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Abstract

In network science, there is often the need to sort the graph nodes. While the
sorting strategy may be different, in general sorting is performed by exploiting the
network structure. In particular, the metric PageRank has been used in the past
decade in different ways to produce a ranking based on how many neighbors point to a
specific node. PageRank is simple, easy to compute and effective in many applications,
however it comes with a price: as PageRank is an application of the random walker, the
arc weights need to be normalized. This normalization, while necessary, introduces a
series of unwanted side-effects. In this paper, we propose a generalization of PageRank
named Black Hole Metric which mitigates the problem. We devise a scenario in which
the side-effects are particularily impactful on the ranking, test the new metric in both
real and synthetic networks, and show the results.

1 Introduction

In the vast amount of digital data, humans have the need to discriminate those relevant
for their purposes to effectively transform them into useful information, which usefulness
depends on the scenario being considered. For instance, in web searching we aim at finding
significant pages with respect to an issued query [36], in an E-learning context we look for
useful resources within a given topic [9, 40, 41], or in a recommendation network we search
for most reliable entities to interact with [15, 14, 21, 4]. All these situations fall under the
umbrella of ranking, a challenge addressed in these years through different solutions. The
most well-known technique is probably the PageRank algorithm [8, 32], originally designed
to be the core of the Google (www.google.com) web search engine. Since it was published
it has been analyzed [34, 6, 24], modified or extended for use in other contexts [46, 19], to
overcome some of its limitations, and to address computational issues [25, 35].

PageRank has been widely adopted in several different application scenarios. In this
paper, we propose a generalization of PageRank whose motivation stems from the concept
of trust in virtual social networks. In this context trust is generally intended as a measure
of the assured reliance on a specific feature of someone [28, 16, 1], and it is exploited to
rank participants in order to discover the best entities that is ”safe” to interact with. This
trust-based ranking approach allows to cope with uncertainty and risks [37], a feature
especially relevant in the case of lack of bodily presence of counterparts.

A notable limitation of PageRank when it’s used to model social behaviour, is its
inability to preserve the absolute arc weights due to the normalization introduced by

∗Corresponding Author: giuseppe.mangioni@dieei.unict.it

1

ar
X

iv
:1

80
2.

05
45

3v
1 

 [
cs

.S
I]

  1
5 

Fe
b 

20
18



the application of the random walker. In order to illustrate the problem, we introduce a
weighted network where arcs model relationships among entities. Entities may be persons,
online shops, computers that in general need to establish relationships with other entities
of the same type. Let’s suppose to have the network shown in Figure 1a, where each arc
weight ranges over [0, 10].

(a) Before the normalization (b) After the normalization

Figure 1: Network with asymmetric trust distribution

Given the network topology, intuition suggests that node 1 would be regarded more
poorly compared to node 6 since it receives lower trust values from his neighbors, but,
as detailed later, normalizing the weights alters the network topology so much that both
nodes are placed in the same position in the ranking. The normalization of the outlink
weights indeed hides the weight distribution asymmetry, as depicted in Figure 1b.

Moreover, PageRank shadows the social implications of assigning low weights to all of
a node’s neighbours. If we consider the arcs as if they were social links, common sense
would tell us to avoid links with low weight, as they usually model worse relationships. If
we look at the normalized weights in Figure 1b though, we can see that in many cases,
the normalized weight changes the relationship in a counter-intuitive way. Consider the
arcs going from node 2 or 4 to their neighbours: we can see that their normalized weights
are set to 0.5, which, in the range [0, 1] is an average score. However, the original weight
of those links was 1, a comparatively lower score considering that the original range was
[0, 10].

The contribution of this paper is the proposal of a new PageRank-based metric we
name Black Hole Metric to cope with the normalization effect and to deal with the issue
of the skewed arc weights, detalied in Section 4. Note that our proposal seamlessly adapts
to any situation where PageRank can be used, being not limited to trust networks; in the
following, they are considered as a simple case study.

The paper is organized as follows: in section 2 we give an overview of the existing
literature concerning PageRank, in section 3 we describe the PageRank algorithm together
with some of its extensions, whereas in section 4 we illustrate our proposal in detail, com-
paring it to the basic PageRank in section 5, where we also show some first experiments.
Finally, in section 6 we provide our conclusions and some open discussions.
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2 Related Works

PageRank is essentially an application of the random walker model on a Markov chain:
the nodes of the Markov chain are the web pages, and the arcs are the links that connect
one page to another. The walker represents a generic web surfer which moves from page
to page with a certain probability, according to the network structure, and occasionally
”gets bored” and jumps to a random node in the network. The steady-state probability
vector of the random walker process holds the PageRank values for each node, which can
be used to determine the global ranking.

