risk and economic reward posed by said mechanism is the
object of this work. We tackle the issue in a mathematically,
systematic fashion, drawing upon the methodology of multi-
objective optimization. We present a mathematical formulation
of optimal exchange of profile data for money, which takes into
account the trade-off between both aspects by treating them
as two sides of the same coin, and which contemplates a rich
variety of functions as quantifiable measures of user-profile
privacy. Our theoretical analysis finds a closed-form solution
to the problem of optimal sale of profile data, and characterizes
the optimal trade-off between privacy and money.

Sec. 2 introduces our mechanism for the exchange of profile
data for money, proposes a model of user profile, and for-
mulates the trade-off between privacy and economic reward.
We proceed with a theoretical analysis in Sec. 3, while Sec. 4
numerically illustrates the main results. Next, Sec. 5 reviews
the state of art and conclusions are drawn in Sec. 6.

2 A MECHANISM FOR THE EXCHANGE OF PRIVATE
DATA FOR MONEY

In this section, we present a mechanism that allows users to
share portions of their profile with data-broker companies,
in exchange for an economic reward. The description of our
mechanism is prefaced by a brief introduction of the concept of
hard privacy and our data-purchasing model.

2.1 Hard-Privacy and Data-Purchasing Model
Privacy-enhancing technologies (PETs) can be classified de-
pending on the level of trust placed by their users [3], [4]. A
privacy mechanism providing soft privacy assumes that users
entrust their private data to an entity, which is thereafter

responsible for the protection of their data. In the literature,
numerous attempts to protect privacy have followed the tra-
ditional method of pseudonymization and anonymization [5],
which are essentially based on the assumptions of soft privacy.
Unfortunately, these methods are not completely effective. they
normally come at the cost of infrastructure, and suppose that
users are willing to trust other parties.

The mechanism investigated in this work, per contra, capi-
talizes on the principle of hard privacy, which assumes that users
mistrust communicating entities and are therefore reluctant
to delegate the protection of their privacy to them. In the
motivating scenario of this work, hard privacy means that users
do not trust the new data brokerage firms —not to mention data
purchasers— to safeguard their personal data. Consequently,
because users just trust themselves, it is their own responsibility
to protect their privacy.

In the data-purchasing model supported by most of these
new data brokers, users, just after registering —and without
having received any money yet—, must give these companies
access to one or several of their accounts. As mentioned in
the introductory section, brokers at first do not provide raw
data to potential buyers. Rather, purchasers are shown a profile
of the data available at those accounts, which gives them an
accurate-enough description of a user’s interests, so as to make
a decision on whether to bid or not for that particular user. If a
purchaser is finally interested in a given profile, the data of the
corresponding account are sold at the price fixed by the broker.
Obviously, the buyer can at that point verify that the purchased
data corresponds to the profile it was initially shown, that is, it
can check the profile was built from such data. At the end of
this process, users are notified of the purchase.

In this work, we assume a variation of this data-purchasing
model that reverses the order in which transactions are made.
In essence, we consider a scenario where, first, users receive an
economic reward, and then, based on that reward, their data
are partly or completely disclosed to the bidding companies;
this variation is in line with the literature of pricing private
data [8], examined in Sec. 5. Also, we contemplate that users
themselves take charge of this information disclosure, without
the intervention of any external entity, following the principle
of hard privacy.

More specifically, users of our data-buying model first no-
tify brokers of the compensation they wish to receive for fully
disclosing each of the components of their profile —we shall
henceforth refer to these compensations as category rates. For
example, if profiles represent purchasing habits across a num-
ber of categories, a user might specify low rates for completely
revealing their shopping activity in groceries, and they might
impose higher prices on more sensitive purchasing categories
like health care. Afterwards, based on these rates, interested
buyers try to make a bid for the entire profile. However, as
commented above, it is now up to the user to decide whether
to accept or decline the offer. Should it be accepted, the user
would disclose their profile according to the money offered,
and give the buyer —and the intermediary broker— access to
the corresponding data.

As we shall describe more precisely in the coming subsec-
tions, we shall assume a controlled disclosure of user informa-
tion that will hinge upon the particular economic reward given.
Basically, the more money is offered to a user, the more similar
the disclosed profile will be to the actual one. Furthermore,
we shall assume that there exists a communication protocol
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enabling this exchange of information for money, and that users
behave honestly in all steps of said data-transaction process.
This work does not tackle the practical details of an imple-
mentation of this protocol and the buying model described
above. This is nevertheless an important issue, and dispelling
the assumption that must behave honestly is one of the many
exciting directions for future work.

2.2 User-Profile Representation
We model user private data (e.g., posts and tags on social
networks, transactions in a bank account) as a sequence of
random variables (r.v.’s) taking on values in a common finite
alphabet of categories, in particular the set X = {1, . . . , n}
for some integer n > 2. In our mathematical model, we
assume these r.v.’s are independent and identically distributed.
This assumption allows us to represent the profile of a user
by means of the probability mass function (PMF) according
to which such r.v.’s are distributed, a model that is widely
accepted in the privacy literature [9], [10], [11].

Conceptually, we may interpret a profile as a histogram of
relative frequencies of user data within that set of categories.
For instance, in the case of a bank account, grocery shopping
and traveling expenses could be two categories. In the case of
social-networks accounts, on the other hand, posts could be
classified across topics such as politics, sports and technology.

In our scenario of data monetization, users may accept
unveiling some pieces of their profile, in exchange for an
economic reward. Users may consider, for example, revealing
a fraction of their purchases on Zappoos, and may avoid
disclosing their payments at nightclubs. Clearly, depending on
the offered compensation, the profile observed by the broker
and buying companies will resemble, to a greater or lesser
extent, the genuine shopping habits of the user. In this work, we
shall refer to these two profiles as the actual user profile and the
apparent user profile, and denote them by q and t, respectively.

2.3 Privacy Models
Before deciding how to disclose a profile for a given reward,
users must bear in mind the privacy objective they want to
achieve by such disclosure. In the literature of information
privacy, this objective is inextricably linked to the concrete
assumptions about the attacker against which a user wants to
protect. This is known as the adversary model and its importance
lies in the fact that the level of privacy provided is measured
with respect to it.

In this work, we consider two privacy objectives for users,
which may also be interpreted from an attacker perspective;
in our case, data brokers, data-buying companies and in gen-
eral any entity with access to profile information may all be
regarded as privacy adversaries.
• On the one hand, we assume a profile-density model, in

which a user wishes to make their profile more common,
trying to hide it in the crowd.

• On the other hand, we consider a classification model where
the user does not want to be identified as a member of a
given group of users.

In terms of an adversary model, the former objective could
be defined under the assumption that the attacker aims at
targeting peculiar users, that is, users who deviate from a
typical behavior. The latter model, on the other hand, could fit
with an adversary who wishes to label a user as belonging to a
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Fig. 3: We provide an example of how our profile-disclosure mechanism
operates. In this example, we consider category rates of 1 dollar for each
of the n = 3 categories, and a 2-dollar offer by a purchasing company. We
show an apparent profile t that results from applying a certain disclosure
strategy on the actual profile q. The disclosure departs from the uniform
distribution. The selected strategy fully reveals the interest of the user in
the category 3. However, the compensation offered does not allow them to
do the same with the categories 1 and 2. Rather, the user decides to expose
30 and 70 percent of the interest values in these two categories respectively,
which equates to the received reward.

particular group. In either case, the ultimate aim of an attacker
could be from price discrimination to social sorting.

In our mathematical model, the selection of either privacy
model entails choosing a reference, initial profile p the user
wishes to impersonate when no money is offered for their data.
For example, in the profile-density model, a user might want to
exhibit very common interests or habits and p might therefore
be the average profile of the population. In the classification
model, the user might be comfortable with showing the profile
of a less-sensitive group. As we shall explain in the next
subsection, the initial profile will provide a “neutral” starting
point for the disclosure of the actual profile q.

2.4 Disclosure Mechanism and Privacy Function
In this section, we propose a profile-disclosure mechanism
suitable for the data-buying and privacy models described
previously. The proposed technique operates between these
two extreme cases. When there is no economic compensation
for having access to a user account, the disclosed profile coin-
cides with the initial distribution p, and the observation of this
information by the data broker or potential purchasers does
not pose any privacy risk to the user. When the user is offered
sufficient reward, however, the actual profile q is fully disclosed
and their privacy completely compromised.

Our disclosure mechanism reveals the deviation of the
user’s initial, false interest to the actual value. In formal terms,
we define the disclosure rate δi as the percentage of disclosure
lying on the line segment between pi and qi. Concordantly, we
define the user’s apparent profile t as the convex combination
t = (1 − δ) p + δ q, where δ = (δ1, . . . , δn) is some disclosure
strategy specified by the user. The disclosure mechanism may
be interpreted intuitively as a roller blind. The starting position
δ = 0 corresponds to leaving the roller in the value p, that is,
t = p. Depending on whether qi < pi or qi > pi, a positive
δ may translate into lowering or raising the roller respectively.
Fig. 3 illustrates this effect for a uniform initial profile, that is,
pi = 1/n for all i = 1, . . . , n.

