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Abstract- In this paper, we present a self-organising nonparametric fuzzy rule-based classifier. The proposed 

approach identifies prototypes from the observed data through an offline training process and uses them to build 

a 0-order AnYa type fuzzy rule-based system for classification. Once primed offline, it is able to continuously 

learn from the streaming data afterwards to follow the changing data pattern by updating the system structure 

and meta-parameters recursively. The meta-parameters of the proposed approach are derived from data directly. 

By changing the level of granularity, the proposed approach can make a trade-off between performance and 

computational efficiency, and, thus, the classifier is able to address a wide variety of problems with specific 

needs. The classifier also supports different types of distance measures. Numerical examples based on 

benchmark datasets demonstrate the high performance of the proposed approach and its ability of handling high-

dimensional, complex, large-scale problems. 
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1. Introduction 

Classification is one of the hotly studied problems in machine learning [24]. Till now, various 

classification algorithms have been successfully developed and widely used in different areas i.e. remote sensing 

[46],[47], face recognition [10],[25], handwritten digits recognition [13],[21], etc.  

Current classification approaches have different architectures. In general, considering their operating 

mechanisms, the existing approaches can be categorised into two major types: 1) offline [13],[14],[27] and 2) 

online [6],[8],[21],[31],[34],[38],[39],[44]. The offline approaches are trained with static datasets and once the 

training process is finished, the classifiers stop learning and allow no further modification to their structure. The 

majority of the offline approaches were developed during the time that data was not considered to be in large-

scale, streaming and dynamically evolving. Nowadays, as we are living in the era of the so-called “Big Data”, 

these approaches become less applicable. There are two types of online classification approaches, namely, 1) 

incremental [31],[34],[44] and 2) evolving [6],[8],[21],[38],[39]. Online approaches can be of “one-pass” type, 

which means that they are able to consistently learn from newly arrived data samples and only store the key 

information in memory, meanwhile, discard all the processed training samples. The evolving approaches 

[6],[8],[21],[38],[39], as the more advanced branch of online approaches, further address the problem of 

changing data pattern in nonstationary environments by continuously evolving system structure and recursively 

updating meta-parameters. Compared with the other types, evolving approaches are more memory- and 

computation- efficient and, thus, are more frequently used in real-world applications. On the other hand, the 

performance of the online approaches, including the evolving ones, is sensitive to the order of data samples. 

Very often in real situations, a part of the data is available in a static form, while the rest is observed 

sequentially in a streaming form. Offline approaches ignore the fact that the data pattern may change with more 

data available. However, it is also unnecessary for an approach to learn online from the very beginning of the 

data stream because initialising the system with the available static data in an offline manner can guarantee a 

more robust performance.  

Furthermore, many existing approaches also rely heavily on 1) prior assumptions, which usually impose 

models with parameters which depend on the data generation model, i.e. Gaussian distribution [29], and 2) user 

inputs, which are defined based on prior knowledge of the problem, i.e. radius [15],[21],[50], learning rate 

[38]/decay rates [39], size of the network [13],[23], etc. In real cases, such prior assumptions are often too 

strong to be held and user inputs are often hard to define due to the insufficient prior knowledge. In addition, in 

online scenarios, non-stationary data streams may also invalidate the prior assumptions and user inputs that 

were established at the initial stage.  

In this paper, a new self-organising fuzzy logic (SOF) approach is proposed for classification. The SOF 

approach is grounded at the recently introduced Empirical Data Analytics (EDA) computational framework 
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[4],[5] and the autonomous data-driven clustering techniques [19]. The SOF classifier has two training stages, 1) 

offline and 2) online. During the offline stage, it learns from the static data to establish a stable 0-order AnYa 

type fuzzy rule-based (FRB) system [7]. During the online training stage, the FRB system identified through the 

offline training process will be updated subsequently with the streaming data to follow the possible drifts and/or 

shifts in the data pattern. The SOF classifier only keeps the key meta-parameters in memory and is of “one-pass” 

type during its online training stage; therefore, it is very suitable for large-scale streaming data processing. 

Most importantly, the proposed SOF classifier is nonparametric in the sense that no parameters or models 

are imposed for the data generation model. Employing the EDA quantities as described in section 2.2, the SOF 

classifier is able to objectively disclose the ensemble properties and mutual distributions of the streaming data 

based on the empirical observations and all the meta-parameters of the classifier are directly derived from the 

data without any prior knowledge [4],[5]. 

The proposed SOF classifier keeps the advantage of objectiveness of the data-driven approaches, and, at 

the same time, puts users “in the driving seat” by letting users to decide the level of granularity and the type of 

distance/dissimilarity measure for it. The idea of “granularity” is introduced and defined in [35],[36],[49]. It is 

well known that a problem can be approached at different levels of specificity (detail) depending on the 

complexity of the original problem, available computing resources, and particular needs [49]. The level of 

granularity in the proposed approach is aligned with this concept. However, it has to be stressed that there is no 

requirement for prior knowledge to decide the level of granularity and it can be given merely based on the 

preferences of the users. Higher level of granularity leads to a classifier with fine details, and at the same time, 

results in a risk of overfitting. A lower level of granularity, instead, gives users a classifier trained coarsely but 

with higher computational efficiency, generalisation and less memory requirement. The SOF classifier is always 

guaranteed to be meaningful due to its data-driven nature. The choice of the type of distance/dissimilarity 

measure further gives more freedom to the users and also makes the proposed SOF approach highly adaptive to 

various applications, e.g. natural language processing. In addition, the SOF classifier can also provide the 

default level of granularity and distance measure option for the less experienced users. 

The remainder of this paper is organised as follows. The theoretical basis of the SOF classifier is 

summarised in section 2. Section 3 describes the offline training, online training and validation processes of the 

proposed approach. Section 4 presents how the level of granularity can influence the performance and efficiency 

of the SOF classifier. Numerical examples serving as a proof of concept are given in section 5, discussions on 

the convergence and local optimality of the proposed approach are also provided in the same section. Section 6 

concludes this paper and gives the direction for future works. 

 

2. Theoretical Basis 

In this section, the theoretical basis of the self-organising fuzzy logic (SOF) classifier will be briefly 

summarised.  

 

2.1. 0-order AnYa Fuzzy Rule-based Systems 

AnYa type FRB system was introduced in [7] as an alternative approach to the widely used FRB systems 

of Takagi-Sugeno [45] or Mamdani [30] types. Comparing with the two predecessors, the antecedent (IF) part of 

AnYa type fuzzy rules is simplified to a more compact, objective and nonparametric vector form without the 

need of defining ad hoc membership functions. A 0-order AnYa type fuzzy rule has the following form: 

       1 2~ ~ ... ~ NIF OR OR OR THEN classx p x p x p                                                                      (1) 

where x  is the input vector; “~” denotes similarity, which can also be seen as a fuzzy degree of 

satisfaction/membership [7]; ip ( 1,2,...,i N ) is the i
th

 prototype of the class; N is the number of prototypes 

identified from the data samples of this class. For a specific data sample, its label can be decided following 

different strategies, i.e. “winner-takes-all”, “few-winners-take-all”, “fuzzily weighted average”, etc. In this 

paper, we use the first one, and the details are given in section 3.3. 