Before describing in detail the normalization problem by showing the issues that may
occur, we briefly introduce the web ranking metric that would lay the foundation to modern
search engines. As previously mentioned, the PageRank algorithm has been thoroughly
analysed, both in its merits and in its shortcomings. Although Pagerank was proposed a
long time ago, it still lives as the backbone of several technologies, not limited to the web
domain. For example, in [19], personalized PageRank is cited as a possible algorithm to
be used in Twitter’s ”Who To Follow” architecture. In [18], the author shows how the
mathematics behind PageRank have been used in a plethora of applications which are
not limited to ranking pages on the web. In [39], another PageRank extension appears
as a tentative replacement of the h-index for publications. A recent technology that
uses personalized PageRank as its backend is SwiftType (https://swiftype.com/) which is
gaining popularity as a search engine for various platforms.

These examples, however, do not use the basic version of PageRank, but some sort of
extension that better fits the domain in which it is applied. To the best of our knowl-
edge, the original PageRank algorithm is seldom used ”as it is”, our proposal itself is an
alternative to the weighted PageRank algorithm described in [44]. Besides our work, there
are several other extensions that were proposed in the past. For example, CheiRank [46]
focuses on evaluating the outlink strength instead of the inlink strength, with the ulti-
mate effect of rewarding hub behaviour, making it essentially a dual metric of PageRank.
DirichletRank [43] is a derivative metric which claims to solve the ”zero-one gap problem”
of the original PageRank (in brief, the teleportation chance drops from 1 to d, where d < 1,
when the number of outlinks change from 0 to 1). [35] proposes a query-based PageRank
in which the random walker probabilities are dependent on the query relevance.

These variants are essentially alternatives or improvements, but several other works
either focus on providing shorter runtime, or are adaptations of PageRank to different
domains. For instance, [3] proposes a Monte Carlo technique to perform fast computation
of random walk based algorithms such as PageRank. There also exists at least a version
of distributed PageRank [48] which better handles the ever increasing number of web
pages to rank: one of the main shortcoming of basic PageRank is the inability of holding
large link matrices entirely in main memory, resulting in slowed down I/O operation;
the distributed version of the algorithm takes care of this problem. Another approach
[2] handles large data samples by making use of the MapReduce algorithm, introducing
PageRank to the world of Big Data. Other types of optimization methods can be found in
the surveys [5] and [38]. An important extension of PageRank that operates on the trust
network domain[12][11][13], is EigenTrust [20]. Since the application scenario involves trust
networks, the entities involved change slightly: web pages are replaced with network nodes,
links are replaced with arcs. The underlying mathematics, however, remain essentially
unchanged.

PageRank and its extensions have to face a plethora of competitors in several applica-
tion domains. In the web domain we have HITS [22], which is not based on the random

3



walker model and is able to provide both an ”authority” ranking, which rewards nodes
that have many backlinks, and a ”hub” ranking, which rewards nodes that have many for-
ward links. SALSA [27] computes a random walk on the network graph, but integrates the
search query into the algorithm, which is something PageRank does not do. In the trust
networks domain we have PeerTrust [45], which computes the global trust by aggregating
several factors, and PowerTrust [47] which uses the concept of ”power nodes”, which are
dynamically selected, high reliability nodes, that serve as moderators for the global repu-
tation update process. The PowerTrust article also describes how the algorithm compares
to EigenTrust with a set of simulations that analyse its performance. Several articles
feature side-by-side comparisons among PageRank (and its extensions) and other metrics
[42, 33, 30]. In particular, [26] focuses on comparing HITS, PageRank and SALSA, and
its authors prove that PageRank is the only metric that guarantees algorithmic stability
with every graph topology.

3 PageRank

3.1 Definitions and Notation

In order to better understand the mathematics of the Black Hole Metric, we need to clarify
the notation used throughout this paper and provide a few definitions, which are similar
to the notations used in the article of PageRank. Let us suppose that N is the number of
nodes in the network. We will call A the N ×N network adjacency matrix or link matrix,
where each aij is the weight of the arc going from node i to node j. S is the N × 1 sink
vector, defined as:

si =

{
1 if outi = 0

0 otherwise
∀i ≤ N

where outi is the number of outlinks of node i. V is the personalization vector of size
1×N , equal to the transposed initial distribution probability vector in the Markov chain
model PT

0 . While this vector can be arbitrarily chosen as long as it’s stochastic, a common
choice is to make each term equal to 1/N. T = 1N×1 is the teleportation vector, where the
notation 1N×M stands for a N ×M matrix where each element is 1.

In the general case the Markov chain built upon the network graph is not always
ergodic, so it is not used directly for the calculation of the steady state random walker
probabilities. As described in [32], the transition matrix M , used in the associated random
walker problem, is derived from the link matrix, the sinks vector, the teleportation vector
and the personalization vector defined above:

M = d(A+ SV ) + (1− d)TV (1)

where d ∈ [0, 1] is called damping factor and it is commonly set to 0.85. As we know from
the Markov chain theory, the random walk probability vector at step n can be calculated
as:

Pn = MTPn−1 (2)

the related random walker problem can be calculated as:

P =
(

lim
n→∞

Mn
)T

P0 = lim
n→∞

(MT)nP0 = MT
∞P0 (3)

4



3.2 The normalization problem

Let us calculate the PageRank values of the sample network in Figure 1a to highlight
the flattening effect of the normalization. By applying the definitions in section 3.1 the
network in Figure 1b can be described by the following matrices and vectors:

A =



0 0 0 0 0 0

0.5 0 0.5 0 0 0

0 0.5 0 0 0 0.5

0.5 0 0 0 0.5 0

0 0 0 0.5 0 0.5

0 0 0 0 0 0


S =



1

0

0

0

0

1


V = PT

0 =
1

6
· 11×6 T = 16×1

If we calculate the PageRank values for the nodes of the sample network assuming d = 0.85
we obtain:

p1 = p6 = 0.208 p2 = p3 = p4 = p5 = 0.146

Note that the nodes 1 and 6 are both first in global ranking, despite the fact that their
in-strength was so different before the normalization.