In our model, the user therefore must decide a disclosure
strategy that shifts t from the initial PMF to the actual one;
clearly, the disclosed information must equate to the money of-
fered by the data purchaser. The question that follows naturally
is, what is the privacy loss due to this shift, or said otherwise,
how do we measure the privacy of the apparent profile?

In this work, we do not contemplate a single, specific
privacy metric, nor consider that all users evaluate privacy
the same way. Instead, each user is allowed to choose the
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most appropriate measure for their privacy requirements. In
particular, we quantify a user’s privacy risk generically as

R = f(t, p) = f((1− δ) p+ δ q, p),

where f : (t, p) 7→ f(t, p) is a privacy function that measures the
extent to which the user is discontent when the initial profile is
p and the apparent profile is t.

A particularly interesting class of those privacy functions
are the dissimilarity or distance metrics, which have been exten-
sively used to measure the privacy of user profiles. The intu-
itive reasoning behind these metrics is that apparent profiles
closer to p offer better privacy protection than those closer to
q, which is consistent with the two privacy models described
in Sec. 2.3. Examples of these functions comprise the Euclidean
distance, Kullback-Leibler (KL) divergence [13], and the cosine
and Hamming distances.

2.5 Formulation of the Optimal Trade-Off between Privacy
and Money

Equipped with a measure of the privacy risk incurred by a
disclosure strategy, the proposed mechanism aims at finding
the strategy that yields the minimum risk for a given reward.
Next, we formalize the problem of choosing said strategy
as a multiobjective optimization problem whereby users can
configure a suitable trade-off between privacy and money.

Let w = (w1, . . . , wn) be the tuple of category rates spec-
ified by a user, that is, the amount of money they require to
completely disclose their interests or habits in each category.
Since in our data-buying model users have no motivation for
giving their private data for free, we shall assume these rates
are positive. Accordingly, for a given economic compensation
µ, we define the privacy-money function as

R(µ) = min
δ∑

i wiδi=µ,∑
i ti=1,

06δi61

f(t, p), (1)

which characterizes the optimal trade-off between privacy and
economic compensation.

Conceptually, the result of this optimization problem is a
disclosure strategy δ∗ that tells us, for a given amount of money,
how to unveil a profile so that the level of privacy is maximized.
Intuitively, if f is a profile-similarity function, the disclosure is
chosen to minimize the discrepancies between the apparent and
the initial profiles. Naturally, the minimization must satisfy that
the compensation offered is effectively exchanged for private
information. This is what the condition µ =

∑
i wiδi means.

The other equality condition,
∑
i ti = 1, merely reflects that the

resulting apparent profile must be a probability distribution.
In closing, the problem (1) gives a disclosure rule that not

only assists users in protecting their privacy, but also allows
them to find the optimal exchange of privacy for money.

3 OPTIMAL DISCLOSURE OF PROFILE INFORMATION

This section is entirely devoted to the theoretical analysis of the
privacy-money function (1) defined in Sec. 2.5. In our attempt to
characterize the trade-off between privacy risk and money, we
shall present a solution to the optimization problem inherent
in the definition of this function. Afterwards, we shall analyze
some fundamental properties of said trade-off for several in-
teresting cases. For the sake of brevity, our theoretical analysis

only contemplates the case when all given probabilities and
category rates are strictly positive:

qi, pi > 0 for all i = 1, . . . , n. (2)

Without loss of generality, we shall assume that

qi 6= pi for all i = 1, . . . , n. (3)

We note that we can always restrict the alphabet X to those
categories where qi 6= pi holds, and redefine the two probabil-
ity distributions accordingly.

In this work, we shall limit our analysis to the case of
privacy functions f : (t, p) 7→ f(t, p) that are twice differen-
tiable on the interior of their domains. In addition, we shall
consider these functions capture a measure of dissimilarity or
distance between the PMFs t and p, and accordingly assume that
f(t, p) > 0, with equality if, and only if, t = p. Occasionally, we
shall denote f more compactly as a function of δ, on account
of the fact that t = (1 − δ) p + δ q, and that p and q are fixed
variables.

Before establishing some notational aspects and diving into
the mathematical analysis, it is immediate from the definition of
the privacy-money function and the assumptions made above
that its initial value is R(0) = 0. The characterization of the
optimal trade-off curve modeled by R(µ) at any other values
of µ is the focus of this section.

3.1 Notation and Preliminaries
We shall adopt the same notation for vectors used in [12].
Specifically, we delimit vectors and matrices with square brack-
ets, with the components separated by space, and use parenthe-
ses to construct column vectors from comma separated lists.

Occasionally, we shall use the notation xTy to indicate the
standard inner product on Rn,

∑n
i=1 xiyi, and ‖ · ‖ to denote

the Euclidean norm, i.e., ‖x‖ = (xTx)1/2. Recall [12] that a
hyperplane is a set of the form

{x : vTx = b},

where v ∈ Rn, v 6= 0, and b ∈ R. Geometrically, a hyperplane
may be regarded as the set of points with a constant inner
product to a vector v. Note that a hyperplane separates Rn
into two halves; each of these halves is called a halfspace. The
results developed in the coming subsections will build upon a
particular intersection of halfspaces, usually referred to as slab.
Concretely, a slab is a set of the form

{x : bl 6 v
Tx 6 bu},

the boundary of which are two hyperplanes. Informally, we
shall refer to them as the lower and upper hyperplanes.

3.2 Monotonicity and Convexity
Our first theoretical characterization, namely Theorems 1 and 3,
investigates two elementary properties of the privacy-money
trade-off. The theorems in question show that the trade-off is
nondecreasing and convex. The importance of these two prop-
erties is that they confirm the evidence that an economic reward
will never lead to an improvement in privacy protection. In
other words, accepting money from a data purchaser does not
lower privacy risk. Together, these two results will allow us to
determine the shape of R(µ).

Before proceeding, define µmax =
∑
i wi and note that when

µ = µmax, the equality condition
∑
i wiδi = µ implies δi = 1 for
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all i. Hence, R(µmax) = f(q, p). Also, observe that the privacy-
money function is not defined for a compensation µ > µmax
since the optimization problem inherent in the definition of this
function is not feasible.

Theorem 1 (Monotonicity). The privacy-money function R(µ)
is nondecreasing.

Proof: Consider an alternative privacy-money function
Ra(µ) where the condition

∑
i wiδi = µ is replaced by these

two inequality constraints, µ 6
∑
i wiδi 6 µmax. We shall first

show that this function is nondecreasing and, based on it, we
shall prove the monotonicity of R(µ).

Let 0 6 µ < µ′ 6 µmax, and denote by δ′ the solution to
the minimization problem corresponding to Ra(µ′). Clearly, δ′

is feasible to the problem Ra(µ) since µ′ > µ. Because the
feasibility of δ′ does not necessarily imply that it is a minimizer
of the problem corresponding to Ra(µ), it follows that

Ra(µ) 6 f ((1− δ′)p+ δ′q, p) = Ra(µ′),

and hence that the alternative privacy-money function is non-
decreasing.

This alternative function can be expressed in terms of the
original one, by taking R(µ) as an inner optimization problem
of Ra(µ), namely Ra(µ) = minµ6α6µmax R(α). Based on this
expression, it is straightforward to verify that the only condi-
tion consistent with the fact thatRa(µ) is nondecreasing is that
R(µ) be nondecreasing too. �

Next, we define an interesting property borrowed from [13]
for KL divergence, that will be used in Theorem 3 to show the
convexity of the privacy-money function.

Definition 2. A function f(t, p) is convex in the pair (t, p) if

f(λt1 + (1− λ)t2, λp1 + (1− λ)p2)
6 λf(t1, p1) + (1− λ)f(t2, p2), (4)

for all pairs of probability distributions (t1, p1) and (t2, p2)
and all 0 6 λ 6 1.

Theorem 3 (Convexity). If f(t, p) is convex in the pair (t, p), then
the corresponding privacy-money function R(µ) is convex.

Proof: The proof closely follows the proof of Theorem 1
of [14]. We proceed by checking the definition of convexity,
that is, that

(1− λ)R(µ) + λR(µ′) > R((1− λ)µ+ λµ′)

for all 0 6 µ < µ′ 6 µmax and all 0 6 λ 6 1. Denote by δ and
δ′ the solutions to R(µ) and R(µ′), respectively, and define
δλ = (1− λ) δ + λ δ′. Accordingly,

(1− λ)R(µ) + λR(µ′) = (1− λ) f((1− δ) p+ δ q, p)

+ λ f((1− δ′) p+ δ′q, p)
(a)
> f

(
(1− λ) ((1− δ) p+ δ q)

+ λ ((1− δ′) p+ δ′q), p
)

= f((1− δλ) p+ δλ q, p)
(b)
>R((1− λ)µ+ λµ′),

where

(a) follows from the fact that f(t, p) is convex in the pairs of
probability distributions [13, §2], and

(b) reflects that δλ is not necessarily the solution to the mini-
mization problem R((1− λ)µ+ λµ′). �

The convexity of the privacy-money function (1) guarantees
its continuity on the interior of its domain, namely (0, µmax).
However, it can be checked, directly from the definition of
R(µ), that continuity also holds at the interval endpoints, 0
and µmax.

