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Abstract

In this paper, we postulate computation as a key element in assuring the
consistency of a family of aggregation functions so that such a family of op-
erators can be considered an aggregation rule. In particular, we suggest that
the concept of an aggregation rule should be defined from a computational
point of view, focusing on the computational properties of such an aggrega-
tion, i.e., on the manner in which the aggregation values are computed. The
new algorithmic definition of aggregation we propose provides an operational
approach to aggregation, one that is based upon lists of variable length and
that produces a solution even when portions of data are inserted or deleted.
Among other advantages, this approach allows the construction of different
classifications of aggregation rules according to the programming paradigms
used for their computation or according to their computational complexity.
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1. Introduction

The standard definition of aggregation function (see [9]) assumes that
our data set is not fixed. At least because it is possible that some expected
observation might be lost or some unexpected observations might appear.
Aggregation should be open to different kinds of data sets. In fact, from a
scientific point of view, we should assure that once a specific methodology
has been chosen to analyze those data, that methodology will be consistently
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applied. For example, the arithmetic mean is a unique concept for aggre-
gation, regardless of the number of real values to be summarized, and the
median is similarly a clear aggregation concept regardless of the number of
observations. However, using different operators for different numbers of ag-
gregated items (e.g., the arithmetic mean when the number of items is even
and the median when the number of items is odd) does not in general look
very consistent, nor does randomly choosing the operator whenever a new
data element arrives. Moreover, quite often it is required that such an ag-
gregation methodology be defined in advance of the reception of data, as a
guarantee to avoid arbitrariness in the aggregation process. However, we are
all aware that in practice we cannot guarantee the cardinality of the data
set we will finally obtain and that data should be first explored and most
probably preprocessed as soon as they reach us.

The above computational issue has been emphasized by many authors.
For example, in [11] it was pointed out that each ordered weighted aggrega-
tion (or OWA) operator, as defined in [32], can be considered only as long as
the data set meets the essential OWA restriction on its cardinality. OWA’s
original definition did not offer any solution for proceeding when some value
is lost or when some data unexpectedly appear. Aggregation by means of
OWA operators implies updating weights, which requires a general formula
or an algorithm to estimate these weights. A particular solution was the
recursive approach proposed by Cutello and Montero, which was initially
proposed within the OWA framework but was soon translated into a more
general context [13]. In such a recursive approach, each aggregation depends
on the previous aggregation, and the aggregation is obtained by means of a
sequence of binary operators, whereas the classical approach under associa-
tivity assumes a unique binary operator along the whole aggregation process.
The main results of this recursive approach were obtained in [1], taking ad-
vantage of previous results on the so-called general associativity equation [27]
(see also [8]).

Recursivity was originally proposed to deal with the computational prob-
lem associated with any aggregation model. The key question was how to
actually find or check a solution. This computational argument was also ad-
dressed in [12]. Furthermore, although recursivity is not the only option for
approaching consistency in an aggregation function (see, e.g., [9]), the classi-
cal definition of an aggregation function refers to a sequence of aggregation
operators that might be seen as arbitrary, with no apparent relationship con-
necting them. The way we reckon the first values or items to be aggregated
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might be far from the way we reckon subsequent values. In fact, it can be
proved that in some cases the way in which we aggregate the first values
determines how we should aggregate the rest of the values (see [1]). In case
such a sequence of aggregation operators depends on certain parameters,
we should somehow assure that such a sequence of parameters produces a
consistent aggregation function (i.e., an aggregation rule). This was the key
argument in [11]: we need an automatic procedure to reshape weights when
the number of aggregated items changes.

To assure consistency in a given sequence of aggregation operators, we
need some kind of transversal property. However, such a transversal property
assuring consistency is not unique. The above recursive approach, for exam-
ple, comes from a computational argument and requires that each aggregated
value be obtained from the previous aggregated value and the new item. The
arithmetic mean is recursive in the sense of [13]. The median, however, is
not recursive as keeping all previous data is always required. Alternative
definitions for consistency have been proposed in the past, some of them as-
suring that a new value will not produce a drastically different result when
a new item is added, at least when this new value has a value similar to the
previous aggregated value. This alternative approach corresponds somehow
to the notion of stability (see, e.g., [14] and [30], but also [10]). Such stability
allows the estimation of missing values using previously aggregated values
(see [19] and [5] for more details). Other conditions can be imposed to avoid
discontinuities when data are somewhat similar (see, e.g., [23]).