4 Black Hole Metric

In order to avoid the flattening effect of the PageRank normalization, we propose a new
metric named Black Hole Metric. Black Hole Metric globally preserves the proportions
among the arc weights, and ensures at the same time that the outstrength is equal to 1
for each node. This allows compatibility with the random walker model, and it is done
by applying a transformation to the original network. The transformation only requires
the knowledge of the maximum and the minimum value each weight can assume. This
range bounds may be global (each node has the same scale) or local (each node has its
own weight scale); in practice, global scale is preferred.

At this stage, we will provide an example of the transformation steps as illustrated in
Figure 2. In order to obtain the depicted values, we used formulas (4) and (7), which will
be explained in detail in paragraph 4.1. Before tackling the mathematical part though, we
will now describe qualitatively how the Black Hole Metric operates. First, it changes the
original weights so that they lie in the range [0, 1]. The resulting outstrength si of each
node i is not preserved, but it is guaranteed to be less or equal than 1. Then, we introduce
a new node, the black hole, and node i is connected to it. The strength of this connection
is set to 1 − si, as if the black hole ”absorbed” the missing weight amount to reach 1 as
the total i’s outstrenght. This transformation is applied to all nodes in the network.

Since the black hole does not have outlinks, it is a sink by construction, and the random
walker can only move away because of the teleportation effect. In a network without the
black hole, each node would normally have a 1 − d chance to teleport to a random node
instead of going towards one of its neighbours. We know that moving to the black hole
from node i occurs with a 1−si chance, and that once in the black hole, the random walker
inevitably teleports to a random node. In conclusion, taking both effects into account,
each node has a (1−d)(1−si) chance to teleport to a random node, where d is the damping
factor as in (1).

It is important to note that not every network has a defined scale for its arc weights.
There are networks in which the weights are unbounded : an example would be an airline
transportation network in which each arc weight is the number of flights connecting two
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Figure 2: Transformation steps

cities. As there is no real ”maximum”, there is no trivial weight scale that can be used
for the transformation. In order to apply such transformation in an unbounded network,
we need to somehow infer meaningful scale boundaries exploiting the knowledge of the
domain, and the topology of the network. This is usually non-trivial and for the sake of
simplicity, in this paper we take into account only bounded networks.

4.1 Weight assignment

In this section, we explain how the new weights are calculated. Let i be a generic node in
the network. Let the interval [li, hi] be the local scale of node i. Let rij be the weight that
node i assigns to the arc pointing towards node j. Let outi be the number of neighbours
of node i. Given that li ≤ rij ≤ hi, We define the modified weight āij of the arc that goes
from i to j as:

āij =
rij − li

outi(hi − li)
(4)

which is significantly different from the normalized arc weight required by PageRank:

aij =
rij∑outi
k=1 rik

(5)

As mentioned before, the resulting node outstrength is only guaranteed to be less or equal
to 1:

outi∑
j=1

āij =

outi∑
j=1

rij − li
outi(hi − li)

≤
outi∑
j=1

1

outi
= 1 (6)

We purposely excluded the contribute of the arc from node i to the black hole in (6),
which is:

bi =

outi∑
j=1

hi − rij
outi(hi − li)

(7)

If we include this contribute as well, the weight sum becomes 1 as desired:

outi∑
j=1

āij + bi =

outi∑
j=1

rij − li
outi(hi − li)

+

outi∑
j=1

hi − rij
outi(hi − li)

=

outi∑
j=1

hi − li
outi(hi − li)

= 1 (8)

The weight bi is ultimately the probability that the node would rather visit a random
node rather than one of its neighbours, which is the amplification of the teleportation
effect operated by the network transformation described before.
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4.2 Proposal

With the previously mentioned weight assignment, it is now possible to define Black Hole
Metric as a generalization of PageRank. Let’s start by defining the new link matrix A′,
the new sink vector S′, the new teleportation vector T ′ and the new personalization vector
V ′.

For the sake of convenience, we name B the black hole vector, which is the N×1 vector
that holds the weights of the arcs going from each node to the black hole. The updated
link matrix A′ is obtained by combining the B vector with Ā = {āij} where āij is defined
in (4):

A′ =

(
Ā B

01×N 0

)
(9)

In general, A 6= Ā. There are other three entities involved in the computation of the
transition matrix used by the random walker model: the teleportation vector T ′, the
personalization vector V ′, and the sink vector S′. We may define T ′ and V ′ as follows:

V ′ = P ′0
T =

(
V 0

)
=
(
1
N · 11×N 0

)
T ′ =

(
T

0

)
=

(
1N×1

0

)
(10)

Note that we deliberately excluded the black hole from the teleportation effect by putting
a value of 0 in the corresponding entries of T ′ and V ′. Since the black hole is a sink
by construction, going back there as the consequence of a teleportation effect would only
trigger another teleportation effect, which is unnecessary.