Lastly, we would like to point out the generality of the
results shown in this subsection, which are valid for a wide
variety of privacy functions f(t, p), provided that they are
non-negative, twice differentiable and convex in the pair (t, p).
Some examples of functions meeting these properties are the
squared Euclidean distance (SED) and KL divergence.

3.3 Parametric Solution

Our next result, Lemma 4, provides a parametric solution
to the minimization problem involved in the formulation of
the privacy-money trade-off (1) for certain privacy functions.
Even though said lemma provides a parametric-form solution,
fortunately we shall be able to proceed towards an explicit
closed-form expression, albeit piecewise, for some special cases
and values of n. For the sake of notational compactness, we
define the difference tuple d = (q1 − p1, . . . , qn − pn).
Lemma 4 (General Parametric Solution). Let f be additively

separable into the functions fi for i = 1, . . . , n. For all i, let
fi : [0, 1] → R be twice differentiable in the interior of its
domain, with f ′′i > 0, and hence strictly convex. Because
f ′′i > 0, f ′i is strictly increasing and therefore invertible.
Denote the inverse by f ′i

−1. Now consider the following
optimization problem in the variables δ1, . . . , δn:

minimize
n∑
i=1

fi(δi)

subject to 0 6 δi 6 1 for i = 1, . . . , n, (5)
n∑
i=1

diδi = 0 and
n∑
i=1

wiδi = µ.

The solution to the problem exists, is unique and of the form

δ∗i = max
{
0,min{f ′i

−1
(αdi + β wi), 1}

}
,

for some real numbers α, β such that
∑
i diδ

∗
i = 0 and∑

i wiδ
∗
i = µ.

Proof: We organize the proof in two steps. In the first step,
we show that the optimization problem stated in the lemma is
convex; then we apply Karush-Kuhn-Tucker (KKT) conditions
to said problem, and finally reformulate these conditions into
a reduced number of equations. The bulk of this proof comes
later, in the second step, where we proceed to solve the system
of equations.

To see that the problem is convex, simply observe that the
objective function f is the sum of strictly convex functions fi,
and that the inequality and equality constraint functions are
affine. The existence and uniqueness of the solution is then
a consequence of the fact that we minimize a strictly convex
function over a convex set. Since the objective and constraint
functions are also differentiable and Slater’s constraint qual-
ification holds, KKT conditions are necessary and sufficient
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conditions for optimality [12, §5]. The application of these
optimality conditions leads to the following Lagrangian cost,

L =
∑

fi(δi)−
∑

λiδi

+
∑

µi(δi − 1)− α
∑

diδi − β
(∑

wiδi − µ
)
,

and finally to the conditions

f ′i(δi)− λi + µi − αdi − βwi = 0 (dual optimality),

λiδi = 0, µi(δi − 1) = 0 (complementary slackness),

λi, µi > 0 (dual feasibility),

0 6 δi 6 1,
∑
diδi = 0,

∑
wiδi = µ (primal feasibility).

We may rewrite the dual optimality condition as λi =
f ′i(δi) + µi − αdi − βwi and µi = αdi + βwi − f ′i(δi) + λi.
By eliminating the slack variables λi, µi, and by substituting
the above expressions into the complementary slackness con-
ditions, we can formulate the dual optimality and complemen-
tary slackness conditions equivalently as

f ′i(δi) + µi > αdi + βwi, (6)
f ′i(δi)− λi 6 αdi + βwi, (7)
(f ′i(δi) + µi − αdi − βwi) δi = 0, (8)
(f ′i(δi)− λi − αdi − βwi) (δi − 1) = 0. (9)

In the following, we shall proceed to solve these equations
which, together with the primal and dual feasibility conditions,
are necessary and sufficient conditions for optimality. To this
end, we consider these three possibilities for each i: δi = 0,
0 < δi < 1 and δi = 1.

We first assume δi = 0. By complementary slackness, it
follows that µi = 0 and, in virtue of (6), that f ′i(0) > αdi+βwi.
We now suppose that this latter inequality holds and that
δi > 0. However, if δi is positive, by equation (7) we have
f ′i(δi) 6 αdi + βwi, which contradicts the fact that f ′i is strictly
increasing. Hence, δi = 0 if, and only if, αdi + βwi 6 f ′i(0).

Next, we consider the case 0 < δi < 1. Note that, when δi >
0, it follows from the conditions (7) and (8) that f ′i(δi) 6 αdi +
βwi, which, by the strict monotonicity of f ′i , implies f ′i(0) <
αdi + βwi. On the other hand, when δi < 1, the conditions (9)
and (6) and again the fact that f ′i is strictly increasing imply
that αdi + βwi < f ′i(1).

To show the converse, that is, that f ′i(0) < αdi+βwi < f ′i(1)
is a sufficient condition for 0 < δi < 1, we proceed by contra-
diction and suppose that the left-hand side inequality holds
and the solution is zero. Under this assumption, equation (9)
implies that µi = 0, and in turn that f ′i(0) > αdi + βwi, which
is inconsistent with the fact that f ′i is strictly increasing. Further,
assuming αdi + βwi < f ′i(1) and δi = 1 implies that λi = 0
and, on account of (7), that f ′i(1) 6 αdi + βwi, a contradiction.
Consequently, the condition 0 < δi < 1 is equivalent to

f ′i(0) < αdi + βwi < f ′i(1),

and the only conclusion consistent with (6) and (7) is that
f ′i(δi) = αdi + βwi, or equivalently,

δi = f ′i
−1

(αdi + βwi).

The last possibility corresponds to the case when δi = 1,
which by equations (8) and (7) imply f ′i(1) 6 αdi + βwi. Next,
we check that this latter condition is sufficient for δi = 1. We
first assume 0 < δi < 1. In this case, λi = µi = 0 and the
dual optimality conditions reduce to f ′i(δi) = αdi+βwi, which

contradicts the fact that f ′i is strictly increasing. Assuming
δi = 0, on the other hand, leads to f ′i(0) > αdi + βwi, which
runs contrary to the condition f ′i(1) 6 αdi + βwi and the strict
monotonicity of f ′i .

In summary, δi = 0 if αdi + βwi 6 f ′i(0), or equivalently,
f ′i
−1

(αdi + βwi) 6 0; δi = f ′i
−1

(αdi + βwi) if f ′i(0) < αdi +
βwi < f ′i(1), or equivalently, 0 < f ′i

−1
(αdi + βwi) < 1; and

δi = 1 if αdi+βwi > f ′i(1), or equivalently, f ′i
−1

(αdi+βwi) >
1. Accordingly, it is immediate to obtain the solution form given
in the statement. �

As mentioned at the beginning of this subsection, the opti-
mization problem presented in the lemma is the same as that
of (1) but for additively separable, twice differentiable objective
functions, with strictly increasing derivatives. Although these
requirements obviously restrict the space of possible privacy
functions of our analysis, the fact is that some of the best known
dissimilarity and distance functions satisfy these requirements.
This is the case of some of the most important examples of
Bregman divergences [15], such as the SED, KL divergence and
the Itakura-Saito distance (ISD) [16]. In the interest of brevity,
many of the results shown in this section will be derived only
for some of these three particular distance measures. Due to
its mathematical tractability, however, special attention will be
given to the SED.

For notational simplicity, hereafter we shall denote by zi
and γ the column vectors (di, wi) and (α, β), respectively. A
compelling result of Lemma 4 is the maximin form of the
solution and its dependence on the inverse of the derivative
of the privacy function. The particular form that each of the n
components of the solution takes, however, hinges on whether
diα + wiβ is greater or less than the value of the derivative
of fi at 0 and 1; equivalently, in our vector notation, the
lemma shows that the solution is determined by the specific
configuration of the n slabs

∇f(0) 4 zTγ 4 ∇f(1),

where ∇f(0) denotes the gradient of f at 0, and zi are the
columns of z. In particular, the i-th component of the solution
is equal to 0, 1 or f ′i

−1
(zT
i γ) if, and only if, zT

i γ 6 f
′
i(0), z

T
i γ >

f ′i(1), or f ′i(0) < zT
i γ < f ′i(1), respectively.

From the lemma, it is clear then that γ, which must satisfy
the primal equality constraints dTδ = 0 and wTδ = µ, is the
parameter that configures the point of operation within the α-
β plane where all such halfspaces lie. Informally, the region of
this plane where γ falls on is what determines which precise
components are 0, 1 and f ′i

−1
(zT
i γ). Nevertheless, the problem

when trying to determine the particular form of each of the n
components is the apparent arbitrariness and lack of regularity
of the layout drawn by their corresponding slabs, which makes
it difficult to obtain an explicit closed-form solution for any
given µ, q, p, w and n. Especially for large values of n, conduct-
ing a general study of the optimal trade-off between privacy
and economic reward becomes intractable.