 

2.2. Empirical Data Analytics Operators 

As stated in section 1, the SOF classifier employs the nonparametric EDA quantities for objectively 

disclosing the ensemble properties and mutual distribution of the data. In this subsection, three EDA quantities, 

1) cumulative proximity, 2) unimodal density and 3) multimodal density, which are used in the proposed 



 

 

approach will be described. Their recursive calculation forms for streaming data processing will be given as 

well.  

First of all, let us assume a data set/stream within the real data space 
M

R ( M  is the dimensionality of the 

space) observed at the K
th

 time instance denoted by    1 2, ,..., KK
x x x x , where ,1 ,2 ,, ,..., M

i i i i Mx x x    Rx  , 

the subscript i  denotes the time instance at which the i
th

 data sample, 
ix  arrived. To be more general, we 

assume that some data samples repeat more than once, namely, ,i j i j  x x . The set of sorted unique data 

samples is denoted as    1 2, ,...,
KK

UU
u u u u ( ,1 ,2 ,, ,...,i i i i Mu u u   u ,    

KU K
u x , KU K , KU  is the 

number of unique data samples) and the corresponding repeating times (frequency of occurrence) are 

   1 2, ,...,
KK

UU
f f f f  (

1

KU

i

i

f K


 ). If no specific declaration is made, all the derivations are conducted at the 

K
th

 time instance as a default. 

1) Cumulative Proximity 

 Cumulative proximity,   introduced earlier [2],[4] is derived empirically from the observed data without 

prior knowledge or prior assumptions, and can be seen as a square form of the farness. The cumulative 

proximity of data sample ix  is expressed as: 

   2

1

, ; 1,2,...,
K

K i i j

j

d i K


 x x x                                                                                                       (2) 

where  ,i jd x x denotes the distance between ix  and jx , which can be any type of distance/dissimilarity 

measure. It is also worth to be noticed that the average square distance between any two data samples within 

 
K

x  can be expressed as:  2
1

1 K

K K i

i

d
K




  x . 

2) Unimodal Density 

Unimodal density, D [4] is used as an indicator of the main data pattern within the EDA framework. The 

unimodal density at ix  is expressed as: 
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                                                                         (3) 

3) Multimodal Density 

Multimodal density, 
MMD [4],[5] is estimated at the unique data sample iu  as the weighted sum of its 

unimodal density by its repeating times of occurrence expressed as: 

   
 

 
1 ; 1, 2,...,

2

K

K l
MM l

K i i K i i K

K i

D f D f i U
K




  
 x

u u
u

                                                                              (4) 

4) Recursive Calculation Form 

The recursive calculation forms of the nonparametric EDA quantities play a significant role in streaming 

data processing. They ensure the processing techniques to be memory- and computation- efficient. If the 

Euclidean distance, Mahalanobis distance, the cosine dissimilarity or some other types of distances/dissimilarity 

are used, one can have elegant recursive calculation forms, with which the EDA quantities can be updated in a 

more efficient way by keeping only the key meta-parameters in memory. In this paper, we give an example of 

recursive calculation expressions using Mahalanobis distance. The recursive calculation forms of the EDA 

quantities with other types of distance metric can be found in the previous works [4],[18].  

With Mahalanobis distance used, denoted by      
T

1,i j i j K i jd   x x x x x x ( , 1,2,...,i j K ), the 

recursive calculation expression is given as: 

       T1 1 T

K i i K K i K K K K KK X      x x x                                                                               (5) 



 

 

where K  is the covariance matrix,     
T

1

1
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K l K l K
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  

 x x  ;

1 T

1

1 K

K l K l

l

X
K




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1 K

K l

lK 

  x . 

The covariance matrix, K  and the global mean, 
kμ  can be updated recursively as: 

1 1 1

1 1
;K K K

K

K K



  x x                                                                                                               (6) 
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1 1 1 1
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;K K K K
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


  X X Xx x x x                                                                                                   (7) 

 T

1
K K K K

K

K
 


X                                                                                                                              (8) 

The sum of cumulative proximities of all the existing data samples is given as [21]: 

   2 1 T 2

1

2 2
K

K l K K K K

l

K X K M 



   x                                                                                                (9) 

and, accordingly, the unimodal density at ix  is calculated recursively as: 

 
 
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From the equations (6)-(10) one can see that, if the Mahalanobis distance is used, one can recursively 

calculate the cumulative proximity and density of new data samples by only keeping Kμ  and KX  in the 

memory.  

However, we have to admit that not all kinds of distance/dissimilarity measures support such an elegant 

form of recursive calculation, and for these types of measure, the following general recursive calculation 

expressions still hold [2]: 

     2

1 ,K i K i i Kd   x x x x                                                                                                        (11a) 
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Generally, Euclidean distance is the most widely used distance metric, and its effectiveness and validity 

as the distance measure, in most cases, are guaranteed. If the data generation model follows a Gaussian 

distribution or some similar distributions, Mahalanobis distance would be a good choice. While in high 

dimensional problems, cosine dissimilarity is free from the “curse of dimensionality” and thus, is more effective 

and more frequently used [1],[9],[42].  

On the other hand, we have to stress that the most suitable choice of distance/dissimilarity measure is 

always problem-specific, and one can use the current knowledge in the problem domain to choose the desired 

measure for a reasonable approximation and a desired classification result. However, this is out of the range of 

this paper. In this paper, we only consider the general cases without using prior knowledge. 

 

3. SOF classifier 

In this section, the offline training, online training and validation stages of the SOF classifier will be 

described in detail. For a better demonstration, the architecture of the proposed approach is given in Fig. 1. 

 



 

 

 
Fig. 1. Architecture of the Self-Organising Fuzzy Logic (SOF) classifier 

 

3.1. Offline Training 

The offline training process of the SOF classifier is category-wise as shown in Fig. 1, the classifier will 

identify prototypes from each class separately and form a 0-order AnYa type fuzzy rule based on the identified 

prototypes per class (in the form of equation (1)). The training processes of the fuzzy rules of different classes 

will not influence each other. In the rest of this subsection, we assume that the training process is conducted on 

data samples of the c
th

 class ( 1,2, ,c C  ) denoted by    1 2, ,..., cc

c c c c

KK
x x x x  (   c

c

K K
x x ), and the 

corresponding unique data sample set and frequencies of occurrence are denoted, respectively, by

   1 2, ,..., cc
KK

c c c c

UU
u u u u  and    1 2, ,..., cc

KK

c c c c

UU
f f f f , where 

cK  is the number of data samples with   c

c

K
x ,  

c

KU  is the number of unique data samples of the c
th

 class. Considering all the classes, we have 
1

C
c

c

K K


  and 

1

C
c

K K

c

U U


 . 

In the proposed approach, prototypes are identified based on the densities and the mutual distributions of 

the data samples. Firstly, multimodal densities  
 

 

2

1 1

2

1

,

2 ,

c c

c c

K K
c c
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l jMM c c

i iK K
c c c
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D f
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 ( 1,2,.., c

Ki U ) [4],[5] at all 

the unique data samples within   c
K

c

U
u  are calculated using equation (4).  Then, the data samples are ranked in a 

list denoted by  r  in terms of their mutual distances and values of multimodal density. 