Regarding the sink vector, we intuitively want to set to 1 the corresponding index in
the vector, as the black hole is a sink, but this actually makes the black hole row in the
link matrix not stochastic. Let’s consider the matrix A′ defined above, and let’s use the
following sink vector to compute the transition matrix:

S∗ =

(
S

1

)
(11)

We can calculate M ′ using (1):

M ′ = d(A′ + S∗) + (1− d)T ′V ′ = d

[(
Ā B

01×N 0

)
+

(
SV 0N×1

V 0

)]
+

+(1− d)

(
TV 0N×1

01×N 0

)
=

(
d(Ā+ SV ) + (1− d)TV dB

dV 0

)
The black hole row in the link matrix is dV , which is not stochastic: the vector V is, but
since d 6= 1 the product is not. This happened because we excluded the black hole from
the teleportation effect by setting its entry to 0 in T ′, which interferes with the damping
factor correction. In order to compensate for this effect, it is sufficient to multiply the
black hole entry in the sink vector by a 1

d term:

S′ =

(
S
1
d

)
(12)

this makes the black hole row in the link matrix V , which is stochastic. Equations (9),
(10) and (12) allow us to define the random walker model according to the definition of
M in (1):

M ′ = d(A′ + S′V ′) + (1− d)T ′V ′

7



We can now partition M ′:

M ′ = d

(
Ā B

01×N 0

)
+ d

(
S
1
d

)(
V 0

)
+ (1− d)

(
T

0

)(
V 0

)
=

(
dĀ dB

01×N 0

)
+

+

(
dSV 0N×1

V 0

)
+

(
(1− d)TV 0N×1

01×N 0

)
=

(
d
(
Ā+ SV

)
+ (1− d)TV dB

V 0

)

If we name M̄ = d
(
Ā+ SV

)
+ (1− d)TV we have:

M ′ =

(
M̄ dB

V 0

)
(13)

Consider now the following partition of the rank vector P ′:

P ′ =

(
P̄

pb

)
(14)

where pb is the steady-state probability of the black hole. Note that usually P̄ 6= P . The
rank vector at step n, which we named P ′n, can be obtained using (2), (13) and (14):

P ′n = M ′TP ′n−1 ⇔

(
P̄n

pbn

)
=

(
M̄T V T

dBT 0

)(
P̄n−1

pbn−1

)
⇔

(
P̄n

pbn

)
=

(
M̄TP̄n−1 + pbn−1V

T

dBTP̄n−1

)

We split the calculation in two parts:{
P̄n = M̄TP̄n−1 + pbn−1V

T

pbn = dBTP̄n−1
(15)

The related random walker process (3), given the definition of matrix M ′ (13), the defi-
nition of the personalization vector P ′0 = V ′T, and the definition of the rank vector of the
Black Hole Metric P ′ (14), can be written as:

P ′ = M ′∞
TP ′0 ⇔

(
P̄

pb

)
=

(
M̄T V T

dBT 0

)
∞

(
P0

0

)
(16)

An important property of the transition matrix M ′ is that it leads to a converging
random walker process no matter the network topology, as it will be clarified in section
4.5. As a final note, even though in general A 6= Ā and P 6= P̄ , in section 4.6 we will
introduce a sufficient condition that allows the identity.

4.3 Application to example toy network

Now that we have defined the necessary entities and described how we assign weights in
the modified network, let’s see how Black Hole Metric behaves in the sample trust network
in Figure 1a. For this particular network we set that li = l = 0, hi = h = 10 ∀i ∈ [1, N ].
It is easy to note that we have only three types of nodes in the network:

1. Nodes which have two links with weight 1 out of 10 (nodes 2 and 4).

2. Nodes which have two links with weight 9 out of 10 (nodes 3 and 5).

8



3. Sinks (nodes 1 and 6).

We only show the arc weights of node 2, as the same formulas can be used to calculate
the outlink weights of the other nodes. Given that out2 = 2 we have:

ā21 = ā23 =
r21 − l

out2 · (h− l)
=

1− 0

2 · (10− 0)
=

1

20

The black hole arc weight is going to be:

b2 =
h− r21 + h− r23

out2(h− l)
=

20− 2

2 · (10− 0)
=

9

10

as expected, ā21 + ā22 +b2 = 1. By applying the formulas to all arcs we create the network
in Figure 3. The link matrix A′ as in (9) is:

Figure 3: The Network in Figure 1 with the black hole.