In any event, we should be aware that not every family of aggregation
operators defines an aggregation rule. Being under an aggregation rule means
that, once data are consistent, the way to proceed is univocally defined, re-
gardless of the cardinality of the data. Obviously, any commutative and
associative binary operator defines a consistent aggregation rule. Some fam-
ilies of aggregation operators, however (see, e.g., [24] and [9]), are defined
around some specific analytic property they share, and they do not define an
aggregation rule unless they contain instructions for building the aggregation
from the data. Moreover, even when such instructions are provided, such a
family of operators might be perceived as inconsistent when they are applied.

In fact, the classical definition of an aggregation operator assumes that
the cardinality of the data is given:

Agn : [0, 1]n → [0, 1]

where it is usually assumed that the aggregation operator Agn is mono-
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tone, non-decreasing, and has boundary conditions Agn(0, . . . , 0) = 0 and
Agn(1, . . . , 1) = 1.

Hence, an aggregation function has usually been defined as a family of
aggregation operators that allows to solve aggregation with any possible car-
dinality of data [10]:

{Agn : [0, 1]n → [0, 1]}∞n=1

each Agn being a monotone, non-decreasing aggregation operator with bound-
ary conditions Agn(0, . . . , 0) = 0 and Agn(1, . . . , 1) = 1.

Such a definition of an aggregation function should be understood simply
as a general framework: as in practice we cannot a priori assure the cardi-
nality of the data, we need such a family of aggregation operators to manage
data of any cardinality. As pointed out in [18], some standard conditions
are not so natural and should not be imposed so readily. In particular, it is
extremely restrictive to assume that the whole family of operators can be ob-
tained by commutativity and associativity from a unique Ag : [0, 1]2 → [0, 1]
mapping (see also [28] for a first criticism of associativity in group decision
making). However, we cannot accept that aggregation operators can drasti-
cally change with the number of data under aggregation. The fact is that the
original definition of aggregation function [9] imposes the above monotonic-
ity and boundary conditions for each aggregation operator plus an additional
common-sense condition for n = 1 (Ag1(x) = x for all x ∈ [0, 1]). However,
no transversal condition is imposed in the sequence of aggregation operators.
Such a definition is maintained in [6] even though the need to build mod-
els from practice is explicitly noted. This lack of a constructive approach
appears to be a call to aggregation functions that are based upon a unique
commutative and associative binary operator, or to those aggregation func-
tions that can be given in terms of a compact mathematical formula, and
does not address key computational issues. This formal approach is a seri-
ous limitation in practice, where a key issue is the determination of whether
we will be able to evaluate the proposed aggregation index from the data.
Moreover, it is interesting to note with [18] that even monotonicity, like com-
mutativity, might be an excessive condition in some frameworks (e.g., not all
means are monotonic, and data are not always permutable; see also [21]).

In this study, we develop the research initiated in [20], going back to the
main computability argument underlying Cutello and Montero’s recursivity
[12, 13]. This issue was also highlighted in [29], where the authors proposed
the term aggregation rule for those families of aggregation functions that
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share some transversal condition to guarantee consistency of their aggrega-
tion operators. Aggregation in [29] was viewed from the point of view of
its formal specification and implementation method. This approach allowed
the definition of two kinds of aggregation rules (basic and non-basic). It
also allowed the consideration of the functional and imperative paradigms of
programming. A similar computational argument can be found in [4] and
[15].

The main purpose of this work is to study families of aggregation op-
erators that can be defined by means of an algorithm or a function that
can solve all possible declared aggregations. Particular attention should be
devoted to the possibility of partial reuse of previous computations when
new values arrive. In general, we shall be interested on how we can produce
an efficient computation of such an aggregation. This computational issue
becomes critical in big data environments, where aggregations must be suc-
cessfully computed by parts in a distributed parallel calculus in many nodes
(mapping) and easily reduced in a multi-node Apache Hadoop system using
the MapReduce programming paradigm. As standard aggregation opera-
tors being computed using SQL in relational databases (such as MAX, MIN,
AVG, and SUM) must be maintained when data are modified, it is worth
studying how they are actually computed. Whereas the recursive aggrega-
tion rules [1, 13, 18, 25] focus on the need for a recursive reckoning, here we
will propose a purely computational approach to aggregation. Let us also
point out that in some applications (for example, in image processing when
we want to merge several images into one), operators are not formally defined
as mappings; instead, we code a program that will solve the fusion problem.