By finding out the data sample with the highest multimodal density,   1
1,2,...,

arg max c
c
K

MM c

iK
i U

D


r u , the first 

element, 1r  of the list  r  is identified. Then, the second element, 2r  is identified as the data sample with the 



 

 

minimum distance to 
1r :   2 1

1,2,..., 1

arg min
c
K

c

i
i U

d
 

r r ,u . The third element of  r  denoted by 
3r  is identified based 

on the minimum distance to 
2r . By repeating the process and until all the data samples have been selected, the 

full list  r  is built and the multimodal densities of   c
K

c

U
u are ranked accordingly with the list, denoted by 

  c

MM

K
D r [19]. It needs to be stressed that once a data sample is selected into  r , it cannot be selected for a 

second time. 

Prototypes, denoted by  
0

p , are then identified as the local maxima of the ranked multimodal densities, 

  c

MM

K
D r  using Condition 1 [19]: 

Condition 1:             1 1 0
c c c c

MM MM MM MM

i i i i iK K K K
IF D D AND D D THEN   r r r r r p                    (12) 

Once all the prototypes are identified using equation (12), one may notice some less representative ones 

within  
0

p , therefore, it is necessary to conduct a filtering operation to remove them from  
0

p .  

Before the filtering operation starts, we firstly use the prototypes to attract nearby data samples to form 

data clouds [7] resembling Voronoi tessellation [32]: 

 
    

0

arg min , ; c

c

i i K
winning prototype d



 
p p

x p x x                                                                              (13) 

After all the data clouds are formed around the existing prototypes  
0

p , one can obtain the centres of the 

data clouds denoted by  
0

  and the multimodal densities at the centres are calculated using equation (4) as 

   c c

MM

i i iK K
D S D  , where   

0i   ; iS  is the support (number of members) of the i
th

 data cloud. 

Then, for each data cloud, assuming the i
th

 one (  
0i   ), the collection of the centres of its 

neighbouring data clouds, denoted by  
neighb

i

ouring
   are identified using the following principle: 

Condition 2:      2 ,, c

c L

i

neighbour

i

ng

j jK

i
IF d G THEN                                                                (14) 

where  
0
,j j i     ; 

,
c

c L

K
G  is defined as the average radius of local influential area around each data 

sample, which is corresponding to the L
th

 ( 1,2,3,...L  ) level of granularity and is derived from the data of the 

c
th

 class based on the users’ choice in an offline way. Section 4 will explain how to derive 
,
c

Lc

K
G  in detail.  

Finally, the most representative prototypes of the c
th 

class, denoted by  
c

p , are selected out from the 

centres of the existing data clouds satisfying Condition 3 [19]: 

Condition 3:  
 

     max
neighbour

c c
in

i

g

cMM MM

i iK K
IF D D THEN



 
  

 
p

 

                                                 (15) 

After all the representative prototypes of the c
th 

class  
c

p are identified, one can build the AnYa type 

fuzzy rule in the following form, where 
cN is the number of prototypes in  

c
p . 

       1 2~ ~ ... ~ c

c c c

N
IF OR OR OR THEN classcx p x p x p                                                                (16) 

The main procedure of the offline training process of the proposed SOF classifier is summarised in in the 

following pseudo code. 

Offline training process of the SOF classifier 

i. Calculate MMD  at   c
K

c

U
u ; 

ii. Find   1
1,2,...,

arg max c
c
K

MM c

iK
i U

D


r u  and exclude 1r  from   c
K

c

U
u ; 

iii.       1 11; ; ;c c

MM MM

K K
k D D  r r r r ; 



 

 

iv. While 0c

KU k   

* 1k k  ; 

* Find 
 

  1arg min
cc

ci U
K

c

k k id 




u u

r r ,u  and exclude 
kr  from   c

K
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U
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*            ; ;c c c

MM MM MM

k kK K K
D D D   r r r r r r  

v. End While 

vi. Identify  
0

p  using Condition 1; 

vii. Form data clouds around  
0

p ; 

viii. Identify  
0

  from the data clouds; 

ix. Calculate MMD  at  
0

 ; 

x. Identify  
neighbouring

  using Condition 2; 

xi. Identify  
c

p  using Condition 3; 

xii. Create the c
th

 fuzzy rule with  
c

p . 

 

3.2. Online Self-Evolving Training 

During the online training stage, the SOF classifier continues to update its system parameters and 

structure with the streaming data on a sample-by-sample basis. Furthermore, because the EDA quantities 

employed by the SOF classifier can be updated recursively, it can be of “one-pass” type, and its computation- 

and memory-efficiency is also guaranteed. In this subsection, we assume that the training process of the SOF 

classifier with the static dataset  
K

x  has been finished and new data samples start to arrive in a data stream 

form. Similar to the offline training stage, during the online training stage, the fuzzy rules of different classes are 

updated separately. During the online stage, recursive calculation expressions of the EDA quantities with 

Mahalanobis distance are used. Nonetheless, we want to stress again that the proposed approach can use various 

types of distance/dissimilarity measures (see subsection 2.2). 

Assuming at K+1
th

 instance, a new data sample of the c
th

 class, denoted as 
1c

c

K 
x , arrives, the SOF 

classifier, firstly, updates the meta-parameters c

c

K
 , c

c

K
X , c

c

K
  to 

1c

c

K 
 , 

1c

c

K 
X , 

1c

c

K 
 using equations (6)-(8). 

The average radius of local areas of influence, 
,
c

Lc

K
G  is updated afterwards in a recursive way based on the ratio 

between c

c

K
d  and 

,
c

Lc

K
G : 
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where c

c

K
d  and 

1c

c

K
d


 denote the average square distances between any two data samples within   c

c

K
x  and 

 
1c

c

K 
x , respectively. 

As a special case, for Mahalanobis distance (equation (9)), 
, ,

1c c

Lc c

K K

LG G

 . As we can see from equation 

(17), instead of deriving 
,

1cK

LcG


 in an offline way, which will be described in section 4 in detail, equation (17) 

largely reduces the computational complexity and memory requirement, and further largely improves the 

efficiency of the SOF classifier. 

Then, 
1c

c

K 
x  is checked by the following condition to evaluate its potential to be a new prototype [2],[8]: 



 

 

Condition 4:  
 
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where equation (10) is used for calculating  1 1c c

c

K K
D

 
x  and  

1cK
D


p  (  

c
p p ).  If 

1c

c

K 
x meets Condition 

4, a new prototype is added to the fuzzy rule of the c
th 

class (equation (16)) and the meta-parameters of the SOF 

classifier are updated as follows: 

   
1

1; ; 1;c c c c

c cc c c c c c

N K N N
N N S


     p x p p p                                                                (19) 

If Condition 4 is unsatisfied, we still need to check whether 
1c

c

K 
x  is very close to an existing prototype 

by using Condition 5 [19].  

Condition 5:  
 

     2 ,

1 1 1
min ,c c c

c

cc c L c

K K K
IF d G THEN

  


 
  

 p p

x p x p                                                  (20) 

If Condition 5 is met, a new prototype is added to the fuzzy rule of the c
th 

class (    c

c c c

N
 p p p ) and 

the corresponding new data cloud with meta-parameters initialised by equation (19) is added to the SOF 

classifier. 