Motivated by all this, our analysis of the solution and the
corresponding trade-off focuses on some specific albeit riveting
cases of slabs layouts. In particular, Sec. 3.5 will examine
several instantiations of the problem (5) for small values of
n. Afterwards, Sec. 3.5 will tackle the case of large n for some
special layouts that will permit us to systematize our theoretical
analysis. Fig. 4 shows a configuration of slabs for n = 6, and
illustrates the conditions that define an optimal strategy.
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Fig. 4: Slabs layout on the α-β plane for n = 6 categories. Each component
of the solution is determined by a slab and, in particular, by the specific
γ falling on the plane. We show in dark blue the lower and upper
hyperplanes of the i-th slab. In general, it will be difficult to proceed
towards an explicit closed-form solution and to study the corresponding
optimal privacy-money trade-off for any configuration of these slabs and
any γ and n.

3.4 Origin of Lower Hyperplanes

Despite the arbitrariness of the layout depicted by the slabs
associated with a particular instantiation of the problem (5),
next we shall be able to derive an interesting property for some
specific privacy functions. The property in question is related
to the need of establishing a fixed point of reference for the
geometry of the solutions space.

Proposition 5 (Intersection of Lower Hyperplanes). In the case
when q 6= p, if dif ′j(0) = djf

′
i(0) for all i, j = 1, . . . , n and

i 6= j, then the hyperplanes zT
i γ = f ′i(0) for i = 1, . . . , n all

intersect at a single point O on the plane α-β.

Proof: Clearly, the consequent of the statement is true if,
and only if, the system of equations zTγ = ∇f(0) has a unique
solution. We proceed by proving that the rank of the coefficient
and augmented matrices is equal to 2 under the conditions
stated in the proposition.

On the one hand, recall that zi = (di, wi) is the i-th column
of z, and check that its rank is two if, and only if, diwj 6=
djwi for some i, j = 1, . . . , n and i 6= j. That said, now we
show that the consequent of this biconditional statement is true
provided that q 6= p. To this end, we assume, by contradiction,
that sgn(d1) = · · · = sgn(dn), where sgn(·) is the sign function.
If di = qi−pi > 0 for i = 1, . . . , n, we have 1 =

∑
qi >

∑
pi =

1, a contradiction. The case di < 0 for all i leads to an analogous
contradiction, and the case di = 0 (for all i) contradicts the fact
that q 6= p. Hence, the condition q 6= p implies that there must
exist some indexes i, j with i 6= j such that sgn(di) 6= sgn(dj),
which in turn implies that diwj 6= djwi, and that rank(z) = 2.

On the other hand, to check the rank of the augmented
matrix, observe that the determinant of any 3x3 submatrix with
rows i, j, k yields

det (z|∇f(0)) = wi(djf
′
k(0)− dkf ′j(0))

+ wj(dif
′
k(0)− dkf ′i(0))

+ wk(dif
′
j(0)− djf ′i(0)).

From this expression, it is easy to verify that rank (z|∇f(0)) =
2 if all terms dif ′j(0)−djf ′i(0) with i 6= j vanish, which ensures,
by the Rouché-Capelli theorem [17], that there exists a unique
solution to zTγ = ∇f(0). �

The importance of Proposition 5 is obvious: for some pri-
vacy functions and distributions q and p, the existence of a
sort of origin of coordinates in the slabs layout may reveal
certain regularities which may help us systematize the analysis
of the solutions space. For example, a trivial consequence of the
intersection of all lower hyperplanes on O is that any γ lying
on an bounded polyhedron will lead to a solution with at least
one component of the form f ′i

−1
(zT
i γ) on its interior. When the

assumptions of the above proposition does not satisfy, however,
this property may not hold for any n and the choice of the
origin may not be evident.

In the next subsections, we shall investigate the optimal
trade-off between privacy and money for several particular
cases. As we shall see, these cases will leverage certain regular-
ities derived from, or as a result of, said reference point on the
α-β plane. Before that, however, our next result, Corollary 6,
provides such point for each of the three privacy functions
considered in our analysis.

Corollary 6. Consider the nontrivial case when q 6= p. The
solution to zTγ = ∇f(0) is unique and yields (0, 0) for
the squared Euclidean and the Itakura-Saito distances, and
(1, 0) for the KL divergence.

Proof: We obtain the result as a direct application of Propo-
sition 5. Note that the gradient of the squared Euclidean and
the Itakura-Saito distances vanishes at δ = 0. In the case of
the KL divergence, ∇f(0) = (d1, . . . , dn). Clearly, in the three
cases investigated, the condition dif ′j(0) = djf

′
i(0) for all i 6= j

in the proposition is satisfied, which implies that the solution
is unique. Then, it is immediate to derive the solutions claimed
in the statement. �

Although it seems rather obvious, the above corollary ac-
tually tells us something of real substance. In particular, for
the three privacy functions under study, O does not depend
on a user’s profile nor the particular initial distribution chosen.
This result therefore shows the appropriateness of basing our
analysis on such functions.

3.5 Case n 6 3

We start our analysis of several specific instantiations of the
problem (5) for small values of the number of interest categories
n. We shall first tackle the case n = 2 and afterwards the case
n = 3.

The special case n = 2 reflects a situation in which a user
may be willing to group the original set of topics (e.g., business,
entertainment, health, religion, sports) into a “sensitive” cate-
gory (e.g., health, religion) and a “non-sensitive” category (e.g.,
business, entertainment, sports), and disclose their interests
accordingly. Evidently, this grouping would require that the
user specify the same rate wi for all topics belonging to one
of these two categories. Our next result, Theorem 7, presents a
closed-form solution to the minimization problem involved in
the definition of function (1) for this special case. As we shall
see now, this result can be derived directly from the primal
feasibility conditions.

Theorem 7 (Case n = 2, and SED and KL divergence). Let
f : [0, 1] × [0, 1] → R+ be continuous on the interior of its
domain.

(i) For any µ ∈ [0, µmax] and i = 1, 2, the optimal disclosure
strategy is δ∗i = µ

µmax
.
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(ii) In the case of the SED and KL divergence, the correspond-
ing, minimum distance yields the privacy-money functions

RSED(µ) = 2

(
di

µ

µmax

)2

and

RKL(µ) =
2∑
i=1

(
di

µ

µmax
+ pi

)
log

(
di µ/µmax

pi
+ 1

)
.

Proof: Since n = 2, we have that d1 = −d2, which, by
virtue of the primal condition

∑
diδ
∗
i = 0, implies that δ∗1 =

δ∗2 . Then, from the other primal condition
∑
wiδ
∗
i = µ, it is

immediate to obtain the solution claimed in assertion (i) of the
theorem. Finally, it suffices to substitute the expression of δ∗

into the functions fSED(δi) =
∑
i(t
∗
i − pi)

2 and fKL(t
∗, p) =∑

i t
∗
i log t

∗
i /pi, to derive the optimal trade-off functionR(µ) in

each case. �
In light of Theorem 7, we would like to remark the simple,

linear form of the solution, which, more importantly, is valid for
a set of privacy functions which is larger than that considered
in Lemma 4. In particular, not only the KL divergence, the
squared Euclidean and the Itakura-Saito distances satisfy the
conditions of this theorem, but also many others which are
not differentiable (e.g., total variation distance) nor additively
separable (e.g., Mahalanobis distance).

Another straightforward consequence of Theorem 7 is that
the optimal strategy implies revealing both categories (e.g.,
sensitive and non-sensitive) simultaneously and with the same
level of disclosure. In other words, if a user decides to show a
fraction of their interest in one category, that same fraction must
be disclosed on the other category so as to attain the maximum
level of privacy protection.

Before proceeding with Theorem 8, first we shall introduce
what we term money thresholds, two rates that will play an
important role in the characterization of the solution to the
minimization problem (5) for n = 3. Also, we shall introduce
some definitions that will facilitate the exposition of the afore-
mentioned theorem.

For i = 1, . . . , n, denote by mi the slope of vector zi, i.e.,
mi =

wi

di
. Let mi and σ2

mi
be the arithmetic mean and variance

of all but the i-th slope. When the subindex i 6∈ X , observe
that the mean and variance are computed from all slopes.
Accordingly, define the money thresholds µj as

µj = min
i 6=2j

(j + 1) di σ
2
m2j

mi −m2j

for j = 1, 2.
Additionally, we define the relative coefficient of variation of

the ratio wi/di as

vi,j =
mi −mj

σ2
mj

(10)

for i, j = 1, . . . , n, which may be regarded as the inverse of
the index of dispersion [18], a measure commonly utilized in
statistics and probability theory to quantify the dispersion of
a probability distribution. As we shall show in the following
result, our coefficient of variation will determine the closed-
form expression of the optimal disclosure strategy.