The paper is organized as follows: in Section 2, we review key definitions
as a basis for the computational approach proposed in Section 3. In Section
4, we analyze a basic classification of such computational aggregation rules
that depends on their programming paradigms. In Section 5, we consider the
classification of computational aggregation rules in terms of their computa-
tional complexity, pointing out the expected key role of our approach in big
data. Some examples are provided, with attention given to both program-
ming paradigms and computational complexity. The paper concludes with
a final section highlighting the relevance of our computational approach to
aggregation.
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2. Preliminaries

In this section, we shall review the key concepts needed to develop our
proposal: the concept of computational complexity, the concept of list, and
other standard concepts relevant to algorithms and programming. Let us
first review the classical definition of aggregation operators.

Definition 2.1. [6] An aggregation operator is a mapping Ag : [0, 1]n → [0, 1]
that satisfies

1. Ag(0, 0, . . . , 0) = 0 and Ag(1, 1, . . . , 1) = 1.

2. Ag is monotonic.

This classical definition can be naturally extended to a more general class
by replacing the unit interval [0, 1] with a more general lattice, which in the
fuzzy field is traditionally assumed to be a complete lattice [17].

Definition 2.2. Let T be a lattice with maximum 1T and minimum 0T , and
let T n be the natural lattice of n elements of type T (i.e., T n = T × · · · × T︸ ︷︷ ︸

n times

).

A generalized aggregation operator is a mapping Ag : T n → T such that it
satisfies

1. Ag(0T , 0T , . . . , 0T︸ ︷︷ ︸
n times

) = 0T and Ag(1T , 1T , . . . , 1T︸ ︷︷ ︸
n times

) = 1T .

2. Ag is monotonic with respect to the lattice’s order.

Let us note that although in this general definition of aggregation operator
monotonicity has been kept, the relevant contribution of such a definition is
that it presents the possibility of managing more general objects, for example,
a grayscale digital photograph, understood as a matrix of n × m pixels in
[0, 255]. In this image processing framework, [0]n×m is the white image and
[1]n×m is the black image. A color image is similar but with pixels in [0, 255]3.

As already pointed out above, we should focus on the means for find-
ing each aggregation in practice, i.e., the procedure that will find the right
aggregation in each case, which suggests the existence of an algorithm that
defines our aggregation rule and the aggregation of each specific set of data.

The concept of computational complexity cost of an algorithm is a key
issue in computer science as a measure of quality and usability of programs.
We review classical notions using definitions 2.1 to 2.5 (see, e.g., [31]).
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Definition 2.3. Let f : N → R+ be a function. The set of functions in the
order of f , O(f), is defined as follows:

O(f) ≡ {g : N→ R+ | ∃c ∈ R+, n0 ∈ N ∀n ≥ n0, g(n) ≤ cf(n)}

The order of f contains all the functions that grow more slowly than f .

Definition 2.4. Let f : N→ R+ be a function. The computational complex-
ity of f , Θ(f), is defined as follows:

Θ(f) ≡ {g : N→ R+ | ∃c, d ∈ R+, n0 ∈ N ∀n ≥ n0, df(n) ≤ g(n) ≤ cf(n)}

Definition 2.5. Let f, g : N→ R+ be two functions. It is said that f has a
lower complexity than g if O(f) ⊂ O(g).

Proposition 2.1. Let q, a be two real numbers such that q > 1 and a > 1.
Then

O(1) ⊂ O(log(n)) ⊂ O(n) ⊂ O(nq) ⊂ O(an) ⊂ O(n!)

In the following definition, the most common types of complexity are
introduced.

Definition 2.6. Let g : N→ R+ be a function. Then

• g has constant complexity if g belongs to Θ(1), i.e., if g grows as fast
as f(n) = 1.

• g has logarithmic complexity if g belongs to Θ(log(n)), i.e., if g grows
as fast as f(n) = log(n).

• g has linear complexity if g belongs to Θ(n), i.e., if g grows as fast as
f(n) = n.

• g has polynomial complexity if g belongs to Θ(nq) with q > 1, i.e., if g
grows as fast as f(n) = nq.

• g has exponential complexity if g belongs to Θ(an) with a > 1, i.e., if
g grows as fast as f(n) = an.