If Conditions 4 and 5 are both unsatisfied, 
1c

c

K 
x  is assigned to the nearest prototype  

 
  * 1

arg min ,c
c

c c

n K
d





p p

p x p  and the meta-parameters of the corresponding data cloud are updated as follows [2]: 

*

* * * *1
* *

1
; 1

1 1
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c c c c cn

n n n nc c K
n n

S
S S

S S 
   

 
p p x                                                                                       (21) 

After the meta-parameters of the classifier are updated, the AnYa type fuzzy rule (equation (16)) will be 

updated accordingly and the SOF classifier is ready for processing the next data sample or conducting 

classification.  

The main procedure of the online training process of the proposed SOF classifier is summarised in the 

following pseudo code. 

Online training process of the SOF classifier 

While a new data sample of the c
th

 class 
1c

c

K 
x  is available (or until interrupted) 

i. Update c

c

K
 , c

c

K
X , c

c

K
 , 

,
c

Lc

K
G to 

1c

c

K 
 , 

1c

c

K 
X , 

1c

c

K 
 , 

,

1cK

LcG


; 

ii. Calculate D  at 
1c

c

K 
x  and  

c
p ; 

iii. If (Condition 4 is met) Or (Condition 5 is met) Then 

*    
1

1; ; 1;c c c c

c cc c c c c c

N K N N
N N S


     p x p p p  

iv. Else 

*  Find *

c

np ; 

* *

* * * *1
* *

1
; 1

1 1
c

c

c c c c cn

n n n nc c K
n n

S
S S

S S 
   

 
p p x ; 

v. End If 

vi. 1c cK K  ; 

vii. Update the fuzzy rule; 

End While 

 

3.3. Validation 

In this subsection, the procedure of the SOF classifier for decision-making is described. As it is shown in 

Fig. 1, during the validation stage, for a particular testing data sample, denoted by x , each AnYa type fuzzy 

rule will have a firing strength given by the local decision-maker, denoted by  c x  ( 1,2,...,c C ), which is 

determined as follows: 



 

 

 
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2 ,

max ; 1,2,...,
c

dc e c C

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x p

p p

x                                                                                                     (22) 

Based on the C  firing strengths of the C  fuzzy rules correspondingly (one per rule), the label of x  is 

decided by the overall decision-maker using the “winner-takes-all” principle as follows: 

  
1,2,...,

argmax c

c C

label 


 x                                                                                                                            (23) 

 

4. Classification under Different Levels of Granularity 

Since the SOF classifier is a prototype-based approach, it is of paramount importance to define a suitable 

local area of influence for each prototype in order to increase the descriptive ability of the fuzzy rules and at the 

same time, avoid overlap. There are two commonly adopted ways to define this. The first one is to define a 

radius based on prior knowledge [15]. The second one is to derive it from data following hard-coded principles 

[29],[38]. However, in most cases, prior knowledge is unavailable, while the hard-coded principles are too 

sensitive to the nature of the data. The performance of the two approaches is often not guaranteed. In the 

following part of this section, we will demonstrate how to define the local areas around prototypes based on the 

data and the level of granularity.  

Under the 1
st
 level of granularity (L=1), the average radius of local influential area around each prototype 

of the c
th

 class, denoted by 
1,
c

c

K
G , is defined as follows: 
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where 
,1
c

c

K
Q  is the number of the pairs of data samples within   c

c

K
x  between which the distance is smaller than 

the average distance, c

c

K
d . 

From level 2 to an arbitrary level of granularity ( 2,3,...,L  ), one can calculate the average radius 

iteratively using the following equation: 
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where 
, 1
c

c L

K
G 

is the average radius corresponding to (L-1)
th 

level of granularity; 
,
c

c L

K
Q   is the number of the pairs 

of data samples between which the distance is smaller than 
, 1
c

c L

K
G 

. 

Compared with the traditional approaches, there are strong advantages in deriving local information in 

this way. Firstly, 
,
c

Lc

K
G  is guaranteed to be valid all the time. Defining the threshold or hard-coded mathematical 

principles in advance may suffer from various problems, which have been discussed at the beginning of this 

section. While 
,
c

Lc

K
G  is derived from the data directly and is always meaningful. There is no need for prior 

knowledge of data sets/streams, and the level of granularity used by the SOF classifier can be decided merely 

based on the preferences of the users. Moreover, users are allowed to have freedom to make choices, but at the 

same time, are not overloaded. Finally, one can always adapt the classifier by changing the level of granularity 

based on the specific needs. Some problems rely heavily on fine details, while others may need generality only. 

In general, the higher level of granularity is chosen, the more fine details (more prototypes) the SOF 

classifier extracts from the data, and the classifier achieves a higher performance. At the same time, the SOF 

classifier may consume more computational and memory resources, and overfitting may also appear. On the 

contrary, with low level of granularity, the SOF classifier only learns the coarse information from training. 

Although, the classifier will be more computationally efficient, its performance may be influenced due to the 

loss of fine information from the data. An illustrative example based on the UCI benchmark dataset named 

Banknote Authentication
1
 is given in Fig. 2 with different levels of granularity. In this visual example, the SOF 

classifier is trained offline using Mahalanobis distance. 

                                                           
1
 available at: https://archive.ics.uci.edu/ml/datasets/banknote+authentication 

https://archive.ics.uci.edu/ml/datasets/banknote+authentication


 

 

 

 
                                    (a) L=1                                                                            (b) L=2 

 
                                   (c) L=3                                                                            (d) L=4 

Fig. 2. Prototypes identified under different levels of granularity based on Banknote Authentication dataset  

(dots and asterisks in different colours denote data samples and prototypes of different classes). 

 

5. Numerical Examples and Discussions 

In this section, numerical examples are provided as a proof of concept. The experiments are conducted 

using MATLAB R2017a on a PC within Windows 10 operating system, 3.6 GHz dual core Intel 7 processor and 

16 GB RAM. The links to the source codes (MATLAB and Python versions) of the proposed approach can be 

found at: http://www.empiricaldataanalytics.org/downloads.html. 

We, firstly, consider the following challenging UCI benchmark datasets for evaluating the performance 

the SOF classifier: 

1) Occupancy detection dataset
2
; 

2) Optical recognition of handwritten digits dataset
3
; 

3) Multiple features dataset
4
, and 

4) Letter recognition dataset
5
.  

The details of the four benchmark datasets are tabulated in Table 1. The occupancy detection dataset 

contains one training set with 8143 data samples and two testing sets with 2665 and 9752 data samples in each, 

respectively. In this paper, we combine the two testing sets into one for clarity, and the time stamp of this 

dataset has been removed. The optical recognition dataset consists of one training set with 3823 data samples 

and one testing set with 1797 data samples.  