Theorem 8 (Case n = 3 and SED). For n = 3 and the SED
function, assume without loss of generality m1 > m2 > m3.
Either wj+1 6 dj+1mj+1 for j = 1 and m1 > m3, or wj >

djmj for j = 2. For the corresponding index j and for any
µ 6 µj , the optimal disclosure strategy is

δ∗i =

{ vi,2j
(j+1)di

µ , i 6= 2j

0 , i = 2j
,

and the corresponding, minimum SED yields the privacy-
money function

RSED(µ) =
µ2

(j + 1)σ2
m2j

.

Proof: It is straightforward to verify that the SED function
exposes the structure of the optimization problem addressed in
Lemma 4. Note that, according to the lemma, the components
of the solution such that 0 < δi < 1 for some i = 1, 2, 3 are
given by the inverse of the privacy function and yield

f ′i
−1

(αdi + βwi) =
α

2 di
+
wi β

2 d2i
.

To check that a solution does not admit only one positive
component, simply observe that the system of equations com-
posed of the two primal equality conditions

∑
i di δi = 0 and∑

i wiδi = µ is inconsistent.
Having shown that there must be at least two positive

components, we apply such primal equality conditions to a
solution with 0 < δ1, δ3 < 1. To verify these two equalities are
met, first note that the former is equivalent to α + β m2 = 0,
and the latter can be written equivalently as

αm2 +
β

2

∑
i=1,3

m2
i = µ.

Then, observe that the condition m1 > m3 in the theorem
ensures that the determinant of the homogeneous system is
nonzero, and, accordingly, that the Lagrange multipliers that
solve these two equations are

α = − m2

σ2
m2

µ and β =
1

σ2
m2

µ. (11)

Finally, it suffices to substitute the expressions of α and β
into the function f ′i

−1, to obtain the solution with two nonzero
optimal components claimed in the theorem.

Next, we derive the conditions under which this solution
is defined. With this aim, just note that the inequalities zT

1γ >
f ′1(0) and zT

3γ > f ′3(0) are equivalent to d1 (m1 −m2) > 0 and
d3 (m3 −m2) > 0, respectively. On the other hand, δ2 = 0 if,
and only if, zT

2γ 6 f
′
2(0), or equivalently, d2 (m2 −m2) 6 0.

We now show that when there are two components 0 <
δi, δj < 1, then i = 1 and j = 3. To this end, we shall examine
the case 0 < δ2, δ3 < 1 and δ1 = 0. The other possible case,
0 < δ1, δ2 < 1 and δ3 = 0, proceeds along the same lines and is
omitted.

First, though, we shall verify that d1 > 0, a condition that
will be used later on. We proceed by contradiction. Sincewi > 0
for all i, a negative d1 implies, by the ordering assumption
m1 > m2 > m3, that d2, d3 < 0. But having di < 0
for i = 1, 2, 3 leads us to the contradiction 0 >

∑
i di =∑

i qi −
∑
i pi = 0. Consequently, d1 is nonnegative, but by

virtue of (3), it follows that d1 > 0.
Having verified the positiveness of d1, next we contemplate

the case when 0 < δ2, δ3 < 1 and δ1 = 0. Note that, in this
case, the condition δ1 = 0 holds if, and only if, d1 (m1 −m1) 6
0. However, since d1 > 0, we have that m1 6

1
2 (m2 +m3),

which contradicts the fact that m1 > m2 > m3 and m1 > m3.
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Consequently, it is not possible to have 0 < δ2, δ3 < 1 and
δ1 = 0. The case when 0 < δ1, δ2 < 1 and δ3 = 0 leads to
another contradiction and the conclusion that 0 < δ1, δ3 < 1
and δ2 = 0.

Next, we check the validity of the conditions under which
this solution is defined. Recall that these conditions are
d1 (m1 −m2) > 0, d3 (m3 −m2) > 0 and d2 (m2 −m2) 6 0. It
is easy to verify that the former two inequalities hold, since the
arithmetic mean is strictly smaller (greater) than the extreme
value m1 (m3); the strictness of the inequality is due to the
assumption m1 > m3 in the statement. On the other hand, the
latter inequality is the condition assumed in the statement of
the theorem. Therefore, we have 0 < δ1, δ3 < 1 and δ2 = 0 if,
and only if, w2 6 d2m2.

Next, we turn to the case when 0 < δ1, δ2, δ3 < 1. By ap-
plying the two primal equality constraints of the optimization
problem (5), we obtain the system of equations

3

2

[
1 m0

m0
1
3

∑3
i=1m

2
i

] [
α
β

]
=

[
0
µ

]
,

and note that the solution is unique on account of the fact that
sgn(di) 6= sgn(dj) for some i, j = 1, 2, 3 and i 6= j, which
implies that σ2

m0
> 0. Substituting the values

α = − 2m0

3σ2
m0

µ and β =
2

3σ2
m0

µ (12)

into f ′i
−1

(zT
i γ) gives the expression of the optimal disclosure

strategy stated in the theorem for 0 < δ1, δ2, δ3 < 1.
Now, we examine the necessary and sufficient conditions

for this optimal strategy to be possible, which, according to the
lemma, are 0 < zT

i γ < 2 di for i = 1, 2, 3. To this end, note that
the left-hand inequalities can be recast as di (mi − m0) > 0,
for i = 1, 2, 3. We immediately check that the inequalities for
i = 1 and i = 3 hold, as the mean is again strictly smaller
(greater) than the extreme valuem1 (m3). The strictness of these
two inequalities is due to the fact that

∑3
i=1 di = 0 and the

assumption (3). On the other hand, observe that

sgn(m2 −m0) = sgn(m2 −m2),

and therefore that the condition d2 (m2 −m0) > 0 is equiva-
lent to d2 (m2 −m2) > 0. That said, note that d2 (m2 −m2) >
0 is the negation of the condition for having a solution with
two nonzero components smaller than one. Accordingly, we
have either two or three components of this form, as stated in
the theorem.

To show the validity of the solution in terms of µ, observe
that, for w2 6 d2m2, the parameterized line (α(µ), β(µ))
moves within the space determined by the intersection of the
slabs 1 and 3. To obtain the range of validity of a solution
such that 0 < δ1, δ3 < 1 and δ2 = 0, we need to find the
closest point of intersection (to the origin) with either the upper
hyperplane 1 or the upper hyperplane 3. Put differently, we
require finding the minimum µ such that either zT

1γ = f ′1(1) or
zT
3γ = f ′3(1). By plugging the values of α and β given in (11)

into these two equalities, it is straightforward to derive the
money threshold µ1. We proceed similarly to show the interval
of validity [0, µ2] in the case when w2 > d2m2, bearing in mind
that now α and β are given by (12).

To conclude the proof, it remains only to write R(µ) in
terms of the optimal apparent distribution, that is, R(µ) =∑n
i=1 (ti − pi)

2
=
∑n
i=1 d

2
i δ

2
i , and from this, it is routine to

obtain the expression given at the end of the statement. �

Theorem 8 provides an explicit closed-form solution to the
problem of optimal profile disclosure, and characterizes the
corresponding trade-off between privacy and money. Although
it rests on the assumption that µ < µ1, µ2 and —for the
sake of tractability and brevity— tackles only the case of SED,
the provided results shed light on the understanding of the
behavior of the solution and the trade-off, and enables us to
establish interesting connections with concepts from statistics
and estimation theory.

In particular, the most significant conclusion that follows
from the theorem is the intuitive principle upon which the
optimal disclosure strategy operates. On the one hand, in line
with the results obtained in Theorem 7, the solution does not
admit only one positive component: we must have either two
or three active components. On the other hand, and more
importantly, the optimal strategy is linear with the relative
coefficient of variation of the ratio wi/di, a quantity that is
closely related to the index of dispersion, also known as Fano
factor1.

The solution, however, does not only depend on vi,j but
also on the difference between the interest value of the actual
profile and that of the initial PMF. Essentially, the optimized
disclosure works as follows. We consider the category iwith the
largest value wi, which in practice may correspond to the most
sensitive category. For that category, if di is small and mi is the
ratio that deviates the most from the mean value —relative to
the variance—, then the optimal strategy suggests disclosing
the profile mostly in that given category. This conforms to
intuition since, informally, revealing small differences qi − pi
when wi is large may be sufficient to satisfy the broker’s
demand, i.e., the condition

∑
i wiδi = µ, and this revelation

may not have a significant impact on user privacy2. On the
other hand, if di is comparable to wi, and mi is close to the
mean value, then δ∗ recommends that the user give priority to
other categories when unfolding their profile.

Also, from this theorem we deduce that the optimal trade-
off depends quadratically on the offered money, exactly as with
the case n = 2, and inversely on the variance of the ratios
m1,m2,m3.

Last but not least, we would like to remark that, although
Theorem 8 does not completely3 characterize the optimal strat-
egy nor the corresponding trade-off for any q, p, w and µ for
n = 3, the proof of this result does show how to systematize
the analysis of the solution for any instance of those variables.
Sec. 4 provides an example that illustrates this point.