• g has factorial complexity if g belongs to Θ(n!), i.e., if g grows as fast
as f(n) = n!.

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Definition 2.7. The computational complexity cost of an algorithm is the
order of the function that gives the computing time of the algorithm.

In addition to the above basic concepts in computational complexity, we
also need to review what a list is.

Definition 2.8. [3] A list L is an abstract data type (ADT) that represents
a sequence of values. A list can be defined by its behavior, and its implemen-
tation must provide at least the following operations:

• Test whether a list is empty.

• Add a value.

• Remove a value.

• Compute the length of a list (the number of values in the list).

A list can be defined under a template data type. For example, a list
L < [0, 1] > is a list of values in [0, 1].

Now we review the concepts of algorithm, computer program, procedural
programming, and declarative programming (see again [31]). These concepts
will play a key role in the introduction of computational aggregation in the
next section.

Definition 2.9. In mathematics and computer science, an algorithm is a
self-contained step-by-step set of operations to be performed.

Definition 2.10. A computer program, or simply a program, is a sequence
of instructions written to perform a specified task on a computer.

Definition 2.11. A program written in procedural programming is a program
that uses statements that change an algorithm’s state. A statement is the
smallest independent element that expresses some action to be carried out.

Procedural programming is ordinarily a set of instructions written in a
high-level language that commands the computer to perform a specified ac-
tion.

Definition 2.12. A program written in declarative programming is a program
whose structure and elements express the logic of a computation without de-
scribing its control flow.
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Definition 2.13. A program written in functional programming is a pro-
gram that treats computation as the evaluation of mathematical functions
and avoids changing-state and mutable data.

Definition 2.14. A program written in a logic programming language is a set
of sentences in logical form, expressing facts and rules about some problem
domain.

Functional programming and logic programming are particular cases of
declarative programming.

Now that we have reviewed the above classical concepts of programming,
algorithms, lists, and computational complexity, let us address our compu-
tational approach to aggregation.

3. Computable aggregations

The key idea of this paper is to focus on the way aggregations are actually
made. Standard literature uses to explore nice properties that can be imposed
on a mapping (or a set of mappings) so that they can be considered an
aggregation. Hence, it is usually assumed that the formal definition of such
a mapping is somehow given or that such a mapping will somehow be chosen.
However, such a strictly mathematical view might be misleading. In the same
way that a solution to a real problem usually comes before a theorem shows
the framework in which such a solution works, and that the proof of such
a theorem is usually obtained before the theorem statement itself, decision
makers often face each problem with no mapping in mind, but rather with
an intuition of some desired behavior. Decision makers gain insight into
data from their knowledge and objectives, and then they start to grasp ways
of summarizing and understanding the problem they are facing. Such an
explorative process does not mean that a formal mapping has been defined.
The way we normally learn is from particular cases, and then we might be able
to guess a general formula representing the output of our reasoning process.
The procedure typically comes prior to any definition of mapping, although
with experience we are often able to provide such an underlying mapping
soon after (quite often what happens is that we simply choose among some
few formulae we are familiar with).

For example, most people are not conscious that SUM(x1;x2; . . . ;xn) =∑n
i=1 xi is not understood in their mind as a mapping, but as a procedure:

”do y = 0, and then do y = y + xi, from i = 1 to n”. Sometimes we
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simply have the reckoning procedure, but not the mapping. The existence
of such a mapping might be assured if our procedure is consistent (i.e., each
input always produces the same output, although we should be aware of the
many uncertainties affecting the process). Obviously, we might not be able
to list the complete mapping. Quite often, we do not try to list the complete
mapping, perhaps because we know it will be not possible. Perhaps the only
thing we want is to ensure that we will be able to calculate a few values, just
the ones we need.

In fact, by restricting ourselves to those aggregations, we can actually
avoid strange theoretical concerns. For example, from a purely mathemati-
cal point of view we can create mappings that are well defined as mappings,
but that we shall never be able to determine (the existence of a value or map-
ping does not imply we can know or determine such a value or mapping). In
practice, we often unconsciously assume that the aggregations Ag : T n → T
we are considering are ”explicit” in the sense that there is a computable
algorithm or program that allows the calculation of Ag(x1, . . . , xn) ∈ T for
each possible (x1, . . . , xn) ∈ T n. Therefore, the key element in our aggrega-
tion should be the algorithm or program we have. Of course, the classical
operators such as maximum, minimum, mean, mode, and median (and at
least to some extent also OWA operators and the Choquet integral) that we
use in practice are all computable; otherwise, we would not be able to use
them in practice. They are computable aggregations in the sense that we
can define an algorithm to calculate the aggregated value of any finite family
of real values. We do not provide in the definition of those aggregations the
outputs for all possible inputs; we simply provide a way to find those values
when they are needed (notice, however, that the algorithm behind a map-
ping might not be unique, and that some algorithms might present specific
advantages over other algorithms that produce the same aggregated values).