                                                           
2
 available at: https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+ 

3
 available at: https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits 

4
 available at: https://archive.ics.uci.edu/ml/datasets/Multiple+Features 

5
 available at: https://archive.ics.uci.edu/ml/datasets/Letter+Recognition 

http://www.empiricaldataanalytics.org/
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition


 

 

Table 1 Details of the benchmark datasets used for numerical example 

Dataset 
Number of 

Classes 

Number of 

Samples 

Number of 

Attributes 

Occupancy detection 
Training set 

2 
8143 

5+1 label 
Testing set 12417 

Optical recognition 
Training set 

10 
3823 

64+1 label 
Testing set 1797 

Letter recognition 26 20000 16+1 label 

Multiple features 10 2000 649+1 label 

 

Firstly, the influence of different levels of granularity on the classification results of the proposed SOF 

approach is studied, and the occupancy detection and optical recognition datasets are used in this experiment. In 

this example, we consider the offline scenario only and vary the level of granularity, L  from 1 to 12. The 

classification results are tabulated in Table 2 and the performance is measured in terms of classification 

accuracy, denoted by Acc, the number of identified prototypes, denoted by N (
1

C
c

c

N N


 ) and the training 

time consumption in seconds, denoted by t. Here, the Mahalanobis distance, Euclidean distance and cosine 

dissimilarity are used. However, for the optical recognition dataset, as the co-variance matrix of the data is not 

always positive definite, we consider the results obtained using the Euclidean distance and cosine dissimilarity 

only. The results tabulated are the average of 10 Monte Carlo experiments by randomly descrambling the order 

of the training samples. 

From Table 2 one can see that, in general, the higher level of granularity is chosen, the higher accuracy 

the SOF classifier can exhibit during classification, but the more prototypes the classifier identifies, which can 

lower down the computation- and memory-efficiency. It is worth to notice that the proposed approach produced 

the same result in 10 Monte Carlo experiments, which demonstrates that the SOF classifier is invariant to the 

changes in the order of data samples during the offline training. 

One may also notice from Table 2 that the type of distance/dissimilarity measure used also influences the 

performance of the proposed approach. As the proposed approach accommodates various types of 

distance/dissimilarity measures, one can use the current knowledge of the problem domain to choose the 

appropriate distance measure.  

Secondly, the classification performance of the proposed SOF classifier with different amounts of offline 

training samples is investigated. In this example, we use the letter recognition and multiple features datasets. As 

the two datasets are both highly complex, we choose the 12
th

 level of granularity to ensure the SOF classifier 

can learn sufficient details. The percentage of offline training samples is changed from 10% to 50% and the 

classification is conducted on the remaining 50% of the data in an offline scenario. The results are tabulated in 

Table 3, which are the averages of 10 Monte Carlo experiments by randomly selecting the training set and 

testing set. The corresponding average training time consumption (in seconds) is depicted in Fig. 3. 

In order to investigate the performance of the proposed approach in an online scenario, we conduct an 

extra experiment on the two datasets. The SOF classifier is firstly trained with 15% of the data samples in an 

offline scenario, and then, is trained in an online scenario by using different amounts (from 5% to 35%) of data 

samples on a sample-by-sample basis. The classification accuracy of SOF classifier is evaluated on the 

remaining 50% of data samples. The average performance is tabulated in Table 4 after 10 Monte Carlo 

experiments by randomly selecting the offline training set, online training set and testing set. The corresponding 

average time consumption per data sample (in milliseconds) during the online training process is given in Fig. 4. 

In both Tables 3 and 4, the classification results on the multiple feature dataset using the Mahalanobis distance 

is not given for the same reason mentioned before.  

From Table 3 one can conclude that the more data samples the SOF classifier is provided with during the 

offline training stage, the better performance it can exhibit in the classification stage. Table 4 shows that the 

performance of the SOF classifier can be further improved through the online update with more training data 

samples after the offline training, which is one of the very strong advantages of the proposed approach. In real 

applications, new data is more often coming in the form of a data stream, which may exhibit shifts and/or drifts 

in the data pattern [28]. With the ability of self-evolving online learning, the SOF classifier is able to 

continuously follow the changing data pattern without full retraining, which largely enhances the efficiency and 



 

 

saves the computational resources. Fig. 4 demonstrates the very high computational efficiency (less than 0.3 

millisecond per data sample) for the SOF classifier to self-evolve recursively on a sample-by-sample basis.  

 

Table 2 Influence of granularity on classification performance 

Dataset Distance Measures 
L 

1 2 3 4 5 6 

Occupancy 

detection 

Mahalanobis 

Acc 0.8942 0.8920 0.9038 0.9426 0.9494 0.9532 

N 14 31 55 116 217 339 

t 2.80 2.97 3.08 3.11 3.16 3.14 

Euclidean 

Acc 0.8107 0.8403 0.8618 0.9112 0.9382 0.9513 

N 16 46 77 137 201 281 

t 2.15 2.31 2.47 2.55 2.59 2.65 

Cosine 

Acc 0.8109 0.8161 0.8877 0.9261 0.9481 0.9519 

N 12 43 72 108 167 217 

t 2.13 2.31 2.55 2.56 2.63 2.72 

Optical 

recognition 

Euclidean 

Acc 0.9160 0.9421 0.9499 0.9716 0.9766 0.9761 

N 25 48 105 214 409 643 

t 0.09 0.10 0.10 0.09 0.10 0.10 

Cosine 

Acc 0.9087 0.9421 0.9588 0.9649 0.9699 0.9733 

N 25 50 116 238 417 655 

t 0.09 0.10 0.09 0.09 0.10 0.10 

Dataset Distance Measures 
L 

7 8 9 10 11 12 

Occupancy 

detection 

Mahalanobis 

Acc 0.9539 0.9543 0.9543 0.9543 0.9543 0.9543 

N 549 786 1029 1279 1433 1512 

t 3.33 3.16 3.26 3.29 3.36 3.32 

Euclidean 

Acc 0.9564 0.9579 0.9584 0.9588 0.9588 0.9588 

N 395 525 663 783 939 1094 

t 2.72 2.68 2.69 2.68 2.74 2.70 

Cosine 

Acc 0.9558 0.9557 0.9559 0.9559 0.9559 0.9559 

N 288 388 507 650 825 1007 

t 2.78 2.68 2.75 2.70 2.79 2.77 

Optical 

recognition 

Euclidean 

Acc 0.9811 0.9833 0.9833 0.9833 0.9839 0.9839 

N 840 950 1012 1034 1046 1048 

t 0.10 0.10 0.10 0.11 0.11 0.11 

Cosine 

Acc 0.9755 0.9761 0.9761 0.9761 0.9761 0.9761 

N 843 960 1013 1039 1039 1046 

t 0.11 0.11 0.11 0.11 0.11 0.11 

 

    
                           (a) Letter recognition                                               (b) Multiple features 

Fig. 3. The average training time consumption with different amounts of training samples 



 

 

 

Table 3. Classification performance (in accuracy) with different amount of data for offline training 

Dataset Distance 
Percentage for Offline Training 

10% 15% 20% 25% 30% 35% 40% 45% 50% 

Letter 

recognition 

Mahanobis 0.8375 0.8689 0.8878 0.8983 0.9079 0.9162 0.9217 0.9241 0.9265 

Euclidean 0.7924 0.8415 0.8703 0.8863 0.9013 0.9082 0.9185 0.9244 0.9298 

Cosine 0.8013 0.8480 0.8731 0.8904 0.9026 0.9109 0.9197 0.9253 0.9296 

Multiple 

features 

Euclidean 0.8415 0.8664 0.8854 0.8924 0.9026 0.9076 0.9144 0.9203 0.9267 

Cosine 0.8703 0.8895 0.9025 0.9125 0.9194 0.9263 0.9269 0.9276 0.9366 

 

    
                           (a) Letter recognition                                              (b) Multiple features 