A′ =



0 0 0 0 0 0 0

0.05 0 0.05 0 0 0 0.9

0 0.45 0 0 0 0.45 0.1

0.05 0 0 0 0.05 0 0.9

0 0 0 0.45 0 0.45 0.1

0 0 0 0 0 0 0

0 0 0 0 0 0 0


while B is:

B =



0

0.9

0.1

0.9

0.1

0


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Vectors S′, V ′ and T ′ are obvious from (10) and (12):

S′ =



1

0

0

0

0

1
1
d


V ′ = P ′0

T =
(
1
6 · 11×6 0

)
T ′ =

(
16×1

0

)

If we compute the steady-state probabilities for the random walker process in (16) assuming
d = 0.85, the values calculated for each node (including the black hole) of the network in
Figure 3 are:

p1 = 0.110 p2 = p4 = 0.138 p3 = p5 = 0.104 p6 = 0.178 pb = 0.228

which better models the trust relationships among the nodes, as p1 < p6. There is also
a value pb for the black hole, which is a consequence of the transformation we operated.
Since the black hole is not a real node, this probability does not bear any particular
meaning, and it can be discarded.

4.4 Complexity assessment

Using (15) for direct computation, no matter the method in use, is inefficient in both time
and space complexity, therefore we will now introduce a more efficient way to solve the
problem. First, let us rewrite P̄n appropriately:

P̄n = M̄TP̄n−1 + pbn−1V
T = dĀTP̄n−1 + dV TSTP̄n−1 + (1− d)V TTTP̄n−1 + pbn−1V

T

The quantities TTP̄n−1 = t̄pn−1 and STP̄n−1 = s̄pn−1 are both scalars. In particular, we
have:

TTP̄n−1 =

N∑
k=0

p̄kn−1 = 1− pbn−1 (17)

which allows us to write:

P̄n = dĀTP̄n−1 + ds̄pn−1V
T + (1− d) t̄pn−1V

T + pbn−1V
T =

= dĀTP̄n−1 + [ds̄pn−1 + (1− d) t̄pn−1 + pbn−1 ]V T

The quantity under square brackets can be further simplified using (17):

ds̄pn−1 + (1− d) t̄pn−1 + pbn−1 = ds̄pn−1 + (1− d)(1− pbn−1) + pbn−1 =

= ds̄pn−1 + 1− d−���pbn−1 + dpbn−1 +���pbn−1 = 1− d(1− s̄pn−1 − pbn−1)

which allows us to write (15) as:{
P̄n = dĀTP̄n−1 + [1− d(1− s̄pn−1 − pbn−1)]V T

pbn = db̄pn−1

(18)

b̄pn−1 = BTP̄n−1 is also a scalar. The index form of (18) is:p̄in = d
N∑

h=0

āhip̄hn−1 + [1− d(1− s̄pn−1 − pbn−1)]vi

pbn = db̄pn−1

There are three expensive computations in (18), which complexity is easily inferrable:
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• ĀTP̄n−1. Matrix by vector products usually have a computational complexity of
O(N2). However, in our case, we know that matrix Ā has very few non-zero entries.
This number is equal to |E|, the total number of arcs in the network, so we can
conclude that the average computational complexity is O(|E|) which is less than
O(N2) in the general case.

• s̄pn−1 = STP̄n−1 and b̄pn−1 = BTP̄n−1. Inner products among vectors always have
complexity O(N). N is less than |E|, unless the overall number of arcs in the network
is less than the number of nodes itself, which seldom happens.

Then, the overall complexity is O(|E|) in the average case, which is the same as PageRank.
Note that TTP̄n−1 does not add to the complexity, as it can be written as the scalar 1−pbn−1

and computed offline.
Furthermore, we analyse the memory usage of the entities involved outside the com-

putation:

• Memory usage for adjacency sparse matrix Ā depends on how it is stored. Assuming
the storage format is Compressed Column Storage, it is proportional to 2|E|+N+1.

• Memory usage for personalization vector V , sink vector S and black hole vector B
is proportional to N .

• No memory usage for teleportation vector T , as it does not appear in (18).

Memory usage of PageRank is proportional to 2|E|+3N+1, since the black hole vector B is
not present, whilst the memory usage of Black Hole Metric is proportional to 2|E|+4N+1:
they only differ by a factor of N .

4.5 Proof of convergence

In this section, we will prove that the underlying random walker process of the Black Hole
metric always converges. First, let’s consider the modified adjacency matrix A′. We know
that it is obtained from A by adding a new node (the Black Hole) and by modifying the
arcs. It is a well-formed network nonetheless, and it is possible to evaluate its PageRank.
We can define the PageRank transition matrix M∗ for this network as:

M∗ = d(A′ + S∗V ∗) + (1− d)T ∗V ∗

where S∗ is the same as (11) and it is the sink vector S with the addition of an extra sink,
the entry of the Black Hole. The teleportation vector T ∗ is easilly constructed:

T ∗ =

(
T

1

)
(19)

V ∗ must be a non-negative 1 × N + 1 vector. The personalization vector controls the
per-node teleportation probability, but as long as

∑N+1
i=0 v∗i = 1, PageRank is guaranteed

to converge no matter which nodes get teleported to, so we can arbitrarilly choose V ∗ as
long as such condition is met:

V ∗ =
(
V 0

)
(20)