Our point here is that, in practice, we first design an evaluation procedure,
and then (sometimes) we may be able to find the mapping (and as pointed out
above, sometimes we even do not try to define the mapping and simply stay
attached to the program we have). Our point here is that we should focus
on how we actually reach solutions, instead of focusing on general analytical
properties or general mathematical expressions, which usually come at the
end of a long learning process. Most solutions to practical problems come
from ad hoc procedures, quite often based upon sequential local intuitions. If
we are lucky enough, those procedures can be made as compact as a universal
formula, though this is not always the case. Hence, we should naturally focus
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our study on ways that possible solutions can be consistently found. It is
such a consistent procedure (the calculation instructions) that should be
used to assure the final consistency of results, at least if the procedure is
inspired by some unifying underlying concept. Once we know how to find
a solution, we can ask ourselves how the goodness of the proposed solution
can be checked. These are key issues in programming and the design of
algorithms. Aggregation in practice should not be viewed as the application
of any given formula but as the creation of a consistent procedure. And the
main properties of an aggregation should be obtained from the properties of
the program or algorithm that allows its implementation.

Let us, then, introduce our ”computable aggregations”.

Definition 3.1. Let L < T > be a list of n elements with type T . A com-
putable aggregation is a program P that transforms the list L < T > into an
element of T .

Remark 3.1. Let us note that in general, it is not necessary to have an
explicit function of the aggregation process to define a computable aggregation.
Nevertheless, for the class of general aggregation operators, it is possible to
define the computable aggregation associated with a generalized aggregation
Ag as the pair (Ag, P ) in the following way:

Let L < T > be a list of elements with type T . A computable aggregation
associated with a generalized aggregation Ag : L < T >→ T is a pair (Ag, P )
such that Ag(L) = P (L), where P is a program that verifies the generalized
aggregation properties.

In addition, notice that we are not imposing any additional condition,
such as monotonicity. The only thing we are imposing is that we have an
implementable program for transforming a list of elements into a single ele-
ment.

Therefore, computable aggregations can be classified by the computa-
tional complexity of the programs that compute them (linear, logarithmic,
parabolic, etc.) or by their programming paradigm (iterative, recursive, rules,
MapReduce, etc.), or even by program strategy (divide and conquer, back-
tracking, greedy, etc.)

Example 3.1. The pair (Agmean, Pmean) is a computable aggregation asso-
ciated with the aggregation function Agmean : [0, 1]n −→ [0, 1] defined as
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Agmean (x1, . . . , xn) =
1

n

n∑

i=1

xi, where the program Pmean is defined as fol-

lows:
Let L = (x1, . . . , xn) be a list of values in [0, 1]. The Pmean program

function written in C++ is

float arithmetic_mean(float L[], int n){

float acum;

int i;

acum=0;

if (n!=0){

for(i=0;i++;i<n)

acum=acum+L[i];

return acum/n;

};

}

The proposed concept of computable aggregation has been therefore de-
fined linking an explicit or implicit expression of a ”classical aggregation”
to the existence of an algorithm that computes it. In fact, sometimes, the
properties of an aggregation are only visible when aggregated values are com-
puted. For example, as has already been pointed out, the idea of recursion
is very closely related to the idea of how we can compute the value of an ag-
gregation (recursiveness will always help us to compute aggregated values as
we can take advantage of previous calculations). Anyway, our computational
approach allows an understanding of ”what” each aggregation is, as distinct
from ”how” the aggregation is made. In addition, it produces different nat-
ural classifications of aggregation procedures according to their associated
programs or algorithms, as will be shown in the next two sections.

4. Types of computable aggregations by programming paradigm

Many classifications of aggregation functions have been developed that are
based on the analytical properties of their operators, such as self-identity [33],
stability [19, 30], migrativity [8], recursivity [13], and conjunctions/disjunctions
[7, 16]. The concept of computable aggregation here proposed lends rele-
vance to the way in which the aggregation process is computed and allows
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alternative classifications of aggregation processes according to the way each
aggregation is computed and programmed.