Fig. 4. The average training time consumption per sample during the online training 

 

Table 4. Classification performance (accuracy) with different amount of data for online training following the 

offline training with 15% of the data 

Dataset Distance 
Percentage for Online Training 

5% 10% 15% 20% 25% 30% 35% 

Letter 

recognition 

Mahanobis 0.8594 0.8836 0.9012 0.9125 0.9199 0.9279 0.9327 

Euclidean 0.8738 0.8910 0.9062 0.9162 0.9231 0.9303 0.9352 

Cosine 0.8758 0.8931 0.9070 0.9158 0.9233 0.9293 0.9350 

Multiple 

features 

Euclidean 0.8827 0.9097 0.9166 0.9205 0.9272 0.9340 0.9352 

Cosine 0.9062 0.9258 0.9335 0.9316 0.9318 0.9399 0.9409 

 

To further evaluate the performance of the SOF classifier with 12L  , we compare it with a number of 

“state-of-the-art” approaches in an offline scenario on the four benchmark datasets tabulated in Table 1: 

1) Support vector machine (SVM) classifier [14]; 

2) K-nearest neighbour (KNN) classifier [16]; 

3) Decision tree (DT) classifier [40]; 

4) Self-organising map (SOM) classifier [37]; 

6) DENFIS classifier [22]; 

7) eClass-0 classifier [8], and 

8) TEDAClass classifier [21]. 

During the comparison, the SVM classifier uses a linear kernel; for the KNN classifier, k  is equal to 10; 

SOM classifier applies “winner-takes-all” principle with a net size of 9 9 . As one may obtain the covariance 

matrices that are not positive definite from the optical recognition and multiple feature datasets, we only use the 

Euclidean distance and cosine dissimilarity for these two datasets during the comparison. For letter recognition 

and multiple features datasets, we use 50% of the data for training and the rest for testing. The performance 

comparison is tabulated in Table 5, where the highest classification accuracy for each benchmark problem is 

bolded. The reported results are the averages of 10 Monte Carlo experiments. In the experiments, the DENFIS 

classifier failed in both the optical recognition and multiple feature datasets because of the high dimensionality. 



 

 

From Table 5 one can see that, the proposed SOF classifier can exhibit very high performance on the four 

benchmark problems with a very short training process. 

 

Table 5. Performance comparison 

 

In order to see the performance of the proposed SOF classifier on high-dimensional, complex problems, 

we further involve the following two benchmark image classification problems: 

1) MNIST dataset
6
, and 

2) Singapore dataset
7
. 

MNIST dataset is a large-scale image set for hand-written digits recognition (from “0” to “9”). The 

training set contains 60000 images and the testing set contains 10000 images (with image size of 28 28  

pixels). We use the GIST feature descriptor [33] to extract  1 512  dimensional feature vectors from the central 

area ( 22 22  pixels) of handwritten digit images [3]. Singapore dataset was constructed from a large high-

resolution satellite image of Singapore. This dataset consists of 1086 remote sensing scene images (with original 

size of 256 256  pixels) of nine classes (“airplane”, “forest”, “harbour”, “industry”, “meadow”, “overpass”, 

“residential”, “river” and “runway”). We use the 1 4096  dimensional activations of the pre-trained VGG-VD-

16 convolution neural network [43] from the first fully connected layer [47] as the feature vectors of the images. 

The details of two large-scale benchmark problems are tabulated in Table 6. Examples of the images of both 

datasets are given in Fig. 5. In the following examples, the SOF classifier only uses the Euclidean distance and 

the cosine dissimilarity, and the 12
th

 level of granularity ( 12L  ) for both problems. 

For the MNIST dataset, the SOF classifier is trained in an offline scenario using the training sets with 

different sizes (5000, 10000, 20000, 30000, 40000, 50000 and 60000 images), and then, is tested on the testing 

set, and the classification results are tabulated in Table 7. Experiments in the online scenario are also conducted 

by firstly training the SOF classifier with 5000 images in an offline scenario, and then continuing the training in 

an online self-evolving manner; the performance with different amounts of training images is tabulated in Table 

7 as well. All the results reported in Table 7 are average results of 10 Monte Carlo experiments.  The average 

time consumption of the proposed approach is given in Fig. 6. For the offline scenario, we report the overall 

time consumption; for the online scenario, we report the time consumption for the SOF classifier to process each 

image. We also involve the following approaches in the comparison: 

1) Support vector machine (SVM) classifier; 

                                                           
6
 available at: http://yann.lecun.com/exdb/mnist/ 

7
 available at: http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx 
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SOF-Mahalanobis 0.9543 3.32 

L
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te
r 
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SOF-Mahalanobis 0.9265 0.52 

SOF-Euclidean 0.9588 2.70 SOF-Euclidean 0.9298 0.20 

SOF-Cosine 0.9559 2.77 SOF-Cosine 0.9296 0.21 

SVM 0.9577 103.62 SVM 0.8533 16.16 

KNN 0.9664 0.11 KNN 0.9180 0.05 

DT 0.9314 0.10 DT 0.8243 0.10 

SOM 0.9512 9.40 SOM 0.5363 12.85 

DENFIS 0.8909 14.28 DENFIS 0.3256 95.36 

eClass-0 0.8863 0.72 eClass-0 0.5125 0.74 

Simpl_eClass0 0.9096 0.49 Simpl_eClass0 0.5853 1.09 

TEDAClass 0.9634 416.50 TEDAClass 0.5154 2335.71 

O
p

ti
ca

l 
re

co
g

n
it

io
n

 

SOF-Euclidean 0.9839 0.11 

M
u

lt
ip

le
 f

ea
tu

re
s 

SOF-Euclidean 0.9267 0.05 

SOF-Cosine 0.9761 0.11 SOF-Cosine 0.9366 0.05 

SVM 0.9627 1.49 SVM 0.9671 15.97 

KNN 0.9766 0.08 KNN 0.9151 0.02 

DT 0.8525 0.11 DT 0.9244 0.16 

SOM 0.9577 12.19 SOM 0.8746 29.19 

DENFIS No Valid Result DENFIS No Valid Result 

eClass-0 0.8681 0.69 eClass-0 0.8264 1.59 

Simpl_eClass0 0.8883 1.51 Simpl_eClass0 0.8201 3.30 

TEDAClass 0.9120 1649.17 TEDAClass 0.8637 14011.87 

http://yann.lecun.com/exdb/mnist/
http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx


 

 

2) K-nearest neighbour (KNN) classifier; 

3) Decision tree (DT) classifier; 

4) eClass-1 classifier [8]; 

5) AutoClass-1 classifier [6] and 

6) TEDAClass classifier. 

For Singapore dataset, we follow the commonly used experimental protocol [17] by randomly selecting 

20% of the images of each class for training and using the rest for testing in an offline scenario. The average 

classification accuracy is reported in Table 8 after 10 Monte Carlo experiments, where the best result is bolded. 

We also involve the following “state-of-the-art” approaches in the area of remote sensing for comparison: 

1) Spatial pyramid matching kernel (SPMK) [26]; 

2) Pyramid of spatial relations (PSR) [11]; 

3) Bag-of-visual-words (BoVW) [48]; 

4) SIFT-based features with sparse coding (SIFTSC) [12]; 

5) Two-level feature representation with sparse coding (TLFRSC) [17]; 

6) Vector of locally aggregated descriptors (VLAD) [20], and 

7) Two-level feature representation with selection-constrained coding (TLFRSCC) [17]. 