Given that the sum of the elements of V is 1, the sum of the elements of V ∗ is also 1.
Because of (11) (19) (20), we rewrite M∗ as:

M∗ = d

[
A′ +

(
S

1

)(
V 0

)]
+ (1− d)

(
T

1

)(
V 0

)
=
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= d

[(
Ā B

01×N 0

)
+

(
SV 0N×1

V 0

)]
+ (1− d)

(
TV 0N×1

V 0

)
=

=

(
d(Ā+ SV ) dB

dV 0

)
+

(
(1− d)TV 0N×1

(1− d)V 0

)
=

(
d(Ā+ SV ) + (1− d)TV dB

V 0

)
=

=

(
M̄ dB

V 0

)
= M ′

The last matrix is the definition of the transition matrix M ′ for the underlying random
walker process of the Black Hole Metric of the network with adjacency matrix A and sink
vector S.

In conclusion, if we choose T ∗ and V ∗ appropriately, the underlying random walker
process for the Black Hole Metric and PageRank is the same. The conditions we set do
not affect the generality of this statement, and since PageRank is guaranteed to converge
for every network, we can safely assume that the Black Hole Metric converges as well
regardless of the network structure.

4.6 Rank equality theorem

In this section, we present the theorem proving that Black Hole Metric is a generalization
of PageRank. Before discussing the theorem, however, we introduce the lemma(1).

Lemma 1. If B = 0N×1 then M = M̄ .

Proof. If every entry in the B vector is 0 it follows that, ∀i ∈ [1, N ], we have from (7):

outi∑
k=1

hi − rik
outi(hi − li)

= bi = 0

Given that hi ≥ rij and hi > li, since the denominator is always greater than 0, the only
way the summation can be 0 is if hi = rij ∀k ∈ [1, outi]. Let’s substitute rij with hi in
(4):

āij =
rij − li

outi(hi − li)
=

����hi − li
outi(����hi − li)

=
1

outi

and since rij = hi ∀j ∈ [1, outi] we have that aij = 1
outi

= āij , so A = Ā. According

to the definitions of the two matrices M and M̄ we have that M̄ −M = Ā − A = 0 so
M̄ = M .

It is interesting to note that if B is all zeros, the arc weights are all the same, which
is obvious since we are assigning maximum score to each neighbour. Knowing that the
two matrices M and M̄ are the same when the black hole effect is absent, we can easily
prove that the values produced by applying both PageRank and Black Hole Metric are
the same.

Theorem 1 (of rank equality). If every entry in the B vector is 0 then pb = 0, and
P = P̄ :

B = 0N×1 ⇒

{
P = P̄

pb = 0

12



Proof. Given that B = 0N×1 then, for the lemma 1, the random walker (16) becomes:(
P̄

pb

)
=

(
MT V T

01×N 0

)
∞

(
P0

0

)

Let’s name V1 = 1R×1 · V ∈ RR×N and calculate the n-th power of matrix M ′T :(
MT V T

1

01×N 0

)2

=

(
MT V T

1

01×N 0

)
·

(
MT V T

1

01×N 0

)
=

(
(MT)2 MTV T

1

01×N 0

)
(
MT V T

1

01×N 0

)3

=

(
(MT)2 MTV T

1

01×N 0

)
·

(
MT V T

1

01×N 0

)
=

(
(MT)3 (MT)2V T

1

01×N 0

)
. . .(

MT V T
1

01×N 0

)n

=

(
(MT)n (MT)n−1V T

1

01×N 0

)
the limit for n→∞ is:

lim
n→∞

[
(MT)n (MT)n−1V T

1

01×N 0

]
=

(
MT
∞ MT

∞V
T
1

01×N 0

)
so we may write the random walker as:(

P̄

pb

)
=

(
MT
∞ MT

∞V
T
1

01×N 0

)(
P0

0

)
=

(
MT
∞P0

0

)
hence: {

P̄ = MT
∞P0 = P

pb = 0

because of (3).

5 Experiments

In this section, we present the results of the experiments using Black Hole metric with
synthetic networks and a real world network. The objective is to study the behaviour of
the Black Hole metric using different networks having different size and different topology.
While we expect the Black Hole Metric to produce a different ranking, we make no claims
that the produced ranking is an improvement over the ranking produced by PageRank,
as it is hard to generate or find a network that allows us to clearly highlight the effect
mentioned in the toy example. Nonetheless, the possibility exists, and our metric still
stands as the only solution (to the best of our knowledge) to this hard to detect issue.

In particular, we chose to present the results for six different synthetic networks, three
weighted directed Erdős-Rényi random graph networks [17] of size 1000, 10000 and 100000,
and three weighted directed scale-free random networks, of size 1000, 10000 and 100000.
The chosen networks all differ either in size or in topology, and form a usable set of
networks of different characteristics. All Erdős-Rényi networks were created so that the
average outdegree is 10 and in addition all generated the directed scale-free networks
following the algorithm described by Bollobás in [7]. Using the same notation of [7], we
choose parameters for the generated networks as follows:
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Parameter Value Description

α 0.41 Prob. of adding an edge from a new node to an existing one.
β 0.54 Prob. of adding an edge between two existing nodes.
γ 0.05 Prob. of adding an edge from an existing node to a new one.
δin 0.20 Bias for choosing nodes from in-degree distribution.
δout 0 Bias for choosing nodes from out-degree distribution.