3.6 Case n > 3 and Conical Regular Configurations
In this subsection, we analyze the privacy-money trade-off for
large values of n, starting from 3. To systematize this analysis,
however, we shall restrict it to a particular configuration of the
slabs layout, defined next. Then, Proposition 10 will show an
interesting property of this configuration, which will allow us
to derive an explicit closed-form expression of both the solution
and trade-off for an arbitrarily large number of categories.
Definition 9. For a given q, p, w and n > 3, let C be the

collection of slabs on the plane α-β that determines the

1. The difference with respect to these quantities is that our measure
of dispersion inverses the ratio variance to mean, and also reflects the
deviation with the particular value attained by a given component.

2. Bear in mind that, when using fSED to assess privacy, small values of
di lead to quadratically small values of privacy risk.

3. That is, for all values of µ.
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Fig. 5: A conical regular configuration for n = 4 on the α-β plane. In
this figure, we show the segments of hyperplanes r2(ϕ) and r3(ϕ), given
respectively by the angular coordinates ϕ2 6 ϕ 6 ϕ3 and ϕ3 6 ϕ 6 ϕ4.
The cone defined by r > 0 and ϕ3 6 ϕ 6 ϕ4 is intersected by the upper
hyperplanes 1, 2 and 3. However, neither of these hyperplanes intersect
among themselves on the interior of the cone in question.

corresponding solution to (5) stated in Lemma 4. Without
loss of generality, assume 1

m1
> · · · > 1

mn
. Define Ai, bi and

b′i as

Ai =

 zT
i

zT
i−1
zT
1

 , bi =
 f ′i(0)
f ′i−1(1)
f ′1(1)

 and b′i =

 f ′i(1)
f ′i−1(1)
f ′1(0)

 .
Then, C is called a conical regular configuration if each of the
system of equations Ai γ = bi and Ai γ = b′i for i = 3, . . . , n
has a unique solution.

Proposition 10. Suppose that there exists a conical regular
configuration C for some q, p, w and n. Denote by γa,bi,j the
unique solution to {

zT
i γ = f ′i(a)

zT
j γ = f ′j(b)

for i, j = 1, . . . , n with i 6= j, and a, b ∈ {0, 1}. Assume
f ′i(0) 6= f ′i(1) for all i. Then, except for γ1,11,n, C satisfies

zT
k γ

a,b
i,j = f ′k(0) (13)

for some k = 1, . . . , n and all i 6= j.

Proof: The existence and uniqueness of γa,bi,j is guaranteed
by the fact that 1

m1
> · · · > 1

mn
. The property stated in the

proposition follows from the fact that the systems of equations
Ai γ = bi and Ai γ = b′i for i = 3, . . . , n have a unique solution.

The systems of equations of the form Ai γ = bi ensure that
γ1,1i,1 = γ0,1i+1,1 for i = 2, . . . , n− 1. Obviously, any γa,bi,j such that
a = 0 or b = 0 with i 6= j satisfies (13) for k = i or k = j.
Accordingly, we just need to prove the case a = b = 1.

Suppose i > j. Note that Ai γ = b′i implies, on the one
hand, that

γ1,1i,i−1 = γ1,0i−1,1 = γ1,0i−2,1 = · · · = γ1,0j,1 ,

and on the other hand, that γ1,1j,j−1 = γ1,0j,1 . Thus, γ1,1i,i−1 = γ1,1j,j−1,
from which it follows that γ1,1i,j = γ1,0j,1 . The exception, i.e.,
zT
k γ

1,1
1,n 6= f ′k(0) for all k = 1, . . . , n, is justified by the conditions

f ′i(0) 6= f ′i(1) for all i, which guarantee that all slabs have
nonempty interiors, and the strict ordering 1

m1
> · · · > 1

mn
. �

The previous proposition shows a remarkable feature of the
conical regular configuration: at a practical level, the fact that
all intersections on the plane α-β (except γ1,11,n) lie on lower hy-
perplanes suggests utilizing these hyperplanes, parameterized
in polar coordinates with respect to the origin O, to efficiently
delimit the solutions space. In other words, in our endeavor
to systematize the study of the solution and trade-off, it may
suffice to use a reduced number of cases, bounded by angles
and segments of hyperplanes.

On the other hand and from a geometric standpoint, any
consecutive pair of lower hyperplanes defines a cone without
intersections in its interior; hence the name of the configuration.
Finally, as the slabs are sorted in increasing order of their slopes,
we can go counter-clockwise from slab 1 to n, and start again
at the line through O and γ1,11,n, which serves as a reference axis.

Before we continue examining this concrete configuration,
we shall introduce some notation. Let ϕ and r be the polar
coordinates of γ. Define the angle thresholds ϕk as

ϕk =


arctan−dk/wk , k = 1, . . . , n

arctan
d1 f

′
n(1)−dn f

′
1(1)

wn f ′
1(1)−w1 f ′

n(1)
, k = n+ 1

ϕk−n−1 + π , k = n+ 2, . . . , 2n+ 1

,

and the segments of upper hyperplanes rj as

rj(ϕ) =
f ′j(1)

zT
j

[
cosϕ
sinϕ

]
for j = 1, . . . , n. Note that ϕn+1 is the angular coordinate of
γ1,11,n. Occasionally, we shall omit the dependence of these line
segments on the angular coordinate ϕ. Figure 5 illustrates these
coordinates and segments on a conical regular configuration for
n = 4.

Our next result, Lemma 11, provides a parametric solution
in the special case when the slabs layout exhibits such con-
figuration. The solution is determined by the aforementioned
thresholds and line segments, and is valid for any privacy
function satisfying the properties stated in Lemma 4. As we
shall show next, this result will be instrumental in proving
Theorem 12.

Lemma 11 (Conical Regular Configurations). Under the condi-
tions of Lemma 4, assume that there exists a conical regular
configuration. Consider the following cases:

(a) ϕk < ϕ 6 ϕk+1 for k = 1 and, either r < rj for j = 1 or
rj−1 6 r for j = 2; and ϕk < ϕ 6 ϕk+1 for k = 2 and,
either r < rj for j = 1, or rj−1 6 r < rj for j = 2, or
r > rj−1 for j = 3.

(b) ϕk < ϕ 6 ϕk+1 for some k = 3, . . . , n and, either r < rj+1

for j = 1, or rj 6 r < rj+1 for some j = 2, . . . , k − 2, or
rj 6 r < rj+2 (mod k) for j = k−1, or rj+1 (mod k) 6 r < rj
for j = k, or r > rj−1 for j = k + 1.

(c) ϕk < ϕ < ϕk+1 for k = n + 1 and, either r < rj+1 for
j = 1, or rj 6 r < rj+1 for some j = 2, . . . , n − 1, or
rj 6 r < r1 for j = n, or r > rj−n for j = n+ 1.

(d) ϕk 6 ϕ < ϕk+1 for some k = n + 2, . . . , 2n and, either
r < rn−j+1 for j = 1, or rn−j+2 6 r < rn−j+1 for some
j = 2, . . . , 2n− k + 1, or r > rn−j+2 for j = 2(n+ 1)− k.

Let δ∗ be the solution to the problem (5). Accordingly,
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(i) in cases (a) and (b), and for the corresponding indexes k
and j,

δ∗i =


0, i = k + 1, . . . , n

f ′i
−1 (

zT
i γ
)
,
i = 1 and i = j + 1, . . . , k if j < k
i = j, . . . , k if j = k

;

1,
i = 2, . . . , j if j < k
i = 1, . . . , j − 1 if j > k

(ii) in case (c), and for the corresponding indexes k and j, the
solution is obtained by exchanging the indexes i = 1 and
i = n of the solution given for case (b) and k = n;

(iii) in case (d), and for the corresponding indexes k and j,

δ∗i =


0, , i = 1, . . . , k − n− 1

f ′i
−1 (

zT
i γ
)
, i = k − n, . . . , n− j + 1

1, , i = n− j + 2, . . . , n
.

Proof: From Proposition 10, we have that the conditions
r > 0 and ϕk 6 ϕ 6 ϕk+1 for any single k = 1, . . . , n −
1, n + 2, . . . , 2n yield a cone where no intersection of hyper-
planes occurs in its interior. Clearly, we also note that each
cone is bounded by two consecutive lower hyperplanes and
intersected only by upper hyperplanes. It is easy to verify that
the number of intersecting upper hyperplanes is k and 2n−k+1
for k = 1, . . . , n and k = n+ 2, . . . , 2n, respectively.

That said, all cases in the lemma are an immediate conse-
quence of Lemma 4. We only show statement (iii). With this
aim, observe that, for any k = n + 2, . . . , 2n, the condition
ϕk 6 ϕ < ϕk+1 is equivalent to ϕk−n−1 6 ϕ + π < ϕk−n,
which means that, for a given k, the corresponding cone is
bounded by the lower hyperplanes k − n − 1 and k − n and
thus

zT
k−n−1

[
r cosϕ
r sinϕ

]
6 f ′k−n−1(0).