 

Table 6 Details of the datasets used for numerical example 

Dataset 
Number of 

Classes 

Number of 

Samples 

Number of 

Attributes 

MNIST 
Training set 

10 
60000 

512+1 label 
Testing set 10000 

Singapore 9 1086 4096+1 label 

 

From Tables 7 and 8 we can see that the proposed SOF classifier can exhibit very high performance 

compared with the “state-of-the-art” approaches in large-scale, high-dimensional problems.  

Fig. 6 shows the high efficiency of the proposed approach in both offline and online training. In addition, 

one may notice that, in offline scenario, the SOF classifier can be trained on 60000 images for less than 20 

minutes, 2 minutes per rule, which is far more efficient than the deep learning-based approaches [13], which 

require several hours plus several GPUs. In the online scenario, the SOF classifier only needs less than 0.025 

second to process each image and is self-evolving. 

 

 
(a) Handwritten digit images 

 
(b) Remote sensing images 

Fig. 5. Example images of the two benchmark datasets. 

 

Moreover, due to the prototype-based nature of the SOF classifier, one can obtain a highly transparent, 

human-understandable AnYa type fuzzy rules after the training process, which is also one of the advantages of 



 

 

the SOF classifier. Illustrative examples of the fuzzy rules generated from the two benchmark problems are 

given in Table 9. For visual clarity, we resized the images in the table. 

From the above numerical examples, one can conclude that the proposed SOF classifier in this paper is a 

powerful alternative to the existing approaches with high accuracy, transparency and fast self-evolving learning. 

 

Table 7. Performance comparison (in accuracy) on MNSIT dataset 

Approach 
Classification Performance on Different Amounts of Training Samples 

5000 10000 20000 30000 40000 50000 60000 

SOF-Euclidean 
Offline 

0.9672 
0.9731 0.9785 0.9813 0.9828 0.9839 0.9854 

Online 0.9746 0.9802 0.9818 0.9835 0.9846 0.9850 

SOF-Cosine 
Offline 

0.9718 
0.9773 0.9818 0.9844 0.9851 0.9862 0.9855 

Online 0.9776 0.9825 0.9845 0.9862 0.9867 0.9868 

SVM 0.9776 0.9810 0.9838 0.9856 0.9861 0.9866 0.9869 

KNN 0.9678 0.9749 0.9798 0.9824 0.9840 0.9854 0.9861 

DT 0.8174 0.8429 0.8654 0.8764 0.8818 0.8890 0.8933 

eClass1 0.9685 0.9719 0.9732 0.9746 0.9745 0.9746 0.9746 

AutoClass1 0.9691 0.9724 0.9738 0.9744 0.9742 0.9738 0.9742 

TEDAClass 0.9716 0.9738 0.9753 0.9768 0.9766 0.9765 0.9763 

 

 
                          (a) Offline scenario                                                      (b) Online scenario 

Fig. 6. The average training time consumption with different amounts of training samples 

 

On the other hand, we have to admit that the proposed approach does not converge to a locally optimal 

solution of the problem after the training process. In order to achieve the local optimality, one needs to predefine 

an objective function and involve an iterative process to minimise the objective function [41]. Because of the 

greedy type search used in the SOF classifier (multiple peaks, etc.), there is no guarantee for convergence to 

locally optimal solution obtained by the proposed approach. Nonetheless, by involving a similar iterative 

process as described in [41], the SOF classifier can also converge to the locally optimal solutions, but this is out 

of the scope of this paper.  

 

Table 8. Performance comparison on Singapore dataset 

Approach Acc Approach Acc 

SOF-Euclidean 0.9493 SPMK 0.8285 

SOF-Cosine 0.9711 PSR  0.8454 

SVM 0.9525 BoVW  0.8741 

KNN 0.8527 SIFTSC 0.8758 

DT 0.7241 TLFRSC 0.8827 

eClass0 0.9181 VLAD 0.8870 

Simpl_eClass0 0.9262 TLFRSCC 0.9094 

 

 



 

 

Table 9. Illustrative fuzzy rules 

Dataset Fuzzy rule 

MNIST 

IF (I~ ) AND (I~ ) AND (I~ ) AND… AND (I~ ) AND (I~  ) 

THEN (Digit 1) 

IF (I~ ) AND (I~ ) AND (I~ ) AND… AND (I~ ) AND (I~ ) 

THEN (Digit 5) 

IF (I~ ) AND (I~ ) AND (I~ ) AND … AND (I~ ) AND (I~ ) 

THEN (Digit 9) 

Singapore 

IF (I~ ) AND (I~ ) AND (I~ ) AND … AND (I~ ) AND (I~ ) 

THEN (Airplane) 

IF (I~  ) AND (I~ ) AND (I~ ) AND… AND (I~ ) AND (I~ ) 

THEN (Meadow) 

IF (I~  ) AND (I~ ) AND (I~ ) AND… AND (I~ ) AND (I~ ) 

THEN (Highway) 

 

6. Conclusions and Future Works 

In this paper, a new type of self-organising fuzzy logic (SOF) classifier is proposed on the basis of the 

AnYa type fuzzy system and Empirical Data Analytics computational framework. The proposed SOF classifier 

is free from predefined parameters or prior assumptions about the data generation model and it is driven by the 

empirically observed data. The proposed classifier can identify prototypes from the offline training data in a 

highly efficient way and continue to learn from the streaming data recursively. It can support various types of 

distances and/or dissimilarity measures and can also conduct classification under different levels of granularity, 

which makes it a powerful alternative to the “state-of-the-art” approaches and gives its strong potential in real 

applications. Numerical examples on benchmark problems demonstrate the high performance of the SOF 

approach and show its ability in handling different sorts of problems.  

As future work, we will apply the proposed approach to different complex problems and further improve 

its performance. The local optimality of the classifier will be further investigated. We will also use first order 

fuzzy rules in the SOF classifier to increase the degrees of freedom and thus, allow a higher performance. 

 

References 

[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior of distance metrics in 

high dimensional space,” in International Conference on Database Theory, 2001, pp. 420–434. 

[2] P. Angelov, Autonomous learning systems: from data streams to knowledge in real time. John Wiley & 

Sons, Ltd., 2012. 

[3] P. Angelov and X. Gu, “A cascade of deep learning fuzzy rule-based image classifier and SVM,” in 

International Conference on Systems, Man and Cybernetics, 2017, pp. 1–8. 

[4] P. Angelov, X. Gu, and D. Kangin, “Empirical data analytics,” Int. J. Intell. Syst., vol. 32, no. 12, pp. 

1261–1284, 2017. 

[5] P. Angelov, X. Gu, J. Principe, “A generalized methodology for data analysis”, IEEE Transactions on 

Cybernetics, DOI: 10.1109/TCYB.2017.2753880, 2017. 

[6] P. Angelov, D. Kangin, and D. Kolev, “Symbol recognition with a new autonomously evolving 

classifier AutoClass,” in International Joint Conference on Neural Networks, 2015, pp. 1–8. 