In this section, we propose a classification of computable aggregations
by the programming paradigm that computes them, considering that the
expression of each aggregation will be strongly related to the properties of
its algorithm. For example, if an aggregation has a recursive expression,
logic or functional programming paradigms might be more suitable for its
implementation. In this section, some computable aggregations are classified
by the programming paradigms usually applied for their computation. Note
that computable aggregations can belong to two or more categories. For
example, arithmetic means can be computed using a procedural, logical, or
functional paradigm.

Definition 4.1. Let L < T > be a list of elements with type T and let P be a
computable aggregation, P : L < T >→ T . We will say that the computable
aggregation P is procedural when the program P is a procedural program.

Example 4.1. The program in Example 3.1 is a procedural program for
computing the arithmetic mean.

Definition 4.2. Let L < T > be a list of values in T and let P be a com-
putable aggregation, P : L < T >→ T . We will say that the computable
aggregation P is functional when the program P is a functional program.

Example 4.2. The pair (Agmean, Pmean−func) is a functional computable ag-
gregation associated with the aggregation operator Agmean. Let X be a list
of values in [0, 1]. The program Pmean−func written in Haskell computes the
arithmetic mean of n elements:

sum [] = 0

sum (x:xs) = x + sum xs

long [] = 0

long (x:xs) = 1 + long xs

mean x = (sum x) / (long x)

Definition 4.3. Let L be a list of values in [0, 1] and let P be a computable
aggregation operator, P : L→ [0, 1]. We will say that P is a logic computable
aggregation when the program P is a logic program.
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Example 4.3. The pair (Agmean, Pmean−logic) is a logic computable aggrega-
tion associated with the aggregation operator Agmean. Let L be a list of values
in [0, 1]. The program Pmean−logic written in Prolog computes the arithmetic
mean of n elements:

add ([],0).

add ([L|Ls],S):- add(Ls,S1), S is 1 + S1+1.

long([],0).

long([C|L],Length):- longitud(L,L1),

Length is L1+1.

arithmetic_mean (L,A):- add(L,S),

long(L,Length),

A is S / Length.

From previous examples, we can see that the same aggregation operator
Agmean could be considered a procedural, functional, or logic computable
aggregation, depending on the way in which it is implemented.

5. Types of computable aggregations by computational complexity

One of the most important properties of an algorithm that computes a
computable aggregation is its computing time. In this section, some com-
putable aggregations are classified according to the complexity of the applied
algorithm.

Definition 5.1. A computable aggregation P has complexity Θ(t(n)) if the
program P presents this computational complexity.

Definition 5.2. A generalized aggregation operator Ag is approachable with
complexity Θ(t(n)) if there exists a computational aggregation P associated
with Ag having computational complexity Θ(t(n)).

Proposition 5.1. The aggregation operator Agmean is approachable with lin-
ear complexity.

Proof. Trivial by Example 3.1.

Proposition 5.2. The pair (Aggeo, Pgeo) where Aggeo(
−→x ) = n

√
x1x2 · · ·xn

and Pgeo is defined in Haskell as
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prod [] = 1

prod (x:xs) = x * prod xs

geometricmean l = sqrt (prod x)

is approachable with linear complexity.

Proof. Direct.

Proposition 5.3. The pair (Aghar, Phar) where

Aghar(
−→x ) =

n
1
x1

+ 1
x2

+ · · ·+ 1
xn

and Phar is defined in C++ as

float harmonic_mean(float L[], int n){

float acum;

int i;

acum=0;

for(i=0;i++;i<n){

acum=acum+1/L[i]

};

return n/acum;

}

is a computable aggregation with linear complexity. ( Note: all values in L

are assumed to be nonzero.)

Proposition 5.4. The pair (Agmin, Pmin) where Agmin(x) = min{x1, . . . , xn}
and Pmin is defined in C++ as

float minimum(float L[], int n){

float acum;

if (n>0){

acum=+infinitum;

};

for(i=0;i++;i<n){

if(L[i]<acum){

acum=L[i];

}

15
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};

return acum;

}

is a computable aggregation with linear complexity.

In a similar way, we can see that it is possible to find a computable ag-
gregation with linear complexity associated with the maximum and product
aggregation operators Agmax and Agprod.