Since a conical configuration satisfies 1
m1

> · · · > 1
mn

, then

f ′1
−1 (

zT
1γ
)
, . . . , f ′−1k−n−1

(
zT
k−n−1γ

)
6 0, (14)

and accordingly δ1 = · · · = δk−n−1 = 0.
On the other hand, for a given ϕ ∈ [ϕk, ϕk+1], note that

the parameterized line (r cosϕ, r sinϕ) intersects the sequence
of line segments rn, rn−1, . . . , rk−n when r goes from 0 to ∞.
This shows the order of the line segments specified in case (d).

Having checked this, note that when rn−j+2 6 r < rn−j+1

for some j = 2, . . . , 2n− k + 1, we have

f ′−1n−j+2

(
zT
n−j+2γ

)
, . . . , f ′n

−1 (
zT
nγ
)
> 1,

and thus δn−j+2 = · · · = δn = 1. From (14), it follows that
δi = 0 for i = 1, . . . , k − n − 1, and then that the rest of the
components i = k − n, . . . , n − j + 1 must be of the form
f ′−1i

(
zT
i γ
)
. �

Our previous result, Lemma 11, shows that the specific
arrangement of the lower and upper hyperplanes of a conical
regular configuration makes polar coordinates particularly con-
venient for analyzing the solution to the optimization problem
at hand. The lemma takes advantage of the regular structure
of such configuration, and is used in Theorem 12 as a stepping
stone to derive an explicit closed-form solution for n > 3. To
be able to state our next result concisely, we introduce some
auxiliary definitions.

Denote by Di =
∑n
k=i dk and Wi =

∑n
k=i wk the comple-

mentary cumulative functions of d and w. For k = n+2, . . . , 2n
and j = 1, . . . , 2(n+1)−k, define the set S(k, j) = {1, . . . , k−

n−1, n−j+2, . . . , n}. In line with the definition given for case
n 6 3 in Sec. 3.5, denote by mS(k,j) and σ2

mS(k,j)
the arithmetic

mean and variance of the sequence (mi)i∈X \S(k,j). Similarly
to Sec. 3.5, we define a sequence of money thresholds

µk,j =Wn−j+2 −Dn−j+2

(
mS(k,j) +

σ2
mS(k,j)

mS(k,j) −mk−n−1

)
,

for k = n+ 2, . . . , 2n and j = 1, . . . , 2(n+ 1)− k.
Theorem 12. Assume that there exists a conical regular config-

uration for some q, p, w and n. For any k = n + 2, . . . , 2n
and j = 1, . . . , 2(n+1)− k such that µk+1,j < µk,j , and for
any µ ∈ (µk+1,j , µk,j ], the optimal disclosure strategy for
the SED function is δ∗i = 0 for i = 1, . . . , k − n− 1,

δ∗i =
1

di (n− |S(k, j)|)

(
vi,S(k,j) (µ−Wn−j+2

+Dn−j+2mS(k,j)

)
−Dn−j+2

)
for i = k−n, . . . , n− j+1, and δ∗i = 1 for n− j+2, . . . , n.

Proof: The proof parallels that of Theorem 8 and we sketch
the essential points.

Observe that the range of values of the indexes k and j
stated in the theorem corresponds to case (d) of Lemma 11.
The direct application of this lemma in the special case of the
SED function leads to the solution δi = α

2 di
+ wi β

2 d2i
for i =

k− n, . . . , n− j + 1, δi = 1 for i = n− j + 2, . . . , n, and δi = 0
for i = 1, . . . , k − n− 1.

The system of equations given by
∑
i diδi = 0 and∑

i wiδi = µ has a unique solution since D1 = 0 and di 6= 0 for
all i = 1, . . . , n. Routine calculation gives

α = −mS(k,j) β +
2Dn−j+2

|S(k, j)| − n
,

β =
2
(
µ−Wn−j+2 +Dn−j+2mS(k,j)

)
(n− |S(k, j)|)σ2

mS(k,j)

.

By plugging these expressions into α
2 di

+ wi β
2 d2i

, we derive the
components i = k − n, . . . , n− j + 1 of the solution.

It remains to confirm the interval of values of µ in which
this solution is defined. For this purpose, verify first that ϕ =
arctan (β/α) is a strictly monotonic function of µ. Then, note
that the condition ϕk 6 ϕ in Lemma 11, case (d), becomes

− 1

mk−n+1
6 − 1

mS(k,j)
+
Dn−j+2

mS(k,j)
×

×
(
mS(k,j)

σ2
mS(k,j)

(
µ−Wn−j+2 +Dn−j+2mS(k,j)

)
+Dn−j+2

)−1
.

After simple algebraic manipulation, and on account of
µk+1,j < µk,j and the monotonicity of ϕ(µ), we conclude

µ 6Wn−j+2 −Dn−j+2

(
mS(k,j) +

σ2
mS(k,j)

mS(k,j) −mk−n−1

)
.

An analogous analysis on the upper bound condition ϕ < ϕk+1

determines the interval of values of µ where the solution is
defined. �

Although the above theorem only covers the intervals
µk+1,j < µk,j for k = n+2, . . . , 2n and j = 1, . . . , 2(n+1)−k,
a number of important, intuitive consequences can be drawn
from it. First and foremost, the components δi of the form
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(a) µ = $0, R(µ) = 0, R(µ)/R(µmax) = 0,
δ∗ = (0, 0, 0), t∗ = p.
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(b) µ = µ1 ' $0.7948, R(µ) '
0.0942, R(µ)/R(µmax) ' 0.4753, δ∗ '
(0.6011, 0, 1), t∗ ' (0.4760, 0.4140, 0.1100).
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(c) µ = $0.8974, R(µ) ' 0.1358,
R(µ)/R(µmax) ' 0.6853,
δ∗ ' (0.8005, 0.4999, 1), t∗ '
(0.5480, 0.3420, 0.1100).
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(d) µ = µmax = $1, R(µ) ' 0.1981,
R(µ)/R(µmax) = 1, δ∗ ' (1, 1, 1), t∗ = q.

Fig. 6: Actual, initial and apparent profiles of a particular user for different values of µ.

f ′i
−1

(zT
i γ) are linear with the ratio vi,S(k,j)

di
, exactly as Theo-

rem 8 showed for n = 3, which means that the optimal strategy
follows the same principle described in Sec. 3.5. On the other
hand, the coincidence of these two results suggests a similar
behavior of the solution in a general case.

Another immediate consequence of Theorem 12 is the role
of the money thresholds. In particular, we identify µk,j as the
money (paid by a data broker) beyond which the components
of δi for i = k−n, . . . , n are all positive. Conceptually, we may
establish an interesting connection between these thresholds
and the hyperplanes that determine the solutions space on
the α-β plane. Lastly, although it has not been proved by
Theorem 12, we immediately check the quadratic dependence
of the trade-off on µ, as shown also in Theorem 8 for n = 3.

4 SIMPLE, CONCEPTUAL EXAMPLE

In this section, we present a numerical example that illustrates
the theoretical analysis conducted in the previous section. For
simplicity, we shall assume the SED as privacy function.

In this example, we consider a user who wishes to sell their
Google search profile to one of the new data-broker companies
mentioned in Sec. 1. We represent their profile across n = 3
categories, namely, “health”, “others” and “religion”, as we
assume they are concerned mainly with those search categories
related to health and religion, whereas the rest of searches are
not sensitive to them. We suppose that the user’s search profile
is

q = (0.620, 0.270, 0.110),

the initial distribution is

p = (0.259, 0.414, 0.327),

and the normalized category rates are

w = (0.404, 0.044, 0.552).

The choice of the initial profile and the category rates above
may be interpreted from the perspective of a user who hypo-
thetically wants to hide an excessive interest in health-related

issues and, more importantly to them, wishes to conceal a lack
of interest in religious topics. This is captured by the large
differences between q1 and p1 on the one hand, and q3 and
p3 on the other, and by the fact that w3 > w1.

First, we note that q and p satisfy the assumptions (2)
and (3), and that m1 > m2 > m3. Also, we verify that
w2 6 d2m2, which, on account of Theorem 8, implies that
the optimal strategy has just two positive components within
µ ∈ [0, µ1], in particular, the categories 1 and 3. Precisely, from
Sec. 3.5, we easily obtain this money threshold µ1 ' $0.7948.

From Theorem 8, we also know that the optimal percent-
age of disclosure is proportional to the relative coefficient of
variation of the ratio wi/di, which in our example yields(

vi,2
di

)
i

' (1.513,−0.842, 2.516).

Accordingly, for µ ∈ [0, µ1] we expect higher disclosures for
category 3, “religion”, than for category 1, “health”. This is
illustrated in Fig. 6(b), where we plot the actual, initial and
apparent profiles for the extreme case µ = µ1. In this figure, we
observe that the optimal strategy suggests revealing the user’s
actual interest completely in category 3. For that economic
reward, which accounts for roughly 79.48% of µmax, interest-
ingly the user sees how their privacy is reduced “just” 47.53%.
Remarkably enough, this unbalanced yet desirable effect is
even more pronounced for smaller rewards. For instance, for
µ = $0.01, we note that the increase in privacy risk is only
0.0015% of the final privacy risk R(µmax) ' 0.1981.