[7] P. Angelov and R. Yager, “A new type of simplified fuzzy rule-based system,” Int. J. Gen. Syst., vol. 

41, no. 2, pp. 163–185, 2011. 

[8] P. Angelov and X. Zhou, “Evolving fuzzy-rule based classifiers from data streams,” IEEE Trans. Fuzzy 

Syst., vol. 16, no. 6, pp. 1462–1474, 2008. 



 

 

[9] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ‘nearest neighbors’ meaningful?,” in 

International Conference on Database Theoryheory, 1999, pp. 217–235. 

[10] M. A. Borgi, D. Labate, M. El Arbi, and C. Ben Amar, “Regularized shearlet network for face 

recognition using single sample per person,” in IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP), 2014, pp. 514–518. 

[11] S. Chen and Y. Tian, “Pyramid of spatial relatons for scene-level land use classification,” IEEE Trans. 

Geosci. Remote Sens., vol. 53, no. 4, pp. 1947–1957, 2015. 

[12] A. M. Cheriyadat, “Unsupervised feature learning for aerial scene classification,” IEEE Trans. Geosci. 

Remote Sens., vol. 52, no. 1, pp. 439–451, 2014. 

[13] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image 

classification,” in Conference on Computer Vision and Pattern Recognition, 2012, pp. 3642–3649. 

[14] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based 

learning methods. Cambridge: Cambridge University Press, 2000. 

[15] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002. 

[16] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult. Classif. Syst., vol. 34, pp. 1–

17, 2007. 

[17] J. Gan, Q. Li, Z. Zhang, and J. Wang, “Two-level feature representation for aerial scene classification,” 

IEEE Geosci. Remote Sens. Lett., vol. 13, no. 11, pp. 1626–1630, 2016. 

[18] X. Gu, P. Angelov, D. Kangin, J. Principe, “Self-organised direction aware data partitioning 

algorithm”, Inf. Sci., vol. 423, pp. 80-95, 2018. 

[19] X. Gu, P. P. Angelov and J. C. Principe, “A method for autonomous data partitioning,” Inf. Sci., 

submitted for publication, 2017. 

[20] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a compact 

representation,” IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3304–3311, 2010. 

[21] D. Kangin, P. Angelov, and J. A. Iglesias, “Autonomously evolving classifier TEDAClass,” Inf. Sci. 

(Ny)., vol. 366, pp. 1–11, 2016. 

[22] N. K. Kasabov and Q. Song, “DENFIS : Dynamic Evolving Neural-Fuzzy Inference System and Its 

Application for Time-Series Prediction,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, 2002. 

[23] T. Kohonen, Self-organizing maps. Berlin: Springer, 1997. 

[24] L. Kuncheva, Combining pattern classifiers: methods and algorithms. Hoboken, New Jersey: John 

Wiley & Sons, 2004. 

[25] T. Larrain, J. S. J. Bernhard, D. Mery, and K. W. Bowyer, “Face recognition using sparse fingerprint 

classification algorithm,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 7, pp. 1646–1657, 2017. 

[26] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features : spatial pyramid matching for 

recognizing natural scene categories,” in IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition, 2006, pp. 2169–2178. 

[27] L. Lu, L. Di, and Y. Ye, “A decision-tree classifier for extracting transparent plastic-mulched 

Landcover from landsat-5 TM images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 

11, pp. 4548–4558, 2014. 

[28] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data streams with evolving fuzzy 

systems,” Appl. Soft Comput., vol. 11, no. 2, pp. 2057–2068, 2011. 

[29] E. Lughofer, R. Richter, U. Neissl, W. Heidl, C. Eitzinger, and T. Radauer, “Explaining classifier 

decisions linguistically for stimulating and improving operators labeling behavior,” Inf. Sci. (Ny)., 

2017. 

[30] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” 

Int. J. Man. Mach. Stud., vol. 7, no. 1, pp. 1–13, 1975. 

[31] F. Noorbehbahani, A. Fanian, R. Mousavi, and H. Hasannejad, “An incremental intrusion detection 

system using a new semi-supervised stream classification method,” Int. J. Commun. Syst., vol. 30, no. 

4, pp. 1–26, 2017. 

[32] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: concepts and applications of 

Voronoi diagrams, 2nd ed. Chichester, England: John Wiley & Sons., 1999. 



 

 

[33] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of the spatial 

envelope,” Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001. 

[34] N. Passalis and A. Tefas, “Neural bag-of-features learning,” Pattern Recognit., vol. 64, pp. 277–294, 

2017. 

[35] W. Pedrycz, Granular computing: analysis and design of intelligent systems. CRC press, 2013. 

[36] W. Pedrycz and A. Bargiela, “Granular clustering: a granular signature of data,” IEEE Trans. Syst. 

Man, Cybern. Part B Cybern., vol. 32, no. 2, pp. 212–224, 2002. 

[37] P. Płoński and K. Zaremba, “Self-organising maps for classification with metropolis-hastings algorithm 

for supervision,” in International Conference on Neural Information Processing, 2012, pp. 149–156. 

[38] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “PANFIS : a novel incremental learning 

machine,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 55–68, 2014. 

[39] H. J. Rong, N. Sundararajan, G. Bin Huang, and P. Saratchandran, “Sequential adaptive fuzzy 

inference system (SAFIS) for nonlinear system identification and prediction,” Fuzzy Sets Syst., vol. 

157, no. 9, pp. 1260–1275, 2006. 

[40] S. R. Safavian and D. Landgrebe, “A survey of decsion tree clasifier methodology,” IEEE Trans. Syst. 

Man. Cybern., vol. 21, no. 3, pp. 660–674, 1990. 

[41] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence theorem and 

characterization of local optimality,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 1, pp. 

81–87, 1984. 

[42] M. Senoussaoui, P. Kenny, P. Dumouchel, and T. Stafylakis, “Efficient iterative mean shift based 

cosine dissimilarity for multi-recording speaker clustering,” IEEE Int. Conf. Acoust. Speech Signal 

Process., pp. 7712–7715, 2013. 

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image 

recognition,” in International Conference on Learning Representations, 2015, pp. 1–14. 

[44] A. L. Suárez-Cetrulo and A. Cervantes, “An online classification algorithm for large scale data 

streams: iGNGSVM,” Neurocomputing, vol. 262, pp. 67–76, 2017. 

[45] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and 

control,” IEEE Trans. Syst. Man. Cybern., vol. 15, no. 1, pp. 116–132, 1985. 

[46] Q. Weng, Z. Mao, J. Lin, and W. Guo, “Land-use classification via extreme learning classifier based on 

deep convolutional features,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 704–708, 2017. 

[47] G. S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, and L. Zhang, “AID: A benchmark dataset for 

performance evaluation of aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 

7, pp. 3965–3981, 2017. 

[48] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use classification,” in 

International Conference on Advances in Geographic Information Systems, 2010, pp. 270–279. 

[49] J. Yao, A. V Vasilakos, and W. Pedrycz, “Granular computing: perspectives and challenges.,” IEEE 

Trans. Cybern., vol. 43, no. 6, pp. 1977–89, 2013. 

[50] X. T. Yuan, B. G. Hu, and R. He, “Agglomerative mean-shift clustering,” IEEE Trans. Knowl. Data 

Eng., vol. 24, no. 2, pp. 209–219, 2012. 