The idea behind the experiments we performed is to test the Black Hole metric in a
”wary” environment to show that PageRank does not make difference if the weights are
all multiplied by a constant factor. Therefore, assuming that the weight range for each
arc is [0, 99], the generated weights in each network were set to be in range [0, 49], the
lower half of the full range. Then, we applied both PageRank and the Black Hole Metric,
and we derived the rank position of each node in the network. This is the first step of the
simulation. For the sake of convenience, we named the two result sets respectively PR1

and BH1. After the first step, we multiplied the weights by a factor of 99/49, effectively
scaling the weights range from [0, 49] to [0, 99]. We applied both metrics again and named
the result sets PR2 and BH2. This is the second step of the simulation. As expected, we
had PR1 = PR2, so, for ease of notation, we will call the PageRank result set for both
steps PR.

The curves describe the cumulative distribution function of the absolute rank position
difference. We compared the result sets and condensed the results as shown by Figures 4, 5
and 6. In all the figures, the x-axis stands for the absolute rank position differences between
two results sets, while the y-axis stands for the cumulative frequency of appearance. In
order to better explain what the axes mean, let’s take as an example the solid line in
Figure 4a, which depicts the frequency of position difference between the result sets PR
and BH1. We can see that for a position difference of 50 there is a frequency of about 0.4.
This means that about 40% of the nodes ranked in the result set PR differ by at most
50 from the position they received in the result set BH1. Since the result sets are always
compared pairwise, we will use the notation R−Q to illustrate the absolute rank position
difference among the result sets of R and Q. To trim the outliers from the result sets, we
have restricted the x-axis to 20% of the maximum possible rank position difference (which
is equal to the size of the network).

(a) Network of size 1000 (b) Network of size 10000 (c) Network of size 100000

Figure 4: Comparison of the empirical CDF of the absolute rank position difference (Erdős-
Rényi networks)

In Figure 4 we show the results of both steps of the simulation of the three Erdős-Rényi
networks. Note that the network size does not affect the shape of the curves; they are very
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similar for all three network instances. Moreover, the PR − BH2 curve is always above
the PR − BH1 curve, which means that the BH2 result set nearer to the PR result set
than BH1 is. This can be explained if we look at the arc weights: BH1 comes from a
network where the overall weights are lower than BH2. In a network with lower weights,
the black hole steady-state probability is higher, which means that it is more likely that
a random walker, from any node, moves to the black hole. But the black hole is a sink so
the random walker will teleport after reaching it. This means that the black hole has an
higher steady-state probability, and the teleportation effect is amplified.

As specified above, the PageRank result sets are identical in both simulation steps
meaning that the PageRank metric fails to capture the effect induced by the different
weight distribution. The dotted curve BH1−BH2 highlights that the two result sets BH1

and BH2 are always different. Note that this curve is steeper than same curve related
to the other two sets, because the difference among the two result sets BH1 and BH2 is
overall less than the difference between either BH1 or BH2 and PR.

(a) Network of size 1000 (b) Network of size 10000 (c) Network of size 100000

Figure 5: Comparison of the empirical CDF of the absolute rank position difference (scale-
free networks)

Figure 5 compares the result sets related to the three scale-free network. The network
size of scale-free networks does not influence much the shape of the curves, however both
PR−BH1 and PR−BH2 get smoother when the network increases in size. Despite this
difference, the curve PR−BH2 keeps staying above the curve PR−BH1, meaning that
the Black Hole metric assesses the difference in wariness of the nodes even in scale-free
networks. Finally, the two result sets BH1 and BH2 exhibit different behaviour when the
network size grows: the curve BH1 − BH2 is between the other two curves when size is
1000, it almost coincides with PR − BH1 when size is 10000, it is above the other two
curves when size is 100000.

At last, in Figure 6 we compare Erdős-Rényi and scale-free networks of size 100000
by grouping together the curves of the same pair of result sets. Note that the scale-free
curves are different than the Erdős-Rényi curves. This effect may depend on the different
topology of the two networks. In scale-free networks, nodes with high indegree, which
are few in number, are less affected by the weight fluctuations we introduced with our
experiments. Nodes with low indegree, which are more, are instead strongly affected by
the weight doubling, and their positions change a lot. This causes the scale-free curves to
appear steeper compared to the Erdős-Rényi curves, although the behaviour of the Black
Hole metric remains the same.