Recall that γ is the parameter that configures the specific
point of operation within the α-β plane in Lemma 4, and thus
the specific form (i.e., either 0, 1 or f ′i

−1
(zT
i γ)) of each of the

components of the optimal disclosure strategy. In the interval
of values [0, µ1], the parameter γ lies in the closure of halfspaces
1 and 3, as we show in Fig. 7. An interesting observation
that arises from this figure is, precisely, the correspondence
between this parameter and µ, and how the latter (obviously
together with q, p and w) determines the former through the
primal equality conditions

∑
i di δi = 0 and

∑
i wiδi = µ. In
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Fig. 7: Slabs layout on the α-β plane for the example considered in Sec. 4.
The line segments plotted in blue and red show the dependence of the
parameter γ on µ.

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
7[$]

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
(7

)

kq ! pk2 ' 0.1981

7
1
'

$
0:

7
9
4
8

Theoretical
Numerical

Fig. 8: Optimal trade-off between privacy and money, the former measured
as the SED between the apparent and the initial profiles.

particular, we observe that as µ increases, γ draws a straight
line from the lower hyperplane 3 to the upper hyperplane 3,
which helps us illustrate how economic rewards are mapped
to the α-β plane. In addition, because we contemplate the SED
function as privacy measure, we appreciate that the three lower
hyperplanes intersect at (0, 0), as stated in Corollary 6.

To compute the solution to (1) for µ > µ1, we follow the
methodology of the proof of Theorem 8. First, we check that
the only condition consistent with µ1 < µ < µmax is that
0 < δ1, δ2 < 1 and δ3 = 1. We verify this by noting that,
when δ2 = 0, the system of equations given by the above two

primal equality conditions is inconsistent. Then, we notice that,
if 0 < δ2 < 1, these conditions lead to the following system of
equations, [

1 m3

m3
1
2

∑2
i=1m

2
i

] [
α
β

]
=

[
−d3
µ− w3

]
,

which has a unique solution,

(α, β) ' (−0.8017µ+ 0.7303, 1.9708µ− 1.2619) .

From this solution, it is immediate to obtain the optimal strat-
egy δ∗1(µ) ' 1.9444µ− 0.9445 and δ∗2(µ) ' 4.8746µ− 3.8746.
Following an analogous procedure, we find that its interval of
validity is (µ1, µmax], where we note that µmax = $1.

From the expressions of δ1 and δ2 above, we observe that
the optimal strategy unveils the actual interest values of both
categories only when µ = µmax, in which case t = q. This is
plotted in Fig. 6(d). An intermediate value of µ is assumed in
Fig. 6(c) that allows us to show the distinct rates of disclosure
for the category 1 between the cases µ ∈ [0, µ1] and µ ∈ (µ1, 1].
In particular, the rate of profile disclosure is 0.7560 for the
former interval, whereas the optimal strategy recommends a
significantly larger rate for the latter interval (1.9444). The
interval of operation (µ1, 1], on the other hand, places γ on the
intersection between slabs 1 and 2. Fig. 7 shows this and how γ
approaches to the intersection between the upper hyperplanes
1 and 2 as µ gets close to $1.

Finally, Fig. 8 depicts the privacy-money function R(µ),
which characterizes the optimal exchange of money for privacy
for the user in question. The results have been computed theo-
retically, as indicated above, and numerically, and confirm the
monotonicity and convexity of the optimal trade-off, proved in
Theorems 1 and 3.

5 RELATED WORK

To the best of our knowledge, this work is the first to mathe-
matically investigate a hard-privacy mechanism by which users
themselves —without the need of any intermediary entity—
can sell profile information and achieve serviceable points
of operation within the optimal trade-off between disclosure
risk and economic reward. As we shall elaborate next, quite
a few works have investigated the general problem of shar-
ing private data in exchange for an economic compensation.
Nevertheless, they tackle different, albeit related, aspects of
this problem: some assume an interactive, query-response data
release model [19], [20], [21], [22], [23] and aim at assigning
prices to noisy query answers [19], [20], [22]; most of them
assume distinct purchasing models where data buyers are not
be interested in the private data of any particular user, but in
aggregate statistics about a large population of users [19], [20],
[21], [22], [23]; the majority of the proposals limit their analysis
to differential privacy [24] as measure of privacy [19], [20], [22],
[23]; and some rely on a soft-privacy model whereby users
entrust an external entity or trusted third party to safeguard
and sell their data [19], [20], [21], [23]. In this section we briefly
examine several of those proposals, bearing in mind that none
of them are user-centric and consider that data owners can sell
their profile data directly to brokers.

The study of the monetization of private data was first
investigated formally in [19]. The authors tackled the particular
problem of pricing private data [8] in a purchasing model com-
posed of data owners, who contribute their private data; a data
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purchaser, which sends aggregate queries over many owners’
data; and a data broker, which is entrusted those data, replies
and charges the buyer, and ultimately compensates the owners.
Accordingly, the problem consists in assigning prices to noisy
answers, as a function of their accuracy, and how to distribute
the money among data owners who deserve compensation for
the privacy loss incurred. The operation of the monetization
protocols may be described conceptually as follows: in response
to a query, the data broker computes the true query answer,
but adds random noise to protect the data owners’ privacy.
By adding perturbation to the query answer, the price can
be lowered so that the more perturbation is introduced, the
lower the price is charged. The data buyer may indicate to this
end how much precision it is willing to pay for when issuing
the query, similarly to our data-purchasing model where we
assume buyers start bidding before any disclosure is made.

Various extensions and enhancements were introduced later
in [20], [25], [26], [27], [28]. The most relevant is [20], which
also capitalizes on differential privacy to quantify privacy, but
differs in that it permits several queries and does not require
that the minimum compensation users want to receive be
public information (as we assume in this work). This approach,
however, cannot be applied to the problem at hand since it
relies on a distinct purchasing model where data buyers are not
concerned with a single user’s data, but aim to obtain aggregate
statistics about a population through an interactive, query-
response database. This is in stark contrast to our approach,
which assumes buyers are interested in purchasing profile
data of particular users, for example, to provide personalized,
tailored services such as behavioral advertising [29].

Another related work is [21], which considers a rather sim-
ple mechanism to regulate the exchange of money for private
data. The proposed setting permits a buyer to select the number
of data owners to be involved in the response to its query.
The mechanism is based on the assumption that a significant
portion of data owners show risk-averse behaviors [30]. The
operation of the mechanism, however, leaves users little control
over their data: a market maker is the one deciding whether
to disclose the whole data of an individual or to prevent any
access to this information. Our data-buying model does not
consider these two extremes, but the continuum in between
enabled by a disclosure mechanism designed to attain the
optimal privacy-money trade-off. Finally, [22] proposes auction
mechanisms to sell private information to data aggregators. But
again, the data of a particular user are either completely hidden
or fully disclosed, and the compensation is determined by
buyers without allowing for users’ personal privacy valuations.

6 CONCLUSIONS

This work examines a mechanism that gives users direct control
over the sale of their private data. The mechanism relies on a
variation of the purchasing model proposed by the new broker
firms which is in line with the literature of pricing private data.

The objective of this paper is to investigate mathematically
the privacy-money trade-off posed by this mechanism. With
this aim, we formulate a multiobjective optimization problem
characterizing the trade-off between profile disclosure on the
one hand, and on the other economic reward. Our theoretical
analysis provides a general parametric solution to this problem,
which is derived for additively separable, twice differentiable
privacy functions, with strictly increasing derivatives. We find
that the optimal disclosure strategy exhibits a maximin form,

depends on the inverse of the derivative of a privacy function,
and leads to a nondecreasing and convex trade-off. The particu-
lar form of each of the n components of the solution, however,
is determined by the specific configuration of 2n halfspaces,
which in turn depend on the particular values of q, p, w, µ and
n.

To proceed towards an explicit closed-form solution, we
study some examples of privacy functions and particular cases
of those variables. Specifically, we derive riveting results for
several Bregman divergences, although special attention is
given to the SED function.

In our analysis, we verify the existence of an origin of
coordinates in the slabs layout that permits us to leverage
certain regularities. For n 6 3 and a general configuration of
slabs, we show the dependence of the closed-form solution
(essentially) on Fano’s factor and the intuitive principle behind
the optimal strategy, which recommends disclosing a profile
mostly in those categories where di is small and mi deviates
the most from its mean value, compared to its variance.

For arbitrarily large n, we investigate a concrete slabs layout
that allows us to obtain an explicit closed-form expression of
both the solution and trade-off. The configuration of slabs,
which we call conical regular, permits parameterizing the
solution with polar coordinates. The optimal strategy is also
a piecewise linear function of the same index of dispersion,
which may indicate a similar behavior of the solution in a
general configuration. Our findings show that the form attained
by each of the components of the solution is determined by
a sequence of thresholds, which we interpret geometrically
as lower hyperplanes. Finally, our formulation and theoretical
analysis are illustrated with a numerical example.
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