Proposition 5.5. Let F be the OWA operator defined by F (a1, . . . , an) =∑n
k=1 wk ∗ bk, where bj is the j-th largest element in {a1, . . . , an} and (wk)

is a list that satisfies
∑n

k=1wk = 1. Then F is approachable with complexity
Θ(n ∗ log(n)).

Proof. Taking into account that the sorting procedure of a set of items
{a1, . . . , an} using an efficient algorithm (for example Quicksort) has n∗log(n)
complexity and the computation of

∑n
k=1wk ∗ bk has complexity n, it is very

easy to find a computable aggregation POWA with complexity n∗ log(n), and
thus F will be approachable with complexity Θ(n ∗ log(n)).

Proposition 5.6. The pair (AgShapley, PShapley) is a computable aggregation
approachable with complexity Θ(n2n), where

AgShapley(v) =
∑

S⊆N\{i}

| S |!(n− | S | −1)!

n!
(v(S ∪ {i})− v(S))

and PShapley is defined as follows:

float v(int S[],int n){

//Returns the value of v

...

}

int fact(int n){

//Returns the factorial of n

int aux;

if(n>1)
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aux=n*fact(n-1)

else

aux=1;

return aux;

}

int card(int S[],int n){

//Returns the cardinality of S

int aux=0;

for(i=0;i++;i<n)

if (S[i]>0)

aux++;

return aux;

}

next(int S[],int n, int i){

//Returns the next subset of S

int k=n-1;

while(S[k]>0||(k==i-1))

k--;

S[k]=1;

while((k<n)&&(k!=i-1))

S[k]=0;

}

float shapley(int n, int i){

//Help: the element "i" is in S if and only if S[i-1]=1

int aux, aux2, aux3, aux4;

float v1, v2;

int S[n]; //Subsets of S

int acum=0;

for(i=0;i++;n)

S[i]=0; // S is the empty set

for(i=0;i++;pow(2,n-1)){
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aux=card(S); //aux contains |S|

aux2=fact(aux); //aux2 contains |S|!

aux3=fact(n-aux-1); //aux3 contains (n-|S|-1)!

aux4=fact(n); //aux4 contains n!

v1=v(S);

S[i-1]=1; //S is the union of S and {i}

v2=v(S);

acum=+ (aux2*aux3/aux4)*(v2-v1);

next(S,n,i);

};

return acum;

}

Proof. It is straightforward to check as since each loop has complexity Θ(n)
and there exist 2n−1 loops, this computable aggregation operator is approach-
able with complexity Θ(n2n).

Finally, in the next subsection, we explore the natural link of our compu-
tational approach to big data, where the concept of computational complexity
is also essential.

5.1. Computable aggregations and big data

The emergence of the big data approach in the early years of this cen-
tury changed traditional data warehouse environments and programming
paradigms, leading to the introduction of the MapReduce paradigm in (now
classical) environments such as Apache Hadoop, which can work on several
servers or nodes. Data are automatically distributed in Hadoop Distributed
File System (HDFS) files on every node of the cluster, where the maps are
run; after processing on each node, the information from all nodes is then
reduced into one decision node, which provides the required output. When
the computational complexity of the processing step is high or the quantity
of data is very large, big data technologies allow the distribution of data and
computations, shortening and bounding the response times of the intended
information management tasks.

As aggregation processes are common and essential tools to many in-
formation management procedures, including many of the current big data
applications, we think the computational approach to aggregation here pro-
posed may be helpful to these developing technologies, as it allows an under-
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standing of such essential aggregation steps in terms of relevant categories
such as computational complexity and scalability.

Therefore, to introduce this aspect of our point, let us first review some
concepts typically encountered in the context of big data information pro-
cessing, focusing in particular on the notion of map-reducibility.

Definition 5.3. A computational aggregation P is map-reducible if the pro-
gram P has been programmed using the MapReduce programming paradigm.

Using this definition, we can naturally classify an aggregation function as
map-reducible or non-map-reducible according to the existence of a compu-
tational aggregation associated with a program verifying such conditions.

Definition 5.4. A generalized aggregation Ag is approachable in a map-
reducible way if there exists a computational aggregation P associated with
Ag that is map-reducible.

Example 5.1. The arithmetic mean is approachable in a map-reducible way,
as the sums of the inputs can be spread across many nodes and then reduced
into one node.