The second set of experiments we apply the Black Hole Metric to two real world
networks, Advogato and Libimseti.cz, retrieved from [23].
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(a) PR−BH1 (b) PR−BH2 (c) BH1 −BH2

Figure 6: Comparison of the empirical CDF of the absolute rank position difference, same
size (100k nodes)

Advogato (www.advogato.org) is an online community platform for free software de-
velopers. As reported in the website of Advogato ”Since 1999, our goal has been to be
a resource for free software developers around the world, and a research testbed for group
trust metrics and other social networking technologies”. Here we consider the Advogato
[31] [29] trust network, where nodes are Advogato users and the direct arcs represent trust
relationships. Advogato names ”certification” a trust link. There are three different levels
of certifications, corresponding to three weights for arcs: apprentice (0.6), journeyer (0.8)
and master (1.0). A user with no trust certificate is called an observer. The network
consists of 6541 nodes and 51127 arcs and it exhibits an indegree and outdegree power law
distribution. As in the previously discussed experiments, we compute on this network the
PageRank and the Black Hole Metric and compare them using a cumulative distribution
graph, where the x-axis represents the possible absolute rank position difference between
the PageRank and the Black Hole Metric of the nodes, while the y-axis represents the
cumulative frequency of appearance. To compute Black Hole Metric we set li = 0.6 and
hi = 1.0 for all nodes in the network.

Figure 7 shows the results. It is clear that the Black Hole Metric produces different
values (and ranks) compared to those computed by using PageRank. In practice, it means
that Black Hole Metric produces a different ranking compared to PageRank. For example,
in Table 1, we report the rank of the first 10 users of Advogato, computed using the
PageRank and Black Hole Metric.

As reported in the website of Advogato, in order to assess the certification level of each
user they use a basic trust metric computed relatively to a ”seed” of trusted accounts. The
original four trust metric seeds, set in 1999 when Advogato went online, were: raph (Raph
Levien), miguel (Miguel Icaza), federico (Federico Mena-Quntero) and alan (Alan Cox).
In 2007 mako (Benjamin Mako Hill) replaced federico. As we can infer from Table 1 both
metrics are somewhat able to capture the important role covered by the Advogato trust
metric seeds, by putting them in the top positions. However, Black Hole Metric, in our
opinion, produces a more appropriate ranking, according to the following observations:

• federico is first according to PageRank, while is 5th according to Black Hole Metric.
Moreover the PageRank federico’s value is also significantly higher compared to alan
(the second in the chart), which means that federico is steadly in the first position
with a wide margin, despite the fact that he has not been a seed since 2007. We
believe that lower position that the Black Hole Metric assigns to federico better
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(a) The network. (b) PR−BH CDF.

Figure 7: The Advogato trust network

Rank
PageRank BlackHole metric

NodeName PageRank Value NodeName BlackHole Value

1 federico 0.02093458 alan 0.00594131

2 alan 0.00978148 miguel 0.00387012

3 miguel 0.00658376 rms 0.00290212

4 raph 0.00405245 raph 0.00230948

5 rms 0.00381952 federico 0.00176002

6 jwz 0.00274046 jwz 0.00172800

7 davem 0.00262117 rasmus 0.00158964

8 rth 0.00258019 rth 0.00158964

9 rasmus 0.00250191 gstein 0.00138078

10 gstein 0.00230680 davem 0.00135993

Table 1: Rank of the first 10 users of Advogato trust network computed by using PageRank
and Black Hole Metric.

captures the fact that he was swapped out of the seed set.

• Another interesting difference is about the different position of the node mako. It
is ranked 257th by the PageRank and 142th by Black Hole Metric. This ranking
difference suggest that the Black Hole Metric better captures the relevance that
mako has been assuming inside the Advogato community.

6 Conclusion and future works

In this article, we proposed a new PageRank based metric called Black Hole Metric which
aims at solving the normalization issue of PageRank algorithm. We provided examples
that highlight these problems and show that Black Hole Metric provides a different ranking
that takes into account the relative weights of the node outlinks. We formally defined
Black Hole Metric proving that it is an extension of PageRank. We also compared the
computational complexity of Black Hole Metric and PageRank proving that they are quite
similar. We proved that the Black Hole Metric always converges. Finally, we experimented
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with the metric on several different networks and showed first results, suggesting that the
Black Hole metric seems to capture particular nodes behaviours; this actually deserves
further investigation in order to assess Black Hole Metric semantics, and how it can help
to model and address the ranking problem in different contexts. In addition to this issue,
others must be addressed.

In paragraph 4.3 we said that the black hole rank value is meaningless for the node
ranking. Is the black hole just a mathematical trick used to guarantee the stochasticity
of the link matrix or does it have an additional meaning? It is clear that the higher the
PageRank of the black hole is, the more the nodes of the network do not trust each other.
It would be interesting to study the possible correlation between the lack of trust of the
nodes and the position or value of the black hole in the Black Hole Metric ranking.

Another open issue concerns the security of Black Hole Metric. We did not investi-
gate possible vulnerabilities of the metric, as they were not the focus of this article. How
does the Black Hole Metric behave in a network where security considerations are impor-
tant? Does it guarantee protection against common and uncommon attacks by internal
or external agents [10]?

At last, in this article we did not investigate about methods and algorithms to prac-
tically compute the steady-state probability vector. Black Hole Metric can be seen as a
generalization of PageRank and as such, many of the algorithms that compute PageRank
could be adapted to work with Black Hole Metric. It would be interesting to find out to
what extent is it possible to reuse existing PageRank computation methods in order to
improve the applicability of the Black Hole Metric.
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