Example 5.2. The median is not approachable in a map-reducible way be-
cause, as all of the inputs are needed to compute it, it cannot be separately
computed from smaller distributed portions of data.

Example 5.3. An example with Scala (a functional programming language
in an Apache Spark shell on an HDFS file distributed in a Hadoop environ-
ment) to compute the arithmetic mean using the MapReduce paradigm is the
following:

val data = sc.textFile(hdfs://file.csv)

data.map(row => (row, (row.data, 1)))

.reduceByKey(_ |+| _)

.mapValues { case (total, count) =>

total.toDouble / count

}

.collect()

As a summary of some of the ideas discussed in this paper, Table 1 shows
the classification of some well-known aggregation functions from the point of
view of their computational complexity and of their scalability. Let us point
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Table 1: Classifications of some well-known aggregation functions in terms of their com-
plexity and scalability.

Aggregation Operator Computable? Complexity Map-Reducible?
Agmax = Max{x1, . . . , xn} YES Θ(n) YES
Agmin = Min{x1, . . . , xn} YES Θ(n) YES

Agmean =
∑n

i=1
1
n
xi YES Θ(n) YES

Agmedian YES Θ(nlog(n)) NO
AgOWA YES Θ(nlog(n)) NO
AgShapley YES Θ(n2n) YES

Hn = n/(
∑n

i=1(1/xi)) YES Θ(n) YES
Qn =

∏n
i=1 x

i
i YES Θ(n) YES

Pn =
∏n

i=1 xi YES Θ(n) YES
Af

n = Af
n(x1, . . . , xn) YES Θ(n ∗ c(n)) NO

Ab
n = Ab

n(x1, . . . , xn) YES Θ(n ∗ c(n)) NO

out that, in this table, Af
n (respectively Ab

n) denotes the usual forward (re-
spectively backward) aggregation function, and, similarly, c(n) represents the
complexity of the binary operator associated with these Af

n and Ab
n aggrega-

tions. Obviously, every aggregation rule built from the successive application
of a unique commutative and associative binary operator will be computable,
and its complexity will be linearly related to the complexity of that binary
operator.

6. Conclusions

The main proposal in this paper is to view aggregation from a strictly
computational approach. The concept of aggregation is in this way defined
using as input a list of data values from a template, which can take different
formats, from values within the unit interval to images or any kind of het-
erogeneous spaces. Similarly, output can be within the unit interval or any
kind of informative multidimensional summarization. Future research can
therefore explore theoretical and practical considerations of recent works on
linguistic representation, for example those of [2] and [22].

In particular, we have emphasized how an aggregation process usually
starts in practice from a reckoning procedure, which can be given in terms
of a program or algorithm. It is this procedure, if consistent, that will as-
sure the unity of concept of the operators that is desired to be considered
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an aggregation rule. The successive application of a commutative and as-
sociative binary operator indeed assures consistency in the aggregation of
any finite data set, but outside this case, we need to ensure that the differ-
ent operators we are going to use represent the same aggregation concept.
By analyzing how aggregated values are obtained in practice, we have also
shown how these computational aggregations can be classified from the point
of view of their programming paradigms or by the computational complexity
of the algorithms that implement them. Any computational argument can
be translated into aggregation rules under this approach, where the key issue
is how the aggregation is obtained.

Moreover, this computational approach seems the natural aggregation ap-
proach in any framework in which computational complexity is an essential
feature. In big data, aggregation needs to be considered from a computa-
tional point of view, restricting approaches to those that can be practically
implemented. The formal properties of an aggregation can then be related to
the construction of its algorithms, and improving its computational efficiency
means improving the aggregation procedure. It is the available algorithm (in
general not unique) that represents the key property of an aggregation pro-
cedure, and no aggregation procedure is implementable unless a (preferably
efficient) algorithm to produce the aggregated values is available. This com-
putational approach to aggregation implies a kind of consistent definition
of the whole aggregation procedure, but, of course, consistency is not uni-
vocally defined. Future studies should also search for alternative notions of
consistency, ones that might depend on additional computational and stor-
ing limitations as well as on the interests and capabilities of users (a decision
maker or another machine). Our procedures should be implementable and,
because of that, useful.
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[29] J.T. Rodŕıguez, V. López, D. Gómez, B. Vitoriano, J. Montero. A
computational definition of aggregation rules. Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZIEEE’10), Barcelona,
Spain, 2010, pp. 1–5.
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